Supporting Information

Palladium-catalyzed disilylation of ortho-halophenylethylenes enabled by

2-pyridone ligand

Bin-Bin Zhu,^b Shu-Sheng Zhang,^a Jian-Guo Fu,^a Guo-Qiang Lin^{*ab} and Chen-Guo Feng^{*ab}

^a The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China

^b Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China

Table of Contents

1.	General Information
2.	Reaction Development
3.	Preparation of Substrates
4.	General Procedure for the Disilylation Reaction of <i>ortho</i> -Halophenylethylenes
5.	Synthetic Transformations of the Disilylated Product 3a
	5.1 Vinyl Halogenation Reaction
	5.2 Acylation of 3a
	5.3 Substitution Reaction of 3a with Ethyl Glyoxylate
6.	The Influence of the Equivalent of 2-Pyridone Ligand on the Formation of Aryl-Vinyl-Palladacycle
	Species
7.	References
8.	NMR Spectra

1. General Information

Unless otherwise noted, reagents received from commercial suppliers (Adamas, Bidepharm, Macklin, TCI, Aladdin, Energy, Sigma-Aldrich, etc.) were used as received. Solvents dried with molecular sieves were obtained from J&K, Macklin, Energy or Acros and used directly without further purification. Reactions were monitored by thin layer chromatography (TLC) supplied by Yantai Jiangyou Silicon Material Company (China). Visualization was accomplished with UV light or basic aqueous potassium permanganate (KMnO₄). Chromatography was conducted using forced flow (flash chromatography) of the indicated solvent system on 300-400 mesh silica gel (Silicycle flash F60). Preparative TLC was performed on silica gel 60 HSGF254 plates (Yantai Jiangyou) and observation of plates was carried out under UV light (254 nm).

Nuclear Magnetic Resonance (**NMR**) spectra were acquired on Varian mercury–400 and Bruker AM–400 spectrometers. Chemical shifts are reported in δ ppm referenced to internal SiMe₄ (TMS) standard or residual solvent peaks: TMS (δ 0.00 ppm) for ¹**H NMR** in Chloroform-*d* and DMSO-*d*₆; solvents' carbon resonances (Chloroform-*d* δ 77.00 and DMSO-*d*₆ δ 39.50) for ¹³C **NMR**. Multiplicities are denoted as s (singlet), d (doublet), t (triplet), q (quartet), p (quintet), h (sextet), m (multiplet), and br (broad).

2. Reaction Development

Optimization of Reaction Conditions

To a 10 mL sealed tube charged with a stir bar were added a mixture of Pd precursor, ligand, base, and additives (if applicable). The sealed tube was capped with a Teflon thread plug, and then degassed and backfilled with argon (this procedure was repeated three times). Then hexamethyldisilane (1), 1-iodo-2-vinylbenzene (2a) and solvent were added under argon. The tube was sealed and the reaction mixture was stirred at a certain temperature for the specified amount of time. After the reaction mixture was cooled to room temperature, dodecane (internal standard, 12.5 μ L) and dichloromethane (2 mL) were added. An aliquot (0.1 mL) from the mixture was further diluted with dichloromethane and filtered and then analyzed by GC-FID. The yield and conversion were calculated against a calibration curve obtained for the authentic product and starting materials.

Note: when the loading of Pd precursor or ligand was too low to weigh accurately, a solution of the Pd precursor or ligand in the same solvent applied for the reaction was prepared in a certain concentration and used instead of the pure form.

Table S1 Initial Screening of Reaction Conditions

^aGC yield using dodecane as an internal standard.

2a 0.1 m (0.1	I + TMS-TMS - 1 mol 3 equiv M)	$5 \text{ mol } \% \text{ Pd}(\text{PhCN})_2\text{Cl}_2$ 7.5 mol % L1 $3 \text{ eq. } \text{K}_3\text{PO}_4, 1 \text{ eq. } \text{Cu, } 1 \text{ eq. } \text{K}(3 \text{ eq. } \text{K}) \text{ eq. } \text{Cu, } 1 \text{ eq. } \text{K}(3 \text{ eq. } \text{K})$ $L1 = \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		TMS	
entry	variation/additive	T/°C	conversion (%) ^a	3a (%) ^a	
1		60 (16h)	77	27	
2	10 mol % L1	60 (21h)	100	25	
3		35 (74h)	55	21	
4 1 n	nol % Pd(PhCN) ₂ Cl ₂ , 4 mc	ol % L1 60 (74h)	89	13	
5	Br as substrate	60 (24h)	100	14	
6	0.5 mL DMF	40 (71h)	100	37	
7	0.5 mL DMF, 5 mol %	L1 40 (33h)	100	37	
8	0.5 mL DMF, $Pd(OAc)_2$ ir	nstead 40 (71h)	100	37	

Table S2 Screening of the reaction conditions

^aGC yield using dodecane as an internal standard.

Table S3 Selected Conditions Screening

	2a 1 0.1 mmol 3 equiv (0.2 M)	5 mol % Pd(PhCN) ₂ C 5 mol % L1	TMS	TMS
2a 0.1 mmol (0.2 M)		$3 \text{ eq. } K_3 PO_4, 1 \text{ eq. } Cu, 1$ 0.5 mL DMF L1 =	eq. KCl	
entry	variation/additive	e T/°C	conversion (%) ^a	3a (%) ^a
1	10 mol % CuCl	50 (12h)	100	43
2	without Cu & K	Cl 50 (15h)	100	29
3	Cs_2CO_3 as base	50 (17h)	45	19
4	KO ^t Bu as base	50 (12h)	100	0
5	DMA as solvent	50 (12h)	100	48
6	NMP as solvent	50 (12h)	100	49

^aGC yield using dodecane as an internal standard.

Table S4 Screening of additives

^aGC yield using dodecane as an internal standard.

	2. + TMS-TMS	5 mol % Pd(PhCN) ₂ Cl ₂ 3.0 mol % L1 eq. K ₂ PO ₄ , 0.5 mLNMP	TMS	TMS
	2a 1 0.1 mmol 3 equiv (0.2 M)		3a 1 1 1 1 1 1 1 1	
entry	variation/additive	T/°C	conversion (%) ^a	3a (%) ^a
1	20 mol % CuCl	50 (16h)	85	65
2	30 mol % CuCl	50 (16h)	73	53
3	50 mol % CuCl	50 (16h)	75	55
4	20 % CuCl, 1 % Pd, 1.2% L1	50 (40h)	100	81.5
5	20 % CuCl, 1 % Pd, 1.4% L1	50 (40h)	100	82.3
6	0.2 mmol scale, 20 % CuCl 1 % Pd, 1.2% L1, 0.5 mL DMF	50 (40h)	100	78
7	20 % CuCl, 1 % Pd, 1.4% L2	50 (35h)	100	84
8	20 % CuBr, 1 % Pd, 1.4% L2	60 (16h)	100	84
9	20 % CuI, 1 % Pd, 1.4% L2	60 (16h)	100	86
10	20 % CuCl, 1 % Pd, 1.4% L3	60 (16h)	100	83
11	20 % CuI, 0.5 % Pd, 0.7% L2	60 (23h)	100	87

Table S5 Screening of ligands and the equivalents of additives and catalysts

^aGC yield using dodecane as an internal standard.

3. Preparation of Substrates

The substrates *ortho*-halophenylethylenes (2) are all known compounds and were synthesized according to the reported procedures¹.

4. General Procedure for the Disilylation Reaction of ortho-Halophenylethylenes

Standard reaction conditions: To a 10 mL sealed tube charged with a stir bar was added a mixture of CuI (11.4 mg, 0.06 mmol, 20 mol %), K₃PO₄ (192 mg, 0.9 mmol, 3 equiv.) and P(o-Tol)₃ (3.7 mg, 0.012 mmol, 4 mol %, if applied for ortho-bromophenylethylenes). The tube was capped with a Teflon thread plug, and then degassed and backfilled with argon (this procedure was repeated three times). Then Pd(PhCN)₂Cl₂ (0.0015 mmol, 0.5 mol %, an NMP solution was used instead of the pure form), 3-methylpyridin-2(1H)-one (0.0021 mmol, 0.7 mol %, an NMP solution was used instead of the pure form), *ortho*-halophenylethylene (0.3 mmol, 1 equiv), hexamethyldisilane (186 µL, 0.9 mmol, 3 equiv) and NMP (1.5 mL) were added under argon. The tube was sealed immediately and the reaction mixture stirred at 60℃ for 24-48 h (*ortho*-iodophenylethylene) or 70° C was for 14-18 h (ortho-bromophenylethylene). After cooling to room temperature, the mixture was poured into water (15 mL), extracted with petroleum ether, dried over Na₂SO₄ and concentrated. The pure product was then isolated by flash column chromatography unless otherwise noted.

3a: 66.5 mg, 89% yield. Colorless oil. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.62 (d, *J* = 14.9, 1H), 7.48 (dd, *J* = 7.2, 1.6, 1H), 7.30 (td, *J* = 7.4, 1.6, 1H), 7.27 – 7.21 (m, 1H), 7.19 (d, *J* = 7.1, 1H), 5.86 (d, *J* = 14.9, 1H), 0.29 (s, 9H), -0.09 (s, 9H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ = 148.6, 146.9, 137.7, 133.7, 133.2, 128.6, 128.5, 126.4, 0.0, -0.2. **HRMS** (FI): *m*/*z* for C₁₄H₂₄Si₂ [M]⁺ calcd.: 248.1411, found: 48.1410.

3b: 84.1 mg, 98% yield. Colorless oil. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.39 – 7.33 (m, 2H), 7.27 (d, *J* = 15.1, 1H), 7.16 (ddd, *J* = 8.0, 7.2, 0.8, 1H), 6.08 (d, *J* = 15.3, 1H), 0.27 (s, 9H), -0.16 (s, 9H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ = 144.7, 142.8, 140.9, 136.7, 132.9, 132.1, 129.8, 127.5, 0.1, -1.3. **HRMS** (FI): *m/z* for C₁₄H₂₃ClSi₂ [M]⁺ calcd.: 282.1021, found: 282.1019.

3c: 83.3 mg, 85% yield. Colorless oil. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.53 (d, *J* = 14.8, 1H), 7.40 – 7.32 (m, 2H), 7.32 (d, *J* = 7.8, 1H), 5.91 (d, *J* = 14.8, 1H), 0.27 (s, 9H), -0.05 (s, 9H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 148.6, 146.9, 136.5, 135.3, 134.8, 131.5, 129.2, 123.1, 0.0, -0.3. **HRMS** (FI): *m/z* for C₁₄H₂₃BrSi₂ [M]⁺ calcd.: 326.0516, found: 326.0515.

3d: 93.5 mg, 98% yield. Colorless oil. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.71 (s, 1H), 7.62 – 7.54 (m, 2H), 7.30 (d, *J* = 7.9, 1H), 5.99 (d, *J* = 15.0, 1H), 0.34 (s, 9H), -0.06 (s, 9H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 150.4, 147.1, 139.1, 135.2, 130.3 (q, *J* =3.7), 128.8, 128.5 (q, *J* =31.9), 125.3 (q, *J* =3.8), 124.5 (q, *J* =272.3), 0.0, -0.4. ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -62.35. **HRMS** (FI): *m/z* for C₁₅H₂₃F₃O₂ [M]⁺ calcd.: 316.1282, found: 316.1283.

3e: 78.3 mg, 94% yield. Colorless oil. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.55 (d, J = 14.7, 1H), 7.14 (dd, J = 8.4, 0.7, 1H), 7.02 (d, J = 2.8, 1H), 6.81 (dd, J = 8.3, 2.8, 1H), 5.78 (d, J = 14.7, 1H), 3.80 (s, 3H), 0.28 (s, 9H), -0.07 (s, 9H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 158.1, 148.1, 139.5, 139.3, 132.2, 129.9, 120.1, 112.5, 55.1, 0.1, -0.3. **HRMS** (FI): m/z for C₁₅H₂₆OSi₂ [M]⁺ calcd.: 278.1517, found: 278.1516.

3f: 73.7 mg, 80% yield. White solid. **Melting point**: 41-43 °C. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.57 (d, J = 14.8, 1H), 6.97 (s, 1H), 6.79 (s, 1H), 5.81 (d, J = 14.8, 1H), 3.90 (s, 3H), 3.90 (s, 3H),

0.28 (s, 9H), -0.02 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.8, 148.3, 147.2, 140.2, 132.2, 129.3, 116.6, 112.6, 55.8, 55.7, 0.1, -0.10. **HRMS** (FI): *m*/*z* for C₁₆H₂₈O₂Si₂ [M]⁺ calcd.: 308.1622, found: 308.1626.

3g: 88.1 mg, 98% yield. Colorless oil. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.17 – 8.08 (m, 1H), 7.83 – 7.76 (m, 1H), 7.75 – 7.67 (m, 2H), 7.58 (d, *J* = 8.3, 1H), 7.49 – 7.38 (m, 2H), 6.25 (d, *J* = 15.4, 1H), 0.35 (s, 9H), -0.41 (s, 9H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 145.5, 144.7, 136.9, 134.2, 133.6, 131.8, 130.0, 127.8, 126.7, 126.0, 125.8, 125.4, 0.3, -1.3. **HRMS** (FI): *m/z* for C₁₈H₂₆Si₂ [M]⁺ calcd.: 298.1568, found: 298.1569.

3h: 78.0 mg, 99% yield. Colorless oil. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.53 – 7.46 (m, 1H), 7.30 – 7.18 (m, 2H), 7.03 – 6.96 (m, 1H), 5.57 (q, *J* = 1.4, 1H), 2.13 (d, *J* = 1.4, 3H), 0.29 (s, 9H), -0.26 (s, 9H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 156.8, 150.6, 136.7, 134.6, 128.4, 128.4, 128.3, 125.9, 31.8, 0.9, -0.4. **HRMS** (FI): *m/z* for C₁₅H₂₆Si₂ [M]⁺ calcd.: 262.1568, found: 262.1565.

3i: 98% yield. Colorless oil. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.61 – 7.54 (m, 1H), 7.43 – 7.29 (m, 2H), 7.16 (m, 3H), 7.07 (d, *J* = 8.1, 2H), 6.35 (s, 1H), 2.33 (s, 3H), -0.01 (s, 9H), -0.16 (s, 9H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 157.4, 148.0, 140.1, 138.6, 137.4, 134.7, 130.9, 128.7, 128.3, 128.0, 126.9, 126.4, 21.1, 0.3, -0.4. **HRMS** (FI): *m/z* for C₂₁H₃₀Si₂ [M]⁺ calcd.: 338.1881, found: 338.1886.

3j: 104.5 mg, 98% yield. Colorless oil. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.25 – 7.19 (m, 5H), 7.13 – 7.06 (m, 2H), 6.92 – 6.87 (m, 1H), 6.34 (s, 1H), 3.86 (s, 3H), -0.07 (s, 9H), -0.16 (s, 9H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 158.0, 157.4, 143.3, 140.3, 140.2, 132.2, 129.7, 128.0, 127.5, 127.1, 121.1, 112.3, 55.1, 0.1, -0.3. **HRMS** (FI): *m/z* for C₂₁H₃₀OSi₂ [M]⁺ calcd.: 354.1830, found: 354.1834.

3k: 101.8 mg, 94% yield. Colorless oil. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.38 – 7.27 (m, 3H), 7.22 (dd, J = 8.3, 5.6, 1H), 7.15 (td, J = 8.3, 2.7, 1H), 7.04 (t, J = 8.7, 2H), 6.41 (s, 1H), 0.06 (s, 9H), -0.06 (s, 9H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 162.5 (d, J = 247.9), 161.8 (d, J = 248.0), 155.4, 143.4 (d, J = 3.2), 141.8 (d, J = 3.7), 139.1 (d, J = 3.2), 132.5 (d, J = 6.8), 129.9 (d, J = 1.8), 128.7 (d, J = 8.1), 121.4 (d, J = 18.9), 115.1 (d, J = 20.9), 114.9 (d, J = 21.4), 0.0, -0.4. ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -114.62 (tt, J = 8.7, 5.4), -116.07 (td, J = 8.9, 5.5). **HRMS** (FI): *m/z* for C₂₀H₂₆F₂Si₂ [M]⁺ calcd.: 360.1536, found: 360.1537.

31: 103.7 mg, 97% yield. Colorless oil. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.34 (d, *J* = 1.9, 1H), 7.23 – 7.15 (m, 3H), 7.03 (d, *J* = 7.7, 1H), 6.92 (t, *J* = 8.7, 2H), 6.26 (s, 1H), 2.39 (s, 3H), -0.05 (s, 9H), -0.18 (s, 9H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 162.4 (d, *J* = 247.3), 156.6, 144.7, 139.4 (d, *J* = 3.2), 138.2, 135.8, 135.7, 130.9, 129.1, 129.1 (d, *J* = 1.8), 128.7 (d, *J* = 8.0), 114.8 (d, *J* = 21.3), 21.4, 0.3, -0.4. ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -115.12 (tt, *J* = 8.6, 5.4). **HRMS** (FI): *m/z* for C₂₁H₂₉FSi₂ [M]⁺ calcd.: 356.1786, found: 356.1784.

3m: 121.7 mg, 99% yield. Colorless oil. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.70 (d, *J* = 7.8, 1H), 7.65 – 7.54 (m, 1H), 7.42 (d, *J* = 1.9, 1H), 7.25 – 7.13 (m, 2H), 6.97 (t, *J* = 8.7, 2H), 6.38 (s, 1H), -0.00 (s, 9H), -0.17 (s, 9H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 162.6 (d, *J* = 248.3), 155.2, 148.3, 143.9 (q, *J* = 1.2), 138.5 (d, *J* = 3.3), 135.5, 130.6 (q, *J* = 32.3, 32.3, 32.3), 130.5 (d, *J* = 1.8), 128.7 (d, *J* = 8.1), 127.2 (q, *J* = 3.7, 3.6, 3.6), 124.1 (q, *J* = 272.4, 272.3, 272.3), 123.1 (q, *J* = 3.8, 3.8, 3.8), 115.1 (d, *J* = 21.5), 0.0, -0.55. ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -62, -114.16 (tt, *J* = 8.7, 5.4). **HRMS** (FI): *m*/*z* for C₂₁H₂₆F₄Si₂ [M]⁺ calcd.: 410.1504, found: 410.1498.

3n: 107.6 mg, 95% yield. Colorless oil. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.25 – 7.19 (m, 3H), 7.18 – 7.13 (m, 2H), 7.10 (dd, J = 8.3, 5.6, 1H), 7.05 (td, J = 8.4, 2.7, 1H), 6.37 (s, 1H), -0.03 (s, 9H), -0.17 (s, 9H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 161.8 (d, J = 248.1), 155.3, 143.1 (d, J = 3.4), 141.9 (d, J = 3.6), 141.2, 133.6, 132.6 (d, J = 6.7), 130.8, 128.2, 128.2, 121.4 (d, J = 18.8), 115.1 (d, J = 20.7), 0.1, -0.45. ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -115.95 (td, J = 8.8, 5.5). **HRMS** (FI): m/z for C₂₀H₂₆ClFSi₂ [M]⁺ calcd.: 376.1240, found: 376.1235.

3o: 110.0 mg, 98% yield. Colorless oil. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.81 – 7.73 (m, 2H), 7.70 – 7.63 (m, 2H), 7.62 – 7.57 (m, 1H), 7.46 – 7.33 (m, 5H), 7.24 – 7.19 (m, 1H), 6.54 (s, 1H), -0.07 (s, 9H), -0.15 (s, 9H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 157.3, 147.7, 139.9, 138.9, 134.8, 133.1, 132.8, 131.0, 129.9, 128.5, 128.5, 127.7, 127.4, 127.0, 126.6, 126.0, 126.0, 124.3, 0.4, -0.4. **HRMS** (FI): *m/z* for C₂₄H₃₀Si₂ [M]⁺ calcd.: 374.1881, found: 374.1887.

3p: 98.3 mg, 99% yield. Colorless oil. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.59 – 7.53 (m, 1H), 7.38 – 7.28 (m, 2H), 7.19 (dd, J = 5.1, 1.2, 1H), 7.18 – 7.11 (m, 1H), 6.85 (dd, J = 5.1, 3.6, 1H), 6.40 (dd, J = 3.6, 1.2, 1H), 6.20 (s, 1H), 0.08 (s, 9H), -0.19 (s, 9H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 151.3, 149.8, 146.8, 138.9, 134.7, 130.0, 128.3, 127.8, 127.4, 126.8, 125.6, 0.5, -0.4. **HRMS** (FI): m/z for C₁₈H₂₆SSi₂ [M]⁺ calcd.: 330.1288, found: 330.1293.

3q: 80.9 mg, 84% yield. Colorless oil. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.56 – 7.48 (m, 1H), 7.32 – 7.27 (m, 2H), 7.24 (s, 1H), 7.06 – 6.97 (m, 1H), 4.27 – 4.07 (m, 2H), 1.22 (t, *J* = 7.1, 7.1, 3H), 0.19 (s, 9H), -0.19 (s, 9H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 167.0, 149.2, 145.2, 144.0, 138.6, 134.3, 130.0, 128.2, 126.7, 61.1, 14.2, 0.5, -1.1. **HRMS** (FI): *m/z* for C₁₇H₂₈O₂Si₂ [M]⁺ calcd.: 320.1622, found: 320.1624.

3r: 64.7 mg, 82% yield. Colorless oil. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.45 (dd, J = 7.0, 1.7, 1H), 7.29 (s, 1H), 7.28 – 7.22 (m, 1H), 7.21 (td, J = 7.3, 1.6, 1H), 7.08 (d, J = 7.0, 1H), 1.95 (d, J = 1.7, 3H), 0.26 (s, 9H), -0.16 (s, 9H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 146.9, 143.2, 139.6, 137.7, 133.7, 129.3, 128.4, 126.0, 24.5, -0.2, -0.6. **HRMS** (FI): m/z for C₁₅H₂₆Si₂ [M]⁺ calcd.: 262.1568, found: 262.1563.

3s: 64.1 mg, 70% yield. Colorless oil. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.46 (dd, *J* =7.3, 1.6, 1H), 7.30 (s, 1H), 7.26 (td, *J* =7.4, 1.7, 1H), 7.21 (td, *J* =7.3, 1.5, 1H), 7.12 (d, *J* =7.1, 1H), 2.26 (m, 2H), 1.53 – 1.34 (m, 4H), 0.95 (t, *J* =7.2, 3H), 0.26 (s, 9H), -0.15 (s, 9H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 147.2, 144.2, 143.1, 137.7, 133.7, 129.3, 128.4, 126.0, 38.2, 32.4, 22.7, 14.0, 0.2, -0.2. **HRMS** (FI): *m*/*z* for C₁₈H₃₂Si₂ [M]⁺ calcd.: 304.2037, found: 304,2035.

3t: 80.4 mg, 96% yield. Colorless oil. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.47 (dd, *J* =7.1, 1.9, 1H), 7.30 – 7.17 (m, 2H), 7.11 (d, *J* =7.3, 1H), 6.54 (s, 1H), 3.64 (s, 3H), 0.29 (s, 9H), -0.12 (s, 9H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 164.3, 143.8, 139.1, 133.8, 130.7, 128.5, 125.8, 115.3, 54.6, -0.1, -1.1. **HRMS** (FI): *m/z* for C₁₅H₂₆OSi₂ [M]⁺ calcd.: 278.1517, found: 278.1512.

3u: 76.4 mg, 92% yield. Colorless oil. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.52 – 7.45 (m, 1H), 7.27 – 7.18 (m, 2H), 6.97 – 6.90 (m, 1H), 1.95 (q, *J* = 1.1, 3H), 1.77 (q, *J* = 1.1, 3H), 0.23 (s, 9H), -0.31 (s, 9H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 153.0, 148.2, 137.2, 134.6, 131.4, 128.8, 128.3, 125.6, 23.9, 17.5, 0.7, -0.7. **HRMS** (FI): *m/z* for C₁₆H₂₈Si₂ [M]⁺ calcd.: 276.1724, found: 276.1721.

3v: 74.4 mg, 82% yield. Colorless oil. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.48 (dd, *J* =7.2, 1.8, 1H), 7.27 – 7.18 (m, 2H), 6.95 (dd, *J* =7.0, 1.7, 1H), 2.28 – 2.05 (m, 4H), 1.81 – 1.73 (m, 2H), 1.73 – 1.61 (m, 1H), 1.58 – 1.51 (m, 1H), 0.27 (s, 9H), -0.32 (s, 9H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ

152.2, 149.6, 137.5, 134.7, 133.0, 129.2, 128.3, 125.6, 35.5, 28.3, 23.0, 22.6, 1.0, -0.9. **HRMS** (FI): m/z for C₁₈H₃₀Si₂ [M]⁺ calcd.: 302.1881, found: 302.1877.

3w: 105.3 mg, 90% yield. Colorless oil. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.56 – 7.50 (m, 1H), 7.33 – 7.27 (m, 2H), 7.09 – 7.01 (m, 1H), 4.46 – 4.16 (m, 4H), 1.54 – 1.44 (m, 9H), 0.25 (s, 9H), -0.15 (s, 9H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 154.2, 154.0, 149.8, 149.6, 142.5, 138.3, 138.2, 134.8, 134.7, 134.4, 134.3, 129.0, 128.5, 128.5, 126.8, 79.4, 79.3, 61.2, 61.0, 58.21, 58.19, 28.6, 28.5, 0.7, 0.6, -1.2, -1.3. **HRMS** (FI): *m/z* for C₂₁H₃₅O₂NSi₂ [M]⁺ calcd.: 389.2201, found: 389.2204.

5. Synthetic Transformations of the Disilylated Product 3a

5.1 Vinyl Halogenation Reaction

To the solution of NXS (0.3 mmol, 1 equiv.) in 2 mL CH₃CN at rt (20 °C) was added **3a** (0.3 mmol, 1 equiv., 74.6 mg, 84 μ L). After stirring at rt for 6 h, the reaction mixture was poured into water and extracted with petroleum ether. The combined extract was dried over Na₂SO₄, concentrated in *vacuo* and purified by flash column chromatography (petroleum ether) to give the product **5**/6.

5: 72.5 mg, 95% yield, colorless oil. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.55 (d, *J* =7.3, 2H), 7.38 (td, *J* =7.5, 1.5, 1H), 7.34 – 7.27 (m, 2H), 6.52 (d, *J* =7.8, 1H), 0.30 (s, 9H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 141.1, 138.8, 134. 9, 134.3, 128.9, 128.7, 127.1, 108.6, -0.3. **HRMS** (FI): *m/z* for C₁₁H₁₅BrSi [M]⁺ calcd.: 254.0121, found: 254.0125.

6: 78.1 mg, 86% yield, colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.55 (d, J =6.9, 1H), 7.50 (d, J =8.2, 1H), 7.45 – 7.34 (m, 2H), 7.31 (td, J =7.2, 1.8, 1H), 6.66 (d, J =8.3, 1H), 0.29 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.0, 141.6, 138.4, 134.3, 128.8, 128.5, 127.2, 83.8, -0.3. HRMS (FI): *m/z* for C₁₁H₁₅ISi [M]⁺ calcd.: 301.9982, found: 301.9980.

5.2 Acylation of 3a

To the solution of 4-methoxybenzoyl chloride (0.33 mmol , 56.3 mg, 45 μ L, 1.1 equiv.) in DCM (0.6 mL) at -78 °C under argon was added AlCl₃ (0.36 mmol, 48 mg, 1.2 equiv.), then a solution of **3a** (0.3 mmol, 1 equiv., 74.6 mg, 84 μ L) in 0.4 mL DCM was added slowly into the mixture. The reaction mixture was stirred at -78 °C for 1 h and then the temperature was slowly elevated to 0 °C in 20 min. After cooling to -78 °C, a solution of Et₃N and MeOH in DCM was added slowly to quench the reaction. A solution of oxalic acid in water was added followed by extraction with EtOAc. The combined extract was dried over Na₂SO₄, concentrated in *vacuo* and purified by flash column chromatography (petroleum ether/EtOAc 15 : 1) to give the product **7** (74.7 mg, 80% yield) as a yellowish oil. This product is rather unstable and will be transformed into the more stable *trans*-isomer under common experimental operation.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.87 (d, J = 8.9, 2H), 7.48 (dd, J = 7.3, 1.6, 1H), 7.32 (d, J = 12.5, 1H), 7.25 – 7.06 (m, 3H), 6.82 (d, J = 8.9, 2H), 6.64 (d, J = 12.5, 1H), 3.81 (s, 3H), 0.38 (s, 9H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 193.1, 163.4, 141.6, 140.5, 138.4, 134.1, 131.2, 130.2, 129.3, 128.7, 127.32, 127.31, 113.6, 55.4, -0.0. **HRMS** (FI): m/z for C₁₉H₂₂O₂Si [M]⁺ calcd.: 310.1384, found: 310.1381.

5.3 Substitution Reaction of 3a with Ethyl Glyoxylate

According to the reported procedure,² to the solution of ethyl glyoxylate (50% in toluene, 0.33 mmol, 67.4 mg, 1.1 equiv.) in DCM (0.4 mL) at -78 $^{\circ}$ C under argon was added a solution of TiCl₄ (0.36 mmol, 68.3 mg, 39.5 µL, 1.2 equiv.) in 0.4 mL DCM, then a solution of **3a** (0.3 mmol, 1 equiv., 74.6 mg, 84 µL) in 0.4 mL DCM was added slowly into the mixture. The reaction mixture was stirred at -78 $^{\circ}$ C for 1 h and then a solution of Et₃N and MeOH in DCM was added slowly to quench the reaction. A solution of oxalic acid in water was added followed by extraction with EtOAc. The combined extract was dried over Na₂SO₄, concentrated in *vacuo* and purified by flash column chromatography (petroleum ether/EtOAc 5 : 1) to give the product **8** (70.0 mg, 84% yield) as a colorless oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.55 (dd, *J* =7.2, 1.5, 1H), 7.45 (d, *J* =7.5, 1H), 7.36 (td, *J* =7.5, 1H), 7.28 (td, *J* =7.4, 1.4, 1H), 7.04 (d, *J* =11.2, 1H), 5.66 (dd, *J* =11.2, 9.9, 1H), 4.84 (dd, *J* =10.0, 5.1, 1H), 4.25 (q, *J* =7.2, 2H), 3.01 (d, *J* =5.2, 1H), 1.29 (t, *J* =7.2, 3H), 0.32 (s, 9H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 174.2, 141.4, 139.0, 136.6, 134.3, 129.4, 128.8, 127.2, 126.9, 67.3, 62.2, 14.1, -0.3. **HRMS** (FI): m/z for C₁₅H₂₂O₃Si [M]⁺ calcd.: 278.1333, found: 278.1332.

6. The Influence of the Equivalent of 2-Pyridone Ligand on the Formation of

Aryl-Vinyl-Palladacycle Species

Synthesis and characterization of the Aryl-Vinyl-Palladacycle complex 4 have been reported.^{1c}

entry	time	variation	4 (%) ^a	
1	5 s		0	
2	25 s		4	
3	50 s		7	
4	80 s		7	
5	2 min		9	
6	4 min		9	
7	2 min	without L1	0	
8	25s	CuBr, KBr	12	
9	50s	CuBr, KBr	13	
10	2 min	CuBr, KBr	15	
11	4 min	CuBr, KBr	17	

Table S6

^aDetermined by ³¹P NMR using Ph₃PO as an internal standard.

For in situ Capturing of Aryl-Vinyl-Palladacycle species:

To a 5 mL sealed tube charged with a stir bar was added a mixture of $Pd(dba)_2$ (2.2 mg, 3.75 µmol), 3,5-dimethylpyridin-2(1H)-one (**L1**) (1.2 mg, 10 µmol), K₃PO₄ (21.2 mg, 0.1 mmol), and a ground mixture of CuBr and KBr (12.2 mg, containing 2.0 µmol CuBr and 0.1 mmol KBr). The tube was capped with a Teflon thread plug, and then degassed and backfilled with argon (this procedure was repeated three times). DMF (0.6 mL) was added and the mixture was stirred at 35 °C for 30 s. Then a DMF solution of *ortho*-iodophenylethylene (10.2 µL, containing 2.5 µmol solute) was added and,

after stirring for 50s, a freshly prepared CH_2Cl_2 solution of 1,2-bis(dicyclohexylphosphino)ethane (**dcpe**) (80 µL, containing 4.2 mg, 10 µmol **dcpe**) was added, followed with a DMF solution of Ph₃PO (12.5 µL, containing 2.95 µmol solute) as internal standard. The resulting mixture was transferred to an NMR tube under argon and submitted to NMR analysis.

7. References

- (a) T.-J. Hu, G. Zhang, Y.-H. Chen, C.-G. Feng and G.-Q. Lin, *J. Am. Chem. Soc.*, 2016, **138**, 2897; (b) M.-Y. Li, P. Han, T.-J. Hu, D. Wei, G. Zhang, A. Qin, C.-G. Feng, B. Z. Tang and G.-Q. Lin, *iScience*, 2020, **23**, 100966; (c) B.-B. Zhu, W.-B. Ye, Z.-T. He, S.-S. Zhang, C.-G. Feng and G.-Q. Lin, *ACS Catal.*, 2021, **11**, 12123.
- 2 K. Mikami, H. Wakabayashi and T. Nakai, J. Org. Chem., 1991, 56, 4337.

f1 (ppm) **S18**

5.0 4.5 f1 (ppm) **S24** 7.5 10.0 9.5 9.0 7.0 3.5 3.0 0.5 8.5 8.0 6.5 6.0 5.5 4.0 2.5 2.0 1.5 1.0

-0.5

0.0

f1 (ppm) **S29**

-85 f1 (ppm) **S32** -50 -55 -60 -65 -70 -75 -80 -90 -95 -100 -105 -110 -115 -120 -125

