Modular Synthesis of Bicyclic Twisted Amides and Anilines

Supporting Information

Alexandra Hindle, Krzysztof Baj, Jonathan A. Iggo, Daniel J. Cox, Christopher M. Pask, Adam Nelson* and Stephen P. Marsden*

Contents

1. General Experimental 2
2. General Methods 4
3. Synthesis of Enecarbamates 7
4. Synthesis of Bicyclic Lactams 13
5. Synthesis of Bicyclic Anilines 43
6. NMR, IR, Distortion Parameters and X-ray data ${ }^{6,17}$ 57
7. $\mathrm{p} K_{\mathrm{a}}$ Determinations of Bicyclic Anilines 62
8. Antimicrobial Assays of Twisted Lactams 86
9. References 90
10. Spectra 92

1. General Experimental

Commercially available starting materials were obtained from Sigma-Aldrich, Fluorochem, Alfa Aesar and Acros. All non-aqueous reactions were performed under a nitrogen atmosphere unless otherwise stated. Water-sensitive reactions were performed in anhydrous solvents in oven-dried glassware cooled under nitrogen before use. Anhydrous dichloromethane (DCM), anhydrous tetrahydrofuran (THF), anhydrous toluene, anhydrous diethyl ether, anhydrous ethanol, anhydrous methanol and anhydrous acetonitrile were obtained from a PureSolv MD5 Purification System. Anhydrous dimethyl sulfoxide (DMSO) was obtained from SureSeal bottles from Sigma-Aldrich. All other solvents used were of chromatography or analytical grade. An IKA RV 10 rotary evaporator was used to remove the solvents under reduced pressure.

Thin layer chromatography (TLC) was performed using aluminium backed silica (Merck silica gel 60 F254) plates obtained from Merck. Ultraviolet lamp ($\lambda_{\max }=254$ nm) and KMnO_{4} were used for visualization. Flash column chromatography was performed using silica gel 60 ($35-70 \mu \mathrm{~m}$ particles) supplied by Merck. A Bruker Daltonics micrOTOF spectrometer with electrospray (ES) ionisation source was used for high-resolution mass spectrometry (HRMS). Perkin-Elmer One FT-IR spectrometer was used to analyse the infrared spectra. Melting points (m.p.) were determined using Stuart melting point apparatus SMP3. Mass directed autopurification (MDAP) was performed using an Agilent 1290 Infinity II Preparative HPLC system with mass spectrometer (LC/MSD XT) and fraction collector. The system ran in positive mode with an Agilent Technologies PLRP-S, 300A, $8 \mu \mathrm{M}$ particle size, $150 \times 25 \mathrm{mM}$ column at ambient temperature with a binary solvent system: MeCN and $\mathrm{H}_{2} \mathrm{O}$ with 0.1% formic acid.

Proton (${ }^{1} \mathrm{H}$), carbon $\left({ }^{13} \mathrm{C}\right)$ and fluorine $\left({ }^{19} \mathrm{~F}\right)$ NMR data was collected on a Bruker 300, 400 or 500 MHz spectrometer. Data was collected at 300 K unless otherwise stated. Chemical shifts (δ) are given in parts per million (ppm) and they are referenced to the residual solvent peak. Coupling constants (J) are reported in Hertz (Hz) and splitting patterns are reported in an abbreviated manner: app. (apparent), s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), m (multiplet), br. (broad). Assignments were made using COSY, DEPT, HMQC, HMBC and NOESY experiments.

X-ray measurements were carried out at 120 K on an Agilent SuperNova diffractometer equipped with an Atlas CCD detector and connected to an Oxford Cryostream low temperature device using mirror monochromated $\mathrm{Cu} \mathrm{K}_{\text {u }}$ radiation ($\lambda=1.54184 \AA$ Å) from a Microfocus X-ray source. The structure was solved by intrinsic phasing using SHELXT ${ }^{1}$ and refined by a full matrix least squares technique based on F^{2} using SHELXL2014. ${ }^{2}$

2. General Methods

General method A: Synthesis of enecarbamates via Shono oxidation and Brønsted acid-mediated elimination: ${ }^{3,4}$

An Electrasyn vial (10 or 20 mL) fitted swith a stir bar was charged with the Bocprotected amine in anhydrous methanol (10 or 20 mL) containing tetraethylammonium tosylate and was electrolysed with graphite electrodes at a constant current of 65 mA at $25^{\circ} \mathrm{C}$. After the passage of $2.5 \mathrm{Fmol}^{-1}$ of electricity, the mixture was concentrated in vacuo. The residue was taken up in toluene, $\mathrm{NH}_{4} \mathrm{Cl}(20$ mol\%) was added and the mixture stirred at reflux for 1-4 h . Then, the mixture was allowed to cool to rt and the solvent evaporated under reduced pressure to give a crude product. The crude product was purified by flash column chromatography to yield the corresponding enecarbamate as a mixture of rotamers.

General method B: Hydroamination of enecarbamates with amino esters: ${ }^{5}$

To a 7 mL vial were added $\left[\operatorname{Ir}(\mathrm{dF}(\mathrm{Me}) \mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}\right](5.1 \mathrm{mg}, 2 \mathrm{~mol} \%)$, TRIP thiol ($27 \mathrm{mg}, 50 \mathrm{~mol} \%$), amino ester hydrochloride (0.50 mmol), enecarbamate (0.25 mmol) and lithium hydroxide monohydrate ($21.0 \mathrm{mg}, 0.50 \mathrm{mmol}$). The vial was flushed with N_{2} and toluene (5 mL) was then added and the resultant mixture was stirred for 16 h under irradiation with a blue LED and fan cooling. The reaction was scaled out by repetition in additional vials as specified. The solvent was evaporated under reduced pressure to give a crude product. The crude product was purified by flash column chromatography to yield the resulting amine as a mixture of rotamers.

General method C: Cbz/POC protection of amino esters and benzylamines: ${ }^{6}$

Benzyl or propargyl chloroformate (1.1 eq.) was slowly added to a mixture of amine (1.0 eq.) and NaHCO_{3} (6.0 eq.) in DCM. The mixture was stirred for $16-96 \mathrm{~h}$ at room temperature, and then water was added (10 mL). The two layers were separated, and the organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated under reduced pressure to give a crude product. The crude product was purified by flash column chromatography to yield the resulting carbamate as a mixture of rotamers.

General method D: Tin-mediated cyclisation of protected amino esters: ${ }^{6}$

NaOH (1.1 eq.) was added to a solution of amino ester (1.0 eq.) in 1:1 MeOH:water (0.059 M) and stirred at $70^{\circ} \mathrm{C}$ for 2 h or until complete by TLC and the solvent then evaporated under reduced pressure. To the resultant residue was added $\mathrm{HCl}(6 \mathrm{~N})$ $(0.089 \mathrm{M})$ and $\mathrm{EtOAc}(0.071 \mathrm{M})$ and the mixture stirred for 3 h or until complete by TLC and the solvent then evaporated under reduced pressure. To a suspension of the crude amino acid in toluene (0.075 M) was added $n-\mathrm{Bu}_{2} \mathrm{SnO}(1.01 \mathrm{eq}$.) and the mixture refluxed under Dean-Stark for 16 h . The solvent was then evaporated under reduced pressure and the residue partitioned between DCM (10 mL) and water (10 mL). The organic layer was then washed with water $(3 \times 10 \mathrm{~mL})$ and dried (MgSO_{4}) and the solvent then evaporated under reduced pressure to give the crude product. The crude product was purified by flash column chromatography to yield the resulting bicyclic lactam as a mixture of rotamers.

General method E: Hydroamination of enecarbamates with benzylamines: ${ }^{5}$

To a 7 mL vial were added $\left[\operatorname{Ir}(\mathrm{dF}(\mathrm{Me}) \mathrm{ppy})_{2}\left(\mathrm{dtbbpy}^{\left.(1) P F_{6}\right]}\right.\right.$ ($\left.5.1 \mathrm{mg}, 2 \mathrm{~mol} \%\right)$, TRIP thiol ($27 \mathrm{mg}, 50 \mathrm{~mol} \%$), 2-bromobenzylamine ($186 \mathrm{mg}, 1.00 \mathrm{mmol}$) and enecarbamate (0.25 mmol). Toluene (5 mL) was then added under N_{2} and the resultant mixture was stirred for 16 h under irradiation with a blue LED and fan cooling. The reaction
was scaled out by repetition in additional vials as specified. Then, the solvent was evaporated under reduced pressure to give a crude product. The crude product was purified by flash column chromatography to yield the resulting amine as a mixture of rotamers.

General method F: Buchwald-Hartwig cyclisations of protected benzylamines: ${ }^{7}$
$\mathrm{HCl}(6 \mathrm{~N})(0.089 \mathrm{M})$ was added to a solution of protected amine (1 eq.) in EtOAc $(0.071 \mathrm{M})$ and stirred for 3 h or until complete by TLC. The solvent was then removed under reduced pressure to give the corresponding NH amine. $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4$ mol\%) and BINAP ($8 \mathrm{~mol} \%$) were dissolved in toluene and stirred at $110^{\circ} \mathrm{C}$ for 30 min and then cooled to rt . This solution was then added to NaOtBu (1.9 eq.) and the NH amine and the resulting mixture stirred at reflux for 16-96 h. The mixture was then allowed to cool to rt, filtered through celite, and washed with DCM (20 mL). The solvent was then removed under reduced pressure to give a crude product. The crude product was purified by flash column chromatography to yield the corresponding bicyclic aniline as a mixture of rotamers.

3. Synthesis of Enecarbamates

cis-tert-Butyl octahydro-2H-isoindole-2-carboxylate S1

S1
$\mathrm{Boc}_{2} \mathrm{O}(2.7 \mathrm{~mL}, 11.8 \mathrm{mmol})$ was added to a solution of cis-octahydro-1H-isoindole hydrochloride ($1.59 \mathrm{~g}, 9.84 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(2.7 \mathrm{~mL}, 19.7 \mathrm{mmol}$) in DCM (30 mL) and stirred at rt for 72 h . The solvent was then evaporated under reduced pressure to give a crude product. The crude product was purified by flash column chromatography eluting with 90:10 hexane-EtOAc to yield slightly impure carbamate $\mathbf{S 1}$ as a $1: 1$ mixture of rotamers $(2.17 \mathrm{~g}, 97 \%)$ as a colourless oil, $R_{\mathrm{f}} 0.31$ (80:20 hexane-EtOAc); $v_{\max } / \mathrm{cm}^{-1} 2975,2926,2856,1693$ (C=O), 1392, 1304, 1136, 1092, 875 and 771; $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.36-3.25(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 9-\mathrm{H}), 3.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 10.6, 5.4, m, 2-H, 9-H), 3.14 (1H, dd, J 10.5, 5.7, m, 2-H, 9-H), 2.21-2.09 (2H, m, 3-H, 8-H), 1.59-1.42 (15H, m, Вос CMe $\left., 4-\mathrm{H}_{2}, 5-\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{A}}, 7-\mathrm{H}_{2}\right), 1.38-1.39\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right.$, $\left.6-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 155.4$ ($\mathrm{Boc} \mathrm{C}=\mathrm{O}$), 80.0 ($\mathrm{Boc} \mathrm{CMe}_{3}$), 50.1 (C-2, C-9), 49.7 (C-2, C-9), 37.5 (C-3, C-8), 36.8 (C-3, C-8), 28.7 ($\mathrm{Boc} \mathrm{CMe}_{3}$), 26.0 (C-4, C-7), 23.02 (C5, C-6), 22.96 (C-5, C-6) (10 out of 14 signals present); HRMS found $\mathrm{MNa}^{+}, 248.1618$. $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{Na}$ requires 248.1621.
tert-Butyl 1,4,5,6,7,7a-hexahydro-2H-isoindole-2-carboxylate 5b

5b

Compound $\mathbf{5 b}$ was synthesised using general method A using Boc protected amine $\mathbf{S 1}(2.00 \mathrm{~g}, 8.88 \mathrm{mmol})$, anhydrous methanol (20 mL), tetraethylammonium tosylate ($166 \mathrm{mg}, 0.56 \mathrm{mmol}$), toluene (20 mL) and $\mathrm{NH}_{4} \mathrm{Cl}(95.0 \mathrm{mg}, 20 \mathrm{~mol} \%)$). Reflux was carried out for 1 h . The crude product was purified by flash column chromatography eluting with 95:5 hexane-EtOAc to yield the enecarbamate $\mathbf{5 b}$ as a 60:40 mixture of rotamers ($1.45 \mathrm{~g}, 70 \%$) as a pale yellow oil, $R_{\mathrm{f}} 0.68$ ($80: 20$ hexane-EtOAc); $v_{\text {max }} / \mathrm{cm}^{-1} 2976,2931,2858,1687$ (C=O), 1385, 1365, 1164, 1109, 892 and 773 ; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.24(0.4 \mathrm{H}$, br s, $2-\mathrm{H}), 6.12(0.6 \mathrm{H}$, br s, $2-\mathrm{H}), 3.90$ $\left(0.6 \mathrm{H}\right.$, app. t, J 10.9, $\left.9-\mathrm{H}_{\mathrm{A}}\right), 3.84\left(0.4 \mathrm{H}\right.$, app. $\left.\mathrm{t}, \mathrm{J} 11.3,9-\mathrm{H}_{\mathrm{A}}\right), 3.24(0.6 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.4$, 7.1, m, 9-H H_{B}, $3.19\left(0.4 \mathrm{H}, \mathrm{dd}, J 11.3,7.2, \mathrm{~m}, 9-\mathrm{H}_{\mathrm{B}}\right), 2.79-2.66(1 \mathrm{H}, 8-\mathrm{H}), 2.38(1 \mathrm{H}$, app. $\left.\mathrm{t}, \mathrm{J} 15.3,4-\mathrm{H}_{\mathrm{A}}\right), 2.00-1.87\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}, 7-\mathrm{H}_{\mathrm{A}}\right), 1.84-1.72\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{A}}\right)$, 1.46 ($9 \mathrm{H}, \mathrm{s}, \mathrm{Boc} \mathrm{CMe}_{3}$), 1.31 (1 H , app. qt, J 13.1, 3.0, $6-\mathrm{H}_{\mathrm{B}}$), 1.22 (1 H , app. qt, J 12.8, $\left.3.2,5-\mathrm{H}_{\mathrm{B}}\right), 1.16\left(1 \mathrm{H}, \mathrm{app} . \mathrm{dq}, \mathrm{J} 12.5,3.1,7-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 152.3$ (Boc $\left.\mathrm{C}=\mathrm{O}\right)$, 151.7 ($\mathrm{Boc} \mathrm{C}=\mathrm{O}$), 125.5 (C-3), 125.4 (C-3), 120.5 (C-2), 120.4 (C-2), 79.8 ($\mathrm{Boc} \mathrm{CMe}_{3}$), 79.6 (Вос СМе ${ }^{2}$), 52.2 (C-9), 51.7 (C-9), 43.3 (C-8), 42.2 (C-8), 34.6 (C-7), 28.6 (Boc CMe_{3}), 27.6 (C-5), 25.8 (C-4), 25.5 (C-6) (17 out of 22 signals present); HRMS found MNa^{+}, 246.1464. $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{Na}$ requires 246.1465.
tert-Butyl piperidine-1-carboxylate S2

$\mathrm{Boc}_{2} \mathrm{O}(14 \mathrm{~mL}, 60 \mathrm{mmol})$ was added to piperidine ($6.5 \mathrm{~mL}, 66 \mathrm{mmol}$) in DCM (210 mL) and stirred at rt for 72 h . The solvent was then evaporated under reduced pressure to yield carbamate $\mathbf{S 2}$ as a mixture of rotamers ($11.0 \mathrm{~g}, 99 \%$) as a colourless oil, $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 2976,2934,2855$, 1687 (C=O), 1446, 1416, 1257, 1237, 1175, 1083 and 868; $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.38-3.31\left(4 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}, 6-\mathrm{H}_{2}\right), 1.59-1.53$ (2H, m, 4- H_{2}), 1.53-1.47 ($4 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}, 5-\mathrm{H}_{2}$), $1.45\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Boc} \mathrm{CMe}_{3}\right.$); $\delta_{\mathrm{C}}(100 \mathrm{MHz}$, CDCl_{3}) 155.1 ($\mathrm{Boc} \mathrm{C}=\mathrm{O}$), 79.2 (Вос CMe $)_{3}$, 44.8 (C-2, C-6), 28.6 ($\mathrm{Boc} \mathrm{CMe3)}$,25.9 (C4), 24.7 (C-3, C-5); HRMS found MNa^{+}, 208.1308. $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{Na}$ requires 208.1308. Spectroscopic data are consistent with those reported in the literature. ${ }^{8}$

tert-Butyl 3,4-dihydropyridine-1(2H)-carboxylate 5c

Compound $5 \mathbf{c}$ was synthesised using general method A using Boc protected amine S1 ($1.02 \mathrm{~g}, 4.56 \mathrm{mmol}$), anhydrous methanol (10 mL), tetraethylammonium tosylate ($83 \mathrm{mg}, 0.28 \mathrm{mmol}$), toluene (10 mL) and $\mathrm{NH}_{4} \mathrm{Cl}(57.8 \mathrm{mg}, 20 \mathrm{~mol} \%$). Reflux was carried out for 4 h . The crude product was purified by flash column chromatography eluting with 95:5 hexane- $\mathrm{Et}_{2} \mathrm{O}$ to yield the enecarbamate $\mathbf{5 c}$ as a 60:40 mixture of rotamers ($464 \mathrm{mg}, 47 \%$) as a colourless oil, $R_{\mathrm{f}} 0.44$ (80:20 hexane-Et ${ }_{2} \mathrm{O}$); $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 2976,2934,1688$ (C=O), 1365, 1253, 1150, 990, 918, 876
and 729 ; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.85(0.4 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5,2-\mathrm{H}), 6.71(0.6 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.4,2-\mathrm{H})$, $4.90(0.4 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.79(0.6 \mathrm{H}, \mathrm{dt}, \mathrm{J} 8.1$ and $3.8,3-\mathrm{H}), 3.63-3.43\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right)$, 2.09-1.95 (2H, m, 4- H_{2}), 1.86-1.72 (2H, m, 5- H_{2}), 1.48 ($9 \mathrm{H}, \mathrm{s}, \mathrm{Boc} \mathrm{CMe} 3$); $\delta_{\mathrm{C}}(125$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 152.9 ($\mathrm{Boc} \mathrm{C}=0$), 152.5 ($\mathrm{Boc} \mathrm{C}=\mathrm{O}$), 125.8 ($\mathrm{C}-2$), 125.4 ($\mathrm{C}-2$), 105.8 ($\mathrm{C}-3$), 105.3 (C-3), 80.6 ($\mathrm{Boc} \mathrm{CMe}_{3}$), 80.5 (Boc CMe_{3}), 42.7 (C-6), 41.6 (C-6), 28.5 (Boc CMe_{3}), 21.9, 21.6, 21.5 (C-4 and C-5) (15 out of 16 signals present); HRMS found $2 \mathrm{MNa}^{+}$, 389.2399. $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}$ requires 389.2411. Spectroscopic data are consistent with those reported in the literature. ${ }^{4}$

tert-Butyl 3-((2-ethoxy-2-oxoethyl)amino)-3-methylpiperidine-1-carboxylate 5d ${ }^{9,10}$

5d

To a stirred solution of DIPA ($1.5 \mathrm{~mL}, 11.0 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added n-BuLi (6.9 mL of a 1.6 M solution in hexanes, 11.0 mmol) dropwise at $0^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}$ under N_{2}. The solution was stirred for 15 min and then cooled to $-78{ }^{\circ} \mathrm{C}$ whereupon addition of tert-butyl 2-oxopiperidine-1-carboxylate ($2.00 \mathrm{~g}, 10.0 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(20$ mL) was performed by syringe addition. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h before iodomethane ($0.93 \mathrm{~mL}, 15.0 \mathrm{mmol}$) was added dropwise at $-50^{\circ} \mathrm{C}$. The solution was then slowly warmed to $-20^{\circ} \mathrm{C}$ and stirred for 30 min . Sat. $\mathrm{NH}_{4} \mathrm{Cl}_{\text {(aq) }}(20$ mL) was then added and the layers separated. The aqueous layer was then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, and the organics washed with sat. $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(2 \times 20$ $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent then evaporated under reduced pressure to give the crude product. The crude product was purified by flash column chromatography eluting with 9:1 hexane-EtOAc to yield impure lactam (562 mg) as a yellow oil. Super-Hydride ${ }^{\circledR}$ (2.7 mL of a 1 M solution in THF, 2.67 mmol) was added dropwise to a solution of the lactam ($541 \mathrm{mg}, 2.54 \mathrm{mmol}$) in toluene (9.4 mL) at $-78{ }^{\circ} \mathrm{C}$ and the mixture stirred for 30 min at $-78{ }^{\circ} \mathrm{C}$. Then, DIPEA $(2.5 \mathrm{~mL}, 14.5$
mmol), DMAP ($6.2 \mathrm{mg}, 2 \mathrm{~mol} \%$) and TFAA ($0.42 \mathrm{~mL}, 3.05 \mathrm{mmol}$) were added and the resultant mixture was allowed to warm to room temperature and stirred for 16 h at room temperature. Then, water (10 mL) was added and the two layers were separated and the aqueous layer was extracted with DCM ($2 \times 10 \mathrm{~mL}$). The organic layers were combined and washed with water $(2 \times 20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated under reduced pressure to give a crude product. The crude product was purified by flash column chromatography eluting with 95:5 hexane-EtOAc to yield the enecarbamate 5d as a 60:40 mixture of rotamers (297 $\mathrm{mg}, 15 \%$ over two steps) as a yellow oil, $R_{\mathrm{f}} 0.46$ ($80: 20$ hexane-EtOAc); $v_{\text {max }} / \mathrm{cm}^{-1}$ 2975, 2928, 2877, 1695 (C=O), 1674 (C=O), 1452, 1393, 1253, 1154, 1110, 981 and $764 ; \delta_{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.59(0.4 \mathrm{H}, \mathrm{br}$ s, 2-H), 6.43 ($0.6 \mathrm{H}, \mathrm{br}$ s, 2-H), 3.46-3.34 (2H, m, 6- H_{2}), 1.91-1.84 (2H, m, 4- H_{2}), 1.77-1.69 (2H, br m, 5- H_{2}), $1.60(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Me})$, 1.41 (9H, s, Boc CMe ${ }_{3}$); $\delta_{C}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 152.9 ($\operatorname{Boc} \mathrm{C}=\mathrm{O}$), 152.5 (Boc C=O), 120.5 (C-2), 120.2 (C-2), 114.7 (C-3), 114.2 (C-3), 80.4 ($\mathrm{Boc} \mathrm{CMe}_{3}$), 80.2 ($\mathrm{Boc} \mathrm{CMe}_{3}$), 42.1 (C-6), 41.0 (C-6), 28.5 ($\mathrm{Boc} \mathrm{CMe}_{3}$), 27.2 (C-4), 26.9 (C-4), 22.1 (C-5), 21.0 (C-5), 21.14 (Me), $21.09(\mathrm{Me})(17$ out of 18 signals present); Spectroscopic data are consistent with those reported in the literature. ${ }^{9}$

tert-Butyl azepane-1-carboxylate S3

S3
$\mathrm{Boc}_{2} \mathrm{O}(4.6 \mathrm{~mL}, 20 \mathrm{mmol})$ was added to a solution of azepane ($2.3 \mathrm{~mL}, 20 \mathrm{mmol}$) in DCM (70 mL) and stirred at rt for 72 h . The solvent was then evaporated under reduced pressure to yield carbamate S3 as a 1:1 mixture of rotamers ($3.98 \mathrm{~g}, 100 \%$) as a yellow oil; $v_{\max } / \mathrm{cm}^{-1} 2974,2927,2857,1687$ ($\mathrm{C}=\mathrm{O}$), 1413, 1160, 1115, 964 and $770 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.37\left(2 \mathrm{H}\right.$, app. t, J 6.1, 2- $\left.\mathrm{H}_{2}, 7-\mathrm{H}_{2}\right), 3.31(2 \mathrm{H}$, app. t, J 6.1, 2-
$\mathrm{H}_{2}, 7-\mathrm{H}_{2}$), 1.71-1.58 (4H, br m, 3- $\mathrm{H}_{2}, 6-\mathrm{H}_{2}$), 1.57-1.48 (4H, br m, 4- $\mathrm{H}_{2}, 5-\mathrm{H}_{2}$), 1.45
 C-7), 46.7 (C-2, C-7), 28.7 ($\mathrm{Boc} \mathrm{CMe}_{3}$), 28.6 (Boc CMe 3), 27.6 (C-3, C-6), 27.0 (C-4, C5), (8 out of 12 signals present); HRMS found MNa^{+}, 221.1461. $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{Na}$ requires 221.1465. Spectroscopic data are consistent with those reported in the literature. ${ }^{11}$
tert-Butyl 2,3,4,5-tetrahydro-1H-azepine-1-carboxylate 5e

Compound $\mathbf{5 e}$ was synthesised using general method A using Boc protected amine $\mathbf{S 2}(3.00 \mathrm{~g}, 15.1 \mathrm{mmol})$, anhydrous methanol (20 mL), tetraethylammonium tosylate ($249 \mathrm{mg}, 0.42 \mathrm{mmol}$), toluene (20 mL) and $\mathrm{NH}_{4} \mathrm{Cl}$ ($161 \mathrm{mg}, 20 \mathrm{~mol} \%$). Reflux was carried out for 4 h . The crude product was purified by flash column chromatography eluting with 95:5 hexane-EtOAc to yield the enecarbamate $\mathbf{5 e}$ as an undetermined mixture of rotamers ($2.05 \mathrm{~g}, 69 \%$) as a colourless oil, $R_{\mathrm{f}} 0.69$ (80:20 hexane-EtOAc); $v_{\max } / \mathrm{cm}^{-1}$ 2976, 2930, 2863, 1698 (C=O), 1650, 1365, 1217, $1115,1073,1012,858,768$ and $721 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.60-6.37(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$, 5.07-4.86 (1H, m, 3-H), 3.69-3.58 (2H, m, 7-H2), 2.17 (2 H, app. ddd, J 11.6, 5.4, 1.5, $4-\mathrm{H}_{2}$), 1.82-1.63 (4H, m, 5- $\mathrm{H}_{2}, 6-\mathrm{H}_{2}$), $1.48\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Boc} \mathrm{CMe}_{3}\right) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 152.1 ($\operatorname{Boc} \mathrm{C}=0$), 130.8 (C-2), 114.2 (C-3), 80.4 ($\mathrm{Boc} \mathrm{CMe}_{3}$), 47.1 (C-7), 47.0 (C-7), 28.5 ($\mathrm{Boc} \mathrm{CMe}_{3}$), 28.2 (6), 26.4 (C-4), 25.4 (5) (10 out of 18 signals present); HRMS found MNa^{+}, 220.1304. $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{Na}$ requires 220.1308. Spectroscopic data are consistent with those reported in the literature. ${ }^{4}$

4. Synthesis of Bicyclic Lactams

tert-Butyl 3-((2-ethoxy-2-oxoethyl)amino)pyrrolidine-1-carboxylate S4

S4

S4 was synthesised using general method B using N-Boc-2,3-dihydro-1H-pyrrole ($42.3 \mathrm{mg}, 0.25 \mathrm{mmol}$, supplier: Sigma Aldrich) and glycine ethyl ester hydrochloride $(70.0 \mathrm{mg}, 0.50 \mathrm{mmol})$. Reaction was performed in duplicate and the contents of the two vials combined before work-up. The crude product was purified by flash column chromatography eluting with 1:1 hexane-EtOAc to yield amino ester $\mathbf{S 4}$ as a 1:1 mixture of rotamers ($77.2 \mathrm{mg}, 57 \%$) as a yellow oil, $R_{\mathrm{f}} 0.27$ (EtOAc); $v_{\max } / \mathrm{cm}^{-1}$ 2976, 2934, 2879, 1738 (C=O), 1693 (C=O), 1404, 1168, 1114 and 772; $\delta_{H}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 4.19\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.1 \mathrm{~Hz}, 10-\mathrm{H}_{2}\right), 3.54-3.42\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}, 5-\mathrm{H}_{\mathrm{A}}\right), 3.42-3.38(2 \mathrm{H}, \mathrm{m}$, 7-H2), 3.38-3.33 (1H, m, 5-HB), 3.32-3.28 (1H, m, 3-H), 3.15 (0.5H, dd, J 10.9, 4.3, 2$\left.\mathrm{H}_{\mathrm{B}}\right), 3.08\left(0.5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.8,5.0,2-\mathrm{H}_{\mathrm{B}}\right), 2.01\left(1 \mathrm{H}, \mathrm{app} . \mathrm{td}, \mathrm{J} 12.9,6.2,4-\mathrm{H}_{\mathrm{A}}\right), 1.73(1 \mathrm{H}$, app. dd, J 11.7, 5.4, 4- H_{B}), $1.66(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 1.45\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{Me})_{3}\right), 1.28(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1$ $\left.\mathrm{Hz}, 11-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 172.5$ ($\mathrm{C}=\mathrm{O} \mathrm{C}-8$), 154.8 ($\mathrm{C}=\mathrm{OBoc}$), 154.7 ($\mathrm{C}=\mathrm{OBoc}$), 79.3 ($C(\mathrm{Me})_{3}$), 61.1 ($\left.\mathrm{C}-10\right), 57.4$ (C-3), 56.6 (C-3), $52.0(\mathrm{C}-2), 51.4$ (C-2), 49.4 (C-7), 49.3 (C-7), 44.5 (C-5), 44.1 (C-5), 32.1 (C-4), 31.4 (C-4), 28.7 (C(Me) $)_{3}$), 14.4 (C-11) (17 out of 22 signals present); HRMS found MH^{+}, 273.1809. $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires 273.1809. Spectroscopic data are consistent with those reported in the literature. ${ }^{12}$

tert-Butyl 3-(((benzyloxy)carbonyl)(2-ethoxy-2-oxoethyl)amino)pyrrolidine-1carboxylate 9a

9a

9a was synthesised using general method C using benzyl chloroformate ($43 \mu \mathrm{~L}$, 0.304 mmol), amino ester $\mathbf{S 4}(75.0 \mathrm{mg}, 0.276 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(139 \mathrm{mg}, 1.66$ mmol) in DCM (3 mL) for 16 h . The crude product was purified by flash column chromatography, eluting with 1:1 hexane-EtOAc to yield carbamate 9a as a 60:40 mixture of rotamers ($105 \mathrm{mg}, 94 \%$) as a colourless oil, $R_{\mathrm{f}} 0.37$ (1:1 hexane-EtOAc); $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ 2977, 2877, 1750 (C=O), 1694 (C=O), 1404, 1365, 1198, 1169, 1135, 771 and 643; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.40-7.27(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.17$ ($0.8 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Cbz} \mathrm{CH}_{2}$), 5.13 (1.2H, br s, Cbz CH 2), 4.86-4.75 (0.6H, br m, 3-H), 4.70-4.59 (0.4H, br m, 3-H), 4.26$4.15\left(0.8 \mathrm{H}, \mathrm{br} m, 10-\mathrm{H}_{2}\right), 4.15-4.06\left(1.2 \mathrm{H}, \mathrm{br} m, 10-\mathrm{H}_{2}\right), 4.04-3.81\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right)$, $3.61\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.3,7.9,2-\mathrm{H}_{\mathrm{A}}\right), 3.53-3.36\left(1 \mathrm{H}, \mathrm{br}\right.$ m, $\left.5-\mathrm{H}_{\mathrm{A}}\right), 3.35-3.21(1 \mathrm{H}, \mathrm{br}$ m, 5$\left.\mathrm{H}_{\mathrm{B}}\right), 3.20-3.09\left(1 \mathrm{H}, \mathrm{dd}\right.$, br m, 2-H $\mathrm{H}_{\mathrm{B}}, 2.16-2.04\left(1 \mathrm{H}, \mathrm{br}\right.$ m, $\left.4-\mathrm{H}_{\mathrm{B}}\right), 1.95-1.83(1 \mathrm{H}$, br m, $\left.4-\mathrm{H}_{\mathrm{B}}\right), 1.44\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{Me})_{3}\right), 1.30-1.22\left(1.2 \mathrm{H}\right.$, br m, 11- H_{3}), 1.22-1.13 (1.8H, br m, 11H_{3}); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 170.0$ ($\mathrm{C}=\mathrm{O} \mathrm{C}-8$), 154.8 (C=O Cbz), 154.5 (C=O Boc), 136.3 (ipso-Ph), 128.7 (Ph), 128.6 (Ph), 128.4 (Ph), 128.3 (Ph), 128.2 (Ph), 128.0 (Ph), 79.8 ($\mathrm{C}(\mathrm{Me})_{3}$), $68.0\left(\mathrm{Cbz} \mathrm{CH}_{2}\right), 67.8\left(\mathrm{Cbz} \mathrm{CH}_{2}\right), 61.5(\mathrm{C}-10), 55.3(\mathrm{C}-3), 54.6(\mathrm{C}-3), 55.3$ (C2), 54.6 (C-2), 45.5 (C-7), 45.2 (C-7), 44.5 (C-5), 43.9 (C-5), 28.6 (C(Me)3), 28.5 (C-4), 14.2 (C-11) (25 out of 34 signals present); HRMS found MH^{+}, 407.2172. $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires 407.2177 .
tert-Butyl 3a-((2-ethoxy-2-oxoethyl)amino)octahydro-2H-isoindole-2-carboxylate cis-S5

Cis-S5 was synthesised using general method B using enecarbamate 5b (55.8 mg , 0.25 mmol) and glycine ethyl ester hydrochloride ($70.0 \mathrm{mg}, 0.50 \mathrm{mmol}$). Reaction was performed in triplicate and the contents of the three vials combined before work-up. The crude product was purified by flash column chromatography eluting with 1:1 hexane-EtOAc to yield amino ester cis-S5 as a 1:1 mixture of rotamers (138 $\mathrm{mg}, 56 \%$) as a yellow oil, $R_{\mathrm{f}} 0.34$ (1:1 hexane-EtOAc); $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ 2975, 2929, 2857, 1738 (C=O), 1694 (C=O), 1392, 1365, 1172, 1097, 881 and 772; $\delta_{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $4.19\left(1 \mathrm{H}, \mathrm{q}, J 7.1 \mathrm{~Hz}, 14-\mathrm{H}_{2}\right), 4.18\left(1 \mathrm{H}, \mathrm{q}, J 7.1 \mathrm{~Hz}, 14-\mathrm{H}_{2}\right), 3.54-3.46\left(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{\mathrm{A}}\right)$, $3.40\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.9,11-\mathrm{H}_{\mathrm{A}}\right), 3.35-3.28\left(1.5 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}, 11-\mathrm{H}_{\mathrm{B}}\right), 3.27-3.21\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}\right.$, $\left.9-\mathrm{H}_{\mathrm{B}}\right), 3.19-3.12\left(1 \mathrm{H}, \mathrm{m}, 2,-\mathrm{H}_{\mathrm{B}}, 9-\mathrm{H}_{\mathrm{B}}\right), 3.09\left(0.5 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.8,2-\mathrm{H}_{\mathrm{B}}\right), 1.98(1 \mathrm{H}, \mathrm{app} . \mathrm{q}, \mathrm{J}$ $6.8,8-\mathrm{H}), 1.80\left(1 \mathrm{H}, \mathrm{br}\right.$ s, NH), 1.68 ($1 \mathrm{H}, \mathrm{app} . \mathrm{dt}, \mathrm{J} 12.7,8.5,4-\mathrm{H}_{\mathrm{A}}$), 1.61-1.49 ($4 \mathrm{H}, \mathrm{m}$, $\left.5-\mathrm{H}_{2}, 6-\mathrm{H}_{2}\right), 1.45\left(4.5 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{Me})_{3}\right), 1.45\left(4.5 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{Me})_{3}\right), 1.40-1.31\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}, 7-\right.$ H_{2}), $1.27\left(1.5 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1 \mathrm{~Hz}, 15-\mathrm{H}_{3}\right), 1.27\left(1.5 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1 \mathrm{~Hz}, 15-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 172.9 ($\mathrm{C}=\mathrm{O} \mathrm{C}-12$), 172.8 ($\mathrm{C}=\mathrm{O} \mathrm{C}-12$), 155.4 ($\mathrm{C}=\mathrm{O}$ Boc), 155.3 ($\mathrm{C}=\mathrm{O}$ Boc), 79.34 $\left(C(\mathrm{Me})_{3}\right), 79.32\left(\mathrm{C}(\mathrm{Me})_{3}\right), 61.2(\mathrm{C}-14), 60.5(\mathrm{C}-3), 59.9(\mathrm{C}-3), 54.6(\mathrm{C}-2), 53.4(\mathrm{C}-2)$, 49.7 (C-9), 48.9 (C-9), 44.8 (C-11), 44.7 (C-11), 42.5 (C-8), 41.2 (C-8), 29.71 (C-4), 29.68 (C-4), 28.7 (C(Me) $)_{3}$, 25.7 (C-7), 25.1 (C-7), 22.5, 22.2, 22.02, 21.96 (C-5, C-6), 14.3 (C-15) (27 out of 30 signals present); HRMS found MNa^{+}, 349.2098. $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}$ requires 349.2098 . The stereochemistry was assigned through positive NOESY interaction between $8-\mathrm{H}$ and $11-\mathrm{H}_{2}$.

tert-Butyl 3a-(((benzyloxy)carbonyl)(2-ethoxy-2-oxoethyl)amino)octahydro-2H-isoindole-2-carboxylate cis-9b

Cis-9b was synthesised using general method C using benzyl chloroformate ($66 \mu \mathrm{~L}$, $0.465 \mathrm{mmol})$, amino ester cis-S5 (138 mg, 0.423 mmol) and $\mathrm{NaHCO}_{3}(212 \mathrm{mg}, 2.54$ mmol) in DCM (4 mL) for 72 h . The crude product was purified by flash column chromatography, eluting with 8:2 hexane-EtOAc to yield carbamate cis-9b as a 60:40 mixture of rotamers ($133 \mathrm{mg}, 68 \%$) as a pale yellow oil, $R_{\mathrm{f}} 0.50$ (1:1 hexaneEtOAc); $v_{\max } / \mathrm{cm}^{-1} 2976,2931,2863,1749,1691$ (C=O), 1393, 1365, 1174, 1128, 1100, 774 and $698 ; \delta_{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.39-7.28(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.22-4.98(2 \mathrm{H}, \mathrm{m}$, Cbz CH 2), 4.45-4.19 (1H, m, 2- H_{A}), 4.07-4.15 (2H, m 14- H_{2}), 4.00-3.72 ($2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}$, $\left.11-H_{A}\right), 3.57\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.8,11-\mathrm{H}_{\mathrm{B}}\right), 3.49-3.40\left(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{\mathrm{A}}\right), 3.25(0.6 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.8$, $\left.7.3,9-\mathrm{H}_{\mathrm{B}}\right), 3.14\left(0.4 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.7,5.0,9-\mathrm{H}_{\mathrm{B}}\right), 2.70-2.54(0.4 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.52-2.41$ ($0.6 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}$), 1.75-1.61 ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}$ or $5-\mathrm{H}_{2}, 6-\mathrm{H}_{2}$ or $7 \mathrm{H}_{2}$), 1.53-1.47 (2H, m, 4- H_{2} or $5-\mathrm{H}_{2}, 6-\mathrm{H}_{2}$ or $\left.7 \mathrm{H}_{2}\right), 1.45\left(4.5 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{Me})_{3}\right), 1.44\left(4.5 \mathrm{H} \mathrm{s}, \mathrm{C}(\mathrm{Me})_{3}\right), 1.40-1.33(2 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}_{2}$ or $5-\mathrm{H}_{2}, 6-\mathrm{H}_{2}$ or $7 \mathrm{H}_{2}$), 1.33-1.24 (2H, m, 4- H_{2} or $5-\mathrm{H}_{2}, 6-\mathrm{H}_{2}$ or $\left.7 \mathrm{H}_{2}\right), 1.24-1.12$ $\left(3 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 170.9$ (C=O C-12), 170.7 (C=O C-12), 154.8 (C=O Boc or Cbz), 128.6 (Ph), $128.1(\mathrm{Ph}), 128.0(\mathrm{Ph}), 79.64\left(C(\mathrm{Me})_{3}\right), 79.57\left(C(\mathrm{Me})_{3}\right), 67.4$ (Cbz CH2), 67.3 (Cbz CH2), 61.4 (C-14), 61.3 (C-14), 60.6 (C-3), 50.2 (C-9), 48.8 (C-9), 47.0 (C-11), 38.9 (C-8), 28.4 (C-4), 28.6 (C(Me) $)_{3}$, 26.2 (C-7), 22.3, 21.6 (C-5, C-6), 14.4 (C-15), 14.3 (C-15) (24 out of 42 signals present); HRMS found MNa^{+}, 483.2478. $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}$ requires 483.2466.

tert-Butyl 3-((3-ethoxy-3-oxopropyl)amino)pyrrolidine-1-carboxylate S6

S6 was synthesised using general method B using N-Boc-2,3-dihydro-1H-pyrrole ($42.3 \mathrm{mg}, 0.25 \mathrm{mmol}$, supplier: Sigma Aldrich) and ethyl 3-aminopropionate hydrochloride ($75.0 \mathrm{mg}, 0.50 \mathrm{mmol}$). Reaction was performed in duplicate and the contents of the two vials combined before work-up. The crude product was purified by flash column chromatography eluting with EtOAc to yield amino ester S6 as a 1:1 mixture of rotamers ($89.5 \mathrm{mg}, 63 \%$) as a yellow oil, $R_{\mathrm{f}} 0.10$ (EtOAc); $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 2976$, 2932, 2873, 1733 ($\mathrm{C}=\mathrm{O}$), 1692 ($\mathrm{C}=\mathrm{O}$), 1405, 1167 and 771 ; $\delta_{\text {H }}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.14$ $\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.1 \mathrm{~Hz}, 11-\mathrm{H}_{2}\right), 3.56\left(0.5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.7,6.1,2-\mathrm{H}_{\mathrm{A}}\right), 3.52(0.5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.2,4.8$, $\left.2-H_{A}\right), 3.50-3.38\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right), 3.38-3.31\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right), 3.31-3.26(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.10$ $\left(0.5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.7,5.0,2-\mathrm{H}_{\mathrm{B}}\right), 3.02\left(0.5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.6,5.7,2-\mathrm{H}_{\mathrm{B}}\right), 2.93-2.82(2 \mathrm{H}, \mathrm{m}, 7-$ H_{2}), $2.50\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.4,8-\mathrm{H}_{2}\right), 2.04\left(1 \mathrm{H}, ~ a p p . t d, J 13.0,5.9,4-\mathrm{H}_{\mathrm{A}}\right), 1.73(1 \mathrm{H}, \mathrm{app} . \mathrm{d} 5, \mathrm{~J}$ $\left.15.2,7.3,4-\mathrm{H}_{\mathrm{B}}\right), 1.49(1 \mathrm{H}, \mathrm{br} s, \mathrm{NH}), 1.45\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{Me})_{3}\right), 1.26\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1 \mathrm{~Hz}, 12-\mathrm{H}_{3}\right)$; $\delta_{C}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 172.8$ (C=O C-9), 154.8 (C=O Boc), 79.3 (C(Me) $)_{3}$), 60.7 (C-11), 57.8 (C-3), 57.0 (C-3), 52.1 (C-2), 51.7 (C-2), 44.6 (C-5), 44.2 (C-5), 43.5 (C-7), 35.0 (C8), 32.2 (C-4), 31.5 (C-4), 28.7 ($\left.\left({ }^{(M e}\right)_{3}\right), 14.4$ (C-12) (16 out of 24 signals present); HRMS found MH^{+}, 287.1969. $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires 287.1965.
tert-Butyl 3-((3-ethoxy-3-oxopropyl)amino)pyrrolidine-1-carboxylate 9c

9c was synthesised using general method C using benzyl chloroformate ($47 \mu \mathrm{~L}$, 0.327 mmol), amino ester $\mathbf{S 6}(85.0 \mathrm{mg}, 0.297 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(149 \mathrm{mg}, 1.78$ mmol) in DCM (3 mL) for 16 h . The crude product was purified by flash column chromatography, eluting with 1:1 hexane-EtOAc to yield carbamate $\mathbf{9 c}$ as a mixture of rotamers ($112 \mathrm{mg}, 89 \%$) as a colourless oil, $R_{\mathrm{f}} 0.37$ ($1: 1$ hexane-EtOAc); $v_{\text {max }} / \mathrm{cm}^{-1}$ 2978, 2894, 1733 ($\mathrm{C}=\mathrm{O}$), 1694 ($\mathrm{C}=\mathrm{O}$), 1404, 1168, 1132 and 771 ; $\delta_{\mathrm{H}}(500 \mathrm{MHz}$, CDCl_{3}) 7.39-7.30 (5H, m, Ph), 5.15 (2H, s, Cbz CH ${ }_{2}$), 4.66-4.49 (1H, br m, 3-H), 4.11 $\left(2 \mathrm{H}, \mathrm{q}, J 7.0,11-\mathrm{H}_{2}\right), 3.64-3.41\left(4 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}, 5-\mathrm{H}_{\mathrm{A}}, 7-\mathrm{H}_{2}\right), 3.31-3.09\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}, 5-\right.$ $\left.\mathrm{H}_{\mathrm{B}}\right), 2.66-2.47\left(2 \mathrm{H}\right.$, br m, 8- H_{2}), 2.05-1.97 (2H, br m, 4- H_{2}), $1.45\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{Me})_{3}\right), 1.24$ $\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.9 \mathrm{~Hz}, 12-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 171.5$ (C=O C-9), 155.9 (C=O Cbz), 154.8 ($\mathrm{C}=\mathrm{OBoc}$), 136.5 (ipso- Ph), 128.7 (Ph), 128.3 (Ph), 128.1 (Ph), 79.7 ($\left.C(\mathrm{Me})_{3}\right), 67.6$ ($\mathrm{Cbz} \mathrm{CH}_{2}$), 60.8 (C-11), 55.9 (C-3), 55.1 (C-3), 47.5 (C-2), 44.4 (C-5), 43.9 (C-5), 40.3 (C-7), 34.9 (C-8), 29.1 (C-4), 28.6 (C(Me) $)_{3}$, 14.3 (C-12) (20 out of 36 signals present); HRMS found MH^{+}, 421.2331. $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires 421.2333.

Benzyl 2-oxo-1,5-diazabicyclo[4.2.1]nonane-5-carboxylate 6c

6c

6c was synthesised using general method D using NaOH ($11.5 \mathrm{mg}, 0.288 \mathrm{mmol}$), amino ester 9c ($110 \mathrm{mg}, 0.262 \mathrm{mmol}), 1: 1 \mathrm{MeOH}$:water (4.4 mL), $\mathrm{HCl}(2.9 \mathrm{~mL}, 6 \mathrm{~N})$, EtOAc (0.4 mL), toluene (3.5 mL) and $n-\mathrm{Bu}_{2} \mathrm{SnO}(65.7 \mathrm{mg})$. The crude product was purified by flash column chromatography, eluting with EtOAc to yield bicyclic carbamate $\mathbf{6 c}$ as a 1:1 mixture of rotamers ($22.4 \mathrm{mg}, 31 \%$) as a colourless oil, $R_{\mathrm{f}} 0.31$ (EtOAc); $v_{\text {max }} / \mathrm{cm}^{-1} 2928,1680$ (C=O), 1406, 1262, 1217, 1098, 1008, 771 and 699; δ_{H} ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.39-7.30 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 5.18-5.01 ($2 \mathrm{H}, \mathrm{s}, \mathrm{Cbz} \mathrm{CH}_{2}$), 4.73-4.50(1H, $\mathrm{m}, 6-\mathrm{H}), 4.22\left(0.5 \mathrm{H}, \mathrm{dt}, \mathrm{J} 9.0,2.88-\mathrm{H}_{\mathrm{A}}\right), 4.20\left(0.5 \mathrm{H}, \mathrm{dt}, J 9.0,2.88-\mathrm{H}_{\mathrm{A}}\right), 3.99-3.86$
$\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}, 9-\mathrm{H}_{\mathrm{A}}\right), 3.74-3.60\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right), 3.09\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 14.6,8.1,6.9,3-\mathrm{H}_{\mathrm{A}}\right)$, 2.89-2.73 ($2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}, 9-\mathrm{H}_{\mathrm{B}}$), 2.61-2.45 (1H, m, 3-HB$), 2.20-2.10\left(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right)$, 2.09-1.55 (1H, m, 7- H_{2}); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 182.1$ ($\mathrm{C}=\mathrm{O} \mathrm{C}-2$), 182.0 ($\mathrm{C}=\mathrm{O} \mathrm{C}-2$), 156.4 ($\mathrm{C}=\mathrm{O} \mathrm{Cbz}$), 156.2 ($\mathrm{C}=\mathrm{O} \mathrm{Cbz}$), 136.3 (ipso-Ph), 128.7 (Ph), 128.4 (Ph), 128.2 (Ph), 67.8 ($\mathrm{CH}_{2} \mathrm{Cbz}$), 54.3 (C-6), 54.0 (C-6), 53.5 (C-9), 49.5 (C-8), 40.1 (C-4), 36.6 (C3), 33.0 (C-7), 32.1 (C-7) (17 out of 26 signals present); HRMS found $\mathrm{MH}^{+}, 275.1389$. $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires 275.1390.
tert-Butyl 3-((N-(3-ethoxy-3-oxopropyl)-4-methylphenyl)sulfonamido)pyrrolidine-1-carboxylate 9d

Tosyl chloride ($195 \mathrm{mg}, 0.341 \mathrm{mmol}$), DIPEA ($169 \mu \mathrm{~L}, 0.341 \mathrm{mmol}$) and DMAP (4.1 $\mathrm{mg}, 5 \mathrm{~mol} \%$) were added in sequence to a mixture of amino ester $\mathbf{S 6}$ ($195 \mathrm{mg}, 0.681$ mmol) in DCM (7 mL). The mixture was stirred for 16 h at room temperature, and the solvent evaporated under reduced pressure to give a crude product. The crude product was purified by flash column chromatography, eluting with 1:1 hexane-EtOAc to yield carbamate 9 d as a 1:1 mixture of rotamers ($287 \mathrm{mg}, 96 \%$) as a yellow oil, $R_{f} 0.31$ ($6: 4$ hexane-EtOAc); $v_{\max } / \mathrm{cm}^{-1} 2978,2933,2884,1731$ (C=O), 1694 ($\mathrm{C}=0$), 1402, 1344, 1157, 1108, 663 and 548 ; $\delta_{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.75-7.66$ (2H, m, Ar), 7.35-7.27 (2H, m, Ar), 4.52-4.42 (0.5H, br m, 3-H), 4.42-4.32 (0.5H, br $\mathrm{m}, 3-\mathrm{H}), 4.14\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.1,11-\mathrm{H}_{2}\right), 3.52-3.26\left(4 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}, 5-\mathrm{H}_{\mathrm{A}}, 7-\mathrm{H}_{2}\right), 3.21-3.11$ $\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right), 2.96-2.85\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}\right), 2.85-2.67\left(2 \mathrm{H}, \mathrm{br} \mathrm{m}, 8-\mathrm{H}_{2}\right), 2.44(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, 2.05-1.95 (0.5H, br m, 4- H_{2}), 1.91-1.80 (1H, br m, 4- H_{2}), 1.80-1.71 ($0.5 \mathrm{H}, \mathrm{br}$ m, 4$\left.\mathrm{H}_{2}\right), 1.42\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{Me})_{3}\right), 1.26\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1,12-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 171.4(\mathrm{C}=\mathrm{O} \mathrm{C}-$ 9), 144.0 (ipso-Ar), 135.7 (ipso-Ar), 135.6 (ipso-Ar), 130.1 (Ar), 127.8 (Ar), 79.9 ($C(\mathrm{Me})_{3}$), 60.9 (C-11), 56.7 (C-3), 56.1 (C-3), 47.6 (C-2), 46.4 (C-2), 43.9 (C-5), 43.5 (C-
5), 39.84 (C-7), 39.75 (C-7), 36.72 (C-8), 36.65 (C-8), 29.4 (C-4), 27.9 (C-4), 28.5 (C(Me) $)_{3}$, 21.7 (Me), 14.3 (C-12) (23 out of 34 signals present); HRMS found MNa^{+}, 463.1877. $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{SNa}$ requires 463.1873 .

5-Tosyl-1,5-diazabicyclo[4.2.1]nonan-2-one 6d

6d

6d was synthesised using general method D using NaOH ($27.9 \mathrm{mg}, 0.700 \mathrm{mmol}$), amino ester 9d ($280 \mathrm{mg}, 0.636 \mathrm{mmol}$), 1:1 MeOH:water (10 mL), $\mathrm{HCl}(7 \mathrm{~mL}, 6 \mathrm{~N}$), EtOAc (1 mL), toluene (8 mL) and $n-\mathrm{Bu}_{2} \mathrm{SnO}(159 \mathrm{mg}$). The crude product was purified by flash column chromatography, eluting with EtOAc to yield bicyclic sulfonamide 6d ($39.4 \mathrm{mg}, 21 \%$) as a colourless oil, $R_{\mathrm{f}} 0.38$ (EtOAc); $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 3061$, 2925, 1682, 1639 (C=O), 1598, 1442, 1338, 1158, 1091, 662 and 549; $\delta_{H}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.62(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3, \mathrm{Ar}), 7.31(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0, \mathrm{Ar}), 4.69-4.60(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 4.05(1 \mathrm{H}$, ddt, J 11.7, 9.0, 2.5, 8-H H_{A}, 2.92 (1H, app. dt, J 13.8, 4.6, 4- H_{B}), 3.76 (1H, d, J 14.2, 9$\left.H_{A}\right), 3.15\left(1 \mathrm{H}\right.$, ddd, J 13.9, 11.1, 3.9, $3-\mathrm{H}_{\mathrm{A}}$), 2.88 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 13.9,11.1,2.9,4-\mathrm{H}_{\mathrm{B}}$), 2.81-2.71 (2H, m, 8- $\mathrm{H}_{\mathrm{B}}, 9-\mathrm{H}_{\mathrm{B}}$), 2.46-2.42 (1H, m, 3- H_{B}), $2.42(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.91(1 \mathrm{H}$,
 MHz, CDCl_{3}) 183.1 (C=O C-2), 144.1 (ipso-Ar), 135.7 (ipso-Ar), 130.1 (Ar), 127.3 (Ar), 54.8 (C-9), 54.5 (C-6), 51.1 (C-8), 41.7 (C-4), 37.7 (C-3), 29.5 (C-7) 21.7 (Me); HRMS found MNa^{+}, 317.0939. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}$ requires 317.0930.

tert-Butyl carboxylate cis-S7

Cis-S7 was synthesised using general method B using enecarbamate 5b (55.8 mg , 0.25 mmol) and ethyl 3 -aminopropionate hydrochloride ($75.0 \mathrm{mg}, 0.50 \mathrm{mmol}$). The crude product was purified by flash column chromatography eluting with EtOAc to yield amino ester cis-S7 as a 1:1 mixture of rotamers ($37.9 \mathrm{mg}, 45 \%$) as a yellow oil, $R_{\mathrm{f}} 0.20$ (1:1 hexane-EtOAc); $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ 2976, 2931, 2858, 1733 ($\mathrm{C}=\mathrm{O}$), 1694 (C=O), $1042,1366,1174,1155,1101,844$ and $769 ; \delta_{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.13(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.1$ $\left.\mathrm{Hz}, 15-\mathrm{H}_{2}\right), 4.12\left(1 \mathrm{H}, \mathrm{q}, J 7.1 \mathrm{~Hz}, 15-\mathrm{H}_{2}\right), 3.50-3.41\left(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{\mathrm{A}}\right), 3.32(0.5 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $\left.10.8,2-H_{A}\right), 3.26-3.20\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}, 9-\mathrm{H}_{\mathrm{B}}\right), 3.19-3.08\left(1.5 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}, 9-\mathrm{H}_{\mathrm{B}}\right), 2.86(1 \mathrm{H}$, $\left.\mathrm{dt}, J 11.4,5.3,11-\mathrm{H}_{\mathrm{A}}\right), 2.69\left(1 \mathrm{H}, \mathrm{dt}, J 11.4,5.3,11-\mathrm{H}_{\mathrm{B}}\right), 2.45(2 \mathrm{H}$, app. td, J 6.3, 4.1, $12-\mathrm{H}_{2}$), 1.98 (1 H , app. dd, J 12.7, 6.3, 8-H), 1.67-1.56 ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}, 7-\mathrm{H}_{\mathrm{A}}$), 1.56-1.47 (3H, m, NH, 5-H/6-H), 1.46-1.42 (9H, m, 5-H/6-H, C(Me) $)_{3}$, 1.40-1.30 (3H, m, 5-H/6$\left.\mathrm{H}, 7-\mathrm{H}_{\mathrm{B}}\right), 1.25\left(1.5 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1 \mathrm{~Hz}, 16-\mathrm{H}_{3}\right), 1.25\left(1.5 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1 \mathrm{~Hz}, 16-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}$, CDCl_{3}) 172.99 ($\mathrm{C}=\mathrm{O} \mathrm{C}-13$), 172.95 ($\mathrm{C}=\mathrm{O} \mathrm{C}-13$), 155.39 ($\mathrm{C}=\mathrm{O}$ Boc), 155.38 ($\mathrm{C}=\mathrm{OBoc)}$, 79.22 ($C(\mathrm{Me})_{3}$), $79.19\left(C(\mathrm{Me})_{3}\right), 60.6$ (C-15), 60.5 (C-15), 60.4 (C-3), 59.8 (C-3), 55.1 (C-2), 54.2 (C-2), 49.4 (C-9), 48.7 (C-9), 42.1 (C-8), 41.1 (C-8), 38.1 (C-11), 38.0 (C11), 35.83 (C-12), 35.82 (C-12), 29.5 (C-4), 29.4 (C-4), 28.7 (C(Me) $)_{3}$, 25.2 (C-7), 24.9 (C-7), 22.3, 22.1, 22.0, 21.9 (C-5, C-6), 14.4 (C-16) (30 out of 32 signals present); HRMS found $\mathrm{MH}^{+}, 341.2437 . \mathrm{C}_{18} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires 341.2435 . The stereochemistry was assigned through positive NOESY interaction between $8-\mathrm{H}$ and $11-\mathrm{H}_{2}$.

tert-Butyl 3a-(((benzyloxy)carbonyl)(3-ethoxy-3-oxopropyl)amino)octahydro-2H-isoindole-2-carboxylate cis-9e

Cis-9e was synthesised using general method C using benzyl chloroformate ($16 \mu \mathrm{~L}$, 0.109 mmol), amino ester cis-S7 ($33.6 \mathrm{mg}, 99.0 \mu \mathrm{~mol}$) and $\mathrm{NaHCO}_{3}(50.0 \mathrm{mg}, 0.594$ mmol) in DCM (1 mL) for 72 h . The crude product was purified by flash column chromatography, eluting with 8:2 hexane-EtOAc to yield carbamate cis-9e as a 60:40 mixture of rotamers ($43.0 \mathrm{mg}, 92 \%$) as a pale yellow oil, $R_{\mathrm{f}} 0.56$ (1:1 hexaneEtOAc); $v_{\text {max }} / \mathrm{cm}^{-1}$ 2975, 2930, 1733, 1691 (C=O), 1397, 1365, 1165, 1126, 1097, 774 and 698; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.38-7.28$ (5H, m, Ph), 5.18-5.07 (2H, Cbz CH ${ }_{2}$), 4.10 $\left(1.2 \mathrm{H}, \mathrm{q}, J 7.1 \mathrm{~Hz}, 15-\mathrm{H}_{2}\right), 4.08\left(0.8 \mathrm{H}, \mathrm{q}, J 7.1 \mathrm{~Hz}, 15-\mathrm{H}_{2}\right), 3.84-3.75\left(1 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}_{\mathrm{A}}\right)$, $3.73\left(0.4 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.5,2-\mathrm{H}_{\mathrm{A}}\right), 3.72\left(0.6 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.5,2-\mathrm{H}_{\mathrm{A}}\right), 3.59-3.46\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}, 11-\right.$ $\left.\mathrm{H}_{\mathrm{B}}\right), 3.43\left(0.6 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.8,7.2,9-\mathrm{H}_{\mathrm{A}}\right), 3.39\left(0.4 \mathrm{H}, \mathrm{dd}, J 10.7,6.7,9-\mathrm{H}_{\mathrm{A}}\right), 3.21(0.6 \mathrm{H}$, dd, J 10.8, 5.3, 9-H H_{B}, $3.11\left(0.4 \mathrm{H}, \mathrm{dd}, J 10.7,4.1,9-\mathrm{H}_{\mathrm{B}}\right), 3.00-2.92(0.4 \mathrm{H}, \mathrm{m}, 8-\mathrm{H})$, 2.89-2.80 ($0.6 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}$), 2.64-2.46 (2H, m, 12- H_{2}), 2.35-2.25 (1H, m, 4-H H_{A}, 1.79$1.69\left(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{A}}\right), 1.64-1.49\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}, 5-\mathrm{H} / 6-\mathrm{H}\right), 1.48-1.43(12 \mathrm{H}, \mathrm{m}, 5-\mathrm{H} / 6-\mathrm{H}, 7-$ $\left.\mathrm{H}_{\mathrm{B}} \mathrm{C}(\mathrm{Me})_{3}\right), 1.23\left(1.8 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1 \mathrm{~Hz}, 16-\mathrm{H}_{3}\right), 1.22\left(1.2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1 \mathrm{~Hz}, 16-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}}(125$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 171.4 ($\mathrm{C}=\mathrm{O} \mathrm{C}-13$), 155.61 ($\mathrm{C}=\mathrm{O} \mathrm{Cbz}$), 155.56 ($\mathrm{C}=\mathrm{O} \mathrm{Cbz)}$,154.9 ($\mathrm{C}=\mathrm{O}$ Boc), 154.8 (C=O Boc), 128.66 (Ph), 128.65 (Ph), 128.14 (Ph), 128.10 (Ph), 127.91 (Ph), $127.86(\mathrm{Ph}), 79.7\left(\mathrm{C}(\mathrm{Me})_{3}\right)$, $79.6\left(\mathrm{C}(\mathrm{Me})_{3}\right), 67.14\left(\mathrm{Cbz} \mathrm{CH}_{2}\right), 67.08\left(\mathrm{Cbz} \mathrm{CH}_{2}\right)$, 65.9 (C-3), 65.7 (C-3), 60.70 (C-15), 60.66 (C-15), 54.0 (C-2), 52.4 (C-2), 50.4 (C-9), 49.5 (C-9), 40.8 (C-11), 40.7 (C-11), 39.8 (C-8), 38.9 (C-8), 35.7 (C-12), 35.5 (C-12), 29.19 (C-4), 29.16 (C-4), 28.6 (C(Me) 3), 28.1 (C-7), 27.4 (C-7), 22.9, 22.72, 22.65, 22.3 (C-5, C-6), 14.29 (C-16), 14.25 (C-16) (40 out of 44 signals present); HRMS found MNa^{+}, 497.2631. $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}$ requires 497.2622.

$6 e$

6e was synthesised using general method D using NaOH ($3.7 \mathrm{mg}, 92.7 \mu \mathrm{~mol}$), amino ester 9e ($40.0 \mathrm{mg}, 84.3 \mu \mathrm{~mol}$), 1:1 MeOH:water (2 mL), $\mathrm{HCl}(1 \mathrm{~mL}, 6 \mathrm{~N}$), EtOAc (0.2 $\mathrm{mL})$, toluene (1.5 mL) and $n-\mathrm{Bu}_{2} \mathrm{SnO}(21.1 \mathrm{mg})$. The crude product was purified by flash column chromatography, eluting with 1:1 EtOAc-hexane to yield bicyclic carbamate 6 e as a $75: 25$ mixture of rotamers ($6.8 \mathrm{mg}, 25 \%$) as a pale yellow oil, R_{f} 0.38 (EtOAc); $v_{\max } / \mathrm{cm}^{-1} 2925,2858,1680$ (C=O), 1400, 1359, 1248, 1101, 1047, 1023, 797 and 697; $\delta_{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.40-7.28$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 5.14 ($1.5 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.6$, Cbz CH2 $)$, $4.98\left(0.5 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.2, \mathrm{Cbz} \mathrm{CH} 2\right.$), $4.64-4.40\left(0.25 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}\right), 4.39-4.23$ $\left(1.75 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}, 11-\mathrm{H}_{\mathrm{A}}\right), 3.68\left(1 \mathrm{H}\right.$, app. d, J 13.9, $\left.6-\mathrm{H}_{\mathrm{A}}\right), 3.44-3.28\left(1.75 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}\right.$, $6 \mathrm{a}-\mathrm{H}$), $3.23\left(1 \mathrm{H}, \mathrm{app} . \mathrm{d}, \mathrm{J} 13.8,6-\mathrm{H}_{\mathrm{B}}\right), 3.13-3.02(0.25 \mathrm{H}, \mathrm{m}, 6 \mathrm{a}-\mathrm{H}), 2.94$ (1H, ddd, J $\left.14.8,10.2,2.8,3-H_{A}\right), 2.77-2.66\left(1 H, m, 3-H_{B}\right), 2.61\left(1 H, d, J 12.2,11-H_{B}\right), 2.25-2.11$ $\left(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{\mathrm{A}}\right), 2.05-1.90\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{A}}, 10-\mathrm{H}_{\mathrm{B}}\right), 1.81-1.70\left(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H} / 9-\mathrm{H}_{\mathrm{A}}\right), 1.65-$ $1.57\left(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H} / 9-\mathrm{H}_{\mathrm{A}}\right), 1.49-1.40\left(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H} / 9-\mathrm{H}_{\mathrm{A}}\right), 1.21-1.09\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{B}}, 9-\mathrm{H}_{\mathrm{B}}\right) ;$ $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 179.9(\mathrm{C}=\mathrm{O} \mathrm{C}-4)$, 155.6 ($\mathrm{C}=\mathrm{O} \mathrm{Cbz}$), 155.0 ($\mathrm{C}=\mathrm{O} \mathrm{Cbz)}$,128.8 (Ph), 128.7 (Ph), 128.6 (Ph), 128.5 (Ph), 128.1 (Ph), 127.8 (Ph), $67.0\left(\mathrm{Cbz} \mathrm{CH}_{2}\right), 66.7(\mathrm{C}-$ 10a), 56.1 (C-11), 52.5 (C-6), 39.7 (C-6a), 38.5 (C-2), 35.1 (C-3), 33.4 (C-7), 25.7 (C10), 23.6 (C-8, C-9) (19 out of 32 signals present); HRMS found $\mathrm{MNa}^{+}, 351.1681$. $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}$ requires 351.1679 .
tert-Butyl 3-((2-ethoxy-2-oxoethyl)amino)piperidine-1-carboxylate S8

S8

Compound $\mathbf{5 8}$ was synthesised using general method B using enecarbamate 5c ($45.8 \mathrm{mg}, 0.25 \mathrm{mmol}$) and glycine ethyl ester hydrochloride ($70.0 \mathrm{mg}, 0.50 \mathrm{mmol}$). The crude product was purified by flash column chromatography eluting with 1:1 hexane-EtOAc to yield amino ester $\mathbf{S 8}$ as a 1:1 mixture of rotamers ($59.0 \mathrm{mg}, 82 \%$) as a yellow oil, $R_{\mathrm{f}} 0.31$ (EtOAc); $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 2967$, 2932, 2859, 1738 ($\mathrm{C}=\mathrm{O}$), 1688 ($\mathrm{C}=\mathrm{O}$), $1420,1365,1238,1153,1026,844$ and 768 ; $\delta_{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.16(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.1$ $\left.\mathrm{Hz}, 11-\mathrm{H}_{2}\right), 4.07-3.78\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}\right), 3.74\left(1 \mathrm{H}, \mathrm{app} . \mathrm{dt}, \mathrm{J} 13.1,4.2,6-\mathrm{H}_{\mathrm{A}}\right), 3.43(1 \mathrm{H}, \mathrm{d}$, $\left.J 17.3,8-H_{A}\right), 3.39\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.3,8-\mathrm{H}_{\mathrm{B}}\right), 2.91-2.79\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{B}\right), 2.78-2.56(1 \mathrm{H}, \mathrm{m}, 2-$ $\left.H_{B}\right), 2.56-2.46(1 H, m, 3-H), 1.92-1.84\left(1 H, m, 4-H_{A}\right), 1.73(1 H, b r s, N H), 1.70-1.62$ $\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right), 1.46-1.37\left(10 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}, \mathrm{C}(\mathrm{Me})_{3}\right), 1.33-1.27\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}\right), 1.25(3 \mathrm{H}, \mathrm{t}$, $\left.J 7.1 \mathrm{~Hz}, 12-\mathrm{H}_{3}\right) ; \delta_{C}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 172.6$ ($\mathrm{C}=\mathrm{O} \mathrm{C}-9$), 154.9 ($\mathrm{C}=\mathrm{O} \mathrm{Boc}$), 79.6 (C(Me) $)_{3}$, 61.0 (C-11), 53.6 (C-3), 49.4 (C-2), 48.7 (C-2), 48.5 (C-8), 44.7 (C-6), 43.9 (C6), 31.4 (C-4), 28.5 (C(Me) $)_{3}$, 23.8 (C-5), 23.4 (C-5), 14.3 (C-12) (15 out of 24 signals present); HRMS found MH^{+}, 287.1965. $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires 287.1965. Spectroscopic data are consistent with those reported in the literature. ${ }^{6}$

tert-Butyl
 3-(((benzyloxy)carbonyl)(2-ethoxy-2-oxoethyl)amino)piperidine-1carboxylate 9f

$9 f$

9f was synthesised using general method C using benzyl chloroformate ($55.0 \mu \mathrm{~L}$, $0.385 \mathrm{mmol})$, amino ester $\mathbf{S 8}(100 \mathrm{mg}, 0.35 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(175 \mathrm{mg}, 2.1 \mathrm{mmol})$ in DCM (3 mL) for 16 h . The crude product was purified by flash column chromatography, eluting with 1:1 hexane-EtOAc to yield carbamate 9f as a 60:40 mixture of rotamers ($120 \mathrm{mg}, 82 \%$) as a pale yellow oil, $R_{\mathrm{f}} 0.55$ ($1: 1$ hexane-EtOAc); $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 2976,2936,2860,1752,1687$ ($\mathrm{C}=0$) , 1409, 1364, 1238, 1177, 1149, 1113, 1028, 992, 771 and 698; $\delta_{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 7.40-7.27 (5H, m, Ph), $5.20(0.8 \mathrm{H}, \mathrm{s}$, Cbz CH 2), $5.12\left(1.2 \mathrm{H}, \mathrm{s}, \mathrm{Cbz} \mathrm{CH}_{2}\right), 4.23-3.84\left(7 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{A}}, 3-\mathrm{H}, 8-\mathrm{H}_{2}, 11-\mathrm{H}_{2}\right)$, $2.72\left(0.6 \mathrm{H}\right.$, app. t, J 11.8, 6-H $\left.\mathrm{H}_{\mathrm{B}}\right), 2.65\left(0.4 \mathrm{H}\right.$, app. t, J $\left.11.8,6-\mathrm{H}_{\mathrm{B}}\right), 2.60-2.45(1 \mathrm{H}, \mathrm{m}, 2-$ $\left.H_{B}\right), 2.02-1.89\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{A}\right), 1.77-1.69\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right), 1.59-1.47\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}, 5-\mathrm{H}_{\mathrm{B}}\right)$, $1.45\left(5.4 \mathrm{H}, \mathrm{m}, \mathrm{C}(\mathrm{Me})_{3}\right), 1.40\left(3.6 \mathrm{H}, \mathrm{m}, \mathrm{C}(\mathrm{Me})_{3}\right), 1.28\left(1.8 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1,12-\mathrm{H}_{3}\right), 1.17$ (1.2H, t, J $7.1 \mathrm{~Hz}, 12-\mathrm{H}_{3}$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 170.1$ (C=O C-9), 156.3 (C=O Cbz), 155.5 ($\mathrm{C}=\mathrm{O} \mathrm{Cbz}$), 154.9 ($\mathrm{C}=\mathrm{O} \mathrm{Boc}$), 154.8 ($\mathrm{C}=\mathrm{O}$ Boc), 136.5 (ipso- Ph), 128.7 (Ph), 128.6 (Ph), 128.2 (Ph), $128.0(\mathrm{Ph}), 127.9(\mathrm{Ph}), 79.9\left(\mathrm{C}(\mathrm{Me})_{3}\right), 67.9\left(\mathrm{CH}_{2} \mathrm{Cbz}\right), 67.5$ ($\mathrm{CH}_{2} \mathrm{Cbz}$), 61.4 (C-11), 53.3 (C-3), 47.3 (C-6), 45.7 (C-8), 43.4 (C-2), 29.1 (C-4), 28.5 (C(Me) $)_{3}$, 24.8 (C-5), 14.3 (C-12), 14.2 (C-12) (24 out of 36 signals present); HRMS found MNa^{+}, 443.2157. $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}$ requires 443.2153. Spectroscopic data are consistent with those reported in the literature. ${ }^{13}$

Benzyl 2-oxo-1,4-diazabicyclo[3.3.1]nonane-4-carboxylate 6f

6f was synthesised using general method D using NaOH ($11.5 \mathrm{mg}, 0.288 \mathrm{mmol}$), amino ester $9 \mathrm{f}(110 \mathrm{mg}, 0.262 \mathrm{mmol}), 1: 1 \mathrm{MeOH}:$ water (4.4 mL), $\mathrm{HCl}(2.9 \mathrm{~mL}, 6 \mathrm{~N})$, EtOAc (0.4 mL), toluene (3.5 mL) and $n-\mathrm{Bu}_{2} \mathrm{SnO}(65.7 \mathrm{mg})$. The crude product was purified by flash column chromatography, eluting with 1:1 hexane-EtOAc to yield
bicyclic carbamate $\mathbf{6 f}$ as a $55: 45$ mixture of rotamers ($41.7 \mathrm{mg}, 58 \%$) as a colourless oil, $R_{\mathrm{f}} 0.35$ (EtOAc); $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ 2927, 2859, 1686 (C=O), 1407, 1156, 1090, 1008, 765 and 698; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.39-7.29(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.22-5.06\left(2 \mathrm{H}, \mathrm{s}, \mathrm{Cbz} \mathrm{CH}_{2}\right), 4.50$ $\left(0.45 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.5,3-\mathrm{H}_{\mathrm{A}}\right), 4.41\left(0.55 \mathrm{H}, \mathrm{d}, J 15.3,3-\mathrm{H}_{\mathrm{A}}\right), 4.15-4.04\left(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{\mathrm{A}}, 5-\mathrm{H}\right)$, $3.55(1 \mathrm{H}$, app. d, J 14.3, 9-H A$), 3.82\left(0.55 \mathrm{H}, \mathrm{d}, J 15.3,3-\mathrm{H}_{\mathrm{B}}\right), 3.77(0.45 \mathrm{H}, \mathrm{d}, J 15.3,3-$ $\left.\mathrm{H}_{\mathrm{B}}\right), 3.21\left(1 \mathrm{H}\right.$, app. t, J 15.0, $\left.9-\mathrm{H}_{\mathrm{B}}\right), 2.94\left(1 \mathrm{H}\right.$, app. qd, J 13.1, 3.2, 8-H H_{B}, 2.27-2.19 $\left(0.55 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{B}}\right), 2.13-2.04\left(0.45 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{A}}\right), 1.89-1.76\left(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{A}}\right), 1.72-1.66$ ($1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{B}}$), 1.45-1.35 ($1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{B}}$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 180.2(\mathrm{C}=\mathrm{O} \mathrm{C}-2), 155.4$ ($\mathrm{C}=\mathrm{O} \mathrm{Cbz}$), 154.9 (C=O Cbz), 136.4 (ipso-Ph), 136.3 (ipso-Ph), 128.70 (Ph), 128.69 (Ph), 128.4 (Ph), 128.3 (Ph), 128.2 (Ph), 128.1 (Ph), $67.63\left(\mathrm{CH}_{2} \mathrm{Cbz}\right), 67.56\left(\mathrm{CH}_{2} \mathrm{Cbz}\right)$, 52.1 (C-8), 51.9 (C-8), 51.2 (C-9), 51.1 (C-9), 50.2 (C-5), 49.7 (C-5), 48.8 (C-3), 48.7 (C3), 28.8 (C-6), 27.7 (C-6), 21.1 (C-7), 21.0 (C-7) (21 out of 26 signals present); HRMS found MNa^{+}, 297.1209. $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}$ requires 297.1210.

tert-Butyl 3-((2-ethoxy-2-oxoethyl))(prop-2-yn-1-yloxy)carbonyl)amino)piperidine-1-carboxylate 9g

9g

9g was synthesised using general method C using propargyl chloroformate ($40 \mu \mathrm{~L}$, $0.322 \mathrm{mmol})$, amino ester $\mathbf{S 8}(83.9 \mathrm{mg}, 0.293 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(145 \mathrm{mg}, 1.76$ mmol) in DCM (3 mL) for 16 h . The crude product was purified by flash column chromatography, eluting with 1:1 hexane-EtOAc to yield carbamate $\mathbf{9 g}$ as a 55:45 mixture of rotamers ($96.9 \mathrm{mg}, 91 \%$) as a colourless oil, $R_{\mathrm{f}} 0.30$ (1:1 hexane-EtOAc); $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 3250$ (C=C-H), 2978, 2941, 2864, 1750 ($\mathrm{C}=\mathrm{O}$), 1684 (C=O), 1409, 1366, $1299,1264,1238,1176,1147,1108,1026$, 991 and $769 ; \delta_{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.81-$
$4.65\left(2 \mathrm{H}, \mathrm{m}, \mathrm{POC} 3-\mathrm{H}_{2}\right), 4.21\left(0.9 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.1,11-\mathrm{H}_{2}\right), 4.19\left(1.1 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.1,11-\mathrm{H}_{2}\right), 4.16-$ $3.79\left(5 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}, 3-\mathrm{H}, 6-\mathrm{H}_{\mathrm{A}}, 8-\mathrm{H}_{2}\right), 2.72\left(0.55 \mathrm{H}\right.$, app. t, J 11.9, 6-H $\left.\mathrm{H}_{\mathrm{B}}\right), 2.66(0.45 \mathrm{H}$, app. $\left.\mathrm{t}, \mathrm{J} 11.9,6-\mathrm{H}_{\mathrm{B}}\right), 2.61-2.49\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}\right), 2.47(0.45 \mathrm{H}, \mathrm{t}, \mathrm{J} 2.2$, POC $5-\mathrm{H}), 2.43$ $(0.55 \mathrm{H}, \mathrm{t}, \mathrm{J} 2.1$, POC $5-\mathrm{H}), 2.01-1.90\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{A}\right), 1.76-1.67\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right), 1.59-$ $1.50\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}, 5-\mathrm{H}_{\mathrm{B}}\right), 1.46\left(4.05 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{Me})_{3}\right), 1.45\left(4.95 \mathrm{H}, \mathrm{m}, \mathrm{C}(\mathrm{Me})_{3}\right), 1.27(3 \mathrm{H}$, $\left.\mathrm{t}, \mathrm{J} 7.3,12-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.9$ (C=O C-9), 155.5, 154.9, 154.8, 154.7 (C=O POC/Boc), $80.0\left(C(\mathrm{Me})_{3}\right)$, 78.2 (POC C-4), 75.0 (POC C-5), 74.7 (POC C-5), 61.51 (C11), 61.47 (C-11), 53.6 (C-3), 53.4 (POC C-3), 53.3 (POC C-3), 45.8 (br, C-6/C-8), 43.4 (br, C-2), 29.0 (C-4), 28.5 (C(Me) $)_{3}$), 28.4 (C-4), 24.8 (C-5), 14.31 (C-12), 14.28 (C-12) (22 out of 32 signals present); HRMS found MH^{+}, 369.2019. $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires 369.2020 .

Prop-2-yn-1-yl 2-oxo-1,4-diazabicyclo[3.3.1]nonane-4-carboxylate 6g

6 g

6 g was synthesised using general method D using $\mathrm{NaOH}(7.0 \mathrm{mg}, 0.175 \mathrm{mmol})$, amino ester 9 g ($58.5 \mathrm{mg}, 0.159 \mathrm{mmol}), 1: 1 \mathrm{MeOH}:$ water (2.4 mL), $\mathrm{HCl}(1.5 \mathrm{~mL}, 6 \mathrm{~N})$, EtOAc (0.2 mL), toluene (2 mL) and $n-\mathrm{Bu}_{2} \mathrm{SnO}(39.5 \mathrm{mg})$. The crude product was purified by flash column chromatography, eluting with 1:1 hexane-EtOAc to yield bicyclic carbamate 6 g as a $55: 45$ mixture of rotamers ($18.7 \mathrm{mg}, 53 \%$) as a colourless oil, $R_{\mathrm{f}} 0.49$ (EtOAc); $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 3247,2953$, 2867, 1691 (C=O), 1409, 1382, 1159, 1093, 1009 and 764 ; $\delta_{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.78-4.72$ (1.45H, m, POC $3-\mathrm{H}_{2}$), 4.68 ($0.55, \mathrm{dd}, \mathrm{J} 15.6,2.4$, POC $3-\mathrm{H}_{2}$), $4.48\left(0.45 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.5,3-\mathrm{H}_{A}\right), 4.39(0.55 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.3$, $\left.3-H_{A}\right), 4.14-4.04\left(2 H, m, 8-H_{A}, 5-H\right), 3.84\left(0.55 H, d, J 15.3,3-H_{B}\right), 3.77(0.45 H, d, J$ $\left.15.3,3-H_{B}\right), 3.56\left(1 \mathrm{H}\right.$, app. d, J 14.3, 9-H H_{A}, $3.23\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.3,4.4,9-\mathrm{H}_{\mathrm{B}}\right), 3.00-2.89$
$\left(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{\mathrm{B}}\right), 2.48(0.55 \mathrm{H}, \mathrm{t}, \mathrm{J} 2.4$, POC $5-\mathrm{H}), 2.46(0.45 \mathrm{H}, \mathrm{t}, \mathrm{J} 2.4$, POC $5-\mathrm{H}), 2.22$ (0.55 H , app. d, J 14.0, 6-H H_{A}), $2.13\left(0.45 \mathrm{H}\right.$, app. d, J 14.0, 6-H H_{B}, 1.88-1.76 (1H, m, 7$\left.\mathrm{H}_{\mathrm{A}}\right), 1.75-1.66\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{B}}\right), 1.41\left(1 \mathrm{H}\right.$, app. d, J 14.1, $\left.7-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 179.9 (C=O C-2), 154.6 (C=O POC), 154.0 (C=O POC), 78.2 (POC C-4), 78.2 (POC C-4), 75.0 (POC C-5), 74.9 (POC C-5), 53.31 (POC C-3), 53.27 (POC C-3), 52.0 (C-8), 51.9 (C8), 51.2 (C-9), 51.1 (C-9), 50.4 (C-5), 49.7 (C-5), 48.74 (C-3), 48.72 (C-3), 28.7 (C-6), 27.5 (C-6), 21.1 (C-7), 21.0 (C-7) (21 out of 22 signals present); HRMS found MNa^{+}, 245.0897. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}$ requires 245.0897.

tert-Butyl 3-(((S)-1-methoxy-1-oxo-3-phenylpropan-2-yl)amino)piperidine-1carboxylate (S)-S9

(S)-S9
(S)-S9 was synthesised using general method B using enecarbamate $\mathbf{5 c}(45.8 \mathrm{mg}$, 0.25 mmol) and L-phenylalanine methyl ester hydrochloride ($70.0 \mathrm{mg}, 0.50 \mathrm{mmol}$). Reaction was performed in duplicate and the contents of the two vials combined before work-up. The crude product was purified by flash column chromatography eluting with 2:1 hexane-EtOAc to yield amino ester (S)-S9 as an unresolved mixture of rotamers and diastereomers ($139 \mathrm{mg}, 51 \%$) as a yellow oil, $R_{\mathrm{f}} 0.64$ (EtOAc); $v_{\max } / \mathrm{cm}^{-1} 2975,2931,2857,1736$ (C=O), 1688 (C=O), 1422, 1365, 1261, 1239, 1172, 1151, 766 and 700 ; $\delta_{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.30-7.26(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.24-7.20(1 \mathrm{H}, \mathrm{m}$, Ph), 7.18-7.14 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 3.94-3.68 (2H, m, 2-H $\left.\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{A}}\right), 3.69-3.58(4 \mathrm{H}, \mathrm{m}, \mathrm{OMe}$, $8-\mathrm{H}), 2.97-2.86\left(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{2}\right), 2.80\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 13.5,12.1,6.7,6-\mathrm{H}_{\mathrm{B}}\right), 2.66$ ($0.5 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 12.6, 9.1, $2-\mathrm{H}_{\mathrm{B}}$), 2.57-2.46 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 2-\mathrm{H}_{\mathrm{B}}$), 2.45-2.36 ($0.5 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$), 1.85-1.74 $\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right), 1.68-1.60\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}\right), 1.56(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 1.44\left(9 \mathrm{H}, \mathrm{m}, \mathrm{C}(\mathrm{Me})_{3}\right)$, 1.42-1.30 (1H, m, 5-H H_{B}, 1.30-1.21 ($0.5 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}$), 1.16 ($0.5 \mathrm{H}, \mathrm{ddd}, \mathrm{J}$ 13.1, 12.1, 3.8, $4-\mathrm{H}_{\mathrm{B}}$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 172.6$ ($\mathrm{C}=\mathrm{O} \mathrm{CO}_{2} \mathrm{Me}$), 175.3 ($\mathrm{C}=\mathrm{O} \mathrm{CO}_{2} \mathrm{Me}$), $155.0(\mathrm{C}=\mathrm{O}$

Boc), 137.4 (ipso-Ph), 137.3 (ipso-Ph), 130.4 (Ph), 129.3 (Ph), 128.6 (Ph), 128.5 (Ph), 126.8 (Ph), 79.6 ($\left.C(\mathrm{Me})_{3}\right), 79.1$ (C(Me) $\left.)_{3}\right), 60.4$ (C-8), 52.7 (C-3), 51.9 (OMe), 51.8 (OMe), 49.4 (C-2), 48.6 (C-2), 44.6 (C-6), 43.8 (C-6), 40.3 (C-9), 40.1 (C-9), 32.1 (C-4), 30.7 (C-4), 28.58 (C(Me) $)_{3}$, 28.57 (C(Me) $)_{3}$, 23.8 (C-5), 23.4 (C-5) (28 out of 32 signals present); HRMS found MNa^{+}, 385.2103. $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}$ requires 385.2098 .

tert-Butyl 3-(((benzyloxy)carbonyl)((S)-1-methoxy-1-oxo-3-phenylpropan-2-yl)amino)piperidine-1-carboxylate (S)-9h

(S)-9h
(S)-9h was synthesised using general method C using benzyl chloroformate ($52 \mu \mathrm{~L}$, 0.364 mmol), amino ester (S)-S9 ($120 \mathrm{mg}, 0.331 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(167 \mathrm{mg}, 1.99$ mmol) in DCM (5 mL) for 96 h . The crude product was purified by flash column chromatography, eluting with 75:25 hexane-EtOAc to yield impure carbamate (S)9h as an unknown mixture of diastereomers and rotamers (53.3 mg, $\sim 32 \%$) as a colourless oil, $R_{\mathrm{f}} 0.67$ (1:1 hexane-EtOAc); $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ 2950, 2859, 1743 ($\mathrm{C}=\mathrm{O}$), 1688 $(\mathrm{C}=\mathrm{O}), 1420,1268,1238,1174,1149,754$ and $700 ; \delta_{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.41-7.32$ (6H, m, Ph), 7.25-7.17 (2H, m, Ph), 7.13-7.06 (2H, m, Ph), 5.34-5.03 (2H, m, Cbz CH_{2}), 4.31-3.83 (3H, m, 2- $\left.\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{A}}, 8-\mathrm{H}\right), 3.80-3.48(4 \mathrm{H}, \mathrm{m}, \mathrm{OMe}, 3-\mathrm{H}), 3.45-3.37$ (1H, m, CH 2 Ph), 3.34-3.04 (1H, m, CH 2 Ph), 2.82-2.54 ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}$), 2.47-2.24 (1H, m, 6- H_{B}), 1.66-1.52 (1H, m, 5- H_{A}), 1.59-1.34 (9H, m, C(Me) $)_{3}$, 1.35-1.22 (1H, m, 5H_{B}), 1.21-0.78 (2H, m, 4- H_{2}); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 171.6$ ($\mathrm{C}=\mathrm{O} \mathrm{CO}_{2} \mathrm{Me}$), 171.4 ($\mathrm{C}=\mathrm{O}$ $\mathrm{CO}_{2} \mathrm{Me}$), 155.6, 155.3, 154.8, 154.6 ($\mathrm{C}=\mathrm{O} \mathrm{Cbz} / \mathrm{Boc}$), 138.4 (ipso-Ph), 138.1 (ipso-Ph), 136.6 (ipso-Ph), 136.2 (ipso-Ph), 129.8 (Ph), 129.6 (Ph), 128.7 (Ph), 128.4 (Ph), 128.2 (Ph), 128.0 (Ph), 127.7 (Ph), $127.1(\mathrm{Ph}), 79.7\left(\mathrm{C}(\mathrm{Me})_{3}\right), 79.6\left(\mathrm{C}(\mathrm{Me})_{3}\right), 67.6\left(\mathrm{Cbz} \mathrm{CH}_{2}\right)$, $67.4\left(\mathrm{Cbz} \mathrm{CH}_{2}\right)$, 59.4 (C-8), 54.1 (C-3), 53.7 (C-3), 52.5 (OMe), 52.4 (OMe), 47.3 (C-2),
$43.5(\mathrm{C}-6), 37.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 35.9\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 28.9(\mathrm{C}-4), 28.53\left(\mathrm{C}(\mathrm{Me})_{3}\right), 28.50\left(\mathrm{C}(\mathrm{Me})_{3}\right)$, 25.0 (C-5) (35 out of 44 signals present); HRMS found MH^{+}, 497.2656. $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires $M H, 497.2646$.

Benzyl (3S,5S)-3-benzyl-2-oxo-1,4-diazabicyclo[3.3.1]nonane-4-carboxylate (S,S)6h

(S, S) - 6 h was synthesised using general method D using $\mathrm{NaOH}(4.4 \mathrm{mg}, 0.111 \mathrm{mmol})$, amino ester (S,S)-9h ($50.0 \mathrm{mg}, 0.101 \mathrm{mmol}$), 1:1 MeOH:water (2 mL), $\mathrm{HCl}(1.1 \mathrm{~mL}, 6$ $\mathrm{N})$, EtOAc (0.2 mL), toluene (1.3 mL) and $n-\mathrm{Bu}_{2} \mathrm{SnO}(25.3 \mathrm{mg})$. The crude product was purified by flash column chromatography, eluting with 1:1 hexane-EtOAc to yield bicyclic carbamate (S, S)-6h as a single diastereomer and as a 60:40 mixture of rotamers ($4.4 \mathrm{mg}, 12 \%$) as a colourless oil, $R_{\mathrm{f}} 0.62$ (EtOAc); $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 2956,2869$, 1684 (C=O), 1404, 1266, 1160, 1108 and 699 ; $\delta_{\text {H }}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.40-7.31$ ($5 \mathrm{H}, \mathrm{m}$, Ph), 7.31-7.26 (1H, m, Ph), 7.25-7.16 (3H, m, Ph), 7.06-7.02 (1H, m, Ph), 5.19 (0.4H, d, J 12.4, Cbz CH2), 5.16 ($0.4 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.4, \mathrm{Cbz} \mathrm{CH}_{2}$), 5.08 ($0.6 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.0, \mathrm{Cbz} \mathrm{CH}_{2}$), 4.99 (0.6H, d, J 12.0, Cbz CH2), 4.90 (0.4 H , dd, J 9.8, 5.3, 5-H), 4.77 (0.6 H , dd, J 9.2, 5.9, 5-H), 4.20 (0.6 H , app. br s, 2-H), 4.10 (0.4 H , app. br s, 2-H), 4.08-4.01 (1H, m, 8$\left.H_{A}\right), 3.71\left(0.6 \mathrm{H}\right.$, app. d, J 14.5, 9- H_{A}), $3.55\left(0.4 \mathrm{H}\right.$, app. d, J 14.5, $\left.9-\mathrm{H}_{\mathrm{A}}\right), 3.28(0.4 \mathrm{H}, \mathrm{dd}$, J 13.4, 5.3, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 3.22$ (0.6 H , dd, J 14.5, 1.5, 9- H_{B}), $3.14-3.19\left(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{\mathrm{B}}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, 3.09-3.02 (1H, m, CH 2 Ph), 3.02-2.89 ($1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{\mathrm{B}}$), $2.20\left(0.6 \mathrm{H}, \mathrm{app} . \mathrm{d}, \mathrm{J} 13.3,7-\mathrm{H}_{\mathrm{A}}\right)$, $2.03\left(0.4 \mathrm{H}\right.$, app. d, J 13.3, 6- H_{A}), 1.86-1.65 (2H, m, 6- $\left.\mathrm{H}_{B}, 7-\mathrm{H}_{A}\right), 1.47-1.35(1 \mathrm{H}, \mathrm{m}, 7-$ H_{B}); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 181.4$ ($\mathrm{C}=\mathrm{O} \mathrm{C}-2$), 179.9 ($\mathrm{C}=\mathrm{O} \mathrm{C-2)}$,136.8 (ipso-Ph), 136.7 (ipso-Ph), 129.4 (Ph), 129.2 (Ph), 128.8 (Ph), 128.48 (Ph), 128.45 (Ph), 128.3 (Ph),
128.1 (Ph), 127.1 (Ph), 67.7 ($\mathrm{CH}_{2} \mathrm{Cbz}$), 67.5 ($\left.\mathrm{CH}_{2} \mathrm{Cbz}\right)$, 62.8 (C-3), 53.6 (C-8), 53.5 (C8), 49.8 (C-9), 49.7 (C-5), 49.1 (C-5), $40.4\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 39.4\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 29.0(\mathrm{C}-6), 27.8$ (C6), 21.52 (C-7), 21.45 (C-7) (26 out of 36 signals present); HRMS found MH^{+}, 365.1871. $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires 365.1860 . Stereochemistry of $(S, S)-6 h$ assigned by a positive nOe observed between $3-\mathrm{H}$ and $7-\mathrm{H}_{\mathrm{A}}$.
tert-Butyl 3-((2-ethoxy-2-oxoethyl)amino)-3-methylpiperidine-1-carboxylate S10

S10

S10 was synthesised using general method B using enecarbamate 5d (45.8 mg, 0.25 mmol) and glycine ethyl ester hydrochloride ($70.0 \mathrm{mg}, 0.50 \mathrm{mmol}$). Reaction was performed in duplicate and the contents of the two vials combined before work-up. The crude product was purified by flash column chromatography eluting with 1:1 hexane-EtOAc to yield amino ester S10 as an undetermined mixture of rotamers ($69.3 \mathrm{mg}, 46 \%$) as a yellow oil, $R_{\mathrm{f}} 0.33$ (EtOAc); $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 2974,2933,2862,1740$ (C=O), 1692 (C=O), 1424, 1366, 1276, 1165 and 765; $\delta_{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.18(2 \mathrm{H}$, q, J $6.9 \mathrm{~Hz}, 11-\mathrm{H}_{2}$), 3.59-3.50 (1H, m, 6-HA), 3.48-3.32 (3H, m, 2-H $\left.\mathrm{H}_{\mathrm{A}}, 8-\mathrm{H}_{2}\right), 3.18-3.09$ $\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{B}}\right), 3.00\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.0,2-\mathrm{H}_{\mathrm{B}}\right), 1.68-1.58\left(3 \mathrm{H}, \mathrm{m}, \mathrm{NH}, 4-\mathrm{H}_{\mathrm{B}}, 5-\mathrm{H}_{\mathrm{B}}\right), 1.54-1.46$ $\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}, 5-\mathrm{H}_{\mathrm{B}}\right), 1.45\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{Me})_{3}\right), 1.27\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1,12-\mathrm{H}_{3}\right), 1.03(3 \mathrm{H}, \mathrm{s}, 13-$ $\mathrm{Me}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 172.6$ (C=O C-9), 155.1 ($\mathrm{C}=\mathrm{OBoc}$), 79.7 ($\left.C(\mathrm{Me})_{3}\right), 61.0$ (C11), 51.2 (C-2), 44.2 (C-8), 43.6 (C-6), 36.3 (C-4), 28.6 (C(Me) $)_{3}$, 23.0 ($\mathrm{Me}-13$), 21.6 (C-5), 14.4 (C-12) (12 out of 13 signals present); HRMS found $\mathrm{MH}^{+}, 301.2206$. $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires 301.2207.

9i

9i was synthesised using general method C using benzyl chloroformate ($34 \mu \mathrm{~L}$, $0.239 \mathrm{mmol})$, amino ester $\mathbf{S} 10(65.0 \mathrm{mg}, 0.217 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(109 \mathrm{mg}, 1.30$ $\mathrm{mmol})$ in DCM (2 mL) for 16 h . The crude product was purified by flash column chromatography, eluting with 80:20 hexane-EtOAc to yield carbamate $\mathbf{9 i}$ as an undetermined mixture of rotamers ($73.7 \mathrm{mg}, 78 \%$) as a colourless oil, $R_{\mathrm{f}} 0.54$ (1:1 hexane-EtOAc); $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 2977,2934,2868,1750$ (C=O), 1699 ($\mathrm{C}=0$), 1425, 1227, 1189, 1156, 1114, 775 and 698; $\delta_{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.38-7.26$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 5.12 (2 H, br s, Cbz CH 2), 4.25-3.99 (4 H, br m, 11- $\mathrm{H}_{2}, 8-\mathrm{H}_{2}$), 3.97-3.75 (1H, br m, 2- H_{A}), $3.66-3.44\left(1 \mathrm{H}, \mathrm{br}\right.$ m, 6-H A_{A}, 3.42-3.01 ($2 \mathrm{H}, \mathrm{br}$ m, 2- $\mathrm{H}_{\mathrm{B}}, 6-\mathrm{H}_{\mathrm{B}}$), 2.95-2.37(1H, br m, 4$\left.\mathrm{H}_{\mathrm{A}}\right), 1.73-1.50\left(3 \mathrm{H}, \mathrm{br} \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}, 5-\mathrm{H}_{2}\right), 1.44\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{Me})_{3}\right), 1.42(3 \mathrm{H}, \mathrm{br} \mathrm{s}, 13-\mathrm{Me})$, 1.23-1.13 (3H, br m, 12- H_{3}); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 171.2$ ($\mathrm{C}=\mathrm{O} \mathrm{C}-9$), 154.7 ($\mathrm{C}=\mathrm{O}$ Boc/Cbz), 136.6 (ipso-Ph), 128.7 (Ph), 128.6 (Ph), 128.1 (Ph), 127.9 (Ph), 127.8 (Ph), 127.1 (Ph), $80.1\left(\mathrm{C}(\mathrm{Me})_{3}\right), 67.2\left(\mathrm{Cbz} \mathrm{CH}_{2}\right), 61.1(\mathrm{C}-11), 57.7(\mathrm{C}-3), 52.8(\mathrm{C}-2), 46.7$ (C8), 43.4 (C-6), 34.6 (C-4), 28.5 (C(Me) $)_{3}$, 22.8 (C-5), 21.8 (Me-13), 14.2 (C-12); HRMS found $\mathrm{MH}^{+}, 435.2490 . \mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires 435.2490 .

Benzyl 5-methyl-2-oxo-1,4-diazabicyclo[3.3.1]nonane-4-carboxylate 6i

$6 \mathbf{i}$
$6 \mathbf{i}$ was synthesised using general method D using $\mathrm{NaOH}(7.1 \mathrm{mg}, 0.177 \mathrm{mmol})$, amino ester $9 \mathbf{i}(70.0 \mathrm{mg}, 0.161 \mathrm{mmol}), 1: 1 \mathrm{MeOH}$:water (2.8 mL), $\mathrm{HCl}(1.8 \mathrm{~mL}, 6 \mathrm{~N})$, EtOAc (0.2 mL), toluene (2.1 mL) and $n-\mathrm{Bu}_{2} \mathrm{SnO}(40.4 \mathrm{mg})$. The crude product was purified by flash column chromatography, eluting with 1:1 hexane-EtOAc to yield bicyclic carbamate $\mathbf{6 i}$ as a $65: 35$ mixture of rotamers ($35.9 \mathrm{mg}, 77 \%$) as a colourless oil, $R_{\mathrm{f}} 0.47$ (EtOAc); $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 2935,1684$ (C=O), 1401, 1378, 1349, 1313, 1200, 1117, 766 and 698; $\delta_{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 7.39-7.28 (5H, m, Ph), 5.20-5.17 (0.7H, m, Cbz CH 2), 5.15 ($0.65 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.4, \mathrm{Cbz}, \mathrm{CH}_{2}$), 5.05 ($0.65 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.4, \mathrm{Cbz}^{2} \mathrm{CH}_{2}$), 4.67 $\left(0.35 \mathrm{H}, \mathrm{d}, J 15.2,3-\mathrm{H}_{\mathrm{A}}\right), 4.52\left(0.65 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.2,3-\mathrm{H}_{\mathrm{A}}\right), 4.09-4.01\left(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{\mathrm{A}}\right), 3.80$ $\left(0.65 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.2,3-\mathrm{H}_{\mathrm{B}}\right), 3.75\left(0.35 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.2,3-\mathrm{H}_{\mathrm{B}}\right), 3.49-3.42\left(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{\mathrm{A}}\right), 2.95-$ $2.75\left(2.65 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{\mathrm{B}}, 9-\mathrm{H}_{\mathrm{B}}, 6-\mathrm{H}_{\mathrm{A}}\right), 2.51-2.44\left(0.35 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{A}}\right), 1.73-1.64(1 \mathrm{H}, \mathrm{m}, 7-$ $\left.\mathrm{H}_{\mathrm{A}}\right), 1.43(1.95 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.40-1.31\left(3.05 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{B}}, 7-\mathrm{H}_{\mathrm{B}}, \mathrm{Me}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 179.7 ($\mathrm{C}=\mathrm{O} \mathrm{C}-2$), 156.1 ($\mathrm{C}=\mathrm{O} \mathrm{Cbz}$), 153.8 ($\mathrm{C}=0 \mathrm{Cbz}$), 136.4 (ipso-Ph), 136.2 (ipso-Ph), 128.72 (Ph), 128.67 (Ph), 128.37 (Ph), 128.35 (Ph), 128.2 (Ph), 128.0 (Ph), 67.9 (CH_{2} Cbz), 67.1 ($\mathrm{CH}_{2} \mathrm{Cbz}$), 58.7 (C-8), 58.3 (C-8), 56.2 (C-5), 55.6 (C-5), 50.8 (C-9), 50.6 (C9), 48.9 (C-3), 48.7 (C-3), 34.2 (C-6), 32.5 (C-6), 24.2 (C-7), 22.9 (C-7), 21.8 (Me), 21.7 (Me) (27 out of 28 signals present); HRMS found MH^{+}, 289.1548. $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires 289.1547.

tert-Butyl 3-((2-ethoxy-2-oxoethyl)amino)azepane-1-carboxylate S11

S11

S11 was synthesised using general method B using enecarbamate $\mathbf{5 e}$ ($49.3 \mathrm{mg}, 0.25$ mmol) and glycine ethyl ester hydrochloride ($70.0 \mathrm{mg}, 0.50 \mathrm{mmol}$). Reaction was performed in duplicate and the contents of the two vials combined before work-up. The crude product was purified by flash column chromatography eluting with 1:1 hexane-EtOAc to yield amino ester S11 as a 60:40 mixture of rotamers (68.2 mg , 42%) as a yellow oil, $R_{\mathrm{f}} 0.25$ (EtOAc); $v_{\text {max }} / \mathrm{cm}^{-1} 2975,2929,2864,1738$ (C=O), 1687 ($\mathrm{C}=\mathrm{O}$) , $1365,1298,1162,842$ and $771 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.20(1.2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.1 \mathrm{~Hz}$, $\left.12-\mathrm{H}_{2}\right), 4.17\left(0.8 \mathrm{H}, \mathrm{q}, J 7.1 \mathrm{~Hz}, 12-\mathrm{H}_{2}\right), 3.76\left(0.4 \mathrm{H}, \mathrm{dd}, J 14.0,3.9,2-\mathrm{H}_{\mathrm{A}}\right), 3.70-3.62$ $\left(1.2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}, 7-\mathrm{H}_{\mathrm{A}}\right), 3.55-3.49\left(0.4 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{B}}\right), 3.48\left(0.8 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{2}\right), 3.45(1.2 \mathrm{H}, \mathrm{m}$, $\left.9-\mathrm{H}_{2}\right), 3.22-3.09\left(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{A}}, 7-\mathrm{H}_{\mathrm{B}}\right), 2.89\left(0.4 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.0,8.5,2-\mathrm{H}_{\mathrm{B}}\right), 2.84-2.72(1 \mathrm{H}$, $\left.\mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}, 3-\mathrm{H}\right), 2.66-2.58(0.6 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 1.90-1.79\left(1.6 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{A}}\right), 1.79-1.42$ $\left(1.4 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{A}}\right) 1.64(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 1.61-1.55\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{B}}\right), 1.47(5.4 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}(\mathrm{Me})_{3}\right), 1.45\left(3.6 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{Me})_{3}\right), 1.41-1.31\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}, 5-\mathrm{H}_{\mathrm{B}}\right), 1.27(1.8 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0,13-$ H_{3}), $1.26\left(1.2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0,13-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 172.8$ (C=O C-10), $156.0(\mathrm{C}=\mathrm{O}$
 3), 58.0 (C-3), 50.7 (C-2), 50.2 (C-2), 49.2 (C-9), 48.9 (C-9), 47.9 (C-7), 46.8 (C-7), 35.3 (C-4), 34.3 (C-4), 28.6 (C(Me) $)_{3}$, 27.9 (C-6), 27.5 (C-6), 22.8 (C-5), 22.7 (C-5), 14.4 (C13), 14.3 (C-13) (24 out of 26 signals present); HRMS found $\mathrm{MH}^{+}, 301.2133$. $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires 301.2122. Spectroscopic data are consistent with those reported in the literature. ${ }^{12}$

tert-Butyl 3-((benzyloxy)carbonyl)(2-ethoxy-2-oxoethyl)amino)azepane-1carboxylate 9 j

9j

9j was synthesised using general method C using benzyl chloroformate ($34 \mu \mathrm{~L}$, 0.239 mmol), amino ester $\mathbf{S} 11$ ($65.0 \mathrm{mg}, 0.217 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(109 \mathrm{mg}, 1.30$ mmol) in DCM (2 mL) for 16 h . The crude product was purified by flash column chromatography, eluting with 75:25 hexane-EtOAc to yield carbamate $\mathbf{9}$ jas a 65:35 mixture of rotamers ($65.5 \mathrm{mg}, 70 \%$) as a colourless oil, $R_{\mathrm{f}} 0.64$ (1:1 hexane-EtOAc); $v_{\max } / \mathrm{cm}^{-1} 2975,2930,1691$ ($\mathrm{C}=\mathrm{O}$), 1394, 1365, 1156, 981 and 768 ; $\delta_{\mathrm{H}}(500 \mathrm{MHz}$, CDCl_{3}) 7.42-7.27 (5H, m, Ph), 5.23-5.14 (0.7H, m, Cbz CH2), 5.14-5.04 (1.3H, m, Cbz $\left.\mathrm{CH}_{2}\right), 4.19\left(0.7 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.1 \mathrm{~Hz}, 12-\mathrm{H}_{2}\right), 4.15-4.02\left(1.95 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 12-\mathrm{H}_{2}\right), 4.01-3.86$ $\left(2.35 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 9-\mathrm{H}_{2}\right), 3.81-3.68\left(0.65 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}\right), 3.66-3.43\left(1.35 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}, 7-\mathrm{H}_{\mathrm{A}}\right)$, 3.38-3.02 ($2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{B}, 7-\mathrm{H}_{B}$), 2.01-1.72 (3H, m, 4-H $\left.\mathrm{H}_{A}, 5-\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{A}\right), 1.70-1.51(3 \mathrm{H}$, $\left.\mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}, 5-\mathrm{H}_{\mathrm{B}}, 6-\mathrm{H}_{\mathrm{B}}\right), 1.50-1.42\left(7.5 \mathrm{H}, \mathrm{m}, \mathrm{C}(\mathrm{Me})_{3}\right), 1.38\left(1.5 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{Me})_{3}\right), 1.27$ (1.05H, t, J 6.8, 13- H_{3}), $1.17\left(1.95 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.8,13-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 170.2$ (C=O $\mathrm{C}-10$), 170.3 ($\mathrm{C}=\mathrm{O} \mathrm{C}-10$), 156.1 ($\mathrm{C}=\mathrm{O} \mathrm{Boc)}$,155.5 ($\mathrm{C}=\mathrm{O} \mathrm{Cbz)}$,136.6 (ipso- Ph), 128.7 (Ph), 128.6 (Ph), 128.5 (Ph), 128.1 (Ph$), 127.91(\mathrm{Ph}), 127.87(\mathrm{Ph}), 79.9\left(\mathrm{C}(\mathrm{Me})_{3}\right), 79.6$ ($\mathrm{C}(\mathrm{Me})_{3}$), 67.4 (Cbz CH 2), 61.3 (C-12), 61.2 (C-12), 58.5 (C-3), 58.0 (C-3), 49.5 (C-2), 49.0 (C-2), 47.6 (C-7), 47.2 (C-7), 46.9 (C-9), 46.5 (C-9), 31.8 (C-4), 31.0 (C-4), 28.6 ($\mathrm{C}(\mathrm{Me})_{3}$), 28.5 ($\mathrm{C}(\mathrm{Me})_{3}$), 28.1 (C-6), 27.5 (C-6), 23.8 (C-5), 23.6 (C-5), 14.3 (C-13), 14.2 (C-13) (34 out of 38 signals present); HRMS found MH^{+}, 435.2494. $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires 435.2490 .

Benzyl 9-oxo-1,7-diazabicyclo[4.3.1]decane-7-carboxylate 6j

6j

6j was synthesised using general method D using NaOH ($6.06 \mathrm{mg}, 0.152 \mathrm{mmol}$), amino ester $9 \mathbf{j}$ ($60 \mathrm{mg}, 0.138 \mathrm{mmol}), 1: 1 \mathrm{MeOH}$:water (2.4 mL), $\mathrm{HCl}(1.5 \mathrm{~mL}, 6 \mathrm{~N})$, EtOAc (0.2 mL), toluene (1.8 mL) and $n-\mathrm{Bu}_{2} \mathrm{SnO}(34.6 \mathrm{mg})$. The crude product was purified by flash column chromatography, eluting with EtOAc to yield bicyclic carbamate $6 \mathbf{j}$ as a $60: 40$ mixture of rotamers ($28.9 \mathrm{mg}, 73 \%$) as a colourless oil, R_{f} 0.30 (EtOAc); $v_{\text {max }} / \mathrm{cm}^{-1} 2928,2860,1667$ (C=O), 1403, 1331, 1191, 1126, 1072, 765 and 699; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.39-7.29(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.21-5.07\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Cbz} \mathrm{CH}_{2}\right)$, $4.46\left(0.4 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.6,8-\mathrm{H}_{\mathrm{A}}\right), 4.41\left(0.6 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.4,8-\mathrm{H}_{\mathrm{A}}\right), 4.35-4.24\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}\right), 4.20$ $(0.6 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 4.13(0.4 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.82\left(0.6 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.4,8-\mathrm{H}_{\mathrm{B}}\right), 3.77(0.4 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.6$, $\left.8-H_{B}\right), 2.93-2.84\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}\right), 3.64\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.6,2.2,10-\mathrm{H}_{\mathrm{A}}\right), 3.26(0.6 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $14.6,1.0,10-\mathrm{H}_{\mathrm{B}}$), $3.21\left(0.4 \mathrm{H}\right.$, app. d, J 14.6, $10-\mathrm{H}_{\mathrm{B}}$), 2.25 (0.6 H , app. dd, J 15.1, 2.8, $\left.5-\mathrm{H}_{\mathrm{A}}\right), 2.14\left(0.4 \mathrm{H}, \mathrm{app} . \mathrm{dd}, \mathrm{J} 14.8,3.3,5-\mathrm{H}_{\mathrm{A}}\right), 2.05-1.93\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{A}}\right), 1.65-1.52(2 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}, 4-\mathrm{H}_{\mathrm{A}}$), 1.50-1.41 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}$), 1.29-1.14 (1H, m, 4-H H_{B}; $\delta_{\mathrm{C}}(125 \mathrm{MHz}$, CDCl_{3}) 170.9 ($\mathrm{C}=\mathrm{O} \mathrm{C}-9$), 155.2 ($\mathrm{C}=\mathrm{O} \mathrm{Cbz)}$,155.0 ($\mathrm{C}=\mathrm{O} \mathrm{Cbz)}$,136.5 (ipso-Ph), 136.3 (ipso-Ph), 128.7 (Ph), 128.3 (Ph), 128.2 (Ph), 128.1 (Ph), $67.6\left(\mathrm{CH}_{2} \mathrm{Cbz}\right), 67.5\left(\mathrm{CH}_{2}\right.$ Cbz), 51.8 (C-6), 51.3 (C-6), 47.9 (C-8), 47.8 (C-8), 47.7 (C-10), 47.5 (C-10), 44.01 (C2), 43.97 (C-2), 35.8 (C-5), 34.8 (C-5), 27.3 (C-3), 27.1 (C-3), 20.5 (C-4) (24 out of 28 signals present); HRMS found MH^{+}, 289.1544. $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires 289.1547.

tert-Butyl 3-((3-ethoxy-3-oxopropyl)amino)piperidine-1-carboxylate S12

S12 was synthesised using general method B using enecarbamate $\mathbf{5 c}(45.8 \mathrm{mg}, 0.25$ mmol) and ethyl 3 -aminopropionate hydrochloride ($75.0 \mathrm{mg}, 0.50 \mathrm{mmol}$). The crude product was purified by flash column chromatography eluting with EtOAc to yield amino ester $\mathbf{S 1 2}$ as a 1:1 mixture of rotamers ($59.8 \mathrm{mg}, 80 \%$) as a yellow oil, R_{f} 0.11 (EtOAc); $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ 2976, 2932, 2856, 1731 (C=O), 1687 (C=O), 1466, 1392, 1238, 1150 and 767 ; $\delta_{\text {H }}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.11\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.1 \mathrm{~Hz}, 12-\mathrm{H}_{2}\right), 4.07-3.80$ $\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{A}\right), 3.79-3.75\left(0.5 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{A}}\right), 3.75-3.72\left(0.5 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{A}}\right), 2.96-2.77(3 \mathrm{H}$, $\left.\mathrm{m}, 6-\mathrm{H}_{\mathrm{B}}, 8-\mathrm{H}_{2}\right), 2.76-2.49\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}, 3-\mathrm{H}\right), 2.45\left(2 \mathrm{H}, \mathrm{app} . \mathrm{dd}, \mathrm{J} 14.6,8.2,9-\mathrm{H}_{2}\right)$,
 $\left.\mathrm{C}(\mathrm{Me})_{3}\right), 1.29-1.16\left(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}, 13-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 172.8$ (C=O C-10), 155.0 ($\mathrm{C}=0 \mathrm{Boc}$), 79.5 ($\left(\mathrm{C}(\mathrm{Me})_{3}\right), 60.5$ (C-11), 53.7 (C-3), 49.5 (C-2), 49.1 (C-2), 44.7 (C-6), 43.9 (C-6), 42.4 (C-8), 35.2 (C-9), 31.6 (C-4), 28.5 (C(Me)3), 23.9 (C-5), 23.5 (C5), 14.3 (C-13) (16 out of 26 signals present); HRMS found $\mathrm{MH}^{+}, 301.2131$. $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires 301.2122. Spectroscopic data are consistent with those reported in the literature. ${ }^{6}$

tert-Butyl 3-((benzyloxy)carbonyl)(3-ethoxy-3-oxopropyl)amino)piperidine-1carboxylate 9 k

9k was synthesised using general method C using benzyl chloroformate ($22.0 \mu \mathrm{~L}$, $0.169 \mathrm{mmol})$, amino ester $\mathbf{S 1 2}(\mathbf{4 6 . 2} \mathrm{mg}, 0.154 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(77.0 \mathrm{mg}, 0.924$ mmol) in DCM (2 mL) for 72 h . The crude product was purified by flash column chromatography, eluting with 1:1 hexane-EtOAc to yield carbamate 9k as a 55:45 mixture of rotamers ($66.9 \mathrm{mg}, 100 \%$) as a colourless oil, $R_{\mathrm{f}} 0.42$ (1:1 hexane-EtOAc); $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ 2976, 2937, 2867, 1732, 1688 (C=O), 1416, 1264, 1239, 1149, 1112, 770 and 698; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.38-7.27(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.12\left(2 \mathrm{H}, \mathrm{s}, \mathrm{Cbz} \mathrm{CH}_{2}\right), 4.17-3.93$ $\left(4 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{A}}, 12-\mathrm{H}_{2}\right), 3.72(1 \mathrm{H}, \mathrm{app} . \mathrm{t}, \mathrm{J} 10.8,3-\mathrm{H}), 3.59-3.40\left(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}\right)$, 2.92-2.81 ($\left.0.55 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}\right), 2.80-2.69\left(0.45 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}\right), 2.67-2.43\left(3 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{B}}, 9-\right.$ $\left.\mathrm{H}_{2}\right), 1.85-1.65\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}, 5-\mathrm{H}_{\mathrm{A}}\right), 1.57-1.33\left(10 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}, \mathrm{C}(\mathrm{Me})_{3}\right), 1.24(3 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $\left.7.1 \mathrm{~Hz}, 13-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 171.6$ ($\mathrm{C}=\mathrm{O} \mathrm{C-10)}$), 171.2 ($\mathrm{C}=\mathrm{O} \mathrm{C-10)}$,155.8 ($\mathrm{C}=\mathrm{O}$ Boc), 155.6 ($\mathrm{C}=\mathrm{O} \mathrm{Boc}$), 154.8 ($\mathrm{C}=\mathrm{O} \mathrm{Cbz}$), 136.6 (ipso-Ph), 128.6 (Ph), 128.1 (Ph), 127.9 (Ph), $79.9\left(\mathrm{C}(\mathrm{Me})_{3}\right), 67.3\left(\mathrm{CH}_{2} \mathrm{Cbz}\right), 60.7(\mathrm{C}-12), 60.5$ (C-12), 54.5 (C-3), 54.1 (C-3), 47.0 (C-2), 44.0 (C-6), 43.2 (C-6), 40.9 (C-8), 35.4 (C-9), 34.7 (C-9), 29.2 (C-4), 28.5 (C(Me) $)_{3}$), 25.0 (C-5), 14.29 (C-13), 14.27 (C-13) (25 out of 38 signals present); HRMS found MNa^{+}, 457.2319. $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}$ requires 457.2309.

Benzyl 2-oxo-1,5-diazabicyclo[4.3.1]decane-5-carboxylate 6k

6k

6k was synthesised using general method D using NaOH ($50.9 \mathrm{mg}, 0.127 \mathrm{mmol}$), amino ester 9k ($50.0 \mathrm{mg}, 0.115 \mathrm{mmol}$), 1:1 MeOH:water (2 mL), $\mathrm{HCl}(1.3 \mathrm{~mL}, 6 \mathrm{~N}$), EtOAc (0.2 mL), toluene (2 mL) and $n-\mathrm{Bu}_{2} \mathrm{SnO}(29.0 \mathrm{mg})$. The crude product was purified by flash column chromatography, eluting with 3:1 EtOAc-hexane to yield bicyclic carbamate $\mathbf{6 k}$ as a 1:1 mixture of rotamers ($25.4 \mathrm{mg}, 77 \%$) as a colourless oil, $R_{\mathrm{f}} 0.30$ (EtOAc); $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ 2931, 1688 (C=O), 1657 (C=O), 1409, 1223, 1093,

1067, 1008, 735 and 698; $\delta_{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 7.40-7.29 (5H, m, Ph), 5.15 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 12.3, Cbz CH 2), 5.11 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.3, \mathrm{Cbz} \mathrm{CH}_{2}$), 4.48 (1 H , app. dd, J 11.6, 5.8, 6-H), 4.35 (1H, ddd, J 14.0, 7.7, 6.0, 9-H H_{A}, 4.28 (1 H , app. d, J 11.6, $4-\mathrm{H}_{\mathrm{A}}$), 3.72 (1 H, app. d, J $\left.15.6,10-\mathrm{H}_{\mathrm{A}}\right), 3.36\left(1 \mathrm{H}\right.$, app. t, J $\left.11.6,4-\mathrm{H}_{\mathrm{B}}\right), 3.25\left(1 \mathrm{H}\right.$, app. dd, J $\left.15.1,5.0,10-\mathrm{H}_{\mathrm{B}}\right)$, $3.05\left(1 \mathrm{H}\right.$, app. dt, J 14.2, 3.6, $\left.3-\mathrm{H}_{\mathrm{A}}\right), 2.95\left(1 \mathrm{H}, \mathrm{app} . \mathrm{dt}, J 12.8,5.7,9-\mathrm{H}_{\mathrm{B}}\right), 2.49(1 \mathrm{H}$, ddd, J 14.3, 5.4, 2.2, 3- H_{B}), 1.88-1.79 ($1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{A}}$), 1.78-1.65 (2H, m, 8- $\left.\mathrm{H}_{\mathrm{A}}, 7-\mathrm{H}_{\mathrm{B}}\right)$, 1.56-1.49 ($1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{\mathrm{B}}$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 176.8(\mathrm{C}=\mathrm{O} \mathrm{C}-2), 156.2$ ($\mathrm{C}=\mathrm{O} \mathrm{Cbz}$), 136.5 (ipso-Ph), 128.7 (Ph), 128.3 (Ph), 128.2 (Ph), $67.8\left(\mathrm{CH}_{2} \mathrm{Cbz}\right), 50.0(\mathrm{C}-6), 49.4$ (C-10), 45.6 (C-9), 39.8 (C-4), 36.9 (C-3), 24.0 (C-7), 20.6 (C-8); HRMS found MNa^{+}, 311.1374. $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}$ requires 311.1366 . Spectroscopic data are consistent with those reported in the literature. ${ }^{6}$

tert-Butyl 3-((3-ethoxy-3-oxopropyl)amino)azepane-1-carboxylate S13

$\mathbf{S 1 3}$ was synthesised using general method B using enecarbamate $\mathbf{5 e}$ ($49.3 \mathrm{mg}, 0.25$ mmol) and ethyl 3 -aminopropionate hydrochloride ($75.0 \mathrm{mg}, 0.50 \mathrm{mmol}$). Reaction was performed in duplicate and the contents of the two vials combined before work-up. The crude product was purified by flash column chromatography eluting with EtOAc to yield amino ester S13 as a 55:45 mixture of rotamers ($56.6 \mathrm{mg}, 36 \%$) as a yellow oil, $R_{\mathrm{f}} 0.11$ (EtOAc); $v_{\text {max }} / \mathrm{cm}^{-1} 2975,2929,2859$, 1732 (C=O), 1689 ($\mathrm{C}=\mathrm{O}$), $1468,1413,1365,1299,1164$ and 772 ; $\delta_{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.14(1.1 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0 \mathrm{~Hz}$, $13-\mathrm{H}_{2}$), $4.12\left(0.9 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0 \mathrm{~Hz}, 13-\mathrm{H}_{2}\right), 3.80\left(0.45 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.7,4.0,2-\mathrm{H}_{\mathrm{A}}\right), 3.73$ $\left(0.55 \mathrm{H}, \mathrm{dd}, J 13.8,3.1,2-\mathrm{H}_{\mathrm{A}}\right), 3.69\left(0.55 \mathrm{H}\right.$, ddd, J 14.5, 8.3, 3.0, 7-H H_{A}) , $3.50(0.45 \mathrm{H}$, ddd, J 14.5, 8.3, 3.0, 7-H H_{A}, $3.20-3.09\left(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{B}}\right), 2.94\left(1.1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.0,9-\mathrm{H}_{2}\right), 2.93$ $\left(0.9 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.0,9-\mathrm{H}_{2}\right), 2.85\left(0.45 \mathrm{H}, \mathrm{dd}, J 13.7,8.6,2-\mathrm{H}_{\mathrm{B}}\right), 2.81-2.72\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}, 3-\mathrm{H}\right)$,
2.72-2.65 (0.55H, m, 3-H), $2.48\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.9,10-\mathrm{H}_{2}\right), 1.89-1.78\left(1.55 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}, 6-\right.$ $\left.\mathrm{H}_{\mathrm{A}}\right), 1.78-1.69\left(1.45 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{A}}\right) 1.62-1.51\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NH}, 6-\mathrm{H}_{\mathrm{B}}\right), 1.47(4.95 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}(\mathrm{Me})_{3}\right), 1.45\left(4.05 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{Me})_{3}\right), 1.41-1.29\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}, 5-\mathrm{H}_{\mathrm{B}}\right), 1.26(1.65 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1$, $14-\mathrm{H}_{3}$), $1.25\left(1.35 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1,14-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 173.0$ (C=O C-11), 172.8
 13), 60.5 (C-13), 58.4 (C-3), 57.9 (C-3), 51.2 (C-2), 50.7 (C-2), 48.0 (C-7), 46.9 (C-7), 42.9 (C-9), 35.31 (C-10), 35.27 (C-10), 35.2 (C-4), 34.2 (C-4), 28.7 (C(Me) $)_{3}$), 28.6 (C(Me) $)_{3}$), 28.0 (C-6), 27.6 (C-6), 22.9 (C-5), 22.8 (C-5), 14.4 (C-14) (21 out of 28 signals present); HRMS found $\mathrm{MNa}^{+}, 337.2099$. $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}$ requires 337.2098.

tert-Butyl 3-(((benzyloxy)carbonyl)(3-ethoxy-3-oxopropyl)amino)azepane-1carboxylate 91

91 was synthesised using general method C using benzyl chloroformate ($27.5 \mu \mathrm{~L}$, $0.193 \mathrm{mmol})$, amino ester $\mathbf{S 1 3}$ ($55.0 \mathrm{mg}, 0.175 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(87.9 \mathrm{mg}, 1.05$ $\mathrm{mmol})$ in DCM (2 mL) for 16 h . The crude product was purified by flash column chromatography, eluting with 75:25 hexane-EtOAc to yield carbamate 91 as an undetermined mixture of rotamers ($72.7 \mathrm{mg}, 93 \%$) as a colourless oil, $R_{\mathrm{f}} 0.52$ (1:1 hexane-EtOAc); $v_{\max } / \mathrm{cm}^{-1} 2974,2933,2869,1731$ ($\mathrm{C}=\mathrm{O}$), 1692 ($\mathrm{C}=\mathrm{O}$), 1657 ($\mathrm{C}=\mathrm{O}$), 1416, 1213, 1162, 1115, 770 and 699; $\delta_{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 7.40-7.27 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 5.19-5.06 (2H, br m, Cbz CH2), 4.19-4.03 (2H, br m, 13-H2), 3.81-2.95 (7H, m, 2- H_{2}, $\left.3-\mathrm{H}, 7-\mathrm{H}_{2}, 9-\mathrm{H}_{2}\right), 2.72-2.49\left(2 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{2}\right), 2.01-1.68\left(4 \mathrm{H}, \mathrm{br} \mathrm{m}, 4-\mathrm{H}_{2}, 5-\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{A}\right)$ 1.63-1.58 (1H, m, 6-H H_{B}, 1.52-1.37 (9H, br m, C(Me) $)_{3}$, 1.33-1.18 (4H, br m, 5- H_{B}, $14-\mathrm{H}_{3}$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 171.7$ ($\mathrm{C}=\mathrm{O} \mathrm{C}-11$), 171.6 ($\mathrm{C}=\mathrm{O} \mathrm{C}-11$), 155.7, 155.4 ($\mathrm{C}=\mathrm{O}$ Boc, Cbz), 136.8 (ipso-Ph), 128.71 (Ph), 128.67 (Ph), 128.6 (Ph), 128.1 (Ph), 127.8
(Ph), $127.1(\mathrm{Ph}), 80.0\left(\mathrm{C}(\mathrm{Me})_{3}\right), 79.6\left(\mathrm{C}(\mathrm{Me})_{3}\right), 67.4\left(\mathrm{Cbz} \mathrm{CH}_{2}\right), 67.1\left(\mathrm{Cbz} \mathrm{CH}_{2}\right), 60.7$ (C-13), 60.6 (C-13), 59.6 (C-3), 49.5 (C-2), 48.9 (C-2), 46.7 (C-7), 46.1 (C-7), 43.2 (C9), 42.7 (C-9), 35.0 (C-10), 34.4 (C-10), 32.1 (C-4), 31.6 (C-4), 28.6 (C(Me) $)_{3}$), 27.5 (C6), 27.2 (C-6), 24.1 (C-5), 23.5 (C-5), 14.3 (C-14) (28 out of 40 signals present); HRMS found $\mathrm{MH}^{+}, 449.2652$. $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires 449.2646.

Benzyl 2-oxo-1,5-diazabicyclo[4.4.1]undecane-5-carboxylate 6I

61

61 was synthesised using general method D using NaOH ($6.85 \mathrm{mg}, 0.172 \mathrm{mmol}$), amino ester 9 l ($70 \mathrm{mg}, 0.156 \mathrm{mmol}), 1: 1 \mathrm{MeOH}$:water (2.8 mL), $\mathrm{HCl}(1.7 \mathrm{~mL}, 6 \mathrm{~N})$, EtOAc (0.2 mL), toluene (2 mL) and $n-\mathrm{Bu}_{2} \mathrm{SnO}(39.1 \mathrm{mg})$. The crude product was purified by flash column chromatography, eluting with EtOAc to yield bicyclic carbamate 61 as a $55: 45$ mixture of rotamers ($35.8 \mathrm{mg}, 75 \%$) as a white solid, $R_{f} 0.20$ (EtOAc); $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 2931,2858,1689$ (C=O), 1647 (C=O), 1418, 1312, 1236, 1210, 1158 and $658 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.40-7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.13\left(2 \mathrm{H}, \mathrm{s}, \mathrm{Cbz} \mathrm{CH}_{2}\right)$, 4.76-4.65 ($0.55 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), 4.62-4.51 (0.45H, m, 6-H), 4.44 (1 H, app. d, J 12.7, 10$\left.\mathrm{H}_{\mathrm{A}}\right), 4.38\left(0.45 \mathrm{H}\right.$, app. d, J 11.7, $\left.4-\mathrm{H}_{\mathrm{A}}\right), 4.24\left(0.55 \mathrm{H}\right.$, app. d, J 11.7, 4- H_{A}), $3.85(1 \mathrm{H}$, app. d, J 16.1, 11-H H_{A}, $3.41\left(1 \mathrm{H}\right.$, app. t, J 16.7, 11- H_{B}), 3.31-3.14 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}$), 2.87$2.74\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{B}\right), 2.54-2.51\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}, 3-\mathrm{H}_{B}\right), 2.02-1.89\left(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{A}\right), 1,89-$ $1.79\left(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{\mathrm{A}}\right), 1.79-1.67\left(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{2}\right), 1.56-1.30\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{B}}, 8-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}(125$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 172.80 ($\mathrm{C}=\mathrm{O} \mathrm{C}-2$), 172.75 ($\mathrm{C}=\mathrm{O} \mathrm{C}-4$), 155.5 ($\mathrm{C}=\mathrm{O} \mathrm{Cbz}$), 136.6 (ipso-Ph), 136.5 (ipso-Ph), 128.7 (Ph), 128.3 (Ph), 128.2 (Ph), $67.7\left(\mathrm{CH}_{2} \mathrm{Cbz}\right), 53.6$ (C-11), 53.5 (C-11), 53.0 (C-6), 52.7 (C-6), 48.6 (C-10), 38.2 (C-3), 38.0 (C-3), 36.9 (C-4), 29.8 (C9), 29.7 (C-9), 28.2 (C-7), 27.5 (C-7), 23.2 (C-8) (22 out of 30 signals present); HRMS
found MH^{+}, 303.1702. $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires 303.1703. X-ray crystallographic data was collected. CCDC deposition number 2192693:

5. Synthesis of Bicyclic Anilines

tert-Butyl 3-((2-bromobenzyl)amino)pyrrolidine-1-carboxylate S14

S14

S14 was synthesised using general method E using N-Boc-2,3-dihydro-1H-pyrrole ($42.3 \mathrm{mg}, 0.25 \mathrm{mmol}$, supplier: Sigma Aldrich). Reaction was performed in quadruplicate and the contents of the four vials combined before work-up. The crude product was purified by flash column chromatography eluting with 2:1 hexane-EtOAc to yield amine S14 as a 1:1 mixture of rotamers ($242 \mathrm{mg}, 68 \%$) as a pale yellow oil, $R_{f} 0.34$ (EtOAc); $v_{\text {max }} / \mathrm{cm}^{-1}$ 2974, 2931, 2876, 1699 (C=O), 1404, 1365, 1168, 1119, 1025 and 752 ; $\delta_{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.54$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.9,3-\mathrm{Ar}$), 7.38 (1 H , app. t, J 7.4, 6-Ar), 7.28 ($1 \mathrm{H}, \mathrm{t}, J 6.8,5-\mathrm{Ar}$), 7.13 ($1 \mathrm{H}, \mathrm{t}, J 7.3,4-\mathrm{Ar}$), 3.88 (1 H , s, benzyl CH_{2}), $3.85(1 \mathrm{H}, \mathrm{s}$, benzyl CH 2$), 3.60-3.41\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}}, 5-\mathrm{H}_{\mathrm{A}}\right), 3.41-3.28(2 \mathrm{H}$, br m, 3$\left.\mathrm{H}, 5-\mathrm{H}_{\mathrm{B}}\right), 3.20\left(0.5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.9,4.7,2-\mathrm{H}_{\mathrm{B}}\right), 3.12\left(0.5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.7,5.1,2-\mathrm{H}_{\mathrm{B}}\right), 2.08-$ $1.98\left(1 \mathrm{H}\right.$, br m, $\left.4-\mathrm{H}_{\mathrm{A}}\right), 1.82-1.70\left(1 \mathrm{H}\right.$, br m, $\left.4-\mathrm{H}_{\mathrm{B}}\right), 1.58(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 1.45(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}(\mathrm{Me})_{3}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 154.8$ ($\mathrm{C}=\mathrm{O} \mathrm{Boc}$), 139.2 (ipso-Ar-2), 139.1 (ipso-Ar-2), 133.0 (Ar-3), 130.6 (Ar-6), 130.5 (Ar-6), 129.0 (Ar-5), 127.7 (Ar-4), 124.1 (ipso-Ar-1), $79.3\left(\mathrm{C}(\mathrm{Me})_{3}\right)$, 57.3 (C-3), 56.2 (C-3), 52.3 (benzyl CH 2), 52.1 (C-2), 51.6 ($\mathrm{C}-2$), 44.5 (C-5), 44.2 (C-5), 31.5 (C-4), 31.3 (C-4), 28.7 ($\left((\mathrm{Me})_{3}\right.$) (20 out of 28 signals present); HRMS found $\mathrm{MH}^{+}, 355.1021$. $\mathrm{C}_{16} \mathrm{H}_{24}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{2}$ requires 355.1016.
tert-Butyl carboxylate 11a

3-(((benzyloxy)carbonyl)(2-bromobenzyl)amino)pyrrolidine-1-

11a

11a was synthesised using general method C using benzyl chloroformate ($104 \mu \mathrm{~L}$, $0.730 \mathrm{mmol})$, amine $\mathbf{S 1 4}$ ($235 \mathrm{mg}, 0.664 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(334 \mathrm{mg}, 3.98 \mathrm{mmol})$ in DCM (6 mL) for 72 h . The crude product was purified by flash column chromatography, eluting with 80:20 hexane-EtOAc to yield carbamate 11a as 1:1 mixture of rotamers ($313 \mathrm{mg}, 97 \%$) as a colourless oil, $R_{f} 0.53$ (1:1 hexane-EtOAc); $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 2974,2882,1695$ ($\mathrm{C}=\mathrm{O}$), 1442, 1169, 1135 and 749 ; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.53 (1H, app. t, J 7.3, 3-Ar), 7.44-7.01 (8H, br m, 4,5,6-Ar, Ph), 5.30-5.02 (2H, br m, Cbz CH 2), 4.87-4.64 (1H, br m, 3-H), 4.62-4.39 (2H, s, benzyl CH 2), 3.64-3.53 (1H, m, $2-\mathrm{H}_{\mathrm{A}}$), 3.51-3.44 (0.5H, br m, 5- H_{A}), 3.44-3.35 (0.5H, br m, 5- H_{A}), 3.28-3.17 (1H, br $\left.\mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right), 3.14\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.6,5.1,2-\mathrm{H}_{\mathrm{B}}\right), 2.06-1.78\left(2 \mathrm{H}, \mathrm{br} m, 4-\mathrm{H}_{2}\right), 1.42(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}(\mathrm{Me})_{3}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 156.5$ ($\mathrm{C}=\mathrm{O} \mathrm{Cbz}$), 154.5 ($\mathrm{C}=\mathrm{O}$ Boc), 137.4 (ipso-Ar-2), 136.4 (ipso-Ph), 132.9 (Ar-3), 128.7, 128.6, 128.2, 128.1, 127.7, 127.1 (Ar-4,5,6, Ph), 122.2 (ipso-Ar-1), $79.7\left(\mathrm{C}(\mathrm{Me})_{3}\right), 67.6\left(\mathrm{Cbz} \mathrm{CH}_{2}\right), 55.6$ (C-3), 54.9 (C-3), 47.7 (benzyl CH_{2}), 47.1 (C-2), 44.3 (C-5), 43.9 (C-5), $29.0(\mathrm{C}-4), 28.6\left(\mathrm{C}(\mathrm{Me})_{3}\right)$ (22 out of 40 signals present); HRMS found MH^{+}, 489.1390. $\mathrm{C}_{24} \mathrm{H}_{30}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{4}$ requires 489.1383.

Benzyl 3,4-dihydro-2H-1,4-methanobenzo[b][1,5]diazocine-5(6H)-carboxylate 7a

7a was synthesised using general method F using carbamate 11a ($299 \mathrm{mg}, 0.612$ $\mathrm{mmol}), \mathrm{HCl}(6.8 \mathrm{~mL}, 6 \mathrm{~N})$, EtOAc (1 mL), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(22.5 \mathrm{mg})$, BINAP (30.5 mg), $\mathrm{NaOtBu}(118 \mathrm{mg}, 1.16 \mathrm{mmol})$ and toluene (5 mL). Heated at reflux for 16 h . The crude product was purified by flash column chromatography, eluting with 1:1 hexane-EtOAc to yield carbamate 7a as a 55:45 mixture of rotamers (120 mg, 64\%) as a brown oil, $R_{\mathrm{f}} 0.28$ (EtOAc); $v_{\text {max }} / \mathrm{cm}^{-1} 2948,2877,1687$ (C=O), 1485, 1449, 1408, 1346, 1332, 1222, 1123, 1093, 763, 735 and 697; $\delta_{\text {H }}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.39-7.28$ (5H, m, Ph), 7.23-7.14 (1H, br m, Ar), 7.13-7.09 (1H, br m, Ar), 7.05-6.97 (2H, br m, 7-Ar, Ar), 5.19-5.05 (2H, br m, Cbz CH2), 4.58 (0.45 H , app. t, J 4.0, 4-H), 4.51 (0.55 H , app. t, J 4.9, 4-H), $4.93\left(0.55 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.4,6-\mathrm{H}_{A}\right), 4.77\left(0.45 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.6,6-\mathrm{H}_{A}\right), 4.74-$ $4.68\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{B}}\right), 3.42\left(0.45 \mathrm{H}\right.$, ddd, J 12.2, 9.7, 6.7, 2- H_{A}), 3.35 (0.55 H , ddd, J 12.1, 9.9, 6.8, 2- H_{A}), 3.27-3.18 ($1 \mathrm{H}, \mathrm{br}$ m, $3-\mathrm{H}_{\mathrm{B}}$), $3.84\left(0.55 \mathrm{H}, \mathrm{app} . \mathrm{d}, \mathrm{J} 14.0,11-\mathrm{H}_{\mathrm{A}}\right), 3.76$ (0.45 H , app. d, J 13.9, 11- H_{A}), 2.93 ($0.45 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.9,3.9,11-\mathrm{H}_{\mathrm{B}}$), 2.87 ($0.55 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 14.0, 4.2, 11- H_{B}), 2.23-2.13 (1.45H, br m, 3-H2), 2.13-2.05 (0.55H, br m, 3-H2); δ_{C} ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 155.9 ($\mathrm{C}=\mathrm{OCbz}$), 155.4 (C=O Cbz), 152.6 ($\mathrm{C}-10 \mathrm{a}$), 152.0 ($\mathrm{C}-10 \mathrm{a}$), 132.2 (C-6a), 131.5 (C-6a), 136.8 (ipso-Ph), 130.4, 130.0, 128.7, 128.63, 128.61, 128.1, 128.0, 127.6 (Ar-8/9/10, Ph), 124.3 (C-7), 124.2 (C-7), 67.5 (Cbz CH2), 67.3 (Cbz CH2), 58.3 (C-4), 57.8 (C-4), 56.8 (C-2), 56.7 (C-2), 55.5 (C-11), 54.9 (C-11), 47.1 (C-6), 46.9 (C-6), 34.9 (C-3), 33.5 (C-3) (29 out of 34 signals present); HRMS found MNa^{+}, 331.1416. $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}$ requires 331.1417.

tert-Butyl 3-((2-bromobenzyl)amino)piperidine-1-carboxylate S15

S15 was synthesised using general method E using enecarbamate 5c ($45.8 \mathrm{mg}, 0.25$ $\mathrm{mmol})$. Reaction was performed in quadruplicate and the contents of the four vials
combined before work-up. The crude product was purified by flash column chromatography eluting with 2:1 hexane-EtOAc to yield amine $\mathbf{S 1 5}$ as a 1:1 mixture of rotamers ($255 \mathrm{mg}, 69 \%$) as a colourless oil, $R_{\mathrm{f}} 0.39$ (EtOAc); $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 2974,2930$, 2856, 1686 (C=O), 1420, 1364, 1260, 1238, 1174, 1150, 1024 and 750 ; $\delta_{\text {H }}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.53$ (1H, d, J 5.5, 3-Ar), 7.41 (1H, dd, J 7.6, 1.6, 6-Ar), 7.28 (1H, td, J 7.5, 0.9, 5-Ar), 7.12 (1H, td, J 7.8, 1.5, 4-Ar), 4.25-3.93 (1H, m, 2-HA), 3.93 (1H, d, J 13.8, benzyl CH_{2}), $3.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.8$, benzyl CH2$), 3.86-3.74\left(1 \mathrm{H}, \mathrm{br} \mathrm{m}, 6-\mathrm{H}_{\mathrm{A}}\right), 3.00-2.65$ $\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}, 6-\mathrm{H}_{\mathrm{B}}\right), 2.64-2.52(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 1.97-1.86\left(1 \mathrm{H}, \mathrm{br} \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right), 1.74-1.64$ (1H, br m, 5- H_{A}), 1.63-1.48 (2H, m, NH, 5- H_{A}), $1.46\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{Me})_{3}\right), 1.40-1.29(1 \mathrm{H}, \mathrm{br}$ $\mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 155.1$ (C=O Boc), 139.5 (ipso-Ar-2), 133.0 (Ar-3), 130.4 (Ar-6), 128.8 (Ar-5), 127.6 (Ar-4), 124.1 (ipso-Ar-1), 79.6 (C(Me)3), 53.2 (C-3), 51.2 (benzyl CH2), 49.5 (C-2), 48.9 (C-2), 44.9 (C-6), 44.1 (C-6), 31.7 (C-4), 28.6 (C(Me) $)_{3}$), 23.7 (C-5) (17 out of 30 signals present); HRMS found MNa^{+}, 391.0994. $\mathrm{C}_{17} \mathrm{H}_{25}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{Na}$ requires 391.0992 .

tert-Butyl

 carboxylate 11b
3-(((benzyloxy)carbonyl)(2-bromobenzyl)amino)piperidine-1-

11b

11b was synthesised using general method C using benzyl chloroformate ($103 \mu \mathrm{~L}$, $0.721 \mathrm{mmol})$, amine $\mathbf{S 1 5}$ ($241 \mathrm{mg}, 0.655 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(329 \mathrm{mg}, 3.93 \mathrm{mmol})$ in DCM (6 mL) for 72 h . The crude product was purified by flash column chromatography, eluting with $75: 25$ hexane-EtOAc to yield carbamate 11b as an undetermined mixture of rotamers ($243 \mathrm{mg}, 74 \%$) as a colourless oil, $R_{\mathrm{f}} 0.65$ (1:1 hexane-EtOAc); $v_{\max } / \mathrm{cm}^{-1} 3055,2978,2861,1686$ (C=O), 1413, 1264, 1240, 1149, 731 and 699; $\delta_{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.52$ (1H, d, J 7.9, 3-Ar), 7.46-7.14 (7H, br m, 5-Ar,

6-Ar, Ph), 7.1 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5,4-\mathrm{Ar}$), 4.29-5.04 (2H, br m, Cbz CH 2$), ~ 4.68-4.40(2 \mathrm{H}, \mathrm{br}$ m, benzyl CH_{2}), 4.22-3.79 (3H, br m, 2- $\left.\mathrm{H}_{\mathrm{A}}, 3-\mathrm{H}, 6-\mathrm{H}_{\mathrm{A}}\right), 2.93-2.62\left(1 \mathrm{H}, \mathrm{br}\right.$ m, $\left.2-\mathrm{H}_{\mathrm{B}}\right), 2.59-$ $2.41\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{B}}\right), 1.89-1.75\left(1 \mathrm{H}\right.$, br m, 4-H H_{A}, 1.73-1.59 (2H, br m, 4- $\left.\mathrm{H}_{\mathrm{B}}, 5-\mathrm{H}_{\mathrm{A}}\right)$, 1.56-1.31 (10 H, br $\mathrm{m}, \mathrm{C}(\mathrm{Me})_{3}, 5-\mathrm{H}_{\mathrm{B}}$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 154.8$ (C=O Boc), 137.7 (ipso-Ar-2), 136.6 (ipso-Ph), 132.8 (Ar-3), 128.64, 128.57, 128.1, 128.0, 127.6 (Ar4,5,6, Ph), 122.3 (ipso-Ar-1), 79.8 (C(Me) $)_{3}$, 67.9 ($\mathrm{Cbz} \mathrm{CH}_{2}$), 67.4 ($\mathrm{Cbz} \mathrm{CH}_{2}$), 54.2 (C3), 48.4 (benzyl CH2), 47.0 (C-2), 44.1 (C-6), 43.4 (C-6), 29.1 (C-4), 28.5 (C(Me) $)_{3}$), 25.0 (C-5) (21 out of 42 signals present); HRMS found MH^{+}, 503.1555. $\mathrm{C}_{25} \mathrm{H}_{32}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{4}$ requires 503.1540.

Benzyl 2,3,4,5-tetrahydro-1,5-methanobenzo[b][1,5]diazonine-6(7H)-carboxylate 7b

7b was synthesised using general method F using carbamate $\mathbf{1 1 b}$ ($120 \mathrm{mg}, 0.239$ $\mathrm{mmol}), \mathrm{HCl}(2.6 \mathrm{~mL}, 6 \mathrm{~N}), \operatorname{EtOAc}(0.4 \mathrm{~mL}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(8.8 \mathrm{mg}), \operatorname{BINAP}(11.9 \mathrm{mg})$, $\mathrm{NaOtBu}(46.0 \mathrm{mg}, 0.454 \mathrm{mmol})$ and toluene (4 mL). Heated at reflux for 16 h . The crude product was purified by flash column chromatography, eluting with 2:1 hexane-EtOAc to yield carbamate $\mathbf{7 b}$ as a 60:40 mixture of rotamers ($28.1 \mathrm{mg}, 37 \%$) as a yellow oil, $R_{\mathrm{f}} 0.65$ (1:1 hexane-EtOAc); $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 3061,3060,2924,2860,1689$ (C=O), 1490, 1400, 1346, 1177, 1074, 747 and 697; $\delta_{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.40-7.29$ (5H, m, Ph), 7.16 (1H, app. td, J 7.5, 1.0, 10-H), 7.07-7.00 (1H, br m, 8-H), 6.97 (1H, d, J 8.0, 11-H), $6.84(1 \mathrm{H}, \mathrm{app} . \operatorname{td}, J 7.5,1.0,9-\mathrm{H}), 5.27-4.98\left(3 \mathrm{H}, \mathrm{br}\right.$ m, $7-\mathrm{H}_{\mathrm{A}}, \mathrm{Cbz} \mathrm{CH}_{2}$), $4.81\left(1 \mathrm{H}, \mathrm{d}, J 16.6,7-\mathrm{H}_{\mathrm{B}}\right), 4.04\left(1 \mathrm{H}, \mathrm{dd}, J 15.7,2.2,12-\mathrm{H}_{\mathrm{A}}\right), 3.84(1 \mathrm{H}$, app. s, $5-\mathrm{H}), 3.65$ (1H, dd, J 13.6, 1.6, 2-H H_{A}), 3.29-3.15 ($2 \mathrm{H}, \mathrm{m}, \mathrm{J} 2-\mathrm{H}_{\mathrm{B}}, 12-\mathrm{H}_{\mathrm{B}}$), 3.00-2.47 (1H, br m, 4$\left.H_{A}\right), 1.80\left(0.4 \mathrm{H}, \mathrm{dt}, \mathrm{J} 6.6,3.6,3-\mathrm{H}_{\mathrm{A}}\right), 1.64\left(1 \mathrm{H}, \mathrm{app} . \mathrm{tt}, \mathrm{J} 13.9,3.3,4-\mathrm{H}_{\mathrm{B}}\right), 1.73(0.6 \mathrm{H}$,
$\left.\mathrm{dt}, \mathrm{J} 6.6,3.6,3-\mathrm{H}_{\mathrm{A}}\right), 1.23-1.12\left(1 \mathrm{H}, \mathrm{br} \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 149.3(\mathrm{C}-11 \mathrm{a})$, 136.8 (ipso-Ph), 130.4 (Ar-8), 129.1 (C-7a), 128.7 (Ar-10), 128.5 (Ph), 128.1 (Ph), 128.0 (Ph), 124.5 (C-11), 121.4 (C-9), $67.4\left(\mathrm{Cbz} \mathrm{CH}_{2}\right), 53.5(\mathrm{C}-5), 52.6$ (C-5), 57.2 (C2), 50.8 (C-12), 49.8 (C-7), 28.6 (C-4), 30.3 (C-4), 18.0 (C-3) (19 out of 36 signals present); HRMS found $\mathrm{MH}^{+}, 323.1756 . \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 323.1754.

tert-Butyl 3-((N-(2-bromobenzyl)-4-methylphenyl)sulfonamido)piperidine-1carboxylate 11c

Tosyl chloride ($179 \mathrm{mg}, 0.937 \mathrm{mmol}$), DIPEA ($155 \mu \mathrm{~L}, 0.937 \mathrm{mmol}$) and DMAP (3.8 $\mathrm{mg}, 5 \mathrm{~mol} \%$) were added in sequence to a mixture of amino ester $\mathbf{S 1 5}$ (230 mg , $0.625 \mathrm{mmol})$ in DCM (6 mL). The mixture was stirred for 16 h at room temperature, and the solvent evaporated under reduced pressure to give a crude product. The crude product was purified by flash column chromatography, eluting with 75:25 hexane-EtOAc to yield carbamate 11c as an undetermined mixture of rotamers ($210 \mathrm{mg}, 64 \%$) as a colourless oil, $R_{\mathrm{f}} 0.24$ ($8: 2$ hexane-EtOAc); $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 2974,2930$, 2862, 1689 (C=O), 1419, 1341, 1265, 1241, 1091, 856, 753 and 656; $\delta_{H}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.76$ (2H, d, J 8.3 Ts Ar), 7.68 (1H, d, J 7.7, 6-Ar), 7.48 (1H, d, J 7.9, 3-Ar), 7.35-7.29 (3H, m, 5-Ar, Ts Ar), 7.12 (1H, t, J 7.4, 4-Ar), 4.56-4.39 (2H, br m, benzyl $\left.\mathrm{CH}_{2}\right), 4.05-3.86\left(2 \mathrm{H}, \mathrm{br} m, 2-\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{A}}\right), 3.84-3.64(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.58-2.29(5 \mathrm{H}, \mathrm{m}, 2-$ $\left.H_{B}, 6-H_{B}, M e\right), 1.67-1.53\left(2 H, b r m, 4-H_{A}, 5-H_{A}\right), 1.44-1.32\left(11 H, m, 4-H_{B}, 5-H_{B}\right.$, $\left.\mathrm{C}(\mathrm{Me})_{3}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 154.5$ ($\mathrm{C}=\mathrm{O} \mathrm{Boc}$), 143.6 (Ts ipso-Ar), 137.9 (ipso-Ar-2), 137.4 (Ts ipso-Ar), 132.5 (Ar-3), 130.0 (Ts Ar), 129.9 (Ar-6), 129.0 (Ar-5), 127.8 (Ar4), 127.1 (Ts Ar), 122.0 (ipso-Ar-1), 79.9 (C(Me) $)_{3}$), 53.5 (C-3), 48.2 (C-2), 47.8 (benzyl CH_{2}), 47.0 (C-2), 43.9 (C-6), 43.1 (C-6), 29.3 (C-4), 28.4 (C(Me) $)_{3}$, 25.0 (C-5), 21.6
(Me) (22 out of 40 signals present); HRMS found MH^{+}, 523.1274. $\mathrm{C}_{24} \mathrm{H}_{32}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{~S}$ requires 523.1261 .

6-Tosyl-2,3,4,5,6,7-hexahydro-1,5-methanobenzo[b][1,5]diazonine 7c

7c was synthesised using general method F using carbamate 11 c ($200 \mathrm{mg}, 0.383$ $\mathrm{mmol}), \mathrm{HCl}(4.2 \mathrm{~mL}, 6 \mathrm{~N}), \operatorname{EtOAc}(0.5 \mathrm{~mL}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(14.1 \mathrm{mg})$, BINAP (19.1 mg), $\mathrm{NaOtBu}(73.8 \mathrm{mg}, 0.723 \mathrm{mmol})$ and toluene (5 mL). Heated at reflux for 16 h . The crude product was purified by flash column chromatography, eluting with 1:1 hexane-EtOAc to yield carbamate 7c (59.2 mg, 45\%) as a brown oil, $R_{\mathrm{f}} 0.40$ (1:1 hexane-EtOAc); $v_{\max } / \mathrm{cm}^{-1} 3054,2921,2860,1491,1336,1189,1101,729$ and 679; $\delta_{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.72(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3, \mathrm{Ts} \mathrm{Ar}), 7.31(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0$, Ts Ar), 7.15 (1 H, app. t, J $7.2,10-\mathrm{H}$), $6.98(1 \mathrm{H}, \mathrm{dd}, J 7.7,1.4,8-\mathrm{H}), 6.93$ ($1 \mathrm{H}, \mathrm{dd}, J 8.2$, $0.9,11-H), 6.82(1 \mathrm{H}, \mathrm{app} . \operatorname{td}, J 7.5,1.1,9-H), 4.67\left(1 \mathrm{H}, \mathrm{d}, ~ J 15.7,7-\mathrm{H}_{\mathrm{A}}\right), 4.46(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $15.6,7-H_{B}$), $3.78\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.7,2.2,12-\mathrm{H}_{A}\right.$), $3.64\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.8,1.9,2-\mathrm{H}_{A}\right), 3.56-$ $3.51(1 \mathrm{H}, \mathrm{br} m, 5-\mathrm{H}), 3.23-3.12\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}, 12-\mathrm{H}_{\mathrm{B}}\right), 2.79(1 \mathrm{H}, \mathrm{ddq}, \mathrm{J} 14.1,5.5,3.0$, $\left.4-\mathrm{H}_{\mathrm{A}}\right), 2.43(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.93\left(1 \mathrm{H}, \mathrm{app} . q \mathrm{t}, \mathrm{J} 13.3,3.8,3-\mathrm{H}_{\mathrm{A}}\right), 1.71(1 \mathrm{H}, \mathrm{app} . \mathrm{tt}, \mathrm{J} 13.8$, $3.3,4-\mathrm{H}_{\mathrm{B}}$), 1.24-1.17 ($1 \mathrm{H}, \mathrm{br} \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 149.2(\mathrm{C}-11 \mathrm{a}), 143.6$ (ipso-Ar Ts), 135.1 (ipso-Ar Ts), 130.6 (C-8), 129.8 (Ar Ts), 128.7 (C-10), 128.0 (C-7a), 127.7 (Ar Ts), 124.2 (Ar-11), 121.4 (C-9), 56.6 (C-2), 54.3 (C-5), 51.8 (C-7), 50.9 (C12), 31.6 (C-4), 21.7 (Me), 17.9 (C-3); HRMS found MNa^{+}, 365.1296. $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}$ requires 365.1294 .

tert-Butyl 3-((2-bromobenzyl)amino)azepane-1-carboxylate S16

S16 was synthesised using general method E using enecarbamate $\mathbf{5 e}$ ($49.3 \mathrm{mg}, 0.25$ $\mathrm{mmol})$. Reaction was performed in quadruplicate and the contents of the four vials combined before work-up. The crude product was purified by flash column chromatography eluting with 2:1 hexane-EtOAc to yield amine S16 as a 55:45 mixture of rotamers ($94.6 \mathrm{mg}, 25 \%$) as a yellow oil, $R_{f} 0.39$ (EtOAc); $v_{\text {max }} / \mathrm{cm}^{-1} 2973$, 2926, 2858, 1684 (C=O), 1466, 1412, 1364, 1160, 1044 and 750 ; $\delta_{H}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.54$ (0.55H, d, J 8.0, 3-Ar), 7.52 (0.45H, d, J 8.0, 3-Ar), 7.47 (0.45H, d, J 7.5, 6Ar), 7.41 ($0.55 \mathrm{H}, \mathrm{d}, J 7.5,6-\mathrm{Ar}$), $7.31-7.26$ ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{Ar}$), $7.15-7.07$ ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{Ar}$), 3.86 (0.45H, dd, J 14.1, 3.6, 2-H H_{A}), 3.78 (0.55H, dd, J 14.1, 3.6, 2-H H_{A}), 3.91 (0.9H, s, benzyl CH_{2}), $3.89\left(1.1 \mathrm{H}, \mathrm{s}\right.$, benzyl CH_{2}), $3.68\left(0.55 \mathrm{H}\right.$, ddd, J 13.2, 7.6, 5.1, 7- H_{A}), 3.48 (0.45 H , ddd, J 13.1, 7.6, 5.1, 7-H H_{A}, 3.23 (0.45 H , app. td, J 13.9, 5.9, $7-\mathrm{H}_{\mathrm{B}}$), 3.16 (0.55 H , app. td, J 13.6, 5.5, 7-H H_{B}), 3.00 (0.45 H , dd, J 13.9, 8.3, 2- H_{B}), 2.88 (0.55 H , dd, J 14.1, 8.9, 2-H ${ }_{\mathrm{B}}$, $2.87-2.81(0.45 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.74-2.81(0.55 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 1.93-1.71$ $\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}, 5-\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{A}}\right), 1.61-1.54\left(2 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{NH}, 6-\mathrm{H}_{\mathrm{B}}\right), 1.47\left(4.05 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{Me})_{3}\right)$, 1.45 ($\left.4.95 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{Me})_{3}\right), 1.43-1.33\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}, 5-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 156.0$ ($\mathrm{C}=\mathrm{O}$ Boc), 155.7 ($\mathrm{C}=\mathrm{O}$ Boc), 139.6 (ipso-Ar-2), 133.0 (Ar-3), 132.8 (Ar-3), 130.8 (Ar6), 130.2 (Ar-6), 128.8 (Ar-5), 128.7 (Ar-5), 127.7 (Ar-4), 127.6 (Ar-4), 124.13 (ipso-Ar-1), 124.05 (ipso-Ar-1), $78.0\left(C(\mathrm{Me})_{3}\right), 79.3$ (C(Me) $)_{3}$), 57.9 (C-3), 57.5 (C-3), 51.7 (benzyl CH_{2}), 51.6 (benzyl CH_{2}), 51.1 (C-2), 50.9 (C-2), 48.1 (C-7), 47.1 (C-7), 35.1 (C4), 34.1 (C-4), 28.7 (C(Me$)_{3}$), 28.6 ($\mathrm{C}(\mathrm{Me})_{3}$), 28.0 (C-6), 27.7 (C-6), 23.0 (C-5), 22.7 (C5) (31 out of 32 signals present); HRMS found MH^{+}, 383.1339. $\mathrm{C}_{18} \mathrm{H}_{28}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{2}$ requires 383.1329 .
tert-Butyl 3-(((benzyloxy)carbonyl)(2-bromobenzyl)amino)azepane-1-carboxylate 11d

11d was synthesised using general method C using benzyl chloroformate ($38 \mu \mathrm{~L}$, $0.266 \mathrm{mmol})$, amine $\mathbf{S 1 6}$ ($92.3 \mathrm{mg}, 0.242 \mathrm{mmol}$) and NaHCO_{3} ($122 \mathrm{mg}, 1.45 \mathrm{mmol}$) in DCM (2 mL) for 72 h . The crude product was purified by flash column chromatography, eluting with 80:20 hexane-EtOAc to yield carbamate 11d as 60:40 mixture of rotamers ($101 \mathrm{mg}, 81 \%$) as a colourless oil, $R_{\mathrm{f}} 0.67$ (1:1 hexane-EtOAc); $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ 2973, 2930, 2864, 1691 ($\mathrm{C}=\mathrm{O}$), 1414, 1365, 1249, 1162 and 749 ; $\delta_{\text {H }}(500$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.52 (1 H , app. t, J 8.6, 3-Ar), 7.47-7.05 (8H, br m, Ar), 5.22 (0.8 H , br s, Cbz CH 2), 5.11 (1.2H, br s, Cbz CH2 $)$, 4.72-4.41 (2 H , br m, benzyl CH_{2}), 4.00-3.81 $(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.82-3.73\left(0.4 \mathrm{H}, \mathrm{br} \mathrm{m}, 2-\mathrm{H}_{A}\right), 3.72-3.64\left(0.6 \mathrm{H}, \mathrm{br} \mathrm{m}, 2-\mathrm{H}_{A}\right), 3.58(0.6 \mathrm{H}$, ddd, J 14.4, 8.8, 5.8, 7- H_{A}), 3.54-3.20 (1.4H, br m, 7- $\left.\mathrm{H}_{\mathrm{B}}, 2-\mathrm{H}_{\mathrm{B}}\right), 3.19-2.99(1 \mathrm{H}, \mathrm{br}$ m, $\left.7-\mathrm{H}_{\mathrm{A}}, 2-\mathrm{H}_{B}\right), 1.92-1.62\left(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}, 5-\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{A}}\right), 1.60-1.33\left(10 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{Me})_{3}, 6-\mathrm{H}_{B}\right)$, 1.33-1.16 (1H, m, 5- H_{B}); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 156.6,156.0,155.8,155.5(\mathrm{C}=\mathrm{O}$ Boc/Cbz), 137.8 (ipso-Ar-2), 137.6 (ipso-Ar-2), 136.7 (ipso-Ph), 136.5 (ipso-Ph), 132.8 (Ar-3), 132.7 (Ar-3), 128.6, 128.5, 128.2, 128.0, 127.9, 127.8, 127.7, 127.5, 127.0 (Ar-4,5,6, Ph), 122.6 (ipso-Ar-1), 122.4 (ipso-Ar-1), $79.8\left(C(\mathrm{Me})_{3}\right), 79.5\left(C(\mathrm{Me})_{3}\right), 67.8$ ($\mathrm{Cbz} \mathrm{CH}_{2}$), $67.1\left(\mathrm{Cbz} \mathrm{CH}_{2}\right), 59.0(\mathrm{C}-3), 58.7(\mathrm{C}-3), 49.8$ (benzyl CH 2), 49.7 (benzyl CH2), 49.4 (C-2), 49.2 (C-2), 47.0 (C-7), 46.1 (C-7), 31.9 (C-4), 31.3 (C-4), 28.6 (C(Me) $)_{3}$), 28.5 ($\mathrm{C}(\mathrm{Me})_{3}$), 27.7 (C-6), 27.3 (C-6), 24.3 (C-5), 23.6 (C-5) (41 out of 44 signals present); HRMS found MH^{+}, 517.1705. $\mathrm{C}_{26} \mathrm{H}_{34}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{4}$ requires 517.1696.

HCl (0.7 mL of a 6 M solution) was added to a solution of N -Boc amine 11d (33.2 $\mathrm{mg}, 0.0659 \mathrm{mmol}$) in EtOAc (0.2 mL) and stirred for 3 h . The solvent was then removed under reduced pressure to give the NH amine. $\mathrm{Pd}(\mathrm{OAc})_{2}(1.3 \mathrm{mg}, 10$ mol\%), BINAP ($8.1 \mathrm{mg}, 2 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(23.8 \mathrm{mg}, 0.0725 \mathrm{mmol})$ and toluene (3 mL) were then added and the resulting mixture stirred at $110{ }^{\circ} \mathrm{C}$ for 96 h . The mixture was then allowed to cool to rt, filtered through celite, and washed with DCM (20 mL). The solvent was then removed under reduced pressure to give a crude product. The crude product was purified by flash column chromatography, eluting with 2:1 hexane-EtOAc to yield carbamate 7d ($7.4 \mathrm{mg}, 33 \%$) as a colourless oil, R_{f} 0.57 ($1: 1$ hexane-EtOAc); $v_{\text {max }} / \mathrm{cm}^{-1} 3064,3031,2925,2855,1690$ (C=O), 1599, 1493, 1414, 1303, 1244, 1157, 748 and 698; $\delta_{\text {H }}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.39-7.28$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $7.14-7.09(1 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}), 7.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.7,9-\mathrm{H}), 6.78(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3,12-\mathrm{H}), 6.63,(1 \mathrm{H}$, td, J 7.4, 1.0, 10-H), 5.16 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.4, \mathrm{Cbz} \mathrm{CH}_{2}$), 5.13 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.4, \mathrm{Cbz} \mathrm{CH}_{2}$), 5.08 $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.5,8-\mathrm{H}_{\mathrm{A}}\right), 4.77-4.62\left(1 \mathrm{H}, \mathrm{br} m, 8-\mathrm{H}_{\mathrm{B}}\right), 4.43-4.17\left(2 \mathrm{H}, \mathrm{br} \mathrm{m}, 6-\mathrm{H}, 13-\mathrm{H}_{\mathrm{A}}\right)$, $4.07\left(1 \mathrm{H}\right.$, app. d, J 14.2, 2-H H_{A}, $3.33\left(1 \mathrm{H}, \mathrm{dd}, J 16.4,5.0,13-\mathrm{H}_{\mathrm{B}}\right), 2.92(1 \mathrm{H}$, app. t, J 12.1, $2-\mathrm{H}_{\mathrm{A}}$), 2.44-2.34 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{A}}$), 1.83-1.70 (2H, br m, $\left.3-\mathrm{H}_{\mathrm{A}}, 4-\mathrm{H}_{\mathrm{A}}\right), 1.68-1.59$ (1 H , br m, $3-\mathrm{H}_{\mathrm{B}}$), 1.53-1.36 (2 H, br m, $4-\mathrm{H}_{\mathrm{B}}, 5-\mathrm{H}_{\mathrm{B}}$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 155.1(\mathrm{C}=\mathrm{O}$ Cbz), 149.0 (C-12a), 137.0 (ipso-Ph), 132.4 (C-9), 129.0 (C-11), 128.5 (Ph), 127.94 (Ph), 127.88 (Ph), 123.5 (8 a), 118.1 (C-10), 115.6 (C-12), 67.1 ($\mathrm{Cbz} \mathrm{CH}_{2}$), 57.6 (C-3), 54.8 (C-2), 53.9 (C-13), 48.7 (C-8), 32.2 (C-5), 28.2 (C-3), 25.5 (C-4); HRMS found MH^{+}, 337.1914. $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 337.1911.

(E)-1-Bromo-2-(2-nitrovinyl)benzene S17 ${ }^{14}$

2-Bromobenzaldehyde ($5.84 \mathrm{~mL}, 50.0 \mathrm{mmol}$) was added to a mixture of $\mathrm{NH}_{4} \mathrm{OAc}$ $(6.76 \mathrm{~g})$ in $\mathrm{AcOH}(140 \mathrm{~mL})$. Nitromethane (9.25 mL) was slowly added with stirring over 5 min . The mixture was heated at reflux for 4 h and then ice-cold water (100 $\mathrm{mL})$ added. The organics were extracted with DCM $(100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated under reduced pressure to give a crude product. The crude product was purified by flash column chromatography, eluting with 80:20 hexane- $\mathrm{Et}_{2} \mathrm{O}$ to yield alkene $\mathbf{S 1 7}(10.4 \mathrm{~g}, 92 \%)$ as a yellow amorphous solid, $R_{f} 0.54$ (1:1 hexane-Et ${ }_{2}$ O); $v_{\max } / \mathrm{cm}^{-1} 3110,3055,2974,2850,1663,1512,1466,1337,1284$, 1046, 1027, 960, 758 and 744 ; $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.40$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.7, \mathrm{CHAr}$), 7.69 (1H, dd, J 7.8, 1.4, 6-Ar), 7.57 (1H, dd, J 7.6, 1.8, 3-Ar), 7.42-7.31 (2H, m, 4,5-Ar), 7.54 (1H, d, J 13.6, CHNO 2); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 139.0\left(\mathrm{CHNO}_{2}\right), 137.7$ (CHAr), 134.2 (Ar-6), 133.1 (Ar-4/5), 130.5 (ipso-2-Ar), 128.6 (Ar-4/5), 128.2 (Ar-3), 126.5 (ispo-1Ar); Spectroscopic data are consistent with those reported in the literature. ${ }^{14}$

2-(2-Bromophenyl)ethan-1-amine 10b ${ }^{15}$

LiAlH_{4} (33.3 mL of a 2.4 M solution in THF, 80.0 mmol) was added dropwise to a solution of alkene $\mathbf{S 1 7}(4.54 \mathrm{~g}, 20.0 \mathrm{mmol})$ in THF $(120 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 5 h . Then, water (15 mL), 20\% $\mathrm{NaOH}(15 \mathrm{~mL}$) and water (32 mL) were added in sequence. The resulting precipitate was filtered and washed
with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The filtrate was then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The crude product was purified by flash column chromatography, eluting with 90:10 EtOAc-MeOH to yield slightly impure amine 10b (1.40 g, ~35\%) as a brown oil, $R_{f} 0.13$ (9:1 EtOAc-MeOH); $v_{\max } / \mathrm{cm}^{-1} 3057$ (NH), 2930, 2855, 1566, 1470, 1439, 1023, 749 and 658; $\delta_{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6,6-\mathrm{Ar}), 7.25-7.22(1 \mathrm{H}, \mathrm{m}$, 3,4-Ar), 7.10-7.05 (2H, m, 5-Ar), 3.00-2.96 (2H, m, CH2 NH_{2}), 2.92-2.88 (2H, m, $\mathrm{CH}_{2} \mathrm{Ar}$), $1.78\left(2 \mathrm{H}, \mathrm{br} s, \mathrm{NH}_{2}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 139.2$ (ipso-2-Ar), 133.1 (Ar-6), 131.2 (Ar-3/4), 128.1 (Ar-5), 127.6 (Ar-3/4), 124.8 (ispo-1-Ar), $42.2\left(\mathrm{CH}_{2} \mathrm{NH}_{2}\right), 40.3$ $\left(\mathrm{CH}_{2} \mathrm{Ar}\right)$; Spectroscopic data are consistent with those reported in the literature. ${ }^{15}$
tert-Butyl 3-((2-bromophenethyl)amino)piperidine-1-carboxylate S18

To a 7 mL vial were added $\left[\mathrm{Ir}(\mathrm{dF}(\mathrm{Me}) \mathrm{ppy})_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}\right](5.1 \mathrm{mg}, 2 \mathrm{~mol} \%)$, TRIP thiol ($27 \mathrm{mg}, 50 \mathrm{~mol} \%$), 2-(2-Bromophenyl)ethan-1-amine ($99.5 \mathrm{mg}, 0.5 \mathrm{mmol}$) and enecarbamate 5 e ($45.8 \mathrm{mg}, 0.25 \mathrm{mmol}$). Toluene (5 mL) was then added under N_{2} and the resultant mixture was stirred for 16 h under irradiation with a blue LED and fan cooling. Reaction was performed in quadruplicate and the contents of the four vials combined before work-up. Then, the solvent was evaporated under reduced pressure to give a crude product. The crude product was purified by flash column chromatography eluting with EtOAc to yield amine $\mathbf{S} \mathbf{1 8}$ as an undetermined mixture of rotamers ($207 \mathrm{mg}, 54 \%$) as a yellow oil, $R_{\mathrm{f}} 0.19$ (EtOAc); $v_{\max } / \mathrm{cm}^{-1} 2974,2932$, 2857, 1687 (C=O), 1421, 1365, 1239, 1174, 1151 and 752 ; $\delta_{\text {H }}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.53$ (1H, d, J 7.9, 3-Ar), 7.25-7.22 (2H, m, 5-Ar, 6-Ar), 7.14-7.10 (1H, m, 4-Ar), 4.23-3.82 (1H, br m, 2- H_{A}), $3.79\left(1 \mathrm{H}\right.$, app. d, J 13.1, 6- H_{A}), 2.96-2.88 (4H, m, benzylamine CH_{2}), 2.88-2.77 (1H, m, 6-H $)_{B}, 2.77-2.49\left(1 \mathrm{H}\right.$, br m, 2-H $\left.\mathrm{H}_{\mathrm{B}}, 3-\mathrm{H}\right), 1.96-1.87\left(1 \mathrm{H}, \mathrm{br} m, 4-\mathrm{H}_{\mathrm{A}}\right)$, $1.66\left(1 \mathrm{H}\right.$, app. ddt, $\left.12.4,8.1,3.9,5-\mathrm{H}_{A}\right), 1.48-1.42\left(11 \mathrm{H}, \mathrm{m}, \mathrm{NH}, 5-\mathrm{H}_{\mathrm{A}}, \mathrm{C}(\mathrm{Me})_{3}\right), 1.31-$
1.22 ($1 \mathrm{H}, \mathrm{br} \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 155.1$ (C=O Boc), 139.4 (ipso-Ar-2), 133.0 (Ar-3), 130.9 (Ar-6), 128.1 (Ar-5), 127.6 (Ar-4), 124.7 (ipso-Ar-1), 79.6 (C(Me) $)_{3}$), 53.8 (C-3), 49.7 (C-2), 49.0 (C-2), 46.8 (benzyl NCH 2), 44.6 (C-6), 43.9 (C-6), 37.1 (benzyl $\mathrm{CH}_{2} \mathrm{Ar}$), 31.7 (C-4), 28.6 ($\mathrm{C}(\mathrm{Me})_{3}$), 24.0 (C-5), 23.5 (C-5) (19 out of 32 signals present); HRMS found $\mathrm{MH}^{+}, 383.1335 . \mathrm{C}_{18} \mathrm{H}_{28}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{2}$ requires 383.1329 .
tert-Butyl 3-(((benzyloxy)carbonyl)(2-bromophenethyl)amino)piperidine-1carboxylate 11e

11e was synthesised using general method C using benzyl chloroformate ($82 \mu \mathrm{~L}$, 0.576 mmol), amine $\mathbf{S 1 8}$ ($200 \mathrm{mg}, 0.524 \mathrm{mmol}$) and NaHCO_{3} ($200 \mathrm{mg}, 0.524 \mathrm{mmol}$) in DCM (5 mL) for 72 h . The crude product was purified by flash column chromatography, eluting with 75:25 hexane-EtOAc to yield carbamate 11e as 60:40 mixture of rotamers ($263 \mathrm{mg}, 87 \%$) as a colourless oil, $R_{\mathrm{f}} 0.64$ (1:1 hexane-EtOAc); $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 2936,2862,1692$ (C=O), 1471, 1416, 1365, 1265, 1242, 1170, 1150, 752 and 698; $\delta_{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.58-7.46$ (1H, br m, 3-Ar), 7.44-7.30 (5H, m, Ar, Ph), 7.25-6.94 (3H, m, Ar, Ph), 5.27-5.04 (2H, br m, CH ${ }_{2}$ Cbz), 4.27-3.87 (2H, br m, 2- H_{A}, $6-\mathrm{H}_{\mathrm{A}}$), $3.79(1 \mathrm{H}$, app. ddd, J 15.3, 10.9, 4.2, 3-H), 3.49-3.29 (2H, br m, benzylamine NCH_{2}), 3.08-2.90 (2 H , br m, benzylamine $\mathrm{CH}_{2} \mathrm{Ar}$), 2.89-2.80 ($0.6 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}$), 2.79$2.66\left(0.4 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}\right), 2.64-2.40(1 \mathrm{H}$, br m, 6-HB$), 1.85-1.64\left(3 \mathrm{H}, \mathrm{br}\right.$ m, $\left.4-\mathrm{H}_{2}, 5-\mathrm{H}_{\mathrm{A}}\right)$, 1.57-1.32 (10H, br m, $\left.4-\mathrm{H}_{\mathrm{B}}, \mathrm{C}(\mathrm{Me})_{3}\right)$; $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 155.9, $154.9(\mathrm{C}=\mathrm{O}$ Boc/Cbz), 138.5 (ipso-Ar-2), 136.7 (ipso-Ph), 132.9 (Ar-3), 131.2 (Ar-6), 128.7 (Ar), 128.4 (Ar), 128.3 (Ar), 127.8 (Ar), 124.6 (ipso-Ar-1), 79.9 ($\left.C(\mathrm{Me})_{3}\right), 67.4\left(\mathrm{CH}_{2} \mathrm{Cbz}\right)$, 54.4 (C-3), 47.1 (C-2), 44.9 (benzyl NCH 2), 43.3 (C-6), 37.2 (benzyl CH 2 Ar), 29.2 (C-4), 28.6 ($\mathrm{C}(\mathrm{Me})_{3}$), 25.1 (C-5) (21 out of 22 signals present); HRMS found $\mathrm{MH}^{+}, 517.1714$. $\mathrm{C}_{26} \mathrm{H}_{34}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{4}$ requires 517.1696.

7e was synthesised using general method F using carbamate 11 e ($110 \mathrm{mg}, 0.213$ $\mathrm{mmol}), \mathrm{HCl}(2.3 \mathrm{~mL}, 6 \mathrm{~N})$, EtOAc (0.4 mL), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(7.8 \mathrm{mg})$, BINAP (10.6 mg), $\mathrm{NaOtBu}(41.0 \mathrm{mg}, 0.405 \mathrm{mmol})$ and toluene (4 mL). Heated at reflux for 96 h . The crude product was purified by flash column chromatography, eluting with 9:1 hexane-EtOAc to yield carbamate $\mathbf{7 e}$ as a $55: 45$ mixture of rotamers ($1.3 \mathrm{mg}, \mathbf{2 \%}$) as an orange oil, $R_{\mathrm{f}} 0.48$ (7:3 hexane-EtOAc); $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ 2924, 2852, 1690 ($\mathrm{C}=\mathrm{O}$), 1497, 1455, 1420, 1226, 1174, 753 and 698; $\delta_{\text {H }}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.34-7.24$ ($5 \mathrm{H}, \mathrm{br}$ m, Ph), 7.05 (1H, td, J 7.7, 0.8, 11-H), 6.97 ($0.55 \mathrm{H}, \mathrm{d}, ~ J 7.5,9-\mathrm{H}$), 6.93 (0.45H, d, J 7.3, $9-H), 6.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0,12-\mathrm{H}), 6.67$ ($0.55 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4, \mathrm{C}-10$), 6.66 ($0.45 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4, \mathrm{C}-10$), 5.15-5.07 ($2 \mathrm{H}, \mathrm{br}$ m, Cbz CH2), 4.68 (0.55 H , dd, J 14.8, 10.3, $7-\mathrm{H}_{\mathrm{A}}$), 4.42 (0.45 H , dd, J $\left.15.2,10.2,7-\mathrm{H}_{\mathrm{A}}\right), 4.37-4.32(0.45 \mathrm{H}, \mathrm{br}$ m, $5-\mathrm{H}), 4.20-4.16$ (0.55 H, br m, $5-\mathrm{H}$), $3.58-$ $3.48\left(2 \mathrm{H}\right.$, br m, $\left.2-\mathrm{H}_{\mathrm{A}}, 13-\mathrm{H}_{\mathrm{A}}\right), 3.48-3.38\left(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{B}}\right), 3.38-3.21\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{B}}, 13-\right.$ $\left.H_{B}\right), 3.21-3.10\left(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{\mathrm{A}}\right), 2.82\left(1 \mathrm{H}, \mathrm{app} . \mathrm{dd}, \mathrm{J} 17.9,6.1,8-\mathrm{H}_{\mathrm{B}}\right), 1.92-1.68(3 \mathrm{H}, \mathrm{br}$ $\left.\mathrm{m}, 4-\mathrm{H}_{2}, 5-\mathrm{H}_{\mathrm{A}}\right), 1.40-1.46\left(1 \mathrm{H}, \mathrm{br} \mathrm{m}, 5-\mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 156.6$ (C=O Cbz), 156.0 ($\mathrm{C}=\mathrm{O} \mathrm{Cbz}$), 148.8 ($\mathrm{C}-12 \mathrm{a}$), 148.7 ($\mathrm{C}-12 \mathrm{a}$), 137.2 (ipso-Ph), 137.1 (ipso-Ph), 132.2 (C-9), 132.1 (C-9), 129.7 (C-8a), 129.3 (C-8a), 128.7 (Ph), 128.1 (Ph), 128.0 (Ph), 127.5 (C-11), 127.4 (C-11), 119.5 (C-12), 119.4 (C-12), 119.3 (C-10), 119.2 (C10), $67.4\left(\mathrm{Cbz} \mathrm{CH}_{2}\right), 67.3\left(\mathrm{Cbz} \mathrm{CH}_{2}\right), 50.22,50.18,49.8$ (C-2/13), 49.3 (C-5), 49.0 (C5), 42.5 (C-7), 41.7 (C-7), 38.0 (C-8), 37.6 (C-8), 30.2 (C-4), 29.9 (C-4), 21.9 (C-5) (33 out of 38 signals present); HRMS found MNa^{+}, 359.1727. $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}$ requires 359.1730.

6. NMR, IR, Distortion Parameters and X-ray data ${ }^{6,16}$

Summary of $\mathrm{C}=\mathrm{O}^{13} \mathrm{C}$ NMR and IR data for all bicyclic lactams:

Entry	Lactam	${ }^{13} \mathrm{C}$ NMR C=O δ (ppm)	IR C=O (cm^{-1})
1	 6d	183.1	1682
2		182.1, 182.0	1680
3		181.4	1684
4		180.2	1686
5		179.9	1691

X-ray crystallographic data:

61

CCDC 1588303

CCDC 1588304

CCDC 2192693

Crystallographic data for compounds $\mathbf{6} \mathbf{f}^{\mathbf{\prime}}$ and $\mathbf{6} \mathbf{\mathbf { k } ^ { \prime }}$ previously reported. ${ }^{6}$

Data for 61 (CCDC 2192693):

Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$
Formula weight	302.36
Temperature/K	$100.01(10)$
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
a / \AA	$12.1041(10)$
b / \AA	$11.5162(9)$
c / \AA	$10.8177(8)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$95.407(7)$
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$1501.2(2)$
Z	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.338
μ / mm^{-1}	0.092
$\mathrm{~F}(000)$	648

Crystal size $/ \mathrm{mm}^{3}$	$0.25 \times 0.15 \times 0.09$
Radiation	$\mathrm{Mo} \mathrm{K} \alpha(\lambda=0.71073)$
2 Θ range for data collection/ ${ }^{\circ}$	5.178 to 59.002
Index ranges	$-16 \leq \mathrm{h} \leq 12,-12 \leq \mathrm{k} \leq 15,-14 \leq \mathrm{I} \leq 14$
Reflections collected	8357
Independent reflections	$3554\left[\mathrm{R}_{\text {int }}=0.0392, \mathrm{R}_{\text {sigma }}=0.0672\right]$
Data/restraints/parameters	$3554 / 0 / 199$
Goodness-of-fit on F^{2}	1.087
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0628, \mathrm{wR}_{2}=0.1184$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0913, \mathrm{wR}_{2}=0.1305$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$0.29 /-0.27$

Entry	Distortion parameters $\left(^{\circ}\right.$)							Bond lengths (\AA)		${ }^{13} \mathrm{C}$ NMR (8)	Sum of bond angles at $\mathbf{N}\left({ }^{\circ}\right)$
	ω_{1}	ω_{2}	ω_{3}	ω_{4}	Xc	χ_{N}	τ	N-C(O)	$\mathrm{C}=0$		
$6 f^{\text {a }}$	0.06	46.86	173.98	-127.06	6.08	52.88	23.5	1.380	1.233	182.9	333.7
$6{ }^{\text {²a }}$	8.61	-26.54	-168.55	150.62	2.84	37.99	8.9	1.361	1.218	179.6	348.8
61	-4.22	11.36	173.82	-166.68	1.96	17.54	3.57	1.355	1.233	$\begin{gathered} 172.80 \\ 172.75 \end{gathered}$	357.8

${ }^{\text {a }}$ Compounds and associated data published previously. ${ }^{6}$

7. $\mathrm{p} K_{\mathrm{a}}$ Determinations of Bicyclic Anilines

Experimental details:

Non-aqueous (DMSO) $\mathrm{p} K_{\mathrm{a}}$ determinations were performed using the method published by lggo et. al. ${ }^{17}$

Experiments were performed in Norell Sample Vault NMR tubes on a Bruker AV-I 400 spectrometer operating at 400.053 MHz for ${ }^{1} \mathrm{H}$. CSI experiments were carried out using the gradient phase encoding sequence of Schenck et al. ${ }^{17}$ This is based on the sequences of Trigo-Mourino et al ${ }^{18}$ and Wallace et al. ${ }^{19}$

The phase encoding gradient pulse \mathbf{g} was 267.52220μ s and varied from -27 to 27 Gcm^{-1} in 128 slices. Typically, 16 dummy scans preceded signal acquisition, with 8 scans acquired for each gradient increment, with an acquisition time of 1.278 s . A spoil gradient of $27 \mathrm{Gcm}^{-1}$ was included after the acquisition period to destroy any remaining transverse magnetisation. Time domain data files were transformed without zero-filling using sine bell apodization. A 128 slice CSI experiment had a total acquisition time of 32 minutes with a theoretical spatial resolution of 0.15 mm .

All indicator $0.6 \mathrm{~mol} / \mathrm{L}$ stock solutions were prepared with dry DMSO- d_{6} as 2 mL stock solutions in a N_{2} purged glovebox. Volatile reagents deleterious to the glovebox were added in air. A $33 \mathrm{mmol} / \mathrm{L}$ stock solution of hexamethyldisilane in dry DMSO- d_{6} was prepared to act as a pH independent internal chemical shift reference.

Benzyl 3,4-dihydro-2H-1,4-methanobenzo[b][1,5]diazocine-5(6H)-carboxylate 7a:

The analyte was dissolved in $1144 \mu \mathrm{~L}$ of dry DMSO- d_{6}. The following volumes of stock solutions were then added: $15 \mu \mathrm{~L}$ of pyridine solution; $15 \mu \mathrm{~L}$ of 2,6 -lutidine solution; $10 \mu \mathrm{~L}$ of 1-methylimidazole solution; $10 \mu \mathrm{~L}$ of N, N-dimethylbenzylamine solution and $6 \mu \mathrm{~L}$ of HMDS solution. The resulting concentrations of analyte and indicators in the measured sample were: Analyte $7 \mathrm{a} 5.40 \mathrm{mmol} / \mathrm{L}$; pyridine $=7.5$
$\mathrm{mmol} / \mathrm{L} ; 2,6$-lutidine $=7.5 \mathrm{mmol} / \mathrm{L} ; 1$-methylimidazole $=5 \mathrm{mmol} / \mathrm{L} ; N, N$ dimethylbenzylamine $=5 \mathrm{mmol} / \mathrm{L} ; \mathrm{HMDS}=165 \mu \mathrm{~mol} / \mathrm{L}$.

Benzyl 2,3,4,5-tetrahydro-1,5-methanobenzo[b][1,5]diazonine-6(7H)-carboxylate 7b:

The analyte was dissolved in $1140 \mu \mathrm{~L}$ of anhydrous $\mathrm{DMSO}-\mathrm{d}_{6}$. The following volumes of stock solutions were then added: $15 \mu \mathrm{~L}$ of N, N-dimethylaniline solution; $15 \mu \mathrm{~L}$ of pyridine solution; $10 \mu \mathrm{~L}$ of 2,6 -lutidine solution; $10 \mu \mathrm{~L}$ of 1 methylimidazole solution and $10 \mu \mathrm{~L}$ of HMDS solution. The resulting concentrations of analyte and indicators in the measured sample were: Analyte $\mathbf{7 b}=5.17 \mathrm{mmol} / \mathrm{L}$; N, N-dimethylaniline $=7.5 \mathrm{mmol} / \mathrm{L} ;$ pyridine $=7.5 \mathrm{mmol} / \mathrm{L} ; 2,6$-lutidine $=7.5$ $\mathrm{mmol} / \mathrm{L}$; 1-methylimidazole $=5 \mathrm{mmol} / \mathrm{L} ; \mathrm{HMDS}=275 \mu \mathrm{~mol} / \mathrm{L}$.

Benzyl 3,4,5,6-tetrahydro-2H-1,6-methanobenzo[b][1,5]diazecine-7(8H)carboxylate 7d:

The analyte was dissolved in $1140 \mu \mathrm{~L}$ of anhydrous DMSO- d_{6}. The following volumes of stock solutions were then added: $15 \mu \mathrm{~L}$ of N, N-dimethylaniline solution; $15 \mu \mathrm{~L}$ of pyridine solution; $10 \mu \mathrm{~L}$ of 2,6 -lutidine solution; $10 \mu \mathrm{~L}$ of 1 methylimidazole solution and $10 \mu \mathrm{~L}$ of HMDS solution. The resulting concentrations of analyte and indicators in the measured sample were: Analyte 7d=5.20 mmol $/ \mathrm{L}$; N, N-dimethylaniline $=7.5 \mathrm{mmol} / \mathrm{L}$; pyridine $=7.5 \mathrm{mmol} / \mathrm{L} ; 2,6$-lutidine $=7.5$ mmol / L; 1-methylimidazole $=5 \mathrm{mmol} / \mathrm{L} ; \mathrm{HMDS}=275 \mu \mathrm{~mol} / \mathrm{L}$.

To establish a pH gradient, solid acid was weighed directly into the NMR tube using a Mettler AE101 balance with a stated precision of $\pm 0.01 \mathrm{mg}$. Four 2 mm glass beads were placed on top of the solid acid in the NMR tube to prevent rapid mixing. $550 \mu \mathrm{~L}$ of basic solution was then gently layered on top of the glass beads and the tube left to stand vertically at ambient laboratory temperature $\left(20^{\circ} \mathrm{C}\right)$ until analysis. Basic analytes were investigated by titrating a solid acid of known $\mathrm{p} K_{\mathrm{a}}(p-$ toluenesulfonic acid) against a solution containing the analyte and several basic
indicators as specified. Limiting shifts of indicators were determined independently from the imaging experiments. An excess of strong acid or base was used to measure limiting shifts of all reagents.

Water content across the samples was assessed by NMR and established to be below $1.0 \mathrm{v} \%$ and as such low it would not have an impact on $\mathrm{p} K_{\mathrm{a}}$ value. ${ }^{17}$

Electronic Structure and $p \mathrm{~K}_{\mathrm{a}}$ Calculations

Geometries of 7a, 7b and 7d were optimised using Density-Functional Theory (DFT). A conformational search was performed, and only conformers with the lowest energy were used for further calculations. M06-2x functional and 6-31G** basis set were used within the Schrodinger optimisation tool. ${ }^{21,22,23}$ The tool performed quantum mechanical Hessian matrix analysis to avoid convergence at a local minimum. Pseudospectral methods were turned off. Geometries were optimised in the gas phase and also in the parallel runs in both DMSO and water using Poisson Boltzmann Finite (PBF) solvation model.

Jaguar Prediction Method was used to calculate $p K_{a}$ in water of $\mathbf{7 a}, \mathbf{7 b}$ and 7d. ${ }^{20,21,22,23,24}$ It calculates a reference value from the gas and water-solvated phase energies. The conformational search was performed, and only conformers with the lowest energy were used for further calculations. Gas phase and water-solvated geometries were optimised using B3LYP/6-31G* density functional theory (DFT). Pseudospectral methods were turned off. Energies of each optimised geometry were obtained using single spot B3LYP/cc-pVTZ(+) DFT calculations. The solvationfree energy of the protonated and deprotonated species with empirical parameterisation being applied. The results were collected, and raw $p \mathrm{~K}_{\mathrm{a}}$ was calculated. The final $p \mathrm{~K}_{\mathrm{a}}$ is obtained after applying empirical corrections. ${ }^{20,21,22,23,24}$

Results:

Benzyl 3,4-dihydro-2H-1,4-methanobenzo[b][1,5]diazocine-5(6H)-carboxylate 7a:

Basic indicators: pyridine ($\mathrm{p} K_{\mathrm{a}}=3.4$), 2,6-lutidine ($\mathrm{p} K_{\mathrm{a}}=4.46$), 1-methylimidazole $\left(\mathrm{p} K_{\mathrm{a}}=6.15\right), N, N$-dimethylbenzylamine $\left(\mathrm{p} K_{\mathrm{a}}=7.60\right)$.

Titration curve:

83 data points
$R^{2}=0.999999504$
$\mathrm{p} K_{\mathrm{a}}(\mathrm{dmso})=3.85(+/-0.1)$

Geometry optimised in gas phase for 7a:

Sum of bond angles at nitrogen: $\Sigma_{\text {angles }}=335.2$

Electrostatic potential map in gas phase for 7a:

Convergence parameters in gas phase for 7a:

Geometry optimised in DMSO for 7a:

Sum of bond angles at nitrogen: $\Sigma_{\text {angles }}=331.5^{\circ}$

Electrostatic potential map in DMSO for 7a:

Convergence parameters in DMSO for 7a:

Geometry optimised in water for 7a:

Sum of bond angles at nitrogen: $\Sigma_{\text {angles }}=331.1$

Electrostatic potential map in water for 7a:

Convergence parameters in water for 7a:

$\mathrm{p} K_{\mathrm{a}(\text { water } J \mathrm{PM})}=5.64(+/-0.5)$ 7b:

Basic indicators: pyridine ($\mathrm{p} K_{\mathrm{a}}=3.4$), N, N-dimethylaniline ($\mathrm{p} K_{\mathrm{a}}=2.51$).

Titration curve:

79 data points
$R^{2}=0.999955198$
$\mathrm{p} K_{\mathrm{a}}=2.10(+/-0.1)$

Geometry optimised in gas phase for 7b:

Sum of bond angles at nitrogen: $\Sigma_{\text {angles }}=344.8$

Electrostatic potential map in gas phase for 7b:

Convergence parameters in gas phase for 7b:

Geometry optimised in DMSO for 7b:

Sum of bond angles at nitrogen: $\Sigma_{\text {angles }}=342.6$

Electrostatic potential map in DMSO for 7b:

Convergence parameters in DMSO for 7b:

Geometry optimised in water for 7b:

Sum of bond angles at nitrogen: $\Sigma_{\text {angles }}=342.2^{\circ}$

Electrostatic potential map in water for 7b:

Convergence parameters in water for 7b:

$\mathrm{p} K_{\mathrm{a}(\text { water } J \mathrm{PM})}=3.56(+/-0.5)$
carboxylate 7d:

7d

Basic indicators: pyridine ($\mathrm{p} K_{\mathrm{a}}=3.4$), 2,6-lutidine ($\mathrm{p} K_{\mathrm{a}}=4.46$), 1-methylimidazole $\left(\mathrm{p} K_{\mathrm{a}}=6.15\right), N, N$-dimethylaniline $\left(\mathrm{p} K_{\mathrm{a}}=2.51\right)$.

Titration curve:

59 data points
$R^{2}=0.999999641$
$\mathrm{p} K_{\mathrm{a}}=0.81(+/-0.1)$

Optimised Geometry in gas phase for 7d:

Sum of bond angles at nitrogen: $\Sigma_{\text {angles }}=351.3^{\circ}$

Electrostatic potential map in gas phase for $\mathbf{7 d}$:

Convergence parameters in gas phase for 7d:

Optimised Geometry in DMSO for 7d:

Sum of bond angles at nitrogen: $\Sigma_{\text {angles }}=350.5^{\circ}$

Electrostatic potential map in DMSO for 7d:

Convergence parameters in DMSO for 7d:

Geometry optimised in water for 7d:

Sum of bond angles at nitrogen: $\Sigma_{\text {angles }}=350.2^{\circ}$

Electrostatic potential map in water for 7d:

Convergence parameters in water for 7d:

$\mathrm{p} K_{\mathrm{a}}$ (water JPM) $=1.27(+/-0.5)$

8. Antimicrobial Assays of Twisted Lactams

General Experimental:

All antibacterial screening was performed by Julian Chesti (University of Leeds). Minimum inhibitory concentration (MIC) values for selected compounds were determined by broth microdilution against S. aureus strain ATCC $_{29213}{ }^{25}$ according to CLSI guidelines for low solubility compounds except for using Iso-Sensitest Broth (ISB) in place of cation-adjusted Mueller-Hinton Broth (MHB-II). ${ }^{26}$

A 2-fold dilution series of the isolated compounds in DMSO was prepared, ranging from 6400-12.5 $\mathrm{\mu g} \mathrm{~mL}^{-1}$. Each dilution was transferred into a 96 -well format at a final volume of $1 \mu \mathrm{~L}$ and $99 \mu \mathrm{~L}$ of the standardised culture was added to each well to give final antibiotic concentrations of $64-0.125 \mu \mathrm{~g} \mathrm{~mL}-1$ ($1 \% \mathrm{DMSO}$ in ISB). Plates were incubated for 16 h at $37^{\circ} \mathrm{C}$ (Inkubator 1000, Heidolph) and the minimum inhibitory concentration (MIC) was determined visually as the lowest concentration at which growth was inhibited.

Raw Data:

Table 8.1: Plate reader raw data for the twisted lactam series.

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |

Table 8.2: Plate reader raw data for active twisted lactam $\mathbf{6 e}$ against control 6 f. MIC $=32 \mu \mathrm{~g} / \mathrm{mL}$

Concentration ($\mu \mathrm{g} / \mathrm{mL}$)	Measured absorbance values as optical density for each concentration of sample							
	Colony 1		Colony 2		Colony 3		Colony 1 (Control, 6f)	
64	0.139	0.157	0.145	0.156	0.87	0.157	5.717	5.237
32	0.122	4.638	3.687	0.171	0.16	0.165	4.494	4.652
16	3.978	5.883	6.027	6.091	5.813	5.158	5.197	4.331
8	5.239	5.654	4.97	4.961	5.417	5.738	5.24	5.45

4	5.447	6.968	6.727	5.822	6.456	5.725	5.253	5.391
2	5.212	5.572	5.745	4.688	4.976	4.86	5.072	5.165
1	5.42	5.817	5.272	5.404	5.435	5.152	3.984	4.966
0.5	5.422	5.224	5.511	4.987	5.49	5.591	4.905	5.146
0.25	5.295	5.167	4.935	4.813	4.992	5.222	4.672	4.968
0.125	5.32	5.055	5.341	5.036	4.98	5.099	5.231	5.513

Growth inhibition:

Growth inhibition values were calculated for lactam $\mathbf{6 e}$ within excel using the optical density (OD) data obtained from the plate reader presented in table 8.2, using equation 1. Duplicates and colonies were averaged. Outlining values were excluded. Growth inhibition was calculated at 97.247\% ($64 \mu \mathrm{~g} / \mathrm{mL}$) and $96.621(32$ $\mu \mathrm{g} / \mathrm{mL})$.

$$
\text { Growth inhibition }(\%)=\frac{\left(O D_{\text {control }}-O D_{\text {sample }}\right)}{O D_{\text {control }}} \times 100 \#(1)
$$

9. References

1. Sheldrick G.M., Acta Crystallogr. A 2015, 71, 3-8.
2. Sheldrick G.M., Acta Crystallogr. C 2015, 71, 3-8.
3. Trindade A., Faulkner E., Leach A., Nelson A. and Marsden S.P., Chem. Commun. 2020, 8802-5.
4. Tereshchenko O.D., Perebiynis M.Y., Knysh I. V., Vasylets O. V., Sorochenko A.A., Slobodyanyuk E.Y., et al., Adv. Synth. Catal. 2020, 362, 3229-42.
5. Francis D., Nelson A. and Marsden S.P., Chem. - A Eur. J. 2020, 26, 14861-5.
6. Hassan H., Marsden S.P. and Nelson A., Bioorganic Med. Chem. 2018, 26, 3030-3.
7. Xia Q., Li Y., Cheng L., Liang X., Cao C., Dai P., et al., Org. Lett. 2020, 22, 963843.
8. Taylor N.J., Emer E., Preshlock S., Schedler M., Tredwell M., Verhoog S., et al., J. Am. Chem. Soc. 2017, 139, 8267-76.
9. Daly K., Nomak R. and Snyder J.K., Tetrahedron Lett. 1997, 38, 8611-4.
10. Yu J., Truc V., Riebel P., Hierl E. and Mudryk B., Tetrahedron Lett. 2005, 46, 4011-3.
11. McLean E.B., Mooney D.T., Burns D.J. and Lee A.L., Org. Lett. 2022, 24, 68691.
12. Richards G., Skerry T. M., Harrity, J. P. A., Zirimwabagabo J., Tozer M. J., Gobson K. R., Porter R. A., Glossop P.A., WO2020099882A1, 2020.
13. Berggren K., Vindebro R., Bergström C., Spoerry C., Persson H., Fex T., et al., J. Med. Chem. 2012, 55, 2549-60.
14. Chang C.F., Huang C.Y., Huang Y.C., Lin K.Y., Lee Y.J. and Wang C.J., Synth. Commun. 2010, 40, 3452-66.
15. Mestichelli P., Scott M.J., Galloway W.R.J.D., Selwyn J., Parker J.S. and Spring D.R., Org. Lett. 2013, 15, 5448-51.
16. Szostak M. and Aubé J., Chem. Rev. 2013, 113, 5701-65.
17. Schenck G., Baj K., Iggo J.A. and Wallace M., Anal. Chem. 2022, 94, 8115-9.
18. Trigo-Mouriño P., Merle C., Koos M.R.M., Luy B. and Gil R.R., Chem. Eur. J. 2013, 19, 7013-9.
19. Wallace M., Adams D.J. and Iggo J.A., Anal. Chem. 2018, 90, 4160-6.
20. Schrödinger Release 2023-1: Maestro, Schrödinger, LLC, New York, NY 2021,
21. Bochevarov A.D., Watson M.A., Greenwood J.R. and Philipp D.M., J. Chem. Theory Comput. 2016, 12, 6001-19.
22. Yu H.S., Watson M.A. and Bochevarov A.D., J. Chem. Inf. Model. 2018, 58, 271-86.
23. Klicić J.J., Friesner R.A., Liu S.Y. and Guida W.C., J. Phys. Chem. A 2002, 106, 1327-35.
24. Schrödinger Release 2023-1: Jaguar pKa, Schrödinger, LLC, New York, NY 2021,
25. Soni I., Chakrapani H. and Chopra S., Genome Announc. 2015, 3, 29213.
26. CLSI, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Ninth Edition, Clinical and Laboratory Standards Institute, Wayne P.A., 2012.

10. Spectra

cis-tert-Butyl octahydro-2H-isoindole-2-carboxylate S1

S1

tert-Butyl 1,4,5,6,7,7a-hexahydro-2H-isoindole-2-carboxylate 5b

tert-Butyl piperidine-1-carboxylate S2

S2

$\stackrel{7}{7}$
$\underset{\sim}{0}$
$\underset{\sim}{0}$

tert-Butyl 3,4-dihydropyridine-1(2H)-carboxylate 5c

5c

tert-Butyl azepane-1-carboxylate S3

S3

tert-Butyl 2,3,4,5-tetrahydro-1H-azepine-1-carboxylate 5e

$5 e$

80'ZSI-
N
on
$\underset{\sim}{1}$
-114.22
훙
∞
0
合奇
NNO N Non
,
tert-Butyl 3-((2-ethoxy-2-oxoethyl)amino)pyrrolidine-1-carboxylate S4

tert-Butyl 3-(((benzyloxy)carbonyl)(2-ethoxy-2-oxoethyl)amino)pyrrolidine-1carboxylate 9a

tert-Butyl 3a-((2-ethoxy-2-oxoethyl)amino)octahydro-2H-isoindole-2-carboxylate cis-S5

tert-Butyl 3a-(((benzyloxy)carbonyl)(2-ethoxy-2-oxoethyl)amino)octahydro-2H-isoindole-2-carboxylate cis-9b

tert-Butyl 3-((3-ethoxy-3-oxopropyl)amino)pyrrolidine-1-carboxylate S6

tert-Butyl 3-((3-ethoxy-3-oxopropyl)amino)pyrrolidine-1-carboxylate 9c

Benzyl 2-oxo-1,5-diazabicyclo[4.2.1]nonane-5-carboxylate 6c

tert-Butyl 3-((N-(3-ethoxy-3-oxopropyl)-4-methylphenyl)sulfonamido)pyrrolidine-1-carboxylate 9d

9d

5-Tosyl-1,5-diazabicyclo[4.2.1]nonan-2-one 6d

tert-Butyl
carboxylate cis-S7

tert-Butyl 3a-(((benzyloxy)carbonyl)(3-ethoxy-3-oxopropyl)amino)octahydro-2H-isoindole-2-carboxylate cis-9e

Benzyl (6aS*,10aR*)-4-oxooctahydro-5,10a-methanobenzo[b][1,5]diazocine-1(2H)-carboxylate 6e

$6 e$

คคํ	\% 㐌	O-ņam \sim ¢
¢๐்	กั่	

tert-Butyl 3-(((benzyloxy)carbonyl)(2-ethoxy-2-oxoethyl)amino)piperidine-1carboxylate $9 f$

Benzyl 2-oxo-1,4-diazabicyclo[3.3.1]nonane-4-carboxylate 6 f

tert-Butyl 3-((2-ethoxy-2-oxoethyl)((prop-2-yn-1-yloxy)carbonyl)amino)piperidine-1-carboxylate 9g

Prop-2-yn-1-yl 2-oxo-1,4-diazabicyclo[3.3.1]nonane-4-carboxylate 6g

tert-Butyl
3-(((S)-1-methoxy-1-oxo-3-phenylpropan-2-yl)amino)piperidine-1-

carboxylate (S)-S9

tert-Butyl
3-(((benzyloxy)carbonyl)((S)-1-methoxy-1-oxo-3-phenylpropan-2-
yl)amino)piperidine-1-carboxylate (S)-9h

Benzyl (3S,5S)-3-benzyl-2-oxo-1,4-diazabicyclo[3.3.1]nonane-4-carboxylate (S,S)6h

tert-Butyl
3-(((benzyloxy)carbonyl)(2-ethoxy-2-oxoethyl)amino)-3-
methylpiperidine-1-carboxylate $9 \mathbf{i}$

Benzyl 5-methyl-2-oxo-1,4-diazabicyclo[3.3.1]nonane-4-carboxylate 6i

tert-Butyl 3-((2-ethoxy-2-oxoethyl)amino)azepane-1-carboxylate S11

tert-Butyl

carboxylate 9j

Benzyl 9-oxo-1,7-diazabicyclo[4.3.1]decane-7-carboxylate 6j

6j

tert-Butyl 3-(((benzyloxy)carbonyl)(3-ethoxy-3-oxopropyl)amino)piperidine-1-

carboxylate 9 k

Benzyl 2-oxo-1,5-diazabicyclo[4.3.1]decane-5-carboxylate 6k

tert-Butyl 3-((3-ethoxy-3-oxopropyl)amino)azepane-1-carboxylate S13

tert-Butyl
3-(((benzyloxy)carbonyl)(3-ethoxy-3-oxopropyl)amino)azepane-1carboxylate 91

Benzyl 2-oxo-1,5-diazabicyclo[4.4.1]undecane-5-carboxylate 61

tert-Butyl 3-((2-bromobenzyl)amino)pyrrolidine-1-carboxylate S14

tert-Butyl
carboxylate 11a

Benzyl 3,4-dihydro-2H-1,4-methanobenzo[b][1,5]diazocine-5(6H)-carboxylate 7a

tert-Butyl 3-((2-bromobenzyl)amino)piperidine-1-carboxylate S15

tert-Butyl
3-(((benzyloxy)carbonyl)(2-bromobenzyl)amino)piperidine-1-
carboxylate 11b

Benzyl 2,3,4,5-tetrahydro-1,5-methanobenzo[b][1,5]diazonine-6(7H)-carboxylate 7b

tert-Butyl
carboxylate 11c

6-Tosyl-2,3,4,5,6,7-hexahydro-1,5-methanobenzo[b][1,5]diazonine 7c

tert-Butyl 3-((2-bromobenzyl)amino)azepane-1-carboxylate S16

tert-Butyl 3-(((benzyloxy)carbonyl)(2-bromobenzyl)amino)azepane-1-carboxylate 11d

carboxylate 7d

(E)-1-Bromo-2-(2-nitrovinyl)benzene S17

$$
\begin{aligned}
& \text { - }
\end{aligned}
$$

2-(2-Bromophenyl)ethan-1-amine 10b

tert-Butyl 3-((2-bromophenethyl)amino)piperidine-1-carboxylate S18

tert-Butyl
3-(((benzyloxy)carbonyl)(2-bromophenethyl)amino)piperidine-1-
carboxylate 11e

Benzyl
carboxylate 7e

