Tunable vicinal, geminal diphosphorylation and C-N bond

phosphorylation of enaminones toward divergent phosphorylated

ketone derivatives

Dingsheng Cao,^a Chaoli Wang,^a Jie-Ping Wan,^a Chengping Wen,^{b,*} Yunyun Liu^{a,*}

^aNational Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.

^bInstitute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.

Email: chemliuyunyun@jxnu.edu.cn; wengcp@yeah.net

Contents

General experimental information	S2
Data of optimization on selective reactions	S2-S4
Deuterium isotope labelling experiments	
General procedure for the synthesis of 3	S7
Procedure for the 1 mmol scale reaction for the synthesis of 3a	S8
Characterization data of compounds 3	
General procedure for the synthesis of 4	S15
Procedure for the 1 mmol scale reaction for the synthesis of 4a	S16
Characterization data of compounds 4	S16-S24
General procedure for the synthesis of 3	S24
Procedure for the 1 mmol scale reaction for the synthesis of 5a	S24-S25
Characterization data of compounds 5	
Synthetic procedure and characterization data of compound 7	
Synthetic procedure and characterization data of compound 8	
Synthetic procedure and characterization data of compound 10	S32-S33
Synthetic procedure and characterization data of compound 12	S33
References	S33
NMR spectra of all products	S34-S116

General experimental information

All enaminones **1** were synthesized following literature process.¹ All other chemicals and solvents used in the experiments were obtained from commercial sources and used directly without further treatment. The NMR spectra were recorded in 400 MHz apparatus in DMSO-*d*₆ or CDCl₃. The frequencies for ¹H NMR, ¹³C NMR, ³¹P NMR and ¹⁹F NMR test are 400 MHz, 100 MHz, 162 MHz and 376 MHz, respectively. The chemical shifts were reported in ppm with TMS as internal standard. Melting points were tested in X-4A instrument without correcting temperature and the HRMS data for all new products were obtained under ESI model with TOF analyzer.

O N N	O " + Ph−P	–H <u>– Additive</u> –H <u>Solvent, T,</u>	12 h Ph	P(O)Ph ₂	O P(O)Ph ₂ + Ph + P	P(O)Ph2
1a	2a	1		3a	P(O)Ph ₂ 4a	5a
	Entry	Promoter	Solvent	T (°C)	Yield (3a/4a/5a%) ^b	
	1	-	MeCN	50	17/0/0	
	2	TMSCl	MeCN	50	63/trace/0	
	3	AcOH	MeCN	50	39/trace/0	
	4	KHSO ₄	MeCN	50	75/trace/0	
	5	TFA	MeCN	50	80/0/0	
	6	TFA	EtOH	50	75/0/0	
	7	TFA	THF	50	78/0/0	
	8	TFA	DMF	50	69/0/trace	
	9	TFA	DMSO	50	78/0/0	
	10	TFA	DCM	50	76/0/0	
	11	TFA	toluene	50	77/0/0	
	12 ^c	TFA	MeCN	50	87/0/0	
	13 ^d	TFA	MeCN	50	85/0/0	
	14 ^c	TFA	MeCN	60	91/0/0	
	15°	TFA	MeCN	70	90/0/0	

Table S1 Optimization on the conditions for the geminal diphosphorylation^a

^aGeneral conditions: **1a** (0.2 mmol), **2a** (3.0 equiv), promoter (2.0 equiv), solvent (2 mL), stirred at 60 °C for 12 h. ^bIsolated yields based on **1a**. ^cWith 3.0 equiv TFA. ^dWith

4.0 equiv TFA.

	∕∕ <mark>∧</mark> ∕ +	Ph-P-H Ph Sol	Additive vent, T, 12 h Ph))Ph ₂ + Pl	$\begin{array}{ccc} O & P(O)Ph_2 & O \\ \downarrow & \downarrow & P(O)Ph_2 & + & \downarrow \\ h & & P(O)Ph_2 & + & Ph \end{array}$	P(O)Ph ₂
1a		2a	4a	112	3a	5a
	Entry	base	Solvent	T (°C)	Yield (3a/4a/5a%) ^b	>
	1	Cs ₂ CO ₃	MeCN	60	52/10/0	
	2	^t BuONa	MeCN	60	55/5/0	
	3	^t BuOK	MeCN	60	60/5/0	
	4	TBAH	MeCN	60	20/50/0	
	5	NH ₂ Na	MeCN	60	trace /20/0	
	6	^t BuOK	THF	60	50/trace/0	
	7	^t BuOK	DCM	60	10/10/0	
	8	^t BuOK	DMSO	60	50/5/0	
	9	^t BuOK	toluene	60	40/5/0	
	10	^t BuOK	DCM/DMF (1:1)	60	55/trace /0	
	11	^t BuOK	DMF/THF (1:1)	60	66/trace/0	
	12	^t BuOK	DMF/THF (1:3)	60	72/trace/0	
	13	^t BuOK	DMF/THF (1:3)	50	85/trace/0	
	14	^t BuOK	DMF/THF (1:3)	70	70/trace/0	
	15 ^c	^t BuOK	DMF/THF (1:3)	50	90/trace/0	

Table S2 Optimization data for the selective vicinal diphosphorylation^a

^aGeneral conditions: **1a** (0.2 mmol), **2a** (4.0 equiv), base (3.0 equiv), solvent (4 mL), stirred for 12 h. ^bIsolated yield. ^cWith 4.0 equiv ^{*t*}BuOK.

Ph Ph Ph Ph Ph Ph Ph Ph P						
1a 2a				5a		
Entry	Solvent	Catalyst	Additive	T (°C)	Yield (3a/4a/5a%) ^b	
1	MeCN	I ₂	oxalic acid	50	40/0/10	
2	DCM	I ₂	oxalic acid	50	30/0/20	
3	DMSO	I2	oxalic acid	50	35/0/trace	
4	acetone	I2	oxalic acid	50	20/0/15	
5	DMF	I2	oxalic acid	50	25/0/35	
6	DMF	I2	TFA	50	50/0/trace	
7	DMF	I2	AcOH	50	20/0/55	
8	DMF		AcOH	50		
	DMF	I ₂	HCl(aq)	50	30/0/30	
9	DMF	I2	AlCl ₃	50	10/0/0	
10	DMF	NIS	AcOH	50	10/0/trace	
11	DMF	KI	AcOH	50	10/0/trace	
12	DMF	KIO ₃	AcOH	50	30/0/5	
13	DMF	PhI(OAc) ₂	AcOH	50	0/0/trace	
14	DMF	I ₂	AcOH	60	25/0/40	
15	DMF	I_2	AcOH	40	20/0/45	

Table S3 Optimization data for the C-N bond phosphorylation^a

^aGeneral conditions: **1a** (0.2 mmol), **2a** (1.5 equiv), catalyst (0.2 equiv), additive (2.0 equiv), solvent (2 mL), stirred for 12 h. ^bIsolated yield.

Deuterium isotope labelling experiments

Procedure for the preparation of D-labelled diphenyl phosphine oxide 2a-d1

To a 15 mL test tube were added diphenyl phosphine oxide 2a (3.0mmol), D₂0 (0.6 mL). The mixture was stirred at room temperature for 3 h. Removing the water under reduced pressure provided mixed 2a and $2a-d_1$ with 97% yield wherein the proportion of D-labelled compound was 81% (Figure S1).

Figure S1 The ¹H NMR spectrum of mixed 2a and $2a-d_1$

Procedures for the geminal and vicinal dephosphorylation of enaminone 1a with D-labelled diphenyl phosphine oxide

The D-labelling experiments were performed following the standard procedures for the geminal and vicinal diphosphorylation reactions using the prior prepared $2a-d_I$ as substrate. The 1H NMR spectra for the products resulting from the reaction shows the formation of D-labelled products $3a-d_I$ and $4a-d_I$ in formed of mixture with corresponding product 3a and 4a, respectively (Figure S2-Figure S5).

Figure S2 The ¹H NMR spectrum of mixed 3a and $3a-d_1$

Figure S3 The ESI-MS spectrum of mixed 3a and 3a-d1

Figure S4 The ¹H NMR spectrum of mixed 4a and $4a-d_1$

Figure S5 The ESI-MS spectrum of mixed 4a and 4a-d1

General procedure for the synthesis of 3

In a 25 mL sealed tube were added enaminone **1** (0.2 mmol, 1 equiv), phosphine oxide/phosphonate **2** (0.6 mmol, 3 equiv), TFA (0.6 mmol, 3 equiv) and CH₃CN (2 mL, 0.1 M). After sealing the tube with Teflon cap, the mixture was stirred at 60 °C with oil bath heating for 12 h. After being cooled down to room temperature, the mixture was transferred into the round bottom flask, and solvent was removed at reduced pressure. The residue obtained therein was subjected to flash silica gel column chromatography

to provide pure products with the elution of mixed ethyl acetate and methanol or dichloromethane (DCM) and methanol ($v/v = 10:1 \sim 40:1$).

Procedure for the 1 mmol scale reaction for the synthesis of 3a

In a 50 mL sealed tube were added enaminone **1a** (1.0 mmol, 1 equiv), dialkyl phosphonate **2a** (3.0 mmol, 3 equiv), TFA (3.0 mmol, 3 equiv) and CH₃CN (6 mL, 0.17 M). After sealing the tube with Teflon cap, the mixture was stirred at 60 °C with oil bath heating for 12 h. After being cooled down to room temperature, the mixture was transferred into the round bottom flask, and solvent was removed at reduced pressure. The residue was dissolved with methanol (2 mL), and water (80 mL) was added dropwise into the mixture while stirring. The precipitates formed thereby were collected by filtration. The solid was washed subsequently with water and then washed by petroleum ether, dried at vacuum to give pure product **3a** (459.4 mg, 86% yield).

3,3-Bis(diphenylphosphoryl)-1-phenylpropan-1-one (**3a**).² Eluent: $V_{EA}/V_{MeOH} =$ 10:1; White solid (97.6 mg, 91% yield); mp 168-170 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.88-7.82 (m, 4H), 7.79-7.71 (m, 4H), 7.52 (d, *J* = 7.9 Hz, 2H), 7.42 (t, *J* = 7.3 Hz, 1H), 7.36 (t, *J* = 7.3 Hz, 2H), 7.28 (d, *J* = 4.0 Hz, 5H), 7.22 (s, 7H), 4.83-4.73 (m, 1H), 3.62-3.52 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 195.8 (t, *J* = 4.4 Hz), 135.4, 133.4, 131.8, 131.7, 131.63, 131.58, 131.5, 130.9, 130.6, 128.3, 128.2, 127.8, 36.6 (t, *J* = 59.2 Hz), 34.4; ³¹P NMR (162 MHz, CDCl₃): δ 31.5.

3,3-Bis(diphenylphosphoryl)-1-(p-tolyl)propan-1-one (**3b**). Eluent: $V_{EA}/V_{MeOH} =$ 10:1; Yellow liquid (89.7 mg, 82% yield); ¹H NMR (400 MHz, CDCl₃) ; δ 7.88-7.76 (m, 8H), 7.45 (d, *J* = 8.0 Hz, 2H), 7.34-7.30 (m, 2H), 7.23 (d, *J* = 5.2 Hz, 10H), 7.04 (d, *J* = 8.0 Hz, 2H), 4.83-4.76 (m, 1H), 3.66-3.58 (m, 2H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.5, 144.3, 132.7, 131.9, 131.7, 131.5, 131.4, 130.4, 130.3, 128.9,

128.4, 128.2, 128.0, 35.6, 34.0, 21.6; ³¹P NMR (162 MHz, CDCl₃): δ 32.6; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₄H₃₁O₃P₂ 549.1743; Found 549.1745.

3,3-Bis(diphenylphosphoryl)-1-(3-methoxyphenyl)propan-1-one (**3c**). Eluent: $V_{EA}/V_{MeOH} = 10:1$; Yellow liquid (84.5 mg, 75% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.77 (m, 8H), 7.32 (t, J = 7.1 Hz, 2H), 7.25 (s, 10H), 7.13 (s, 2H), 7.05 (s, 1H), 6.97 (s, 1H), 4.82-4.73 (m, 1H), 3.8 (s, 3H), 3.70-3.61 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 196.1, 159.4, 136.6, 132.0, 131.8, 131.6, 131.5, 129.3, 128.5, 128.4, 128.3, 120.7, 120.1, 111.9, 55.4, 35.3, 34.5; ³¹P NMR (162 MHz, CDCl₃) δ 32.6; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₄H₃₁O₄P₂ 565.1692; Found 565.1697.

3,3-Bis(diphenylphosphoryl)-1-(4-nitrophenyl)propan-1-one (**3d**). Eluent: $V_{EA}/V_{MeOH} = 10:1$; White solid (90.7 mg, 78% yield); mp 188-190 °C; ¹H NMR (400 MHz, CDCl₃) ; δ 8.12 (d, J = 7.0 Hz, 2H), 7.90-7.80 (m, 4H), 7.80-7.68 (m, 6H), 7.37 (d, J = 6.3 Hz, 2H), 7.26 (s, 10H), 4.74-4.67 (m, 1H), 3.70-3.64 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 195.0 (t, J = 5.4 Hz), 150.3, 139.6, 132.1, 131.9, 131.6 (d, J = 3.0 Hz), 131.5 (d, J = 3.5 Hz), 129.0, 128.6, 128.5, 128.4, 128.3, 123.5, 36.6 (d, J = 57.6 Hz), 34.9; ³¹P NMR (162 MHz, CDCl₃) δ 31.6; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₃H₂₈NO₅P₂ 580.1437; Found 580.1439.

4-(3,3-Bis(diphenylphosphoryl)propanoyl)benzonitrile (**3e**). Eluent: $V_{EA}/V_{MeOH} =$ 10:1; Yellow liquid (89.3 mg, 80% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.72 (m, 8H), 7.69 (d, *J* = 7.9 Hz, 2H), 7.53 (d, *J* = 7.8 Hz, 2H), 7.31 (d, *J* = 7.3 Hz, 3H), 7.27-7.18 (m, 9H), 4.72-4.66 (m, 1H), 3.90-3.63 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ

195.3 (t, J = 4.4 Hz), 138.0, 132.1, 131.9, 131.52, 131.47, 131.4, 130.9, 129.9, 128.6, 128.5, 128.3, 117.8, 116.5, 36.0 (t, J = 59.5 Hz), 34.4; ³¹P NMR (162 MHz, CDCl₃) δ 32.3; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₄H₂₈NO₃P₂ 560.1539; Found 560.1537.

1-(4-Chlorophenyl)-3,3-bis(diphenylphosphoryl)propan-1-one (**3f**). Eluent: $V_{EA}/V_{MeOH} = 10:1$; Yellow liquid (77.7 mg, 68% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.92-7.69 (m, 8H), 7.49 (d, J = 8.5 Hz, 2H), 7.34 (t, J = 7.0 Hz, 2H), 7.29 (s, 2H), 7.26-7.19 (m, 10H), 4.78-4.69 (m, 1H), 3.62-3.54 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 194.9 (t, J = 4.9 Hz), 139.9, 133.5, 132.0, 131.8, 131.6, 131.49, 131.47, 129.3, 128.6, 128.5, 128.4, 128.3, 36.2 (t, J = 59.2 Hz), 34.2; ³¹P NMR (162 MHz, CDCl₃) δ 31.8; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₃H₂₈ClO₃P₂ 569.1197; Found 569.1197.

1-(4-Bromophenyl)-3,3-bis(diphenylphosphoryl)propan-1-one (**3g**). Eluent: $V_{EA}/V_{MeOH} = 10:1$; White solid (101.3 mg, 83% yield); mp 172-174 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.84-7.72 (m, 8H), 7.41 (s, 4H), 7.36 (t, *J* = 7.1 Hz, 2H), 7.27 (d, *J* = 12.9 Hz, 10H), 4.75-4.68 (m, 1H), 3.59-3.51 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 195.1 (t, *J* = 5.0 Hz), 134.0, 131.9, 131.7, 131.6, 131.4, 130.3, 129.4, 128.6, 128.44, 128.37, 128.3, 128.2, 36.4 (t, *J* = 59.7 Hz), 34.3; ³¹P NMR (162 MHz, CDCl₃) δ 31.7; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₃H₂₈BrO₃P₂ 613.0692; Found 613.0696.

3,3-Bis(diphenylphosphoryl)-1-(4-iodophenyl)propan-1-one (**3h**). Eluent: $V_{EA}/V_{MeOH} = 10:1$; White solid (117.9 mg, 89% yield); mp 144-146 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.88-7.72 (m, 8H), 7.58 (d, J = 8.0 Hz, 2H), 7.35-7.27 (m, 4H), 7.24 (s, 10H), 4.76-4.69 (m, 1H), 3.66-3.58 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 195.5, 137.5, 134.4, 132.1, 131.8, 131.5, 131.4, 130.1, 129.3, 128.6, 128.44, 128.39, 128.3, 35.7, 34.1; ³¹P NMR (162 MHz, CDCl₃) δ 32.4; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₃H₂₈IO₃P₂ 661.0553; Found 661.0553.

3,3-Bis(diphenylphosphoryl)-1-(naphthalen-2-yl)propan-1-one (**3i**). Eluent: $V_{EA}/V_{MeOH} = 10:1$; Yellow liquid (95.5 mg, 82% yield); ¹H NMR (400 MHz, CDCl₃) ; δ 8.09 (s, 1H), 7.88-7.75 (m, 10H), 7.69 (d, J = 8.6 Hz, 1H), 7.62 (d, J = 8.4 Hz, 1H), 7.54 (t, J = 7.3 Hz, 1H), 7.48 (t, J = 7.3 Hz, 1H), 7.33 (t, J = 7.2 Hz, 2H), 7.26-7.11 (m, 9H), 4.89-4.80 (m, 1H), 3.84-3.75 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 196.0, 135.6, 132.5, 132.1, 132.0, 131.8, 131.6, 131.52, 131.48, 130.1, 129.8, 128.7, 128.5, 128.4, 128.3, 128.0, 127.5, 126.7, 123.3, 41.8, 34.3; ³¹P NMR (162 MHz, CDCl₃) δ 32.5; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₇H₃₁O₃P₂ 585.1743; Found 585.1749.

1-(3,4-Dichlorophenyl)-3,3-bis(diphenylphosphoryl)propan-1-one (**3j**). Eluent: $V_{EA}/V_{MeOH} = 10:1$; Yellow liquid (110.1 mg, 91% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (t, J = 16.3 Hz, 8H), 7.57 (s, 1H), 7.44 (d, J = 8.1 Hz, 1H), 7.33-7.27 (m, 6H), 7.25-7.23 (m, 7H), 4.72-4.63 (m, 1H), 3.65-5.56 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 194.4, 138.0, 134.8, 132.9, 132.0, 131.8, 131.6, 131.5, 131.1, 130.4, 129.7, 128.6, 128.4, 128.3, 127.2, 36.3, 34.3; ³¹P NMR (162 MHz, CDCl₃) δ 32.1; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₃H₂₇Cl₂O₃P₂ 603.0807; Found 603.0806.

$$P(O)Ph_2$$

 $P(O)Ph_2$
 $P(O)Ph_2$

3,3-Bis(diphenylphosphoryl)-1-(furan-2-yl)propan-1-one (**3k**). Eluent: V_{EA}/V_{MeOH} = 10:1; Black liquid (79.0 mg, 75% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.83-7.73 (m,

8H), 7.36-7.28 (m, 4H), 7.22 (d, J = 6.8 Hz, 9H), 6.93 (s, 1H), 6.29 (s, 1H), 4.69-4.60 (m, 1H), 3.54-3.45 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 184.5 (t, J = 5.3 Hz), 150.9, 146.8, 131.9, 131.7, 131.6, 131.5, 131.4, 128.5, 128.3, 128.2, 118.6, 112.1, 35.3 (t, J = 59.4 Hz), 33.7; ³¹P NMR (162 MHz, CDCl₃) δ 32.2; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₁H₂₇O₄P₂ 525.1379; Found 525.1378.

$$P(O)Ph_2$$

 $P(O)Ph_2$
 $P(O)Ph_2$

3,3-Bis(diphenylphosphoryl)-1-(thiophen-2-yl)propan-1-one (**31**). Eluent: $V_{EA}/V_{MeOH} = 10:1$; Yellow liquid (84.6 mg, 78% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.07-7.70 (m, 9H), 7.47 (s, 1H), 7.33 (d, J = 22.6 Hz, 4H), 7.23 (s, 8H), 6.83 (s, 1H), 4.75-4.67 (m, 1H), 3.62-3,53 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 188.8 (t, J = 4.7 Hz), 141.8, 134.4, 133.1, 131.9, 131.7, 131.5, 130.3, 128.5, 128.4, 128.3, 128.2, 127.9, 35.8 (t, J = 59.8 Hz), 34.4; ³¹P NMR (162 MHz, CDCl₃) δ 31.8; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₁H₂₇O₃P₂S 541.1151; Found 541.1152.

(3S, 8R, 9S, 10R, 13S, 14S)-17-(3,3-Bis(diphenylphosphoryl)propanoyl)-10,13-di methyl-2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15-dodecahydro-1H-cyclopenta[a] phenanthren-3-yl acetate (3m). Eluent: $V_{DCM}/V_{MeOH} = 40:1$; Yellow liquid (53.7 mg, 35% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.79 (m, 4H), 7.77-7.69 (m, 4H), 7.39-7.28 (m, 8H), 7.27 (s, 4H), 6.30 (s, 1H), 5.34 (d, J = 4.5 Hz, 1H), 4.67-4.54 (m, 2H), 3.35-3.08 (m, 2H), 2.57 (s, 1H), 2.35-2.27 (m, 2H), 2.17-2.09 (m, 2H), 2.03 (s, 3H), 1.87-1.81 (m, 2H), 1.76 (d, J = 16.8 Hz, 1H), 1.55 (s, 2H), 1.53 (s, 2H), 1.38-1.23 (m, 2H), 1.13 (d, J = 10.5 Hz, 2H), 1.02 (s, 3H), 0.96-0.92 (m, 1H), 0.62 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.4, 170.5, 144.9, 140.1, 131.61, 131.60, 131.54, 131.49, 128.3, 128.23, 128.20, 128.17, 128.1, 121.9, 73.7, 55.8, 50.2, 46.1, 38.1, 38.0, 36.7, 34.5, 34.3, 32.1, 31.3, 29.9, 27.6, 21.4, 21.3, 20.4, 19.1, 15.7; ³¹P NMR (162 MHz, CDCl₃) δ 31.7

(d, J = 85.5 Hz); HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₄₈H₅₃O₅P₂ 771.3363; Found 771.3363.

Tetraethyl (3-oxo-3-phenylpropane-1,1-diyl)bis(phosphonate) (3n). Eluent: $V_{EA}/V_{PE} = 1:1$; Yellow liquid (32.8 mg, 40% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 7.7 Hz, 2H), 7.34 (d, J = 7.4 Hz, 3H), 5.66 (d, J = 8.0 Hz, 1H), 4.29-4.01 (m, 8H), 3.11-2.88 (m, 2H), 1.33 (t, J = 7.0 Hz, 6H), 1.24 (t, J = 7.1 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 201.8, 128.8, 128.4, 128.3, 125.7, 64.6 (d, J = 6.0 Hz), 62.1 (d, J = 6.5 Hz), 16.4 (d, J = 6.0 Hz), 16.0 (d, J = 7.1 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 27.0; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₇H₂₉O₇P₂ 407.1383; Found 407.1385.

3,3-Bis(di-*p*-tolylphosphoryl)-1-phenylpropan-1-one (**3o**). Eluent: $V_{EA}/V_{MeOH} =$ 10:1; Yellow liquid (97.6 mg, 83% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.65-7.59 (m, 8H), 7.52 (d, *J* = 7.7 Hz, 2H), 7.39 (d, *J* = 7.4 Hz, 1H), 7.18 (t, *J* = 7.6 Hz, 2H), 6.96 (s, 8H), 4.64-4.58 (m, 1H), 3.73-3.58 (m, 2H), 2.27 (s, 6H), 2.10 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 196.2 (t, *J* = 5.0 Hz), 142.4, 142.0, 135.1, 133.2, 131.5, 131.4, 129.2, 129.1, 128.8, 128.7, 128.0, 127.1, 36.1 (t, *J* = 60.2 Hz), 33.8, 21.5, 21.3; ³¹P NMR (162 MHz, CDCl₃) δ 33.2; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₇H₃₇O₃P₂ 591.2212; Found 591.2211.

3,3-Bis(bis(3,5-dimethylphenyl)phosphoryl)-1-phenylpropan-1-one (**3p**). Eluent: $V_{EA}/V_{MeOH} = 10:1$; White solid (68.9 mg, 53% yield); mp 130-132 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 7.6 Hz, 2H), 7.42 (t, J = 7.3 Hz, 1H), 7.38-7.25 (m, 10H), 6.82 (d, J = 23.8 Hz, 4H), 4.57-4.50 (m, 1H), 3.74-3.65 (m, 2H), 2.16 (s, 12H), 2.09 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 196.3, 138.4, 138.2, 137.8, 137.7, 135.1, 133.7, 133.5, 133.4, 130.0, 128.7, 128.1, 128.0, 35.6, 33.6, 21.2, 21.0; ³¹P NMR (162 MHz, CDCl₃) δ 34.1; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₁H₄₅O₃P₂ 647.2838; Found 647.2846.

3,3-Bis(bis(4-fluorophenyl)phosphoryl)-1-phenylpropan-1-one (**3q**). Eluent: $V_{EA}/V_{MeOH} = 10:1$; Yellow liquid (70.7 mg, 58% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.91-7.72 (m, 8H), 7.62 (d, J = 7.1 Hz, 2H), 7.48 (t, J = 6.9 Hz, 1H), 7.35-7.25 (m, 2H), 7.19-7.13 (m, 1H), 7.01-6.87 (m, 7H), 4.69-4.62 (m, 1H), 3.70-3.63 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 196.2, 166.4 (d, J = 4.7 Hz), 163.9 (d, J = 6.0 Hz), 134.7, 134.2, 134.1, 134.0, 128.4, 128.0, 116.3, 116.1, 116.0, 115.8, 36.4, 33.9; ³¹P NMR (162 MHz, CDCl₃) δ 32.4; ¹⁹F NMR (376 MHz, CDCl₃): δ -105.56; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C_{33H25F4O3P2} 607.1210; Found 607.1210.

3,3-Bis(di(naphthalen-2-yl)phosphoryl)-1-phenylpropan-1-one (**3r**). Eluent: $V_{EA}/V_{MeOH} = 10:1$; White solid (95.9 mg, 65% yield); mp 86-88 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, J = 13.2 Hz, 2H), 8.34 (d, J = 13.6 Hz, 2H), 7.87 (s, 4H), 7.66 (d, J = 7.8 Hz, 2H), 7.58 (d, J = 7.2 Hz, 2H), 7.50-7.44 (m, 4H), 7.38-7.25 (m, 12H), 7.18 (t, J = 7.1 Hz, 2H), 7.01 (t, J = 7.0 Hz, 1H), 6.80 (t, J = 7.4 Hz, 2H), 5.14-5.09 (m, 1H), 3.96-3.87 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 196.3 (t, J = 4.6 Hz), 134.7, 134.4, 134.2, 134.0, 133.9, 133.1, 132.3, 132.1, 132.0, 131.9, 128.8, 128.6, 128.3, 128.1, 127.8, 127.52, 127.47, 127.3, 126.8, 126.6, 125.9, 125.8, 125.6, 125.5, 36.3 (t, J = 59.7 Hz), 33.9; ³¹P NMR (162 MHz, CDCl₃) δ 32.8; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₉H₃₇O₃P₂ 735.2212; Found 735.2217.

General procedure for the synthesis of 4

In a 25 mL sealed tube were added enaminone **1** (0.2 mmol, 1 equiv), phosphine oxide **2** (0.8 mmol, 4 equiv), 'BuOK (0.8 mmol, 4 equiv) and DMF/THF (1 mL/3 mL). After sealing the tube with Teflon cap, the mixture was stirred at 50 °C with oil bath heating for 12 h. After being cooled down to room temperature, 5 mL of water was added, and the resulting mixture was extracted with ethyl acetate (3×10 mL). The organic phases were collected and washed with a small amount of water for three times. After being dried with anhydrous Na₂SO₄, the solid was removed by filtration. The solvent in the resulting solution was removed at reduced pressure. The residue obtained therein was subjected to flash silica gel column chromatography to provide pure products with the elution of mixed ethyl acetate and methanol or dichloromethane and methanol (v/v = 10:1~200:3).

Procedure for the 1 mmol scale reaction for the synthesis of 4a

In a 50 mL sealed tube were added enaminone **1a** (1.0 mmol, 1 equiv), phosphine oxide **2a** (4.0 mmol, 4 equiv), 'BuOK (4.0 mmol, 4 equiv) and DMF/THF (2 mL/6 mL). After sealing the tube with Teflon cap, the mixture was stirred at 50 °C with oil bath heating for 12 h. After being cooled down to room temperature, 20 mL of water was added, and the resulting mixture was extracted with ethyl acetate (3×40 mL). The combined organic phases were concentrated at reduced pressure. Mixed methanol (2 mL) and water (80 mL) was then added dropwise into the residue at stirring. The precipitates formed thereby were collected by filtration. The solid was washed subsequently with water and petroleum ether, dried at vacuum to give pure product **4a** (470.1 mg, 88% yield).

2,3-Bis(diphenylphosphoryl)-1-phenylpropan-1-one (**4a**).² Eluent: $V_{EA}/V_{MeOH} =$ 10:1; White solid (95.9 mg, 90% yield); mp 201-203 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.79 (m, 2H), 7.69-7.55 (m, 7H), 7.50-7.43 (m, 9H), 7.25-7.15 (m, 5H), 7.10 (t, J = 7.3 Hz, 2H), 5.27-5.19 (m, 1H), 3.59-3.51 (m, 1H), 2.84-2.74 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 195.1 (d, J = 2.3 Hz), 137.5, 132.6, 132.4, 132.1 (d, J = 3.9 Hz), 131.9, 131.7, 131.6 (d, J = 2.6 Hz), 131.5, 131.3, 131.2, 130.6, 130.5, 128.9, 128.85, 128.77, 128.7, 128.4, 128.3, 128.2, 127.8, 42.9 (d, J = 49.2 Hz), 28.0 (d, J = 63.9 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 30.9 (d, J = 42.0 Hz), 30.4 (d, J = 41.8 Hz).

2,3-Bis(diphenylphosphoryl)-1-(o-tolyl)propan-1-one (**4b**). Eluent: $V_{EA}/V_{MeOH} =$ 10:1; Yellow solid (85.9 mg, 78% yield); mp 168-170 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (t, J = 8.4 Hz, 2H), 7.72-7.65 (m, 2H), 7.64-7.54 (m, 5H), 7.51-7.45 (m, 2H), 7.41 (d, J = 6.6 Hz, 4H), 7.37-7.28 (m, 3H), 7.25 (d, J = 7.4 Hz, 1H), 7.16-7.07 (m, 3H), 7.03 (t, J = 7.2 Hz, 1H), 6.80 (d, J = 7.2 Hz, 1H), 5.31-5.07 (m, 1H), 3.67 (s, 1H), 2.66

(d, J = 13.7 Hz, 1H), 2.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.7 (d, J = 3.4 Hz), 138.6, 138.1, 132.2, 132.0, 131.8, 131.32, 131.28, 131.2, 131.1, 130.6, 130.5, 129.3, 128.9, 128.8, 128.7, 128.5, 128.4, 128.2, 128.1, 125.1, 45.8 (d, J = 50.5 Hz), 26.7 (d, J = 63.3 Hz), 20.7; ³¹P NMR (162 MHz, CDCl₃) δ 31.0 (d, J = 41.3 Hz), 30.5 (d, J = 40.5Hz); HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₄H₃₁O₃P₂ 549.1743; Found 549.1753.

2,3-Bis(diphenylphosphoryl)-1-(p-tolyl)propan-1-one (**4c**). Eluent: V_{EA}/V_{MeOH} = 10:1; White solid (93.5 mg, 85% yield); mp 220-222 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (t, *J* = 9.3 Hz, 2H), 7.67-7.48 (m, 8H), 7.46-7.28 (m, 8H), 7.23-7.17 (m, 4H), 6.90 (d, *J* = 7.7 Hz, 2H), 5.24-5.15 (m, 1H), 3.57-3.49 (m, 1H), 2.78 (d, *J* = 14.0 Hz, 1H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.6 (d, *J* = 3.2 Hz), 143.5 (d, *J* = 3.0 Hz), 135.0 (d, *J* = 3.3 Hz), 132.3, 132.0, 131.9, 131.8, 131.7, 131.6, 131.4, 131.3, 130.7, 130.62 (d, *J* = 2.9 Hz), 130.56, 128.8, 128.7, 128.6 (d, *J* = 2.8 Hz), 128.5, 128.4, 128.3, 128.1, 42.7 (d, *J* = 50.7 Hz), 27.9 (d, *J* = 63.9 Hz), 21.5; ³¹P NMR (162 MHz, CDCl₃) δ 31.4 (d, *J* = 42.3 Hz), 30.6 (d, *J* = 42.3 Hz); HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₄H₃₁O₃P₂ 549.1743; Found 549.1750.

2,3-Bis(diphenylphosphoryl)-1-(3-methoxyphenyl)propan-1-one (**4d**). Eluent: $V_{EA}/V_{MeOH} = 10:1$; White solid (89.5 mg, 79% yield); mp 200-202 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.81 (t, *J* = 9.1 Hz, 2H), 7.69-7.58 (m, 6H), 7.57-7.48 (m, 6H), 7.42 (d, *J* = 7.2 Hz, 1H), 7.36 (d, *J* = 7.4 Hz, 3H), 7.27-7.15 (m, 4H), 7.03-6.90 (m, 2H), 5.23-4.93 (m, 1H), 3.69 (s, 3H), 3.36 (d, *J* = 11.0 Hz, 1H), 2.69-2.57 (m, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 195.1 (d, *J* = 3.1 Hz), 159.1, 139.5, 132.8, 132.5, 132.3, 131.9, 131.8, 131.6, 131.5, 131.04, 130.95, 130.86, 129.5, 129.4, 129.3 (d, *J* = 2.9 Hz), 129.0, 128.9, 128.8, 128.7, 121.5, 119.3, 113.1, 55.6, 43.7 (d, *J* = 51.7 Hz), 28.2 (d, *J* = 65.3

Hz); ³¹P NMR (162 MHz, DMSO-*d*₆) δ 29.3 (d, *J* = 44.3 Hz), 28.4 (d, *J* = 44.4 Hz); HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₄H₃₁O₄P₂ 565.1692; Found 565.1690.

2,3-Bis(diphenylphosphoryl)-1-(4-methoxyphenyl)propan-1-one (4e). Eluent: $V_{EA}/V_{MeOH} = 10:1$; White solid (90.6 mg, 80% yield); mp 198-200 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (t, J = 9.3 Hz, 2H), 7.66 (s, 4H), 7.58-7.49 (m, 6H), 7.46-7.39 (m, 5H), 7.37-7.27 (m, 2H), 7.24-7.13 (m, 3H), 6.59 (d, J = 8.4 Hz, 2H), 5.22-5.13 (m, 1H), 3.76 (s, 3H), 3.56-3.47 (m, 1H), 2.83-2.76 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 193.2 (d, J = 2.9 Hz), 163.2, 132.4, 132.1, 131.9, 131.8, 131.69, 131.67, 131.6, 131.4, 131.3, 130.9, 130.6, 130.5, 128.8, 128.7, 128.4, 128.3, 128.2, 128.1, 113.0, 55.4, 42.4 (d, J = 53.0 Hz), 28.0 (d, J = 65.9 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 31.7 (d, J = 42.6 Hz), 30.8 (d, J = 42.6 Hz); HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₄H₃₁O₄P₂ 565.1692; Found 565.1699.

2,3-Bis(diphenylphosphoryl)-1-(4-fluorophenyl)propan-1-one (**4f**). Eluent: $V_{EA}/V_{MeOH} = 10:1$; White solid (66.5 mg, 60% yield); mp 223-225 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.78 (m, 2H), 7.69-7.55 (m, 6H), 7.53-7.50 (m, 4H), 7.47-7.40 (m, 5H), 7.34 (t, *J* = 8.0 Hz, 1H), 7.27-7.24 (m, 2H), 7.22-7.15 (m, 2H), 6.79 (t, *J* = 8.6 Hz, 2H), 5.21-5.12 (m, 1H), 3.62-3.38 (m, 1H), 2.81-2.71 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 193.6 (d, *J* = 3.2 Hz), 132.5 (d, *J* = 2.0 Hz), 132.2 (d, *J* = 2.3 Hz), 132.1 (d, *J* = 2.1 Hz), 132.0 (d, *J* = 2.1 Hz), 131.8, 131.7, 131.6, 131.5, 131.3 (d, *J* = 9.2 Hz), 131.1 (d, *J* = 9.4 Hz), 130.6, 130.5, 128.9 (d, *J* = 3.1 Hz), 128.8 (d, *J* = 2.9 Hz), 128.5, 128.4, 128.3, 128.2, 115.0 (d, *J* = 21.4 Hz), 114.9 (d, *J* = 21.9 Hz), 43.1 (d, *J* = 49.4 Hz), 28.1 (d, *J* = 60.7 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 31.1 (d, *J* = 41.8 Hz), 30.5 (d, *J* = 41.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -105.39; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₃H₂₈FO₃P₂ 553.1492; Found 553.1491.

1-(3-Chlorophenyl)-2,3-bis(diphenylphosphoryl)propan-1-one (**4g**). Eluent: $V_{EA}/V_{MeOH} = 10:1$; White solid (85.5 mg, 75% yield); mp 210-212 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (t, J = 9.0 Hz, 2H), 7.69-7.60 (m, 4H), 7.60-7.50 (m, 4H), 7.45 (t, J = 6.6 Hz, 5H), 7.36-7.30 (m, 2H), 7.27 (s, 1H), 7.26-7.18 (m, 5H), 7.07 (t, J = 8.1 Hz, 1H), 5.11 (d, J = 10.8 Hz, 1H), 3.55-3.48 (m, 1H), 2.77 (d, J = 15.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 194.2 (d, J = 2.5 Hz), 139.1, 134.1, 132.6, 132.4, 132.3, 132.2, 132.0, 131.7 (d, J = 1.9 Hz), 131.6 (d, J = 1.9 Hz), 131.55 (d, J = 1.9 Hz), 131.48 (d, J = 2.1 Hz), 131.4 (d, J = 2.2 Hz), 131.3 (d, J = 2.2 Hz), 130.7 (d, J = 2.2 Hz), 130.6 (d, J = 2.3 Hz), 129.1, 129.0-128.8 (m), 128.5 (d, J = 2.8 Hz), 128.4-128.4 (m), 128.3 (d, J = 2.8 Hz), 128.2, 126.5, 43.6 (d, J = 50.5 Hz), 28.1 (d, J = 65.3 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 30.7 (d, J = 41.2 Hz), 30.4 (d, J = 41.3 Hz); HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₃H₂₈ClO₃P₂ 569.1197; Found 569.1199.

1-(4-Chlorophenyl)-2,3-bis(diphenylphosphoryl)propan-1-one (**4h**). Eluent: $V_{EA}/V_{MeOH} = 10:1$; White solid (77.6 mg, 68% yield); mp 222-224 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (t, J = 9.2 Hz, 2H), 7.68-7.50 (m, 8H), 7.43 (t, J = 8.0 Hz, 6H), 7.35 (t, J = 7.4 Hz, 1H), 7.29-7.18 (m, 5H), 7.09 (d, J = 8.2 Hz, 2H), 5.19-5.11 (m, 1H), 3.62-3.43 (m, 1H), 2.81-2.71 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 194.1 (d, J = 3.0 Hz), 139.1, 135.9, 132.5, 132.3 (d, J = 2.7 Hz), 132.1 (d, J = 14.9 Hz), 131.8, 131.7, 131.6, 131.5, 131.3 (d, J = 9.1 Hz), 130.6, 130.5, 129.8, 128.9 (d, J = 4.5 Hz), 128.8 (d, J = 4.4 Hz), 128.6, 128.44, 128.36, 128.2, 128.1, 43.2 (d, J = 49.6 Hz), 28.1 (d, J = 64.2 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 31.0 (d, J = 41.8 Hz), 30.5 (d, J = 41.8 Hz); HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₃H₂₈ClO₃P₂ 569.1197; Found 569.1192.

1-(4-Bromophenyl)-2,3-bis(diphenylphosphoryl)propan-1-one (**4i**). Eluent: $V_{DCM}/V_{MeOH} = 200:3$; Yellow liquid (48.8 mg, 40% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 3H), 7.71-7.49 (m, 10H), 7.48-7.41 (m, 4H), 7.38-7.28 (m, 5H), 7.25 (s, 2H), 5.27-5.04 (m, 1H), 2.83-2.72 (m, 1H), 2.47-2.33 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 194.3 (d, *J* = 3.0 Hz), 136.3, 132.5, 132.3 (d, *J* = 2.1 Hz), 132.1, 132.0 (d, *J* = 2.3 Hz), 131.7, 131.6 (d, *J* = 6.8 Hz), 131.5, 131.4, 131.3, 131.1, 130.6 (d, *J* = 8.8 Hz), 129.9, 128.9 (d, *J* = 4.9 Hz), 128.8 (d, *J* = 5.0 Hz), 128.6, 128.5, 128.4, 128.3, 127.9, 43.3 (d, *J* = 44.0 Hz), 29.5 (d, *J* = 37.5 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 31.0 (d, *J* = 41.8 Hz), 30.5 (d, *J* = 42.0 Hz); HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₃H₂₈BrO₃P₂ 613.0692; Found 613.0698.

1-(3,4-Dimethoxyphenyl)-2,3-bis(diphenylphosphoryl)propan-1-one (**4j**). Eluent: $V_{EA}/V_{MeOH} = 10:1$; White solid (94.8 mg, 80% yield); mp 215-217 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.79 (m, 2H), 7.71-7.63 (m, 4H), 7.60-7.53 (m, 2H), 7.52-7.47 (m, 2H), 7.42 (d, J = 6.7 Hz, 4H), 7.35 (t, J = 7.3 Hz, 1H), 7.30 (s, 2H), 7.25 (d, J = 4.4 Hz, 2H), 7.19 (t, J = 6.6 Hz, 2H), 6.92 (d, J = 1.9 Hz, 1H), 6.59 (d, J = 8.4 Hz, 1H), 5.31-5.05 (m, 1H), 3.80 (d, J = 39.8 Hz, 6H), 3.55-3.44 (m, 1H), 2.79 (d, J = 14.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 193.4 (d, J = 3.5 Hz), 153.0, 148.2, 132.3, 132.1, 131.8, 131.70, 131.67, 131.6, 131.3 (d, J = 9.4 Hz), 130.8, 130.6, 130.5, 128.8, 128.7, 128.4, 128.3, 128.2, 128.1, 123.7, 110.4, 109.4, 55.9, 55.7, 42.7 (d, J = 52.9 Hz), 28.0 (d, J = 66.5 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 31.4 (d, J = 42.6 Hz), 30.6 (d, J = 42.6 Hz); HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₅H₃₃O₅P₂ 595.1798; Found 595.1800.

2,3-Bis(diphenylphosphoryl)-1-(naphthalen-2-yl)propan-1-one (4k). Eluent: $V_{EA}/V_{MeOH} = 10:1$; White solid (95.5 mg, 82% yield); mp 196-198 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.88 (t, J = 9.1 Hz, 2H), 7.78-7.64 (m, 6H), 7.62-7.54 (m, 3H), 7.53-7.41 (m, 10H), 7.11 (d, J = 20.3 Hz, 5H), 5.46-5.30 (m, 1H), 3.69-3.50 (m, 1H), 2.86 (d, J = 14.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 195.0 (d, J = 2.9 Hz), 135.1, 134.8, 132.5, 132.1, 131.9, 131.81, 131.77, 131.7, 131.6, 131.5, 131.4, 131.3, 130.7, 130.6, 130.5, 129.7, 128.9 (d, J = 2.7 Hz), 128.8 (d, J = 2.8 Hz), 128.44, 128.40, 128.3, 128.2, 127.7, 127.4, 126.4, 123.9, 43.2 (d, J = 50.3 Hz), 28.0 (d, J = 64.1 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 31.6 (d, J = 42.0 Hz), 31.0 (d, J = 42.0 Hz); HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₇H₃₁O₃P₂ 585.1743; Found 585.1749.

1-(3,5-Dimethylphenyl)-2,3-bis(diphenylphosphoryl)propan-1-one (**4l**). Eluent: $V_{EA}/V_{MeOH} = 10:1$; White solid (87.5 mg, 78% yield); mp 144-146 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.84 (t, J = 9.1 Hz, 2H), 7.71-7.56 (m, 6H), 7.53-7.41 (m, 7H), 7.34-7.27 (m, 2H), 7.21 (d, J = 8.7 Hz, 3H), 6.91 (d, J = 14.4 Hz, 3H), 5.30-5.04 (m, 1H), 3.65-3.36 (m, 1H), 2.81 (t, J = 13.5 Hz, 1H), 2.13 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 195.5 (d, J = 2.8 Hz), 137.6, 137.2, 134.3, 132.4, 132.1, 131.79, 131.75, 131.7, 131.6, 131.4, 131.3, 130.7, 130.6, 128.8, 128.7, 128.6, 128.3 (d, J = 2.0 Hz), 128.2, 126.1, 123.6, 43.4 (d, J = 49.7 Hz), 27.8 (d, J = 65.2 Hz), 21.0; ³¹P NMR (162 MHz, CDCl₃) δ 31.5 (d, J = 42.1 Hz), 31.0 (d, J = 42.0 Hz); HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₅H₃₃O₃P₂ 563.1899; Found 563.1912.

$$P(O)Ph_2$$

2,3-Bis(diphenylphosphoryl)-1-(furan-2-yl)propan-1-one (**4m**). Eluent: V_{EA}/V_{MeOH} = 10:1; White solid (81.5 mg, 78% yield); mp 233-235 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (t, *J* = 9.2 Hz, 2H), 7.73-7.63 (m, 4H), 7.58 (t, *J* = 9.5 Hz, 2H), 7.52 (d, *J* = 6.6 Hz, 2H), 7.44 (d, J = 9.5 Hz, 4H), 7.36-7.19 (m, 7H), 6.73 (d, J = 2.8 Hz, 1H), 6.24-6.13 (m, 1H), 5.17-4.90 (m, 1H), 3.58-3.38 (m, 1H), 2.81-2.70 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 182.5 (d, J = 3.2 Hz), 152.3, 146.2, 132.4, 132.1, 131.9, 131.7, 131.6, 131.5, 131.4, 131.3, 131.2, 130.8, 130.7, 128.9, 128.8, 128.7, 128.3, 128.2, 128.1, 117.7, 112.5, 43.0 (d, J = 49.8 Hz), 27.1 (d, J = 63.7 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 31.3 (d, J = 41.7 Hz), 30.7 (d, J = 41.7 Hz); HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₁H₂₇O₄P₂ 525.1379; Found 525.1379.

2,3-Bis(di-p-tolylphosphoryl)-1-phenylpropan-1-one (**4n**). Eluent: $V_{DCM}/V_{MeOH} =$ 40:1; White solid (101.3 mg, 86% yield); mp 210-212 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.72-7.65 (m, 2H), 7.57-7.48 (m, 4H), 7.47-7.38 (m, 4H), 7.31 (d, *J* = 6.1 Hz, 1H), 7.21 (d, *J* = 7.1 Hz, 4H), 7.10 (t, *J* = 7.8 Hz, 2H), 7.05-6.98 (m, 2H), 6.93 (d, *J* = 8.0 Hz, 2H), 5.26-5.04 (m, 1H), 3.45 (t, *J* = 16.3 Hz, 1H), 2.81-2.68 (m, 1H), 2.35 (s, 6H), 2.18 (d, *J* = 30.3 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 195.5 (d, *J* = 3.3 Hz), 142.8 (d, *J* = 2.4 Hz), 142.5 (d, *J* = 2.6 Hz), 142.4, 142.2 (d, *J* = 2.5 Hz), 137.6, 132.2, 131.8, 131.70, 131.66, 131.6, 131.4, 131.3, 130.7, 130.6, 129.5 (d, *J* = 2.0 Hz), 129.4 (d, *J* = 1.7 Hz), 129.1, 129.0, 128.8, 128.5, 127.5, 43.3 (d, *J* = 52.0 Hz), 28.4 (d, *J* = 66.0 Hz), 21.5, 21.4, 21.3; ³¹P NMR (162 MHz, CDCl₃) δ 31.8 (d, *J* = 41.3 Hz), 31.0 (d, *J* = 41.8 Hz); HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₇H₃₇O₃P₂ 591.2212; Found 591.2221.

2,3-Bis(bis(4-methoxyphenyl)phosphoryl)-1-phenylpropan-1-one (**4o**). Eluent: $V_{DCM}/V_{MeOH} = 40:1$; Yellow liquid (65.8 mg, 50% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.75-7.69 (m, 2H), 7.60-7.53 (m, 4H), 7.51-7.40 (m, 4H), 7.32 (d, J = 7.4 Hz, 1H), 7.13 (t, J = 7.7 Hz, 3H), 6.92 (d, J = 7.3 Hz, 4H), 6.80-6.53 (m, 3H), 5.21-5.08 (m, 1H), 3.81 (d, J = 1.7 Hz, 6H), 3.72 (s, 3H), 3.64 (s, 3H), 3.43-3.34 (m, 1H), 2.79-2.62 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 195.6 (d, J = 3.1 Hz), 162.7 (d, J = 2.7 Hz), 162.5 (t, J = 2.5 Hz), 162.3 (d, J = 2.6 Hz), 137.6, 133.7, 133.6, 133.5, 133.4, 133.2, 132.9, 132.8, 132.5, 132.43, 132.37, 128.5, 127.6, 114.3, 114.2, 114.0, 113.9, 113.8, 113.7, 55.3, 55.2, 55.1, 43.3 (d, J = 52.1 Hz), 28.7 (d, J = 65.7 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 31.6 (d, J = 41.7 Hz), 30.9 (d, J = 41.9 Hz); HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₇H₃₇O7P₂ 655.2009; Found 655.2022.

2,3-Bis(bis(3,5-dimethylphenyl)phosphoryl)-1-phenylpropan-1-one (**4p**). Eluent: $V_{DCM}/V_{MeOH} = 40:1$; Yellow solid (107.7 mg, 83% yield); mp 202-204 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.61-7.51 (m, 2H), 7.48-7.37 (m, 3H), 7.28-7.08 (m, 10H), 6.94 (s, 1H), 6.84 (s, 1H), 5.10 (d, *J* = 10.0 Hz, 1H), 3.35 (d, *J* = 11.8 Hz, 1H), 2.59 (t, *J* = 12.9 Hz, 1H), 2.25 (s, 12H), 2.07 (d, *J* = 31.3 Hz, 12H); ¹³C NMR (100 MHz, CDCl₃)

δ 195.0 (d, J = 3.3 Hz), 138.6, 138.5, 138.4, 138.3, 138.0, 137.9, 137.84, 137.79, 137.6, 134.0, 133.6, 133.5 (d, J = 2.3 Hz), 133.3 (d, J = 2.2 Hz), 132.2, 129.2, 129.14, 129.07 (d, J = 3.5 Hz), 129.0 (d, J = 3.3 Hz), 128.2, 128.1, 128.0, 127.3, 42.5 (d, J = 49.8 Hz), 27.9 (d, J = 64.1 Hz), 21.3, 21.2, 21.0, 20.9 ; ³¹P NMR (162 MHz, DMSO- d_6) δ 29.5 (d, J = 42.6 Hz), 28.5 (d, J = 42.8 Hz); HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₁H₄₅O₃P₂ 647.2838; Found 647.2847.

General procedure for the synthesis of 5

In a 25 mL sealed tube were added enaminone 1 (0.2 mmol, 1 equiv), dialkyl phosphonate/phosphine oxide 2 (0.3 mmol, 1.5 equiv), CH₃COOH (0.4 mmol, 2 equiv), I₂ (20 mol%) and DMF (2 mL, 0.1 M). After sealing the tube with Teflon cap, the mixture was stirred at 50 °C with oil bath heating for 12 h. After being cooled down to room temperature, 5 mL of water was added, and the resulting mixture was extracted with ethyl acetate (3×10 mL). The organic phases were collected and washed with a small amount of water for three times. After being dried with anhydrous Na₂SO₄, the solid was removed by filtration. The solvent in the resulting solution was removed at reduced pressure. The residue obtained therein was subjected to flash silica gel column chromatography to provide pure products with the elution of mixed ethyl acetate and petroleum ether (v/v = 1:1~2:1).

Procedure for the 1 mmol scale reaction for the synthesis of 5a

In a 50 mL sealed tube were added enaminone **1a** (1 mmol, 1 equiv), diphenyl phosphine oxide **2a** (1.5 mmol, 1.5 equiv), CH₃COOH (2 mmol, 2 equiv), I₂ (0.2 mmol, 20 mol%) and DMF (6 mL, 0.17 M). After sealing the tube with Teflon cap, the mixture was stirred at 50 °C with oil bath heating for 12 h. After being cooled down to room temperature, 20 mL of water was added, and the resulting mixture was extracted with ethyl acetate (3×40 mL). The organic phases were collected and washed with a small amount of water for three times. After being dried with anhydrous Na₂SO₄, the solid was removed by filtration. The solvent in the resulting solution was removed at reduced pressure. The residue obtained therein was subjected to flash silica gel column

chromatography to provide pure product **5a** (166.0 mg, 50% yield) with the elution of mixed ethyl acetate and petroleum ether (v/v = 1:2).

(*E*)-3-(Diphenylphosphoryl)-1-phenylprop-2-en-1-one (5a). Eluent: $V_{EA}/V_{PE} = 1:2$; White solid (36.8 mg, 55% yield); mp 108-110 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.13-8.01 (m, 3H), 7.79-7.70 (m, 4H), 7.69-7.62 (m, 1H), 7.62-7.55 (m, 3H), 7.50 (t, *J* = 7.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 188.1 (d, *J* = 16.5 Hz), 139.3, 137.3, 136.4 (d, *J* = 6.2 Hz), 133.9, 132.4, 131.3 (d, *J* = 9.9 Hz), 129.0, 128.94, 128.89, 128.8; ³¹P NMR (162 MHz, CDCl₃) δ 22.6; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₁H₁₈O₂P 333.1039; Found 333.1043.

(*E*)-3-(Diphenylphosphoryl)-1-(p-tolyl)prop-2-en-1-one (5b). Eluent: $V_{EA}/V_{PE} = 1:2$; White solid (34.8 mg, 50% yield); mp 176-178 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.06 (t, *J* = 17.0 Hz, 1H), 7.96 (d, *J* = 8.0 Hz, 2H), 7.80-7.70 (m, 4H), 7.69-7.60 (m, 1H), 7.59-7.47 (m, 6H), 7.29 (d, *J* = 7.9 Hz, 2H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 187.5, 145.1, 139.5, 136.8, 135.9, 134.0, 132.3, 131.3 (d, *J* = 9.4 Hz), 129.6, 129.2, 128.9 (d, *J* = 11.9 Hz), 21.8; ³¹P NMR (162 MHz, CDCl₃) δ 22.6; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₂₀O₂P 347.1195; Found 347.1205.

(*E*)-3-(Diphenylphosphoryl)-1-(3-methoxyphenyl)prop-2-en-1-one (5c). Eluent: $V_{EA}/V_{PE}=2:3$; Yellow liquid (32.4 mg, 45% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.04 (t, *J* = 16.9 Hz, 1H), 7.79-7.71 (m, 4H), 7.71-7.61 (m, 2H), 7.60-7.48 (m, 7H), 7.40 (t, *J* = 7.9 Hz, 1H), 7.20-7.10 (m, 1H), 3.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 187.9 (d, *J* = 16.1 Hz), 160.1, 139.4, 137.8, 137.3, 136.3, 132.4, 131.3 (d, *J* = 9.6 Hz), 129.9, 128.9 (d, J = 12.1 Hz), 121.8, 120.8, 112.8, 55.5; ³¹P NMR (162 MHz, CDCl₃) δ 22.7; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₂₀O₃P 363.1145; Found 363.1146.

(*E*)-3-(Diphenylphosphoryl)-1-(4-fluorophenyl)prop-2-en-1-one (5d). Eluent: $V_{EA}/V_{PE} = 1:2$; White solid (42.3 mg, 60% yield); mp143-145 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.14-7.98 (m, 3H), 7.75 (t, *J* = 9.6 Hz, 4H), 7.70-7.60 (m, 1H), 7.57 (t, *J* = 7.3 Hz, 2H), 7.50 (t, *J* = 7.4 Hz, 4H), 7.17 (t, *J* = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 186.5 (d, *J* = 18.1 Hz), 166.2 (d, *J* = 256.8 Hz), 138.9, 137.6, 136.7 (d, *J* = 2.8 Hz), 132.9 (d, *J* = 2.3 Hz), 132.4, 131.8 (d, *J* = 9.6 Hz), 131.3 (d, *J* = 9.2 Hz), 128.9 (d, *J* = 11.6 Hz), 116.1 (d, *J* = 22.0 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 22.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -103.20; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₁H₁₇FO₂P 351.0945; Found 351.0945.

(*E*)-1-(4-Chlorophenyl)-3-(diphenylphosphoryl)prop-2-en-1-one (5e). Eluent: $V_{EA}/V_{PE} = 1:2$; White solid (42.3 mg, 58% yield); mp 177-179 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.10-7.96 (m, 3H), 7.78-7.71 (m, 4H), 7.69-7.54 (m, 3H), 7.54-7.43 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 186.9 (d, *J* = 16.6 Hz), 140.6, 138.7, 137.8, 136.9, 134.7, 132.5, 131.3 (d, *J* = 10.0 Hz), 130.4, 129.3, 128.9 (d, *J* = 12.4 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 22.3; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₁H₁₇ClO₂P 367.0649; Found 367.0651.

(*E*)-1-(4-Bromophenyl)-3-(diphenylphosphoryl)prop-2-en-1-one (5f). Eluent: $V_{EA}/V_{PE} = 2:3$; White solid (45.7 mg, 56% yield); mp 182-184 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.03 (t, *J* = 16.8 Hz, 1H), 7.91 (d, *J* = 8.2 Hz, 2H), 7.78-7.71 (m, 4H), 7.64 (d, J = 8.1 Hz, 3H), 7.60-7.55 (m, 2H), 7.50 (t, J = 7.1 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 187.1 (d, J = 16.5 Hz), 138.7, 137.9, 137.0, 135.1, 132.4, 132.2, 131.3 (d, J = 9.7 Hz), 130.5, 129.3, 128.9 (d, J = 12.0 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 22.4; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₁H₁₇BrO₂P 411.0144; Found 411.0143.

(*E*)-3-(Diphenylphosphoryl)-1-(4-iodophenyl)prop-2-en-1-one (5g). Eluent: $V_{EA}/V_{PE} = 2:3$; White solid (48.8 mg, 53% yield); mp 204-206 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.02 (t, *J* = 16.1 Hz, 1H), 7.87 (d, *J* = 8.2 Hz, 2H), 7.75 (d, *J* = 8.4 Hz, 7H), 7.58 (t, *J* = 7.3 Hz, 2H), 7.50 (t, *J* = 7.2 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 187.3(d, *J* = 14.0 Hz), 138.6, 138.3, 138.0, 135.7, 132.5, 132.2, 131.3 (d, *J* = 7.7 Hz), 130.3, 128.9 (d, *J* = 10.3 Hz), 102.3; ³¹P NMR (162 MHz, CDCl₃) δ 22.7; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₁H₁₇IO₂P 459.0005; Found 459.0009.

(*E*)-3-(Diphenylphosphoryl)-1-(4-(trifluoromethyl)phenyl)prop-2-en-1-one (5h). Eluent: $V_{EA}/V_{PE} = 2:3$; White solid (46.6 mg, 58% yield); mp 155-157 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 8.0 Hz, 2H), 8.06 (t, *J* = 16.3 Hz, 1H), 7.76 (t, *J* = 9.2 Hz, 7H), 7.61-7.56 (m, 2H), 7.52 (t, *J* = 7.1 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 187.3 (d, *J* = 16.1 Hz), 139.1, 138.8, 138.5, 137.9, 135.0 (d, *J* = 33.0 Hz), 132.5, 131.3 (d, *J* = 7.7 Hz), 129.3, 129.0 (d, *J* = 10.7 Hz), 126.0 – 125.8 (m), 123.4 (d, *J* = 272.8 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 22.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.24; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₁₇F₃O₂P 401.0913; Found 401.0914.

(*E*)-4-(3-(Diphenylphosphoryl)acryloyl)benzonitrile (5i). Eluent: $V_{EA}/V_{PE} = 1:1$; Yellow liquid (37.3 mg, 52% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.18-7.98 (m, 3H), 7.85-7.64 (m, 7H), 7.61-7.52 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 186.9 (d, J = 16.8 Hz), 139.3 (d, J = 22.7 Hz), 138.1 (d, J = 16.4 Hz), 132.7, 132.6, 131.7, 131.2 (d, J = 10.1 Hz), 130.6, 129.3, 129.0 (d, J = 12.4 Hz), 117.7, 117.0; ³¹P NMR (162 MHz, CDCl₃) δ 22.2; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₁₇NO₂P 358.0991; Found 358.0996.

(*E*)-3-(Diphenylphosphoryl)-1-(naphthalen-2-yl)prop-2-en-1-one (5j). Eluent: $V_{EA}/V_{PE} = 2:3$; White solid (38.5 mg, 50% yield); mp 175-177 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.63 (s, 1H), 8.30 (t, *J* = 16.7 Hz, 1H), 8.10 (d, *J* = 8.6 Hz, 1H), 7.98 (d, *J* = 8.0 Hz, 1H), 7.94-7.85 (m, 2H), 7.82-7.69 (m, 5H), 7.62 (t, *J* = 7.5 Hz, 1H), 7.60-7.54 (m, 3H), 7.51 (t, *J* = 7.1 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 187.8 (d, *J* = 14.3 Hz), 139.3, 137.1, 136.2 (d, *J* = 2.4 Hz), 135.9, 133.8, 132.5, 132.4, 131.5, 131.3 (d, *J* = 8.6 Hz), 129.8, 129.1, 129.0, 128.9, 127.8, 127.1, 124.1; ³¹P NMR (162 MHz, CDCl₃) δ 22.7; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₅H₂₀O₂P 383.1195; Found 383.1205.

(*E*)-3-(Di-p-tolylphosphoryl)-1-phenylprop-2-en-1-one (5k). Eluent: $V_{EA}/V_{PE} = 1:1$; Yellow liquid (36.3 mg, 50% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.4 Hz, 3H), 7.67-7.58 (m, 6H), 7.49 (t, *J* = 7.6 Hz, 2H), 7.30 (d, *J* = 7.4 Hz, 4H), 2.40 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 188.3 (d, *J* = 16.5 Hz), 142.9, 138.9, 137.9, 136.9, 136.5, 133.8, 131.3 (d, *J* = 10.1 Hz), 129.6 (d, *J* = 12.5 Hz), 128.9 (d, *J* = 17.6 Hz), 128.0, 21.6; ³¹P NMR (162 MHz, CDCl₃) δ 23.0; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₂₂O₂P 361.1352; Found 361.1359.

(*E*)-3-(Bis(3,5-dimethylphenyl)phosphoryl)-1-phenylprop-2-en-1-one (5l). Eluent: $V_{EA}/V_{PE} = 2:3$; White solid (40.6 mg, 52% yield); mp 133-135 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 7.7 Hz, 3H), 7.61 (t, *J* = 7.4 Hz, 2H), 7.49 (t, *J* = 7.5 Hz, 2H), 7.35 (d, *J* = 9.0 Hz, 4H), 7.17 (s, 2H), 2.34 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 188.3 (d, *J* = 11.5 Hz), 138.9, 138.81, 138.77, 136.5, 134.2, 134.1, 133.8, 129.1, 128.9, 128.8, 21.3; ³¹P NMR (162 MHz, CDCl₃) δ 22.9; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₅H₂₆O₂P 389.1665; Found 389.1667.

(*E*)-3-(Di(naphthalen-2-yl)phosphoryl)-1-phenylprop-2-en-1-one (5m). Eluent: V_{EA}/V_{PE} = 1:1; White solid (38.7 mg, 45% yield); mp 173-175 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, *J* = 13.1 Hz, 2H), 8.18 (t, *J* = 16.8 Hz, 1H), 8.07 (d, *J* = 7.7 Hz, 2H), 7.95-7.81 (m, 7H), 7.71 (t, *J* = 8.4 Hz, 2H), 7.63-7.55 (m, 5H), 7.49 (t, *J* = 7.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 188.2 (d, *J* = 15.0 Hz), 139.6, 137.3, 136.5, 134.9, 133.9, 133.4 (d, *J* = 7.5 Hz), 132.6 (d, *J* = 12.2 Hz), 129.4, 129.1, 129.0, 128.9, 128.8, 128.5, 127.9, 127.2, 125.9 (d, *J* = 9.5 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 23.0; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₉H₂₂O₂P 433.1352; Found 433.1351.

(*E*)-3-(Dimethylphosphoryl)-1-phenylprop-2-en-1-one (5n). Eluent: $V_{EA}/V_{PE} = 1:2$; Yellow liquid (25.1 mg, 60% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.11-8.01 (m, 2H),

8.00-7.90 (m, 1H), 7.63 (t, J = 7.4 Hz, 1H), 7.51 (t, J = 7.7 Hz, 2H), 7.26-7.13 (m, 1H), 1.68 (d, J = 13.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 188.2 (d, J = 16.3 Hz), 138.9, 138.5, 137.6, 136.3, 133.9, 128.9 (d, J = 9.5 Hz), 17.2 (d, J = 73.4 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 32.0; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₁H₁₄O₂P 209.0726; Found 209.0726.

Diethyl (*E***)-(3-oxo-3-phenylprop-1-en-1-yl)phosphonate** (**5o**).³ Eluent: V_{EA}/V_{PE} =1:3; Colorless liquid (21.3 mg, 40% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 7.7 Hz, 2H), 7.90-7.78 (m, 1H), 7.63 (t, *J* = 7.3 Hz, 1H), 7.52 (t, *J* = 7.6 Hz, 2H), 7.04-6.87 (m, 1H), 4.31-4.08 (m, 4H), 1.37 (t, *J* = 7.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 188.5 (d, *J* = 22.9 Hz), 140.2 (d, *J* = 6.2 Hz), 136.3, 133.9, 131.6, 129.8, 128.9 (d, *J* = 3.3 Hz), 62.5 (d, *J* = 5.5 Hz), 16.4 (d, *J* = 6.2 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 15.8.

Diphenyl (*E*)-(3-oxo-3-phenylprop-1-en-1-yl)phosphonate (5p). Eluent: V_{EA}/V_{PE}=1:8; Yellow liquid (29.3 mg, 40% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.04-7.91 (m, 3H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.48 (t, *J* = 7.7 Hz, 2H), 7.34 (t, *J* = 7.9 Hz, 4H), 7.27-7.10 (m, 7H); ¹³C NMR (100 MHz, CDCl₃) δ 187.9 (d, *J* = 23.1 Hz), 149.9 (d, *J* = 7.7 Hz), 142.5 (d, *J* = 6.7 Hz), 136.0, 134.1, 130.0, 129.9, 129.0 (d, *J* = 4.5 Hz), 128.0, 125.6, 120.6 (d, *J* = 4.5 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 8.9 (t, *J* = 21.8 Hz); HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₁H₁₈O4P 365.0937; Found 365.0950.

Procedure for the synthesis of 7

In a 25 mL sealed tube were added enaminal **6** (0.2 mmol, 1 equiv), phosphine oxide **2a** (0.6 mmol, 3 equiv), TFA (0.6 mmol, 3 equiv) and CH₃CN (2 mL, 0.1 M). After sealing the tube with Teflon cap, the mixture was stirred at 60 °C with oil bath heating for 12 h. Upon completion (TLC), the reaction mixture was diluted with ethyl

acetate, and transferred into a round bottom flask. After removing the solvent at reduced temperature, the resulting mixture was purified by silica gel column chromatography with the election of mixed dichloromethane and methanol (v: v=40:1).

 $P(O)Ph_2$ $Ph_2(O)P_0$ $P(O)Ph_2$

1,3-Bis(diphenylphosphoryl)propyl diphenylphosphinate (7). Eluent: V_{DCM}/V_{MeOH} = 40:1; Yellow liquid (79.7 mg, 60% yield); ¹H NMR (400 MHz, CDCl₃) ; δ 7.89-7.79 (m, 2H), 7.76-7.65 (m, 4H), 7.57-7.43 (m, 8H), 7.43-7.33 (m, 10H), 7.33-7.28 (m, 4H), 7.23-7.17 (m, 2H), 5.68-5.49 (m, 1H), 2.60-2.35 (m, 2H), 2.28-2.12 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 132.51, 132.49, 132.46, 132.4, 132.0, 131.9, 131.8, 131.4, 131.33, 131.30, 131.2, 131.1, 131.0, 130.8, 130.72, 130.69, 130.6, 128.9, 128.8, 128.6, 128.5, 128.4, 128.2, 100.0, 25.8 (d, *J* = 64.6 Hz), 23.1; ³¹P NMR (162 MHz, CDCl₃) δ 34.7, 33.5, 31.2; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₉H₃₆O₄P₃ 661.1821; Found 661.1835.

Procedure for the synthesis of 8

Compound **4a** (0.2 mmol) was dissolved in MeOH (2 mL) in a 25 mL roundbottom flask. To this solution was slowly added NaBH₄ (0.4 mmol) in 3 mins. The mixture was stirred at room temperature for 12 h. The pH was then adjusted to 3 with 10% (m/m) aqueous HCl solution. The mixture was extracted with ethyl acetate (3 × 10 mL). The combined organic phase was successively washed with saturated sodium bicarbonate solution and brine for three times and dried with anhydrous Na₂SO₄. After filtration, the solvent was removed under reduced pressure, and the resulting residue was purified by flash column chromatography to give pure product by using mixed ethyl acetate and petroleum ether (v/v = 1:1) as eluent.

(3-Hydroxy-3-phenylpropane-1,2-diyl)bis(diphenylphosphine oxide) (8). Eluent: $V_{EA}/V_{PE} = 1:1$; White solid (66.9 mg, 62% yield); mp 201-203 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.78-7.71 (m, 2H), 7.58-7.51 (m, 5H), 7.47 (d, J = 7.6 Hz, 3H), 7.43-7.32 (m, 10H), 7.31-7.27 (m, 2H), 7.16 (t, J = 7.6 Hz, 2H), 7.06 (t, J = 7.3 Hz, 1H), 6.74 (d, J =9.8 Hz, 1H), 5.34-5.11 (m, 1H), 3.45-3.25 (m, 1H), 2.97-2.82 (m, 1H), 2.40-2.28 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 140.9, 132.3 (d, J = 2.4 Hz), 132.0 (d, J = 3.0 Hz), 131.7 (d, J = 2.4 Hz), 131.6 (d, J = 2.5 Hz), 131.1, 131.0, 130.7, 130.64, 130.57, 128.93, 128.90, 128.84, 128.81, 128.78, 128.72, 128.67, 127.8, 127.1, 126.9, 72.7, 40.4 (d, J =64.0 Hz), 25.0 (d, J = 67.5 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 35.9 (d, J = 33.5 Hz), 33.9 (d, J = 33.6 Hz); HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₃H₃₁O₃P₂ 537.1743; Found 537.1746.

Procedure for the synthesis of 10

In a 15 mL reaction tube was equipped with **5a** (0.2 mmol), morpholine **9** (0.4 mmol) and MeCN (2 mL). The mixture was then stirred at room temperature for 4 h. Upon completion (TLC), the reaction mixture was diluted with ethyl acetate, and transferred into a round bottom flask. After removing the solvent at reduced temperature, the resulting mixture was purified by silica gel column chromatography with the elution of mixed petroleum ether and ethyl acetate (v:v = 1:2).

3-(Diphenylphosphoryl)-2-morpholino-1-phenylpropan-1-one (10). Eluent: V_{EA}/V_{PE}=1:2; White solid (73.5 mg, 88% yield); mp 167-169 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.98-7.82 (m, 6H), 7.57-7.47 (m, 4H), 7.42 (d, *J* = 15.3 Hz, 5H), 4.52-4.47 (m, 1H), 3.78-3.70 (m, 1H), 3.45 (s, 4H), 3.16-3.08 (m, 1H), 2.96-2.89 (m, 2H), 2.56-2.50 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 197.8 (d, *J* = 11.8 Hz), 136.2, 133.5, 131.9 (d, *J* = 2.8 Hz), 131.6 (d, *J* = 2.8 Hz), 131.5, 131.4, 131.0 (d, *J* = 8.5 Hz), 128.8, 128.6, 128.3, 128.2, 128.1, 67.2, 59.5 (d, *J* = 89.2 Hz), 51.4 (d, *J* = 6.5 Hz), 31.5 (d, *J* = 8.1

Hz); ³¹P NMR (162 MHz, CDCl₃) δ 32.9; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₅H₂₇NO₃P 420.1723; Found 420.1727.

Procedure for the synthesis of 12

In a 15 mL reaction tube was equipped with 5a (0.2 mmol), hydrazine hydrate (0.4 mmol) and toluene (2 mL). The mixture was then stirred at room temperature for 12 h. Upon completion (TLC), the reaction mixture was diluted with ethyl acetate, and transferred into a round bottom flask. After removing the solvent at reduced pressure, the resulting mixture was purified by silica gel column chromatography with the election of mixed petroleum ether and ethyl acetate (v: v=1:1).

$$P(O)Ph_2$$

Diphenyl(3-phenyl-1H-pyrazol-5-yl)phosphine oxide (12). Eluent: $V_{EA}/V_{PE}=1:1$; White solid (48.2 mg, 70% yield); mp 179-181 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.71 (m, 6H), 7.54 (t, J = 7.3 Hz, 2H), 7.47 – 7.41 (m, 4H), 7.38 (t, J = 7.4 Hz, 2H), 7.31 (t, J = 7.3 Hz, 1H), 6.79 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 132.2 (d, J = 2.9Hz), 131.8 (d, J = 10.6 Hz), 130.8 (d, J = 9.5 Hz), 128.9, 128.8, 128.6, 128.5, 128.3, 128.1, 125.9, 109.6 (d, J = 17.3 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 19.6; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₁H₁₈N₂OP 345.1151; Found 345.1154.

References

- 1. (a) H. Guo, L. Tian, Y. Liu and J.-P. Wan, Org. Lett., 2022, 24, 228-233. (b) J. Ying,
- T. Liu, Y. Liu and J.-P. Wan, Org. Lett., 2022, 24, 2404-2408.
- 2. E. T. Glotova, M. Y. Dvorko, N. S. Arbuzova, A. I. Ushakov, I. S. Verkhoturova, K.
- N. Gusarova and A. B. Trofimov, Lett. Org. Chem., 2007, 4, 109-111.
- 3. T. Liu, L. Wei, B. Zhao, Y. Liu and J.-P. Wan, J. Org. Chem., 2021, 86, 9861-9868.

NMR spectra of all products

xzr-254.1.fid

¹H NMR spectrum of **3a** (400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹³C NMR spectrum of **3a** (100 MHz, CDCl₃)

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

³¹P NMR spectrum of **3b** (162 MHz, CDCl₃)

¹³C NMR spectrum of **3c** (100 MHz, CDCl₃)

¹H NMR spectrum of **3d** (400 MHz, CDCl₃)

¹³C NMR spectrum of **3e** (100 MHz, CDCl₃)

¹³C NMR spectrum of **3g** (100 MHz, CDCl₃)

140 120 100 80 60 -40 -60 f1 (ppm) -80 -100 -120 -140 -160 -180 -200 -220 -240 20 40 -20 ò

¹H NMR spectrum of **3h** (400 MHz, CDCl₃)

³¹P NMR spectrum of **3j** (162 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C NMR spectrum of **3k** (100 MHz, CDCl₃)

S50

43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 fl (ppm)

³¹P NMR spectrum of **3l** (162 MHz, CDCl₃)

¹³C NMR spectrum of **3m** (100 MHz, CDCl₃)

¹³C NMR spectrum of **30** (100 MHz, CDCl₃)

³¹P NMR spectrum of **3p** (162 MHz, CDCl₃)

¹³C NMR spectrum of **3q** (100 MHz, CDCl₃)

¹³C NMR spectrum of **3r** (100 MHz, CDCl₃)

³¹P NMR spectrum of **4a** (162 MHz, CDCl₃)

¹³C NMR spectrum of **4b** (100 MHz, CDCl₃)

¹³C NMR spectrum of 4d (100 MHz, DMSO-*d*₆)

¹H NMR spectrum of **4e** (400 MHz, CDCl₃)

³¹P NMR spectrum of **4e** (162 MHz, CDCl₃)

¹³C NMR spectrum of **4f** (100 MHz, CDCl₃)

¹⁹F NMR spectrum of **4f** (376 MHz, CDCl₃)

¹³C NMR spectrum of 4g (100 MHz, CDCl₃)

³¹P NMR spectrum of **4h** (162 MHz, CDCl₃)

¹³C NMR spectrum of **4i** (100 MHz, CDCl₃)

¹H NMR spectrum of **4j** (400 MHz, CDCl₃)

³¹P NMR spectrum of 4j (162 MHz, CDCl₃)

¹³C NMR spectrum of **4k** (100 MHz, CDCl₃)

¹H NMR spectrum of **4l** (400 MHz, CDCl₃)

³¹P NMR spectrum of **4l** (162 MHz, CDCl₃)

¹³C NMR spectrum of **4m** (100 MHz, CDCl₃)

¹³C NMR spectrum of **4o** (100 MHz, CDCl₃)

¹H NMR spectrum of **4p** (400 MHz, DMSO-*d*₆)

³¹P NMR spectrum of **4p** (162 MHz, DMSO-*d*₆)

¹³C NMR spectrum of **5a** (100 MHz, CDCl₃)

¹H NMR spectrum of **5b** (400 MHz, CDCl₃)

³¹P NMR spectrum of **5b** (162 MHz, CDCl₃)

¹³C NMR spectrum of **5c** (100 MHz, CDCl₃)

¹H NMR spectrum of **5d** (400 MHz, CDCl₃)

³¹P NMR spectrum of **5d** (162 MHz, CDCl₃)

³¹P NMR spectrum of **5e** (162 MHz, CDCl₃)

¹³C NMR spectrum of **5f** (100 MHz, CDCl₃)

³¹P NMR spectrum of **5g** (162 MHz, CDCl₃)

¹³C NMR spectrum of **5h** (100 MHz, CDCl₃)

S98

¹³C NMR spectrum of **5i** (100 MHz, CDCl₃)

¹H NMR spectrum of **5j** (400 MHz, CDCl₃)

³¹P NMR spectrum of **5j** (162 MHz, CDCl₃)

¹³C NMR spectrum of **5k** (100 MHz, CDCl₃)

³¹P NMR spectrum of **5l** (162 MHz, CDCl₃)

¹H NMR spectrum of **5m** (400 MHz, CDCl₃)

¹³C NMR spectrum of **5m** (100 MHz, CDCl₃)

¹³C NMR spectrum of **50** (100 MHz, CDCl₃)

¹H NMR spectrum of **5p** (400 MHz, CDCl₃)

³¹P NMR spectrum of **5p** (162 MHz, CDCl₃)

¹³C NMR spectrum of 7 (100 MHz, CDCl₃)

¹³C NMR spectrum of **10** (100 MHz, CDCl₃)

¹H NMR spectrum of **12** (400 MHz, CDCl₃)

140 120 100 80 60 40 20 0 -20 -40 -60 -100 -100 -120 -140 -160 -180 -200 -220 -240 fl (ppm)

³¹P NMR spectrum of **12** (162 MHz, CDCl₃)