Organocatalytic Radical Relay Trifunctionalization of
Unactivated Alkenes by a Combination of Cyano Migrationand Alkylacylation
Jingyi Wang, Yuchan Wang, Jibin Li, Zexuan Wei, Jie Feng,* Ding Du*
State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing, 210009, P. R. China
Email: 1020162519@cpu.edu.cn(J.Feng); ddmn9999@cpu.edu.cn (D.Du)
Supporting Information
Table of contents

1. General methods- ..... S2
2. Preparation of substrates ..... S2
3. General procedure ..... S2
4. Radical trapping experiment ..... S3
5. Carbocation trapping experiment ..... S3
6. Characterization of the products ..... S4
7. DFT calculations ..... -S32
8. Copies of NMR spectra- ..... S37
9. The Cartesian coordinates of all the stationary points ..... S122

## 1. General methods

All reactions were carried out in dry glassware and were monitored by analytical thin layer chromatography (TLC), which was visualized by ultraviolet light ( 254 nm ). All solvents were obtained from commercial sources and were purified according to standard procedures. Purification of the products was accomplished by flash chromatography using silica gel (200-300 mesh). All NMR spectra were recorded on Bruker spectrometers, running at 300 MHz or 400 MHz for ${ }^{1} \mathrm{H}$ and 75 MHz or 101 MHz for ${ }^{13} \mathrm{C}$ respectively. Chemical shifts ( $\delta$ ) and coupling constants (J) are reported in ppm and Hz respectively. The solvent signals were used as references (residual $\mathrm{CHCl}_{3}$ in $\mathrm{CDCl}_{3}: \delta \mathrm{H}=7.26 \mathrm{ppm}, \delta \mathrm{c}=77.16 \mathrm{ppm}$ ). The following abbreviations are used to indicate the multiplicity in NMR spectra: s (singlet); $d$ (doublet); $t$ (triplet); $q$ (quartet); m (multiplet). High resolution mass spectrometry (HRMS) was recorded on TOF perimer for $\mathrm{ESI}^{+}$.

## 2. Preparation of substrates

Trifluoroiodomethane, dibromodifluoromethane, perfluoro-1-iodohexane, ethyl 2-bromo-2,2-difluoroacetate, and aldehydes except $\mathbf{2 u - 2 w}$ are commercially available. Aldehydes $\mathbf{2 u - 2 w},{ }^{[1-3]}$ hexenenitrile substrates, ${ }^{[4-5]}$ and iodomethane bearing a tosyl group ${ }^{[6]}$ are known compounds which are prepared according to the literature procedures.

## 3. General procedure for radical trifunctionalization of hexenenitriles



To an oven-dried reaction tube $(10 \mathrm{~mL})$ equipped with a Teflon ${ }^{\circledR}$ stir bar and fitted with a rubber septum were added NHC-A ( $12 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%$ ) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( $27.64 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv.). Then, the reaction tube was evacuated and back-filled with nitrogen three times. Subsequently, dry 1,2-dichloroethane (DCE) ( 2 mL ), aldehyde $\mathbf{2}$ ( $0.2 \mathrm{mmol}, 1.0$ equiv.), hexenenitrile $\mathbf{3}$ ( $0.3 \mathrm{mmol}, 1.5$ equiv.) and radical precursor 1 ( $0.8 \mathrm{mmol}, 4.0$ equiv.) were added under the protection of nitrogen. The reaction was stirred at $50^{\circ} \mathrm{C}$ or $80^{\circ} \mathrm{C}$ (oil bath) for $10-12$ hours. The reaction mixture was concentrated under reduced pressure, and the resulting crude material was purified by column chromatography on silica gel (petroleum ether / acetone from 20/1 to 15/1) to afford the desired products 4 .

## 4. Radical trapping experiment



To an oven-dried reaction tube $(10 \mathrm{~mL})$ equipped with a Teflon ${ }^{\circledR}$ stir bar and fitted with a rubber septum were added $\mathrm{NHC}-\mathbf{A}(12 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( $27.64 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv.), after which the tube was evacuated and back-filled with nitrogen three times. Subsequently, dry 1,2-dichloroethane (DCE) (2 mL), 4chlorobenzaldehyde $\mathbf{2 a}$ ( $0.2 \mathrm{mmol}, 1.0$ equiv.), hexenenitrile $\mathbf{3 a}$ ( $0.3 \mathrm{mmol}, 1.2$ equiv.) and trifluoromethyl iodide $1 \mathbf{1 a}(156.7 \mathrm{mg}, 0.8 \mathrm{mmol}, 25 \% \mathrm{w} / \mathrm{w}$ in $\mathrm{N}, \mathrm{N}-$ dimethylformamide, 4.0 equiv.) were added under the protection of nitrogen. TEMPO $(93.8 \mathrm{mg}, 0.6 \mathrm{mmol})$ was then added. The reaction was stirred at $50^{\circ} \mathrm{C}$ (oil bath) for 10-12 hours. The reaction mixture was monitored by TLC and was further concentrated under reduced pressure. The resulting crude material was tested by LC-MS. No product was observed.

## 5. Carbocation trapping experiment



To an oven-dried reaction tube ( 10 mL ) equipped with a Teflon ${ }^{\circledR}$ stir bar and fitted with a rubber septum were added $\mathrm{NHC}-\mathbf{A}(12 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( $27.64 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv.), after which the tube was evacuated and back-filled with nitrogen three times. Subsequently, dry 1,2 -dichloroethane (DCE) ( 2 mL ), 4chlorobenzaldehyde $\mathbf{2 a}$ ( $0.2 \mathrm{mmol}, 1.0$ equiv.), hexenenitrile $\mathbf{3 a}$ ( $0.3 \mathrm{mmol}, 1.2$ equiv.) and trifluoromethyl iodide $1 \mathbf{1 a}(156.7 \mathrm{mg}, 0.8 \mathrm{mmol}, 25 \% \mathrm{w} / \mathrm{w}$ in $\mathrm{N}, \mathrm{N}$ dimethylformamide, 4.0 equiv.) were added under the protection of nitrogen. The reaction was stirred at $25^{\circ} \mathrm{C}$ for 5 minutes, and methanol ( $0.6 \mathrm{mmol}, 3.0$ equiv.) was added. After stirring at $50^{\circ} \mathrm{C}$ (oil bath) for another 10 hours, the reaction mixture was concentrated under reduced pressure. The resulting crude material was monitored by crude ${ }^{1} \mathrm{H}$ NMR and was purified by column chromatography on silica gel (petroleum ether / acetone from 20/1) to afford $\mathbf{4 a}(82 \mathrm{mg}, 90 \%)$.

## 6. Characterization of the products

## 5-(4-bromophenyl)-6-(4-chlorophenyl)-6-0xo-2-(2,2,2-trifluoroethyl)hexanenitrile


(4a) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone $=20 / 1$, $\mathrm{v} / \mathrm{v}$ ) as a colorless liquid ( $75.9 \mathrm{mg}, 83 \%$ yield, $\mathrm{dr}=1: 1$ ). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{dd}, J=8.7,2.1 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.44 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.37 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.13 (dd, $J=8.4,1.7 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $4.47(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 2.93 $-2.79(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.60-2.42(\mathrm{~m}, 1 \mathrm{H}$, two isomers $), 2.38-2.21(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $2.13-1.92\left(\mathrm{~m}, 1 \mathrm{H}\right.$, two isomers), $1.78-1.66\left(\mathrm{~m}, 1 \mathrm{H}\right.$, two isomers). ${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.13 \& 197.06$ (two isomers), 140.09 \& 140.07 (two isomers), 137.3 \& 137.2 (two isomers), $134.34 \& 134.31$ (two isomers), 132.7 (overlap, two isomers), 130.2 (overlap, two isomers), 129.8 \& 129.7 (two isomers), 129.2 (overlap, two isomers), $125.12\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.2 \mathrm{~Hz}\right) \quad \& 125.10\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.3\right.$ Hz ) (two isomers), 122.0 (overlap, two isomers), 119.47 \& 119.46 (two isomers), $52.52 \& 52.48$ (two isomers), $36.4\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0 \mathrm{~Hz}\right) \& 36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0 \mathrm{~Hz}\right)$ (two isomers), $30.9 \& 30.6$ (two isomers), $30.1 \& 29.9$ (two isomers), 25.8 (q, ${ }^{3} J_{\mathrm{C}-\mathrm{F}}$ $=2.7 \mathrm{~Hz}) \& 25.7\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.8 \mathrm{~Hz}\right)$ (two isomers). ${ }^{19} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-$ 64.9 ( s , one isomer), -65.0 ( s , one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{BrClF}_{3} \mathrm{NNaO}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 479.9947$; found: 479.9944. HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{BrClF}_{3} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+}: 460.0108$; found: 460.0089 .

2-(4-bromophenyl)-5-(4-chlorobenzoyl)-7,7,7-trifluoroheptanenitrile (4a') The
 title compound was obtained when the reaction was carried out using $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ as a base in 1,2-DCE in the presence of precatalyst $\mathbf{A}$ (eluent: petroleum ether / acetone $=20 / 1, \mathrm{v} / \mathrm{v})$ as a yellow liquid. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$,
$\mathrm{CDCl}_{3}$ ) $\delta 7.84(\mathrm{dd}, J=8.6,3.4 \mathrm{~Hz}, 2 \mathrm{H}$, one isomers), $7.48(\mathrm{dt}, J=8.2,4.6 \mathrm{~Hz}, 4 \mathrm{H}$, one isomers), 7.11 (dd, $J=8.2,6.0 \mathrm{~Hz}, 2 \mathrm{H}$, one isomers), 3.75 (dd, $J=9.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}$, one isomers), 3.69 (dd, $J=13.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}$, one isomers), $2.87-2.72$ ( $\mathrm{m}, 1 \mathrm{H}$, one isomers), $2.27-2.17(\mathrm{~m}, 1 \mathrm{H}$, one isomers), $1.98-1.90(\mathrm{~m}, 1 \mathrm{H}$, one isomers), $1.86-1.77(\mathrm{~m}, 2 \mathrm{H}$, one isomers), $1.75-1.62\left(\mathrm{~m}, 1 \mathrm{H}\right.$, one isomers). ${ }^{13} \mathrm{C}$ NMR ( $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.2$ \& 199.1 (two isomers), 140.7 (overlap, two isomers), 134.15 \& 134.10 (two
isomers), $133.9 \& 133.8$ (two isomers), $132.54 \& 132.53$ (two isomers), 130.4 (overlap, two isomers), 129.55 \& 129.53 (two isomers), $128.91 \& 128.87$ (two isomers), $126.3\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.0 \mathrm{~Hz}\right.$ ) (overlap, two isomers), $122.7 \& 122.6$ (two isomers), 119.59 \& 119.57 (two isomers), 38.9 ( $\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.2 \mathrm{~Hz}$ ) (overlap, two isomers), 36.8 \& 36.7 (two isomers), $35.5\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29.0 \mathrm{~Hz}\right) \& 35.4\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29.1\right.$ Hz ) (two isomers), 32.5 \& 32.3 (two isomers), 29.9 \& 29.8 (two isomers). ${ }^{19}$ F NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-64.59$ (s, one isomer), -64.64 (s, one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{BrClF}_{3} \mathrm{NNaO}[\mathrm{M}+\mathrm{Na}]^{+}: 479.9947$; found: 479.9944. HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{BrClF}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 460.0108$; found: 460.0089 .

5-(4-bromophenyl)-6-oxo-6-phenyl-2-(2,2,2-trifluoroethyl)hexanenitrile (4b) The
 title compound was obtained according to the general condition (eluent: petroleum ether / acetone $=20 / 1, \mathrm{v} / \mathrm{v}$ ) as a yellow liquid ( $63.5 \mathrm{mg}, 84 \%$ yield, $\mathrm{dr}=1: 1$ ). ${ }^{1} \mathrm{H}$ NMR ( 400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98-7.88$ ( $\mathrm{m}, 2 \mathrm{H}$, two isomers), $7.56-7.50$ (m, 1H, two isomers), $7.46-7.39$ (m, 2H, two isomers), $7.33-7.28$ (m, 2 H , two isomers), $7.28-7.21$ (m, 2H, two isomers), $4.58(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 2.96 - 2.81 (m, 1H, two isomers), $2.58-2.47$ ( $\mathrm{m}, 1 \mathrm{H}$, two isomers), $2.43-2.27$ ( $\mathrm{m}, 2 \mathrm{H}$, two isomers), $2.13-1.98$ ( $\mathrm{m}, 1 \mathrm{H}$, two isomers), $1.81-1.72$ ( $\mathrm{m}, 1 \mathrm{H}$, two isomers), $1.67-$ 1.56 (m, 1H, two isomers). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 198.5$ \& 198.4 (two isomers), $137.1 \& 137.0$ (two isomers), $136.2 \& 136.1$ (two isomers), $133.7 \&$ 133.5 (two isomers), 129.6 (overlap, two isomers), 129.50 \& 129.46 (two isomers), $128.84 \& 128.78$ (two isomers), 125.1 ( $\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=275.1 \mathrm{~Hz}$ ) (overlap, two isomers), $119.50 \& 119.48$ (two isomers), $52.33 \& 52.28$ (two isomers), $36.6\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.1\right.$ $\mathrm{Hz}) \& 36.0\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29.4 \mathrm{~Hz}\right.$ ) (two isomers), 31.0 \& 30.8 (two isomers), 30.2 \& 30.0 (two isomers), 25.8 ( $\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.8 \mathrm{~Hz}$ ) \& 25.6 ( $\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.4 \mathrm{~Hz}$ ) (two isomers). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-64.89$ (s, one isomer), -64.95 (s, one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{BrF}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 424.0518, 426.0498; found: 424.0500, 426.0517.

## 5-(4-bromophenyl)-6-(4-fluorophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexanenitrile


(4c) The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=20 / 1$, $\mathrm{v} / \mathrm{v}$ ) as a yellow liquid ( $72.3 \mathrm{mg}, 82 \%$ yield, $\mathrm{dr}=1: 1$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.98-7.88$ ( $\mathrm{m}, 2 \mathrm{H}$, two isomers), $7.49-7.41$ (m, 2H, two isomers), 7.14 (dd, $J=8.4,1.9 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $7.11-$ $7.02(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $4.48(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.95-2.79(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.61-2.43(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.43-2.19$ ( $\mathrm{m}, 2 \mathrm{H}$, two isomers), 2.15 $-1.88\left(\mathrm{~m}, 1 \mathrm{H}\right.$, two isomers), $1.80-1.63\left(\mathrm{~m}, 1 \mathrm{H}\right.$, two isomers). ${ }^{13} \mathrm{C}$ NMR ( 101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 196.72$ \& 196.66 (two isomers), $165.91\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=257.1 \mathrm{~Hz}\right) \& 165.89(\mathrm{~d}$, ${ }^{1} J_{\mathrm{C}-\mathrm{F}}=256.9 \mathrm{~Hz}$ ) (two isomers), 137.43 \& 137.40 (two isomers), 132.7 (overlap, two isomers), 131.5 (d, ${ }^{3} J_{\mathrm{C}-\mathrm{F}}=10.0 \mathrm{~Hz}$ ) (overlap, two isomers), 129.8 \& 129.7 (two isomers), 125.12 ( $\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.6 \mathrm{~Hz}$ ) \& $125.09\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.2 \mathrm{~Hz}\right.$ ) (two isomers), 121.9 (overlap, two isomers), $119.50 \& 119.48$ (two isomers), 116.0 ( $\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22.0$ $\mathrm{Hz})$ (overlap, two isomers), 52.45 \& 52.41 (two isomers), $36.4\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.1 \mathrm{~Hz}\right)$ \& $36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0 \mathrm{~Hz}\right.$ ) (two isomers), 31.0 \& 30.7 (two isomers), 30.2 \& 30.0 (two isomers), $25.8\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right) \& 25.7\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.1 \mathrm{~Hz}\right.$ ) (two isomers). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-64.88$ (s, one isomer), -64.94 ( s , one isomer), -104.06 ( s , one isomers), -104.10 (s, one isomers). HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{BrF}_{4} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 442.0425, 444.0404; found: 442.0426, 444.0409.

5,6-bis(4-bromophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexanenitrile (4d) The title
 compound was obtained according to the general condition (eluent: petroleum ether / acetone $=20 / 1, \mathrm{v} / \mathrm{v}$ ) as a yellow liquid ( $68.4 \mathrm{mg}, 68 \%$ yield, $\mathrm{dr}=1: 1$ ). ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.78-7.72$ ( $\mathrm{m}, 2 \mathrm{H}$, two isomers), 7.54 (d, $J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}$, two isomers), $7.49-7.41$ (m, 2 H , two isomers), $7.16-7.09$ (m, 2H, two isomers), $4.46(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.93-2.80$ ( $\mathrm{m}, 1 \mathrm{H}$, two isomers), 2.59 -2.45 ( $\mathrm{m}, 1 \mathrm{H}$, two isomers), $2.40-2.24$ ( $\mathrm{m}, 2 \mathrm{H}$, two isomers), $2.11-1.94$ ( $\mathrm{m}, 1 \mathrm{H}$, two isomers), $1.80-1.54\left(\mathrm{~m}, 2 \mathrm{H}\right.$, two isomers). ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 197.3$ \& 197.2 (two isomers), $137.2 \& 137.2$ (two isomers), $134.7 \& 134.7$ (two isomers), 132.7 (overlap, two isomers), 132.2 (overlap, two isomers), 130.3 (overlap, two isomers), $129.8 \& 129.7$ (two isomers), $128.9 \& 128.8$ (two isomers), 125.11 (q,
$\left.{ }^{1} J_{\mathrm{C}-\mathrm{F}}=275.5 \mathrm{~Hz}\right) \quad \& 125.09\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=275.8 \mathrm{~Hz}\right)$ (two isomers), 122.0 (overlap, two isomers), $119.47 \& 119.46$ (two isomers), $52.50 \& 52.47$ (two isomers), 36.4 (q, $\left.{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29.9 \mathrm{~Hz}\right) \& 36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29.8 \mathrm{~Hz}\right)$ (two isomers), 30.9 \& 30.6 (two isomers), 30.1 \& 29.9 (two isomers), 25.8 ( $\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.1 \mathrm{~Hz}$ ) \& 25.7 ( $\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0$ Hz ) (two isomers). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-64.87$ ( s , one isomer), -64.92 (s, one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{Br}_{2} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 503.9604, 501.9624; found: 503.9601, 501.9622.

5-(4-bromophenyl)-6-oxo-6-(p-tolyl)-2-(2,2,2-trifluoroethyl)hexanenitrile (4e) The
 title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=20 / 1, \mathrm{v} / \mathrm{v}$ ) as a colorless liquid ( $63.8 \mathrm{mg}, 73 \%$ yield, $\mathrm{dr}=1: 1$ ). ${ }^{1} \mathrm{H}$ NMR ( 400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.81$ (dd, $J=8.2,1.9 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $7.43(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $7.22-7.13(\mathrm{~m}, 4 \mathrm{H}$, two isomers), $4.52(\mathrm{t}, \mathrm{J}=7.2$ $\mathrm{Hz}, 1 \mathrm{H}$, two isomers), $2.93-2.81(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.56-2.45(\mathrm{~m}, 1 \mathrm{H}$, two isomers), 2.36 ( $\mathrm{s}, 3 \mathrm{H}$, two isomers), $2.35-2.16$ ( $\mathrm{m}, 2 \mathrm{H}$, two isomers), $2.09-1.94$ (m, 1 H , two isomers), $1.82-1.69(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.69-1.61$ ( $\mathrm{m}, 1 \mathrm{H}$, two isomers). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 197.94$ \& 197.87 (two isomers), 144.6 \& 144.5 (two isomers), $137.9 \& 137.8$ (two isomers), $133.59 \& 133.56$ (two isomers), 132.5 (overlap, two isomers), 129.83 \& 129.78 (two isomers), 129.6 (overlap, two isomers), 128.94 \& 128.93 (two isomers), $125.16\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.2 \mathrm{~Hz}\right) \& 125.12\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=\right.$ 278.2 Hz ) (two isomers), 121.7 (overlap, two isomers), 119.54 \& 119.49 (two isomers), 52.3 \& 52.2 (two isomers), $36.4\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.2 \mathrm{~Hz}\right) \& 36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0\right.$ Hz ) (two isomers), 31.0 \& 30.7 (two isomers), 30.3 \& 30.1 (two isomers), 25.8 (q, $\left.{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right) \& 25.6\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right.$ ) (two isomers), 21.8 (overlap, two isomers). ${ }^{19}$ F NMR ( $282 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-64.9$ ( s , one isomer), -65.0 ( s , one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{BrF}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 438.0675,440.0655$; found: 438.0685, 440.0662 .

5-(4-bromophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)-6-(4-(trifluoromethoxy)phenyl)

hexanenitrile (4f) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone $=20 / 1, \mathrm{v} / \mathrm{v}$ ) as a yellow colorless liquid ( 87.2 mg , $86 \%$ yield, $\mathrm{dr}=1: 1$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.99-7.93$
(m, 2 H , two isomers), $7.32-7.28(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $7.24-7.17(\mathrm{~m}, 4 \mathrm{H}$, two
isomers), $4.50(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.95-2.82$ ( $\mathrm{m}, 1 \mathrm{H}$, two isomers), 2.58 -2.44 (m, 1H, two isomers), $2.39-2.24(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $2.11-1.99$ ( $\mathrm{m}, 1 \mathrm{H}$, two isomers), $1.77-1.68\left(\mathrm{~m}, 1 \mathrm{H}\right.$, two isomers), $1.63-1.56\left(\mathrm{~m}, 1 \mathrm{H}\right.$, two isomers). ${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.9 \& 196.8$ (two isomers), $152.9\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.8 \mathrm{~Hz}\right)$ (overlap, two isomers), $136.7 \& 136.6$ (two isomers), $134.24 \& 134.21$ (two isomers), 134.0 (overlap, two isomers), 130.9 (overlap, two isomers), 129.8 (overlap, two isomers), 129.44 \& 129.40 (two isomers), $125.14\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.3 \mathrm{~Hz}\right) \& 125.11\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=\right.$ 278.6 Hz ) (two isomers), 120.5 (overlap, two isomers), 120.3 ( $\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=260.2 \mathrm{~Hz}$ ) (overlap, two isomers), 119.47 \& 119.46 (two isomers), $52.53 \& 52.51$ (two isomers), $36.4\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0 \mathrm{~Hz}\right) \& 36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.2 \mathrm{~Hz}\right.$ ) (two isomers), 31.0 \& 30.8 (two isomers), 30.1 \& 29.9 (two isomers), $25.8\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right) \& 25.7(\mathrm{q}$, ${ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}$ ) (two isomers). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ - 57.6 (overlap, two isomers), -64.9 ( s , one isomer), -65.0 ( s , one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{BrF}_{6} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 508.0341; found: 508.0331. HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{BrF}_{6} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 532.0141$; found: 532.0137.

## 6-([1,1'-biphenyl]-4-yl)-5-(4-bromophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexane


nitrile ( $\mathbf{4 g}$ ) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone $=$ $20 / 1, \mathrm{v} / \mathrm{v}$ ) as a yellow liquid ( $44.9 \mathrm{mg}, 60 \%$ yield, $\mathrm{dr}=1: 1$ ).
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.02-7.96$ (m, 2H, two isomers), 7.63 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.58 ( $\mathrm{d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.49 - 7.42 (m, 4H, two isomers), $7.42-7.37$ (m, 1H, two isomers), $7.23-7.17$ (m, 2 H , two isomers), 4.58 ( $\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.95-2.85$ ( $\mathrm{m}, 1 \mathrm{H}$, two isomers), $2.57-2.47$ ( $\mathrm{m}, 1 \mathrm{H}$, two isomers), $2.42-2.28$ ( $\mathrm{m}, 2 \mathrm{H}$, two isomers), $2.13-$ $2.00(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.80-1.72(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.65-1.58(\mathrm{~m}, 1 \mathrm{H}$, two isomers). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 197.9$ \& 197.8 (two isomers), $146.27 \&$ 146.25 (two isomers), 139.7 (overlap, two isomers), 137.71 \& 137.66 (two isomers), 134.8 \& 134.7 (two isomers), 132.6 (overlap, two isomers), 129.9 (overlap, two isomers), 129.8 (overlap, two isomers), 129.4 (overlap, two isomers), 129.1 (overlap, two isomers), 128.5 (overlap, two isomers), 127.5 (overlap, two isomers), 127.3 (overlap, two isomers), $125.2\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=277.5 \mathrm{~Hz}\right.$ ) (overlap, two isomers), 121.8 \& 121.0 (two isomers), $119.52 \& 119.49$ (two isomers), $52.5 \& 52.4$ (two isomers),
$36.4\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29.9 \mathrm{~Hz}\right) \& 36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.3 \mathrm{~Hz}\right)$ (two isomers), 31.0 \& 30.7 (two isomers), 30.3 \& 30.1 (two isomers), $25.8\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right) \& 25.7\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.8\right.$ Hz ) (two isomers). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-64.8$ (s, one isomer), -64.9 (s, one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{BrF}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 500.0832$, 502.0811; found: 500.0831, 502.0813.

## 5-(4-bromophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)-6-(4-(trifluoromethyl)phenyl)

 hexanenitrile (4h) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone $=20 / 1, \mathrm{v} / \mathrm{v}$ ) as a yellow liquid ( $73.8 \mathrm{mg}, 75 \%$ yield, dr $=1: 1) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.02-7.96(\mathrm{~m}, 2 \mathrm{H}$, two isomers), 7.66 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $7.32-7.28$ ( $\mathrm{m}, 2 \mathrm{H}$, two isomers), 7.19 (dd, $J=8.4,1.7 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $4.53(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.96-$ $2.82(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.60-2.46(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.40-2.25(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $2.15-2.00(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.79-1.68$ ( $\mathrm{m}, 1 \mathrm{H}$, two isomers), $1.67-$ 1.61 ( $\mathrm{m}, 1 \mathrm{H}$, two isomers). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 197.5$ \& 197.4 (two isomers), 138.75 \& 138.74 (two isomers), $136.33 \& 136.28$ (two isomers), 134.71 $\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=33.1 \mathrm{~Hz}\right) \& 134.70\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=32.9 \mathrm{~Hz}\right.$ ) (two isomers), 134.1 (overlap, two isomers), 129.9 (overlap, two isomers), 129.5 \& 129.4 (two isomers), 129.1 (overlap, two isomers), 125.9 ( $\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.7 \mathrm{~Hz}$ ) (overlap, two isomers), $125.12\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.1\right.$ $\mathrm{Hz}) \& 125.09\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.0 \mathrm{~Hz}\right.$ ) (two isomers), $123.5\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=273.8 \mathrm{~Hz}\right.$ ) (overlap, two isomers), $119.5 \& 119.4$ (two isomers), 52.8 (overlap, two isomers), 36.4 (q, ${ }^{2} J_{\mathrm{C}}$ $\mathrm{F}=30.0 \mathrm{~Hz}) \quad \& 36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.1 \mathrm{~Hz}\right.$ (two isomers), 30.8 \& 30.6 (two isomers), 30.0 \& 29.9 (two isomers), 25.7 ( $\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3.4 \mathrm{~Hz}$ ) (overlap, two isomers). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-63.3$ (overlap, two isomers), -64.89 ( s , one isomer), -64.94 ( s , one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{BrF}_{6} \mathrm{NO}[\mathrm{M}+\mathrm{Na}]^{+}$: 514.0212; found: 514.0189. HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{BrF}_{6} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 494.0372$; found: 494.0381 .

## 5-(4-bromophenyl)-6-(4-nitrophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexanenitrile


(4i) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone $=20 / 1, \mathrm{v} / \mathrm{v}$ ) as a yellow liquid ( $51.5 \mathrm{mg}, 55 \%$ yield, $\mathrm{dr}=1: 1$ ). ${ }^{1} \mathrm{H}$ NMR ( 400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.23$ ( $\mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 8.03 (dd, $J=8.9,1.9 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.31 ( $\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.18 (dd,
$J=8.4,1.8 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $4.53(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.97-2.83(\mathrm{~m}$, 1 H , two isomers), $2.61-2.45(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.43-2.25$ ( $\mathrm{m}, 2 \mathrm{H}$, two isomers), $2.15-1.99(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.80-1.69(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.68-1.60(\mathrm{~m}$, 1 H , two isomers). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 197.0$ \& 196.9 (two isomers), 150.4 (overlap, two isomers), $140.60 \& 140.58$ (two isomers), $135.92 \& 135.86$ (two isomers), 134.3 (overlap, two isomers), 130.0 (overlap, two isomers), 129.8 (overlap, two isomers), 129.50 \& 129.46 (two isomers), 125.11 ( $\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=277.4 \mathrm{~Hz}$ ) \& $125.09\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=277.7 \mathrm{~Hz}\right.$ ) (two isomers), 124.0 (overlap, two isomers), 119.4 (overlap, two isomers), 53.2 (overlap, two isomers), $36.4\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29.4 \mathrm{~Hz}\right) \quad \& 36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=\right.$ 30.0 Hz (two isomers), 30.7 \& 30.6 (two isomers), 29.9 \& 29.8 (two isomers), 25.7 (q, ${ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.7 \mathrm{~Hz}$ ) (overlap, two isomers). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-64.8$ (s, one isomer), -64.9 (s, one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{BrF}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 491.0189; found: 491.0189. HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{BrF}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 471.0349; found: 471.0352

## 5-(4-bromophenyl)-6-(3-fluorophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexanenitrile


(4j) The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=20 / 1$, $\mathrm{v} / \mathrm{v}$ ) as a yellow liquid ( $65.3 \mathrm{mg}, 74 \%$ yield, $\mathrm{dr}=1: 1$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.67$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $7.61-7.55$ (m, 1H, two isomers), 7.45 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.41 - 7.33 (m, 1H, two isomers), 7.21 (td, $J=8.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 7.14 (dd, $J=$ $8.4,1.7 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 4.48 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.93-2.82$ (m, 1 H , two isomers), $2.57-2.45$ ( $\mathrm{m}, 1 \mathrm{H}$, two isomers), $2.39-2.24$ ( $\mathrm{m}, 2 \mathrm{H}$, two isomers), $2.11-1.96(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.77-1.67(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.64-1.54(\mathrm{~m}$, 1 H , two isomers). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 197.2$ \& 197.1 (two isomers), 162.9 (d, ${ }^{1} J_{\mathrm{C}-\mathrm{F}}=249.5 \mathrm{~Hz}$ ) (overlap, two isomers), 138.21 \& 138.19 (two isomers), 137.1 (d, ${ }^{3} J_{\mathrm{C}-\mathrm{F}}=5.1 \mathrm{~Hz}$ ) (overlap, two isomers), 132.7 (overlap, two isomers), 130.5 (d, ${ }^{3} J_{\mathrm{C}-\mathrm{F}}=$ 7.6 Hz ) (overlap, two isomers), 129.80 \& 129.76 (two isomers), 125.13 ( $\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=$ $278.6 \mathrm{~Hz}) ~ \& ~ 125.11\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.6 \mathrm{~Hz}\right)$ (two isomers), $124.5\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=2.0 \mathrm{~Hz}\right)$ (overlap, two isomers), 122.0 (overlap, two isomers), $120.6\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=21.6 \mathrm{~Hz}\right.$ ) (overlap, two isomers), 119.45 \& 119.43 (two isomers), 115.5 ( $\mathrm{d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22.5 \mathrm{~Hz}$ ) (overlap, two isomers), 52.69 \& 52.67 (two isomers), $36.4\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0 \mathrm{~Hz}\right) \& 36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=\right.$
30.0 Hz ) (two isomers), 30.9 \& 30.7 (two isomers), $30.1 \& 29.9$ (two isomers), 25.7 $\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=2.8 \mathrm{~Hz}\right) \& 25.6\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right)$ (two isomers). ${ }^{19} \mathrm{~F}$ NMR ( 376 MHz , $\mathrm{CDCl}_{3}$ ) $\delta-64.87$ ( s , one isomer), -64.93 ( s , one isomer), -111.24 ( s , one isomer), -111.23 (s, one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{BrF}_{4} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 442.0425, 444.0404; found: 442.0426, 444.0411 .

6-(3-bromophenyl)-5-(4-bromophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexanenitrile

(4k) The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=20 / 1$, $\mathrm{v} / \mathrm{v}$ ) as a yellow liquid ( $71.1 \mathrm{mg}, 71 \%$ yield, $\mathrm{dr}=1: 1$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.03$ ( $\mathrm{q}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $7.82-7.77(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $7.66-7.60(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $7.48-7.43(\mathrm{~m}$, 2 H , two isomers), $7.29-7.24$ (m, 1H, two isomers), 7.13 ( $\mathrm{dt}, J=6.6,1.8 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 4.47 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.93-2.82$ (m, 1 H , two isomers), 2.57 -2.45 (m, 1H, two isomers), $2.38-2.25(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $2.11-1.95(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.77-1.67\left(\mathrm{~m}, 1 \mathrm{H}\right.$, two isomers), $1.62-1.55\left(\mathrm{~m}, 1 \mathrm{H}\right.$, two isomers). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 197.03$ \& 196.96 (two isomers), 137.84 \& 137.81 (two isomers), 137.03 \& 136.97 (two isomers), 136.4 (overlap, two isomers), 132.7 (overlap, two isomers), 131.8 (overlap, two isomers), 130.4 (overlap, two isomers), 129.79 \& 129.75 (two isomers), $127.3,125.12\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.6 \mathrm{~Hz}\right) \& 125.09(\mathrm{q}$, ${ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.2 \mathrm{~Hz}$ ) (two isomers), 123.2 (overlap, two isomers), 122.0 (overlap, two isomers), 119.4 (overlap, two isomers), $52.60 \& 52.57$ (two isomers), 36.4 ( $\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=$ $29.8 \mathrm{~Hz}) \& 36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.2 \mathrm{~Hz}\right.$ ) (two isomers), 30.9 \& 30.6 (two isomers), 30.1 \& 29.9 (two isomers), $25.8\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.1 \mathrm{~Hz}\right) \& 25.7\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right.$ ) (two isomers). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-64.85$ (s, one isomer), -64.91 (s, one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{Br}_{2} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 503.9604,501.9624$; found: 503.9601, 501.9622.

5-(4-bromophenyl)-6-oxo-6-(m-tolyl)-2-(2,2,2-trifluoroethyl)hexanenitrile (41) The
 title compound was obtained according to the general condition (eluent: petroleum ether / acetone $=20 / 1, \mathrm{v} / \mathrm{v}$ ) as a yellow liquid ( $64.7 \mathrm{mg}, 74 \%$ yield, $\mathrm{dr}=1: 1$ ). ${ }^{1} \mathrm{H}$ NMR ( 400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45$ (dd, $\mathrm{J}=11.4,8.2 \mathrm{~Hz}, 4 \mathrm{H}$, two isomers),
(dd, $\mathrm{J}=8.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $4.52(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 3.81 ( s , 3 H , two isomers), $2.92-2.82(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.58-2.45(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.40-2.25(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $2.10-1.96(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.78-1.68(\mathrm{~m}$, 1 H , two isomers), $1.63-1.56\left(\mathrm{~m}, 1 \mathrm{H}\right.$, two isomers). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 198.2 \& 198.1 (two isomers), 160.0 (overlap, two isomers), 137.64 \& 137.59 (two isomers), $137.48 \& 137.46$ (two isomers), 132.6 (overlap, two isomers), $129.81 \&$ 129.78 (two isomers), $125.15\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.2 \mathrm{~Hz}\right) \& 125.12\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.3 \mathrm{~Hz}\right)$ (two isomers), 121.8 (overlap, two isomers), 121.3 (overlap, two isomers), 119.9 (overlap, two isomers), 119.49 \& 119.46 (two isomers), 113.33 \& 113.30 (two isomers), 55.5 (overlap, two isomers), $52.52 \& 52.47$ (two isomers), 36.4 ( $\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=$ $30.1 \mathrm{~Hz}) \& 36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.1 \mathrm{~Hz}\right)$ (two isomers), 31.0 \& 30.8 (two isomers), 30.2 \& 30.0 (two isomers), $25.8\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right) \& 25.6\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.8 \mathrm{~Hz}\right)$ (two isomers). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-64.89$ (s, one isomer), -64.95 (s, one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{BrF}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 438.0675,440.0655$; found: 438.0700, 440.0630 .

## 5-(4-bromophenyl)-6-(3-methoxyphenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexane


nitrile (4m) The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=20 / 1$, $\mathrm{v} / \mathrm{v}$ ) as a yellow liquid ( $52.2 \mathrm{mg}, 61 \%$ yield, $\mathrm{dr}=1: 1$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.74-7.67$ (m, 2H, two isomers), 7.43 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.31 (dd, $J=16.1,7.5 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.16 (dd, $J=8.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $4.54(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.93-2.82$ (m, 1 H , two isomers), $2.57-2.46$ ( $\mathrm{m}, 1 \mathrm{H}$, two isomers), 2.36 ( $\mathrm{s}, 3 \mathrm{H}$, two isomers), $2.34-$ $2.21(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $2.09-1.97(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.75-1.69(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.65-1.58\left(\mathrm{~m}, 1 \mathrm{H}\right.$, two isomers). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 198.6$ \& 198.5 (two isomers), 138.8 (overlap, two isomers), $137.71 \& 137.66$ (two isomers), 136.19 \& 136.17 (two isomers), 134.4 (overlap, two isomers), 132.5 (overlap, two isomers), 129.84 \& 129.80 (two isomers), 129.3 (overlap, two isomers), 128.7 (overlap, two isomers), 126.0 (overlap, two isomers), 125.15 ( $\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.5 \mathrm{~Hz}$ ) \& $125.12\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.3 \mathrm{~Hz}\right.$ ) (two isomers), 121.7 (overlap, two isomers), $119.51 \&$ 119.47 (two isomers), 52.4 \& 52.3 (two isomers), 36.4 (q, ${ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.1 \mathrm{~Hz}$ ) \& 36.3 $\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29.9 \mathrm{~Hz}\right)$ (two isomers), $31.0 \& 30.7$ (two isomers), $30.2 \& 30.0$ (two
isomers), $25.8\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right) \& 25.6\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.6 \mathrm{~Hz}\right)$ (two isomers), 21.5 (overlap, two isomers). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-64.87$ (s, one isomer), -64.95 (s, one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{BrF}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 454.0625, 456.0604; found: 454.0617, 456.0615.

## 5-(4-bromophenyl)-6-(2-fluorophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexanenitrile


(4n) The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=20 / 1$, $\mathrm{v} / \mathrm{v}$ ) as a yellow liquid ( $57.3 \mathrm{mg}, 65 \%$ yield, $\mathrm{dr}=1: 1$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.72(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 7.43 (dd, $J=19.7,7.0 \mathrm{~Hz}, 3 \mathrm{H}$, two isomers), $7.20-7.02$ ( $\mathrm{m}, 4 \mathrm{H}$, two isomers), 4.47 (t, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.93-2.81(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.58-2.46(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.40-2.22(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $2.07-1.92(\mathrm{~m}, 1 \mathrm{H}$, two isomers), 1.79 - $1.71\left(\mathrm{~m}, 1 \mathrm{H}\right.$, two isomers), $1.63-1.52\left(\mathrm{~m}, 1 \mathrm{H}\right.$, two isomers). ${ }^{13} \mathrm{C}$ NMR ( 101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 197.5 \& 197.4$ (two isomers), $161.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=254.6 \mathrm{~Hz}\right.$ ) (overlap, two isomers), 136.6 ( $\mathrm{d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=7.4 \mathrm{~Hz}$ ) (overlap, two isomers), $135.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=9.2 \mathrm{~Hz}\right.$ ) (overlap, two isomers), 132.3 (overlap, two isomers), $131.26 \& 131.24$ (two isomers), 131.25 \& 131.22 (two isomers), 130.2 (overlap, two isomers), 125.14 ( $\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.3$ $\mathrm{Hz}) \& 125.12\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.1 \mathrm{~Hz}\right)$ (two isomers), $125.38\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=12.7 \mathrm{~Hz}\right)$ \& $125.37\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=12.8 \mathrm{~Hz}\right.$ ) (two isomers), $124.8\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.3 \mathrm{~Hz}\right.$ ) (overlap, two isomers), 121.9 (overlap, two isomers), $119.45 \& 119.44$ (two isomers), $116.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}}\right.$ $\mathrm{F}=24.1 \mathrm{~Hz}$ ) (overlap, two isomers), 56.4 (overlap, two isomers), 36.4 ( $\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0$ $\mathrm{Hz}) \& 36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0 \mathrm{~Hz}\right.$ ) (two isomers), 30.6 \& 30.4 (two isomers), 30.2 \& 30.1 (two isomers), 25.7 ( $\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}$ ) \& $25.6\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.1 \mathrm{~Hz}\right.$ ) (two isomers). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-64.9$ ( s , one isomer), -65.0 (s, one isomer), $-109.6(\mathrm{~d}, J$ $=25.2 \mathrm{~Hz}$, two isomers). HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{BrF} \mathrm{BNO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 442.0425$, 444.0404; found: 442.0420, 444.0410.

## 5-(4-bromophenyl)-6-(naphthalen-2-yl)-6-oxo-2-(2,2,2-trifluoroethyl)hexane


nitrile (40) The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=20 / 1$, $\mathrm{v} / \mathrm{v}$ ) as a yellow liquid ( $72.9 \mathrm{mg}, 77 \%$ yield, $\mathrm{dr}=1: 1$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.44$ (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers),
7.96 (dt, $J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 7.91 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 7.83
(dd, $J=8.4,3.2 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.56 (dt, $J=21.4,6.9 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $7.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.23 (dd, $J=8.4,1.7 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 4.71 ( $\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.97-2.84(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.61-2.47(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.45-2.27(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $2.18-2.00(\mathrm{~m}, 1 \mathrm{H}$, two isomers), 1.84 $-1.73\left(\mathrm{~m}, 1 \mathrm{H}\right.$, two isomers), $1.71-1.64\left(\mathrm{~m}, 1 \mathrm{H}\right.$, two isomers). ${ }^{13} \mathrm{C}$ NMR ( 101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 198.35 \& 198.27$ (two isomers), $137.75 \& 137.69$ (two isomers), 135.7 (overlap, two isomers), $133.44 \& 133.41$ (two isomers), 132.6 (overlap, two isomers), 132.5 (overlap, two isomers), 130.68 \& 130.67 (two isomers), $129.85 \& 129.81$ (two isomers), 129.8 (overlap, two isomers), 129.0 (overlap, two isomers), 128.8 (overlap, two isomers), 127.9 (overlap, two isomers), 127.1 (overlap, two isomers), $125.16\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.3 \mathrm{~Hz}\right) \& 125.12\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.3 \mathrm{~Hz}\right.$ ) (two isomers), 124.3 (overlap, two isomers), 121.8 (overlap, two isomers), $119.54 \& 119.51$ (two isomers), 52.5 \& 52.4 (two isomers), $36.5\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.1 \mathrm{~Hz}\right) \& 36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29.9 \mathrm{~Hz}\right)$ (two isomers), $31.1 \& 30.8$ (two isomers), $30.3 \& 30.1$ (two isomers), 25.8 ( $\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=$ $2.9 \mathrm{~Hz}) \& 25.7\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right)$ (two isomers). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 64.86 ( s , one isomer), -64.92 ( s , one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{BrF}_{3} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+}: 474.0675,476.0655$; found: 474.0680, 476.0664 .

## 5-(4-bromophenyl)-6-(furan-2-yl)-6-0xo-2-(2,2,2-trifluoroethyl)hexanenitrile (4p)



The title compound was obtained according to the general condition (eluent: petroleum ether / acetone $=15 / 1, \mathrm{v} / \mathrm{v}$ ) as a yellow liquid ( $49.6 \mathrm{mg}, 60 \%$ yield, $\mathrm{dr}=1: 1$ ). ${ }^{1} \mathrm{H}$ NMR ( 300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57-7.52(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $7.48-$ 7.40 (m, 2 H , two isomers), 7.20 (dd, $J=8.4,1.8 \mathrm{~Hz}, 3 \mathrm{H}$, two isomers), 6.50 (dd, $J=$ $3.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 4.36 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.94-2.79$ (m, 1 H , two isomers), $2.62-2.41$ ( $\mathrm{m}, 1 \mathrm{H}$, two isomers), $2.38-2.20(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $2.13-1.94(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.79-1.67(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.64-1.52(\mathrm{dd}, J$ $=13.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 187.32$ \& 187.30 (two isomers), $152.09 \& 152.08$ (two isomers), $146.95 \& 146.94$ (two isomers), 137.02 \& 136.95 (two isomers), 132.3 (overlap, two isomers), 129.99 \& 129.96 (two isomers), $125.13\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.5 \mathrm{~Hz}\right) \& 125.09\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.4 \mathrm{~Hz}\right)$ (two isomers), 121.9 (overlap, two isomers), $119.44 \& 119.41$ (two isomers), $118.55 \&$ 118.52 (two isomers), 112.8 (overlap, two isomers), $52.41 \& 52.37$ (two isomers),
$36.4\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0 \mathrm{~Hz}\right) \& 36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.1 \mathrm{~Hz}\right)$ (two isomers), 30.1 \& 30.0 (two isomers), 29.9 \& 29.7 (two isomers), 25.7 ( $\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}$ ) \& 25.6 ( $\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0$ Hz ) (two isomers). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-64.9$ ( s , one isomer), -65.0 (s, one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrF}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 414.0312$, 412.0291; found: 414.0310, 416.0291.

## 5-(4-bromophenyl)-6-oxo-6-(thiophen-2-yl)-2-(2,2,2-trifluoroethyl)hexanenitrile


(4q) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone $=20 / 1$, $\mathrm{v} / \mathrm{v}$ ) as a yellow liquid ( $47.2 \mathrm{mg}, 55 \%$ yield, $\mathrm{dr}=1: 1$ ). ${ }^{1} \mathrm{H}$
NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.71-7.65(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $7.64-7.58(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $7.49-7.41(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $7.24-$ $7.16(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $7.11-7.04(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $4.36(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 2.87 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.57-2.44$ ( $\mathrm{m}, 1 \mathrm{H}$, two isomers), $2.40-2.24(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $2.12-1.96(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.78-1.69(\mathrm{~m}$, 1 H , two isomers), $1.65-1.59\left(\mathrm{~m}, 1 \mathrm{H}\right.$, two isomers). ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 191.2 \& 191.1 (two isomers), 143.24 \& 143.21 (two isomers), $137.55 \& 137.52$ (two isomers), $134.68 \& 134.65$ (two isomers), $132.94 \& 132.90$ (two isomers), 132.5 (overlap, two isomers), 129.8 \& 129.7 (two isomers), 128.5 (overlap, two isomers), $125.11\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=275.6 \mathrm{~Hz}\right) \& 125.08\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=275.6 \mathrm{~Hz}\right)$ (two isomers), 121.9 (overlap, two isomers), $119.5 \& 119.4$ (two isomers), $53.85 \& 53.79$ (two isomers), $36.4\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29.8 \mathrm{~Hz}\right) \& 36.2\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29.7 \mathrm{~Hz}\right.$ ) (two isomers), 30.8 \& 30.5 (two isomers), 30.2 \& 29.9 (two isomers), 25.7 ( $\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}$ ) \& 25.6 (q, ${ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}$ ) (two isomers). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-64.9$ (s, one isomer), 65.0 (s, one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrF}_{3} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+}: 430.0083$, 432.0063; found: 430.0082, 432.0065.

## 5-(4-bromophenyl)-6-oxo-6-(pyridin-3-yl)-2-(2,2,2-trifluoroethyl)hexanenitrile


(4r) The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=20 / 1$, $\mathrm{v} / \mathrm{v}$ ) as a yellow liquid ( $50.9 \mathrm{mg}, 60 \%$ yield, $\mathrm{dr}=1: 1$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.66$ (d, $J=4.7 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 8.02 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $7.81(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $7.50-7.38$ (m, 3H, two isomers), 7.28 (dd, $J=8.5,2.2 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $5.40(\mathrm{q}, J=7.4 \mathrm{~Hz}$,

1 H , two isomers), $3.01-2.86(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.61-2.45(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.44-2.23(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $2.21-2.03(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.84-1.71(\mathrm{~m}$, 1 H , two isomers), $1.68-1.59\left(\mathrm{~m}, 1 \mathrm{H}\right.$, two isomers). ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 200.0 \& 199.9 (two isomers), $152.36 \& 152.30$ (two isomers), 149.0 (overlap, two isomers), 137.19 \& 137.17 (two isomers), 137.0 (overlap, two isomers), 132.0 (overlap, two isomers), $130.63 \& 130.60$ (two isomers), $127.57 \& 127.56$ (two isomers), $125.15\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=275.7 \mathrm{~Hz}\right) \& 125.12\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=275.6 \mathrm{~Hz}\right)$ (two isomers), 122.97 \& 122.95 (two isomers), 121.5 (overlap, two isomers), 119.5 (overlap, two isomers), 49.5 \& 49.3 (two isomers), $36.4\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29.8 \mathrm{~Hz}\right) \quad \& 36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29.7\right.$ Hz ) (two isomers), 30.2 \& 30.1 (two isomers), 29.74 \& 29.69 (two isomers), 25.6 $\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right) \& 25.5\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right)$ (two isomers). ${ }^{19} \mathrm{~F}$ NMR $(376 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ) $\delta-64.9$ (s, one isomer), -65.0 (s, one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{BrF}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 425.0471,427.0451$; found: 425.0478, 427.0460 .

6-(benzo[b]thiophen-2-yl)-5-(4-bromophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)

hexanenitrile (4s) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone $=20 / 1, \mathrm{v} / \mathrm{v}$ ) as a colorless liquid ( $71.9 \mathrm{mg}, 75 \%$ yield, $\mathrm{dr}=1: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=5.8 \mathrm{~Hz}$, 1 H , two isomers), 7.83 ( $\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.47 ( $\mathrm{dt}, J=6.7,2.2 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $7.45-7.42(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 7.24 (dd, $J=8.4,1.8 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $4.49(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 2.95 $-2.86(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.59-2.46(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.43-2.24(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $2.15-2.00(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.81-1.73(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.69-$ 1.61 (m, 1H, two isomers). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 192.8$ \& 192.7 (two isomers), 142.7 (overlap, two isomers), $142.6 \& 142.5$ (two isomers), 139.0 (overlap, two isomers), 137.35 \& 137.31 (two isomers), 132.6 (overlap, two isomers), 130.15 \& 130.11 (two isomers), 129.8 \& 129.7 (two isomers), 128.0 (overlap, two isomers), 126.5 (overlap, two isomers), 125.3 (overlap, two isomers), 125.13 ( $\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.4 \mathrm{~Hz}$ ) \& $125.09\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.4 \mathrm{~Hz}\right)$ (two isomers), 123.0 (overlap, two isomers), 122.1 (overlap, two isomers), $119.5 \& 119.4$ (two isomers), $53.78 \& 53.72$ (two isomers), $36.4\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.1 \mathrm{~Hz}\right) \& 36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.1 \mathrm{~Hz}\right)$ (two isomers), 30.9 \& 30.5 (two
isomers), 30.2 \& 29.9 (two isomers), $25.8\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right) \& 25.6\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0\right.$ Hz ) (two isomers). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-64.86$ ( s , one isomer), -64.91 (s, one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{BrF}_{3} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+}: 480.0240$, 482.0219; found: 480.0246, 482.0230.

## 6-(benzofuran-2-yl)-5-(4-bromophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexane


nitrile (4t) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone $=20 / 1, \mathrm{v} / \mathrm{v}$ ) as a colorless liquid ( $48.2 \mathrm{mg}, 52 \%$ yield, $\mathrm{dr}=1: 1$ ). ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.67$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 7.54 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 7.50 (dd, $J=1.7,0.8 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.48 -7.43 (m, 3H, two isomers), $7.33-7.28$ (m, 1 H , two isomers), 7.27 (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 7.24 (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 4.52 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.98-2.82$ (m, 1H, two isomers), $2.65-2.45$ ( $\mathrm{m}, 1 \mathrm{H}$, two isomers), $2.44-$ $2.24(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $2.20-1.97(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.83-1.60(\mathrm{~m}, 2 \mathrm{H}$, two isomers). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 189.32$ \& 189.28 (two isomers), 155.8 (overlap, two isomers), 151.87 \& 151.85 (two isomers), $136.8 \& 136.7$ (two isomers), 132.5 (overlap, two isomers), $130.1 \& 130.0$ (two isomers), 128.8 (overlap, two isomers), 127.0 (overlap, two isomers), $125.13\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=279.3 \mathrm{~Hz}\right) \& 125.09(\mathrm{q}$, ${ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.2 \mathrm{~Hz}$ ) (two isomers), 124.3 (overlap, two isomers), 123.5 (overlap, two isomers), 122.1 (overlap, two isomers), $119.42 \& 119.40$ (two isomers), $52.9 \&$ 52.8 (two isomers), $36.5\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0 \mathrm{~Hz}\right) \& 36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.2 \mathrm{~Hz}\right.$ ) (two isomers), 30.1 \& 30.0 (two isomers), 29.9 \& 29.7 (two isomers), 25.7 ( $\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.1 \mathrm{~Hz}$ ) \& $25.6\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right.$ ) (two isomers). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-64.86$ (s, one isomer), -64.93 (s, one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{BrF}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 464.0468, 466.0448; found 464.0473, 466.0452.

(1R,2R,5S)-2-isopropyl-5-methylcyclohexyl-4-(2-(4-bromophenyl)-5-cyano-7,7,7trifluoroheptanoyl)benzoate (4u) The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=20 / 1, \mathrm{v} / \mathrm{v}$ ) as a colorless liquid ( $62.9 \mathrm{mg}, 52 \%$ yield, $\mathrm{dr}=1: 1$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.04$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.94 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.44 (dd, $J=8.5,2.6 \mathrm{~Hz}, 2 \mathrm{H}$, two
isomers), 7.13 (ddd, $J=8.3,3.4,1.5 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 4.92 (tdd, $J=10.8,4.2,2.2$ $\mathrm{Hz}, 1 \mathrm{H}$, two isomers), $4.53(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.95-2.81(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.58-2.45$ ( $\mathrm{m}, 1 \mathrm{H}$, two isomers), $2.43-2.26$ ( $\mathrm{m}, 2 \mathrm{H}$, two isomers), $2.15-$ $2.00(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $1.95-1.87(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.77-1.69(\mathrm{~m}, 3 \mathrm{H}$, two isomers), $1.68-1.45(\mathrm{~m}, 4 \mathrm{H}$, two isomers), $1.15-1.03(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $0.90(\mathrm{t}$, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H}$, two isomers), 0.76 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$, two isomers). ${ }^{13} \mathrm{C}$ NMR ( 101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.9$ \& 197.8 (two isomers), 165.1 (overlap, two isomers), 139.1 \& 139.0 (two isomers), 137.1 \& 137.0 (two isomers), 134.9 (overlap, two isomers), 132.7 (overlap, two isomers), 130.0 (overlap, two isomers), $129.84 \& 129.80$ (two isomers), $128.7 \& 128.6$ (two isomers), $125.12\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.0 \mathrm{~Hz}\right) \& 125.10(\mathrm{q}$, ${ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.1 \mathrm{~Hz}$ ) (two isomers), 122.0 (overlap, two isomers), 119.5 \& 119.4 (two isomers), 75.7 (overlap, two isomers), 52.88 \& 52.82 (two isomers), $47.32 \& 47.31$ (two isomers), 41.0 (overlap, two isomers), 36.4 (q, ${ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0 \mathrm{~Hz}$ ) \& 36.3 ( $\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}$ $=29.9 \mathrm{~Hz}$ ) (two isomers), 34.3 (overlap, two isomers), 31.5 (overlap, two isomers), 30.8 \& 30.6 (two isomers), 30.1 (overlap, two isomers), 29.9 (overlap, two isomers), 26.7 \& 26.6 (two isomers), $25.7\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right) \& 25.6\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.8 \mathrm{~Hz}\right.$ ) (two isomers), 23.7 \& 23.6 (two isomers), 22.1 (overlap, two isomers), 20.9 \& 20.8 (two isomers), 16.6 \& 16.5 (two isomers). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-64.87$ (s, one isomer), -64.92 (s, one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{BrF}_{3} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 606.1826, 608.1805; found: 606.1823, 608.1818 .
((3aS,5R,5aR,8aR,8bS)-2,2,7,7-tetramethyltetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-5-yl)methyl-4-(2-(4-bromophenyl)-5-cyano-7,7,7trifluoroheptanoyl)benzoate (4v) The title compound was obtained according to the
 general condition (eluent: petroleum ether / acetone $=15 / 1, \mathrm{v} / \mathrm{v}$ ) as a colorless liquid ( $90.8 \mathrm{mg}, 64 \%$ yield, $\mathrm{dr}=1: 1) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.04$ (d, $J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.92 (dd, $J=8.5,1.8 \mathrm{~Hz}$, 2 H , two isomers), 7.43 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.12 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 5.54 (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 4.64 (dd, $J=7.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $4.54-4.48$ (m, 2H, two isomers), 4.42 (dd, $J=11.6,7.7 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 4.34 (dd, $J=5.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 4.29 (dd, $J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $4.17-4.12(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.94-2.81$
( $\mathrm{m}, 1 \mathrm{H}$, two isomers), $2.58-2.44(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.42-2.24(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $2.14-1.97$ ( $\mathrm{m}, 1 \mathrm{H}$, two isomers), $1.77-1.69(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.65-$ $1.56(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.48(\mathrm{~s}, 3 \mathrm{H}$, two isomers), $1.45(\mathrm{~s}, 3 \mathrm{H}$, two isomers), 1.34 (s, 3 H , two isomers), 1.32 (s, 3 H , two isomers). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 197.9$ \& 197.8 (two isomers), 165.4 (overlap, two isomers), 139.34 \& 139.31 (two isomers), $137.01 \& 136.96$ (two isomers), $134.11 \& 134.09$ (two isomers), 132.7 (overlap, two isomers), 130.1 (overlap, two isomers), 129.83 \& 129.79 (two isomers), 128.7 (overlap, two isomers), $125.11\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.8 \mathrm{~Hz}\right) \& 125.08\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.2\right.$ $\mathrm{Hz})$ (two isomers), 122.0 (overlap, two isomers), 119.43 \& 119.42 (two isomers), 109.9 (overlap, two isomers), 108.9 (overlap, two isomers), 96.4 (overlap, two isomers), 71.2 (overlap, two isomers), 70.8 (overlap, two isomers), 70.6 (overlap, two isomers), 66.2 (overlap, two isomers), 64.5 (overlap, two isomers), 52.9 \& 52.8 (two isomers), $36.4\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.2 \mathrm{~Hz}\right) \& 36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0 \mathrm{~Hz}\right.$ ) (two isomers), 30.8 \& 30.5 (two isomers), $30.1 \& 29.9$ (two isomers), 26.11 (overlap, two isomers), 26.07 (overlap, two isomers), $25.74\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right) \& 25.65\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right)$ (two isomers), 25.6 (overlap, two isomers), 25.0 (overlap, two isomers), 24.6 (overlap, two isomers). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-64.87$ (s, one isomer), -64.92 (s, one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{BrF}_{3} \mathrm{NO}_{8}[\mathrm{M}+\mathrm{H}]^{+}: 710.1571,712.1551$; found: 710.1577, 712.1566.
(3R,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-

$\mathbf{2 , 3 , 4 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6 , 1 7 -}$ tetradecahydro- $1 \mathrm{H}-$ cyclopenta[a]phenanthren-3-yl-4-(2-(4-bromophenyl)-5-cyano-7,7,7trifluoroheptanoyl)benzoate (4w) The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=20 / 1, \mathrm{v} / \mathrm{v}$ ) as a white solid ( $81.9 \mathrm{mg}, 49 \%$ yield, $\mathrm{dr}=1: 1, \mathrm{MP}: 78-79^{\circ} \mathrm{C}$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.04$ ( $\mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.92 ( $\mathrm{dd}, J=8.4$, $1.5 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.44 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.13 (dd, $J=8.4,1.7$ $\mathrm{Hz}, 2 \mathrm{H}$, two isomers), 5.41 (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $4.89-4.80(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $4.53(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.94-2.82$ ( $\mathrm{m}, 1 \mathrm{H}$, two isomers), 2.59 -2.47 ( $\mathrm{m}, 1 \mathrm{H}$, two isomers), 2.43 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $2.40-2.24$ (m, 2H,
two isomers), $2.22-2.00(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $2.00-1.88$ ( $\mathrm{m}, 3 \mathrm{H}$, two isomers), 1.88 $-1.64(\mathrm{~m}, 4 \mathrm{H}$, two isomers), $1.64-1.42(\mathrm{~m}, 8 \mathrm{H}$, two isomers), $1.40-1.32(\mathrm{~m}, 3 \mathrm{H}$, two isomers), $1.21-1.09(\mathrm{~m}, 6 \mathrm{H}$, two isomers), $1.05(\mathrm{~s}, 3 \mathrm{H}$, two isomers), $1.03-0.96(\mathrm{~m}$, 3 H , two isomers), 0.92 (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$, two isomers), 0.86 (dd, $J=6.6,1.6 \mathrm{~Hz}, 6 \mathrm{H}$, two isomers), 0.68 ( $\mathrm{s}, 3 \mathrm{H}$, two isomers). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 197.9$ \& 197.9 (two isomers), 165.0 (overlap, two isomers), 139.5 (overlap, two isomers), 139.12 \& 139.09 (two isomers), 137.10 \& 137.05 (two isomers), $134.97 \& 134.95$ (two isomers), 132.7 (overlap, two isomers), 130.0 (overlap, two isomers), $129.85 \&$ 129.81 (two isomers), 128.6 (overlap, two isomers), 125.12 ( $\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.5 \mathrm{~Hz}$ ) \& $125.10\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.6 \mathrm{~Hz}\right.$ ) (two isomers), 123.2 (overlap, two isomers), 122.0 (overlap, two isomers), 119.45 \& 119.43 (two isomers), 75.4 (overlap, two isomers), 56.8 (overlap, two isomers), 56.3 (overlap, two isomers), $52.92 \& 52.88$ (two isomers), 50.2 (overlap, two isomers), 42.5 (overlap, two isomers), 39.9 (overlap, two isomers), 39.7 (overlap, two isomers), 38.3 (overlap, two isomers), 37.1 (overlap, two isomers), 36.8 (overlap, two isomers), $36.4\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.1 \mathrm{~Hz}\right) \& 36.33\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.2 \mathrm{~Hz}\right)$ (two isomers), 36.32 (overlap, two isomers), 35.9 (overlap, two isomers), $32.06 \&$ 32.00 (two isomers), 30.8 \& 30.5 (two isomers), 30.1 \& 30.0 (two isomers), 28.4 (overlap, two isomers), 28.2 (overlap, two isomers), 27.9 (overlap, two isomers), 25.8 $\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right) \quad \& 25.7\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.1 \mathrm{~Hz}\right)$ (two isomers), 24.4 (overlap, two isomers), 24.0 (overlap, two isomers), 23.0 (overlap, two isomers), 22.7 (overlap, two isomers), 21.2 (overlap, two isomers), 19.5 (overlap, two isomers), 18.9 (overlap, two isomers), 12.0 (overlap, two isomers). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-64.87$ (s, one isomer), -64.92 (s, one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{48} \mathrm{H}_{62} \mathrm{BrF}_{3} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 836.3860, 838.3840; found: 836.3860, 838.3857.

6-(4-chlorophenyl)-5-(4-fluorophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexanenitrile
 (4aa) The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=20 / 1$, $\mathrm{v} / \mathrm{v}$ ) as a colorless liquid ( $67.5 \mathrm{mg}, 85 \%$ yield, $\mathrm{dr}=1: 1$ ). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 7.89-7.81$ (m, 2H, two isomers), 7.36 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $7.25-7.19$ ( $\mathrm{m}, 2 \mathrm{H}$, two isomers), $7.00(\mathrm{t}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}$, two isomers), $4.50(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.93-2.81(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.59-2.46$ (m, 1H, two isomers), $2.39-2.24$ (m, 2H, two isomers), $2.11-$
$1.96(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.79-1.68(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.66-1.57(\mathrm{~m}, 1 \mathrm{H}$, two isomers). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 197.44$ \& 197.37 (two isomers), 162.3 (d, ${ }^{1} J_{\mathrm{C}-\mathrm{F}}=246.8 \mathrm{~Hz}$ ) (overlap, two isomers), 140.0 (overlap, two isomers), 134.42 (d, ${ }^{4} J_{\mathrm{C}-}$ $\mathrm{F}=1.7 \mathrm{~Hz}$ ) (overlap, two isomers), 134.04 \& 134.01 (two isomers), 130.2 (overlap, two isomers), $129.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.9 \mathrm{~Hz}\right) \quad \& \quad 129.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}\right) \quad$ (two isomers), 129.1 (overlap, two isomers), 125.17 ( $\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=279.0 \mathrm{~Hz}$ ) \& 125.13 ( $\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.2$ Hz ) (two isomers), 119.5 (overlap, two isomers), $116.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21.6 \mathrm{~Hz}\right) \quad$ (overlap, two isomers), 52.3 (overlap, two isomers), 36.4 ( $\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29.5 \mathrm{~Hz}$ ) \& 36.3 ( $\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=$ 30.0 Hz ) (two isomers), $31.0 \& 30.8$ (two isomers), $30.1 \& 29.9$ (two isomers), $25.73\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=1.6 \mathrm{~Hz}\right) \& 25.68\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=1.7 \mathrm{~Hz}\right)$ (two isomers). ${ }^{19} \mathrm{~F}$ NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-64.89$ (s, one isomer), -64.95 ( s , one isomer), -114.2 (overlap, two isomers). HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{ClF}_{4} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 398.0929$; found: 398.0954. 5,6-bis(4-chlorophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexanenitrile (4ab) The title
 compound was obtained according to the general condition (eluent: petroleum ether / acetone $=20 / 1, \mathrm{v} / \mathrm{v}$ ) as a colorless liquid ( $62.8 \mathrm{mg}, 76 \%$ yield, $\mathrm{dr}=1: 1$ ). ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.87-7.81$ ( $\mathrm{m}, 2 \mathrm{H}$, two isomers), 7.36 ( $\mathrm{d}, J=7.9$ $\mathrm{Hz}, 2 \mathrm{H}$, two isomers), $7.32-7.27(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $7.23-7.14(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $4.49(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.94-2.81$ ( $\mathrm{m}, 1 \mathrm{H}$, two isomers), 2.57 $-2.45(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.40-2.25(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $2.11-1.96(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.78-1.68\left(\mathrm{~m}, 1 \mathrm{H}\right.$, two isomers), $1.65-1.57\left(\mathrm{~m}, 1 \mathrm{H}\right.$, two isomers). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 197.2 \& 197.1$ (two isomers), 140.0 (overlap, two isomers), 136.8 (overlap, two isomers), 134.3 (overlap, two isomers), 133.9 (overlap, two isomers), 129.7 (overlap, two isomers), 129.4 (overlap, two isomers), 129.2 (overlap, two isomers), $125.04\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=261.0 \mathrm{~Hz}\right) \& 125.00\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=259.3 \mathrm{~Hz}\right.$ ) (two isomers), 119.5 (overlap, two isomers), 52.4 (overlap, two isomers), 36.4 ( $\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=$ $29.6 \mathrm{~Hz}) \& 36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29.2 \mathrm{~Hz}\right.$ ) (two isomers), 30.9 \& 30.7 (two isomers), 30.1 \& 29.9 (two isomers), 25.7 ( $\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=1.7 \mathrm{~Hz}$ ) \& 25.6 ( $\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=1.9 \mathrm{~Hz}$ ) (two isomers). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-64.87$ (s, one isomer), -64.93 (s, one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{NNaO}[\mathrm{M}+\mathrm{Na}]^{+}: 436.0453$; found: 436.0448.


The title compound was obtained according to the general condition (eluent: petroleum ether / acetone $=20 / 1, \mathrm{v} / \mathrm{v}$ ) as a colorless liquid ( $66.8 \mathrm{mg}, 85 \%$ yield, $\mathrm{dr}=1: 1$ ). ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.86(\mathrm{dd}, J=8.7,1.8 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.34 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.12 ( $\mathrm{s}, 4 \mathrm{H}$, two isomers), 4.45 ( $\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.95-2.77(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.59-2.36(\mathrm{~m}, 2 \mathrm{H}$, two isomers), 2.29 (s, 3 H , two isomers), $2.24-1.92(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $1.76-1.59$ (m, 2 H , two isomers). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 197.53$ \& 197.47 (two isomers), 139.54 \& 139.52 (two isomers), 137.5 (overlap, two isomers), $135.12 \& 135.07$ (two isomers), $134.53 \& 134.51$ (two isomers), 130.2 (overlap, two isomers), 130.1 (overlap, two isomers), 128.9 (overlap, two isomers), 127.9 \& 127.8 (two isomers), $125.07\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.3 \mathrm{~Hz}\right) \quad \& 125.04\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.5 \mathrm{~Hz}\right)$ (two isomers), 119.5 (overlap, two isomers), 52.8 (overlap, two isomers), 36.3 ( $\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.1 \mathrm{~Hz}$ ) \& 36.2 $\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0 \mathrm{~Hz}\right.$ ) (two isomers), $30.8 \& 30.5$ (two isomers), $30.1 \& 29.9$ (two isomers), 25.6 ( $\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}$ ) (overlap, two isomers), 21.0 (overlap, two isomers). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-64.9$ ( s , one isomer), -65.0 ( s , one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{ClF}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]+: 394.1180$; found: 394.1184.

## 6-(4-chlorophenyl)-5-(4-methoxyphenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexane


$\mathrm{Hz}, 2 \mathrm{H}$, two isomers), 7.34 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $7.19-7.12$ (m, 2H, two isomers), $6.89-6.81(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $4.43(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 3.75 (s, 3 H , two isomers), $2.95-2.77(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.59-2.40(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.39-2.18$ ( $\mathrm{m}, 2 \mathrm{H}$, two isomers), $2.11-1.92$ ( $\mathrm{m}, 1 \mathrm{H}$, two isomers), $1.77-$ $1.67\left(\mathrm{~m}, 1 \mathrm{H}\right.$, two isomers), $1.65-1.54\left(\mathrm{~m}, 1 \mathrm{H}\right.$, two isomers). ${ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 197.7$ \& 197.6 (two isomers), 159.2 (overlap, two isomers), 139.6 (overlap, two isomers), 134.6 (overlap, two isomers), 130.3 (overlap, two isomers), $130.13 \&$ 130.09 (two isomers), 129.2 \& 129.1 (two isomers), 129.0 (overlap, two isomers), $125.16\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=275.7 \mathrm{~Hz}\right) \& 125.14\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=275.5 \mathrm{~Hz}\right)$ (two isomers), 119.6
(overlap, two isomers), 114.9 (overlap, two isomers), 55.4 (overlap, two isomers), 52.3 (overlap, two isomers), $36.7\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29.8 \mathrm{~Hz}\right) \& 36.0\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29.5 \mathrm{~Hz}\right.$ ) (two isomers), 30.9 \& 30.7 (two isomers), 30.1 \& 30.0 (two isomers), 25.7 ( $\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.2$ Hz ) (overlap, two isomers). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-64.9$ (s, one isomer), -65.0 (s, one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{ClF}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 410.1129; found: 410.1110.

## 5-(4-(tert-butyl)phenyl)-6-(4-chlorophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexane

nitrile (4ae) The title compound was obtained according to
 the general condition (eluent: petroleum ether $/$ acetone $=$ $20 / 1, \mathrm{v} / \mathrm{v}$ ) as a colorless liquid ( $73.1 \mathrm{mg}, 84 \%$ yield, $\mathrm{dr}=1: 1$ ). ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.88(\mathrm{dd}, J=8.6,1.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.37-7.29$ (m, 4H), 7.16 (dd, $J=8.3,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.47$ (t, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.08-$ $1.95(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 197.7$ \& 197.6 (two isomers), 150.8 (overlap, two isomers), 139.7 (overlap, two isomers), 135.1 \& 135.0 (two isomers), 134.69 \& 134.67 (two isomers), 130.3 (overlap, two isomers), 129.0 (overlap, two isomers), $127.7 \& 127.6$ (two isomers), 126.4 (overlap, two isomers), $125.18\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.3 \mathrm{~Hz}\right) \& 125.15$ $\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.6 \mathrm{~Hz}\right.$ ) (two isomers), 119.6 (overlap, two isomers), $52.73 \& 52.71$ (two isomers), $36.4\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.8 \mathrm{~Hz}\right) \& 36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0 \mathrm{~Hz}\right)$ (two isomers), 34.6 (overlap, two isomers), 31.4 (overlap, two isomers), $31.0 \& 30.7$ (two isomers), 30.3 \& 30.1 (two isomers), $25.7\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right) ~ \& ~ 25.6\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right.$ ) (two isomers). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-64.9$ (s, one isomer), -65.0 (s, one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{ClF}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 436.1650$; found: 436.1653 .

## 6-(4-chlorophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)-5-(3-(trifluoromethyl)phenyl)


hexanenitrile (4af) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone $=20 / 1, \mathrm{v} / \mathrm{v}$ ) as a colorless liquid ( $48.8 \mathrm{mg}, 65 \%$ yield, $\mathrm{dr}=1: 1) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.86(\mathrm{dd}, J=8.7$, $2.5 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $7.55-7.44$ (m, 4 H , two isomers), 7.39 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 4.59 ( $\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.95-2.83(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.59-2.46$ (m, 1H, two isomers), $2.44-2.24(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $2.13-1.97$ (m,

1 H , two isomers), $1.81-1.70(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.67-1.62(\mathrm{~m}, 1 \mathrm{H}$, two isomers). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 197.0$ \& 196.9 (two isomers), 140.3 \& 140.3 (two isomers), $139.31 \& 139.28$ (two isomers), $134.3 \& 134.2$ (two isomers), 131.4 (q, ${ }^{2} J_{\mathrm{C}-\mathrm{F}}=32.8 \mathrm{~Hz}$ ) (overlap, two isomers), $130.20 \& 130.19$ (two isomers), 130.1 (overlap, two isomers), 129.3 (overlap, two isomers), 125.11 ( $\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.4 \mathrm{~Hz}$ ) \& $125.08\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.2 \mathrm{~Hz}\right)$ (two isomers), $124.8\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.6 \mathrm{~Hz}\right)$ (overlap, two isomers), 123.9 ( $\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=273.6 \mathrm{~Hz}$ ) (overlap, two isomers), 119.44 \& 119.39 (two isomers), 52.7 (overlap, two isomers), 36.4 ( $\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.2 \mathrm{~Hz}$ ) \& $36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.1\right.$ Hz ) (two isomers), 31.2 \& 30.9 (two isomers), 30.2 \& 30.0 (two isomers), 25.8 (q, $\left.{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right) \quad \& 25.7\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.1 \mathrm{~Hz}\right)$ (two isomers). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-62.63$ ( s , one isomer), -62.64 ( s , one isomer), -64.9 ( s , one isomer), -65.0 ( s , one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{ClF}_{6} \mathrm{NNaO}[\mathrm{M}+\mathrm{Na}]^{+}$: 470.0717; found: 470.0709 .

5-(3-chlorophenyl)-6-(4-chlorophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexanenitrile
 (4ag) The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=20 / 1$, $\mathrm{v} / \mathrm{v}$ ) as a colorless liquid ( $62.8 \mathrm{mg}, 73 \%$ yield, $\mathrm{dr}=1: 1$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.85(\mathrm{dd}, J=8.5,1.7 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.38 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $7.27-7.22$ ( $\mathrm{m}, 3 \mathrm{H}$, two isomers), 7.14 ( $\mathrm{d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $4.48(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.95-2.82$ (m, 1 H , two isomers), $2.58-2.44(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.41-2.23(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $2.11-1.97(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.79-1.69(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.68-1.61(\mathrm{~m}$, 1 H , two isomers). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 196.9$ \& 196.9 (two isomers), 140.3 \& 140.23 (two isomers), 140.15 \& 140.1 (two isomers), 135.4 (overlap, two isomers), $134.34 \& 134.31$ (two isomers), 130.8 (overlap, two isomers), 130.2 (overlap, two isomers), 129.20 (overlap, two isomers), 128.15 (overlap, two isomers), 128.2 (overlap, two isomers), $126.3 \& 126.2$ (two isomers), 125.13 ( $\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.4$ $\mathrm{Hz}) \& 125.10\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.4 \mathrm{~Hz}\right)$ (two isomers), 119.5 \& 119.4 (two isomers), 52.72 \& 52.70 (two isomers), $36.4\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.1 \mathrm{~Hz}\right) \& 36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.1 \mathrm{~Hz}\right)$ (two isomers), 31.0 \& 30.8 (two isomers), 30.2 \& 30.0 (two isomers), 25.8 ( $\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}$ $=2.9 \mathrm{~Hz}) \& 25.7\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right)$ (two isomers). ${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-$
64.89 ( s , one isomer), -64.95 (s, one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{NNaO}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 436.0453$; found: 436.0448 .
6-(4-chlorophenyl)-6-oxo-5-(m-tolyl)-2-(2,2,2-trifluoroethyl)hexanenitrile (4ah)


The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=20 / 1, \mathrm{v} / \mathrm{v}$ ) as a colorless liquid ( $55.8 \mathrm{mg}, 71 \%$ yield, $\mathrm{dr}=1: 1$ ). ${ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{dd}, J=8.6,1.7 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.35 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $7.20(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $7.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}$, two isomers), $4.44(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.93-2.78$ ( $\mathrm{m}, 1 \mathrm{H}$, two isomers), $2.58-2.44(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.42-2.32(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.31(\mathrm{~s}, 3 \mathrm{H}$, two isomers), $2.30-2.19(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.12-1.98(\mathrm{~m}$, 1 H , two isomers), $1.81-1.69(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.65-1.57(\mathrm{~m}, 1 \mathrm{H}$, two isomers). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 197.5$ \& 197.4 (two isomers), 139.60 \& 139.58 (two isomers), 139.2 (overlap, two isomers), $138.12 \& 138.06$ (two isomers), $134.54 \&$ 134.52 (two isomers), 130.2 (overlap, two isomers), 129.3 (overlap, two isomers), 128.9 (overlap, two isomers), 128.5 (overlap, two isomers), $128.43 \& 128.42$ (two isomers), 125.15 \& 125.09 (two isomers), 125.07 ( $\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.2 \mathrm{~Hz}$ ) \& 125.04 (q, ${ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.3 \mathrm{~Hz}$ ) (two isomers), 119.50 \& 119.47 (two isomers), 53.15 \& 53.11 (two isomers), $36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0 \mathrm{~Hz}\right) \& 36.2\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0 \mathrm{~Hz}\right)$ (two isomers), 30.9 \& 30.6 (two isomers), $30.1 \& 30.0$ (two isomers), $25.6\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right) \&$ $25.5\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right.$ ) (two isomers), 21.4 (overlap, two isomers). ${ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{( } 376 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ) $\delta$-64.9 (s, one isomer), -65.0 (s, one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{ClF}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 394.1180$; found: 394.1184.

## 6-(4-chlorophenyl)-5-(3-methoxyphenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexane


nitrile (4ai) The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=$ $20 / 1, \mathrm{v} / \mathrm{v}$ ) as a colorless liquid ( $52.8 \mathrm{mg}, 65 \%$ yield, dr $=1: 1) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.90-7.83(\mathrm{~m}, 2 \mathrm{H})$, $7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.73(\mathrm{~m}, 3 \mathrm{H}), 4.44(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.95-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.23(\mathrm{~m}, 2 \mathrm{H})$, $2.16-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 197.4$ \& 197.3 (two isomers), 160.4 (overlap, two isomers), 139.80 \&
139.78 (two isomers), 139.7 (overlap, two isomers), 134.61 \& 134.59 (two isomers), 130.6 (overlap, two isomers), 130.3 (overlap, two isomers), 129.1 (overlap, two isomers), 125.17 ( $\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.5 \mathrm{~Hz}$ ) \& 125.15 ( $\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.2 \mathrm{~Hz}$ ) (two isomers), 120.50 \& 120.46 (two isomers), 119.6 (overlap, two isomers), 113.92 \& 113.88 (two isomers), 112.9 (overlap, two isomers), 55.4 (overlap, two isomers), 53.30 \& 53.28 (two isomers), 36.4 ( $\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.1 \mathrm{~Hz}$ ) \& 36.3 ( $\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0 \mathrm{~Hz}$ ) (two isomers), 30.8 \& 30.6 (two isomers), 30.2 \& 30.1 (two isomers), 25.8 ( $\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.9$ $\mathrm{Hz}) \& 25.7\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right)$ (two isomers). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-64.93$ (s, one isomer), -64.98 (s, one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{ClF}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 410.1129; found: 410.1110 .

## 5-(2-chlorophenyl)-6-(4-chlorophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexanenitrile


(4aj) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone $=20 / 1, \mathrm{v} / \mathrm{v}$ ) as a colorless liquid ( $63.6 \mathrm{mg}, 77 \%$ yield, $\mathrm{dr}=1: 1$ ). ${ }^{1} \mathrm{H}$ NMR ( 300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85$ (dd, $J=8.6,1.8 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.44 (dd, $J=7.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 7.36 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $7.23-$ 7.13 (m, 2H, two isomers), $7.13-7.05(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $5.02(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $2.97-2.83(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.61-2.45(\mathrm{~m}, 1 \mathrm{H}$, two isomers), 2.41 -2.21 ( $\mathrm{m}, 2 \mathrm{H}$, two isomers), $2.12-1.91(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.89-1.77(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.71-1.62$ ( $\mathrm{m}, 1 \mathrm{H}$, two isomers). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 197.4$ \& 197.3 (two isomers), $140.04 \& 140.03$ (two isomers), $136.3 \& 136.2$ (two isomers), 134.2 (overlap, two isomers), 133.4 (overlap, two isomers), $130.42 \& 130.41$ (two isomers), 130.1 (overlap, two isomers), $129.22 \& 129.19$ (two isomers), $128.7 \&$ 128.6 (two isomers), 128.09 \& 128.07 (two isomers), 125.17 ( $\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.4 \mathrm{~Hz}$ ) \& $125.14\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.1 \mathrm{~Hz}\right.$ ) (two isomers), $119.5 \& 119.4$ (two isomers), $48.8 \&$ 48.7 (two isomers), $36.5\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.3 \mathrm{~Hz}\right) \& 36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.1 \mathrm{~Hz}\right)$ (two isomers), 30.4 \& 30.1 (two isomers), 29.9 \& 29.8 (two isomers), $25.8\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right) \&$ 25.7 ( $\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}$ ) (two isomers). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-64.9$ (s, one isomer), -65.0 (s, one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{NNaO}[\mathrm{M}+\mathrm{Na}]^{+}$: 436.0453; found: 436.0448 .

The title compound was obtained according to the general
 condition (eluent: petroleum ether / acetone $=20 / 1, \mathrm{v} / \mathrm{v}$ ) as a colorless liquid ( $68.4 \mathrm{mg}, 87 \%$ yield, $\mathrm{dr}=1: 1$ ). ${ }^{1} \mathrm{H}$ NMR ( 300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.72$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $7.35-$ 7.30 (m, 2H, two isomers), $7.24(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $7.17-7.05$ (m, 2H, two isomers), 6.95 (dd, $J=8.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $4.65-4.59(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.92-2.83(\mathrm{~m}, 1 \mathrm{H}$, two isomers), 2.53 ( $\mathrm{s}, 3 \mathrm{H}$, two isomers), $2.51-2.40$ ( $\mathrm{m}, 1 \mathrm{H}$, two isomers), $2.39-2.22$ ( $\mathrm{m}, 2 \mathrm{H}$, two isomers), $2.05-$ 1.87 (m, 1H, two isomers), $1.86-1.78(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.70-1.59(\mathrm{~m}, 1 \mathrm{H}$, two isomers). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 198.3$ \& 198.2 (two isomers), 139.6 \& 139.5 (two isomers), 137.14 (overlap, two isomers), 137.07 (overlap, two isomers), 134.83 \& 134.78 (two isomers), 131.6 (overlap, two isomers), 129.93 \& 129.92 (two isomers), 129.0 (overlap, two isomers), 127.7 (overlap, two isomers), 127.3 (overlap, two isomers), 127.2 \& 127.1 (two isomers), $125.20\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.2 \mathrm{~Hz}\right) \quad \&$ $125.15\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.2 \mathrm{~Hz}\right.$ ) (two isomers), $119.6 \& 119.5$ (two isomers), $49.7 \&$ 49.4 (two isomers), $36.4\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0 \mathrm{~Hz}\right) \& 36.2\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0 \mathrm{~Hz}\right)$ (two isomers), 30.5 \& 30.4 (two isomers), 30.1 \& 29.9 (two isomers), 25.9 ( $\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}$ ) \& 25.6 (q, ${ }^{3} J_{\text {C-F }}=3.0 \mathrm{~Hz}$ ) (two isomers), 19.87 \& 19.85 (two isomers). ${ }^{19}$ F NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$-64.86 ( s , one isomer), -64.95 ( s , one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{ClF}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 394.1180$; found: 394.1184.

Ethyl-2-(4-chlorobenzoyl)-5-cyano-7,7,7-trifluoroheptanoate (4al) The title
 compound was obtained according to the general condition (eluent: petroleum ether / acetone $=20 / 1, \mathrm{v} / \mathrm{v}$ ) as a yellow liquid ( $48.8 \mathrm{mg}, 65 \%$ yield, $\mathrm{dr}=1: 1$ ). ${ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.92$ (dd, $J=8.6,1.7 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $7.51-$ $7.40(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $4.28(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), 4.14 ( $\mathrm{q}, J=8.0 \mathrm{~Hz}$, 2 H , two isomers), $3.02-2.85$ ( $\mathrm{m}, 1 \mathrm{H}$, two isomers), $2.63-2.48$ ( $\mathrm{m}, 1 \mathrm{H}$, two isomers), $2.45-2.31(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.29-2.10(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $1.84-1.71(\mathrm{~m}$, 2 H , two isomers), $1.16\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right.$, two isomers). $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(101} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 192.84$ \& 192.82 (two isomers), $169.02 \& 168.96$ (two isomers), 140.63 \& 140.62 (two isomers), 134.23 \& 134.19 (two isomers), 130.1 (overlap, two isomers),
129.3 (overlap, two isomers), $125.12\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.2 \mathrm{~Hz}\right) \& 125.11\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.6\right.$ Hz ) (two isomers), 119.29 \& 119.27 (two isomers), 62.1 (overlap, two isomers), 53.4 \&, 53.3 (two isomers), $36.3\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.1 \mathrm{~Hz}\right) \& 36.2\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.0 \mathrm{~Hz}\right.$ ) (two isomers), 29.8 \& 29.7 (two isomers), 25.8 (overlap, two isomers), 25.6 ( $\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=1.9$ $\mathrm{Hz})$ (overlap, two isomers), 14.0 (overlap, two isomers). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$-64.89 (s, one isomer), -64.90 (s, one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClF}_{3} \mathrm{NO}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 376.0922$; found: 376.0927 .

2-(4-chlorobenzoyl)-5-(2,2,2-trifluoroethyl)hexanedinitrile (4am) The title
 compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=20 / 1, \mathrm{v} / \mathrm{v}$ ) as a yellow liquid ( 36.1 mg , $55 \%$ yield, $\mathrm{dr}=1: 1$ ). ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.97-7.90(\mathrm{~m}$, 2 H , two isomers), $7.57-7.50(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $4.37(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $3.05-2.94(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.68-2.55(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.47-2.28$ ( $\mathrm{m}, 2 \mathrm{H}$, two isomers), $2.25-2.15$ ( $\mathrm{m}, 1 \mathrm{H}$, two isomers), 2.06 1.92 (m, 2H, two isomers). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 188.2$ \& 188.2 (two isomers), 141.9 (overlap, two isomers), 132.0 (overlap, two isomers), 130.3 (overlap, two isomers), 129.8 (overlap, two isomers), $125.0\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.4 \mathrm{~Hz}\right.$ ) (overlap, two isomers), $118.9 \& 118.8$ (two isomers), $116.3 \& 116.2$ (two isomers), $38.7 \& 38.5$ (two isomers), $36.5\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.4 \mathrm{~Hz}\right) \& 36.4\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.2 \mathrm{~Hz}\right)$ (two isomers), 29.4 \& 29.1 (two isomers), 26.3 \& 26.1 (two isomers), 25.6 ( $\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.1 \mathrm{~Hz}$ ) \& 25.4 (q, ${ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.1 \mathrm{~Hz}$ ) (two isomers). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-64.78$ (s, one isomer), -64.83 (s, one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 329.0663; found: 329.0662.

2-(4-chlorobenzoyl)-2-phenethyl-5-(2,2,2-trifluoroethyl)hexanedinitrile (4an) The

title compound was obtained according to the general condition (eluent: petroleum ether / acetone $=20 / 1, \mathrm{v} / \mathrm{v}$ ) as a yellow liquid ( $47.5 \mathrm{mg}, 55 \%$ yield, $\mathrm{dr}=1: 1$ ). ${ }^{1} \mathrm{H}$ NMR ( 400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09$ (dd, $J=8.6,1.6 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $7.51(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $7.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $7.22(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $7.17-7.10(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $3.00-2.89(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.81-2.73$ (m, 2H, two isomers), $2.61-2.47$ (m, 2H, two isomers), $2.45-$ $2.25(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $2.23-2.16$ (m, 1H, two isomers), $2.11-1.96(\mathrm{~m}, 1 \mathrm{H}$, two
isomers), $1.95-1.78\left(\mathrm{~m}, 2 \mathrm{H}\right.$, two isomers). ${ }^{13} \mathrm{C}$ NMR ( $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.3 \&$ 192.2 (two isomers), $141.18 \& 141.16$ (two isomers), $139.24 \& 139.22$ (two isomers), 132.7 (overlap, two isomers), 130.74 \& 130.72 (two isomers), 129.4 (overlap, two isomers), 128.9 (overlap, two isomers), 128.5 (overlap, two isomers), 126.9 (overlap, two isomers), $124.96\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.3 \mathrm{~Hz}\right) \& 124.94\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.1\right.$ Hz ) (two isomers), 120.4 \& 120.3 (two isomers), $118.8 \& 118.7$ (two isomers), 50.8 \& 50.7 (two isomers), 39.51 \& 39.49 (two isomers), 36.5 ( $\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.3 \mathrm{~Hz}$ ) \& $36.4\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=30.3 \mathrm{~Hz}\right.$ ) (two isomers), $33.53 \& 33.52$ (two isomers), $31.44 \& 31.37$ (two isomers), 28.1 \& 27.9 (two isomers), $25.7\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right) \& 25.6\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=\right.$ 3.1 Hz ) (two isomers). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-64.8$ (s, one isomer), $-64.9(\mathrm{~s}$, one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 433.1289; found: 433.1295.

## Ethyl-7-(4-bromophenyl)-8-(4-chlorophenyl)-4-cyano-2,2-difluoro-8-


oxooctanoate (4ao) The title compound was obtained according to the general condition (eluent: petroleum ether $/$ acetone $=20 / 1, \mathrm{v} / \mathrm{v}$ ) as a yellow liquid ( 59.3 mg , $58 \%$ yield, $\mathrm{dr}=1: 1$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.83$ (dd, $J=8.6,2.1 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.44 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.36 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.13 (dd, $J=8.4,1.6 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 4.47 (t, $J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $4.38-4.30(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $2.94-2.82(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.58-2.44(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.40-2.20(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $2.08-$ $1.95(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.78-1.67(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.67-1.61(\mathrm{~m}, 1 \mathrm{H}$, two isomers), 1.36 (td, $J=7.2,2.3 \mathrm{~Hz}, 3 \mathrm{H}$, two isomers). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 197.2 \& 197.1 (two isomers), $163.1\left(\mathrm{t},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=32.0 \mathrm{~Hz}\right.$ ) (overlap, two isomers), 140.02 \& 140.01 (two isomers), 137.35 \& 137.29 (two isomers), $134.40 \& 134.38$ (two isomers), 132.6 (overlap, two isomers), 130.2 (overlap, two isomers), $129.81 \&$ 129.78 (two isomers), 129.2 (overlap, two isomers), 121.9 (overlap, two isomers), 120.1 (overlap, two isomers), $114.3\left(\mathrm{t},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=254.1 \mathrm{~Hz}\right.$ ) (overlap, two isomers), 63.7 (overlap, two isomers), 52.5 (overlap, two isomers), 36.8 ( $\mathrm{t},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24.1 \mathrm{~Hz}$ ) \& 36.7 $\left(\mathrm{t},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24.4 \mathrm{~Hz}\right.$ ) (two isomers), $30.9 \& 30.7$ (two isomers), $30.6 \& 30.5$ (two isomers), $25.09\left(\mathrm{t},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.7 \mathrm{~Hz}\right) \& 25.05\left(\mathrm{t},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.0 \mathrm{~Hz}\right.$ ) (two isomers), 14.0 (overlap, two isomers). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-104.0(\mathrm{~d}, J=36.5 \mathrm{~Hz}$, one
isomer), $-104.7(\mathrm{~d}, J=36.4 \mathrm{~Hz}$, one isomer), $-105.7(\mathrm{~d}, J=14.8 \mathrm{~Hz}$, one isomer), -106.4 (d, $J=14.7 \mathrm{~Hz}$, one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{BrClF}_{2} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 512.0435, 514.0414; found: 512.0444, 514.0421.

## 2-(2-bromo-2,2-difluoroethyl)-5-(4-bromophenyl)-6-(4-chlorophenyl)-6-

 oxohexanenitrile (4ap) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone $=20 / 1, \mathrm{v} / \mathrm{v}$ ) as a yellow liquid ( $67.2 \mathrm{mg}, 65 \%$ yield, $\mathrm{dr}=1: 1) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.84(\mathrm{dd}, J=8.7,2.1$ $\mathrm{Hz}, 2 \mathrm{H}$, two isomers), 7.36 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.29 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.19 (dd, $J=8.5,1.8 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $4.49(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $3.00-2.89$ ( $\mathrm{m}, 1 \mathrm{H}$, two isomers), $2.87-2.73$ ( $\mathrm{m}, 1 \mathrm{H}$, two isomers), $2.63-$ $2.49(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.40-2.25(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.11-1.96(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.77-1.68\left(\mathrm{~m}, 1 \mathrm{H}\right.$, two isomers), $1.67-1.61\left(\mathrm{~m}, 1 \mathrm{H}\right.$, two isomers). ${ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.2$ \& 197.1 (two isomers), 140.03 \& 140.02 (two isomers), 136.75 \& 136.69 (two isomers), 134.4 \& 134.3 (two isomers), 133.9 (overlap, two isomers), 130.2 (overlap, two isomers), 129.7 (overlap, two isomers), 129.43 \& 129.40 (two isomers), 129.2 (overlap, two isomers), 119.70 ( $\mathrm{t},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=307.0 \mathrm{~Hz}$ ) \& 119.67 ( $\mathrm{t},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=307.0 \mathrm{~Hz}$ ) (two isomers), 119.59 \& 119.57 (two isomers), 52.4 \& 52.4 (two isomers), 46.2 ( $\mathrm{t},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22.9 \mathrm{~Hz}$ ) \& 46.1 ( $\mathrm{t},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22.9 \mathrm{~Hz}$ ) (two isomers), 30.8 \& 30.6 (two isomers), 30.2 \& 30.0 (two isomers), 27.3 ( $\mathrm{t},{ }^{3} J_{\mathrm{C} \text { - }}=2.7 \mathrm{~Hz}$ ) \& $27.2\left(\mathrm{t},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.6 \mathrm{~Hz}\right.$ ) (two isomers). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-43.9(\mathrm{~d}, J=13.2$ Hz , one isomer), -44.3 (d, $J=13.1 \mathrm{~Hz}$, one isomer), $-44.8(\mathrm{~d}, J=30.3 \mathrm{~Hz}$, one isomer), -45.3 (d, $J=30.3 \mathrm{~Hz}$, one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{ClF}_{2} \mathrm{NNaO}$ $[\mathrm{M}+\mathrm{Na}]^{+}$: 541.9127 ,; found: 541.9141. HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{Br}_{2} \mathrm{ClF}_{2} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+}: 517.9328$,; found: 517.9341.

## 2-(3-(4-bromophenyl)-4-(4-chlorophenyl)-4-oxobutyl)-4,4,5,5,6,6,7,7,8,8,9,9,9-

 tridecafluorononanenitrile (4aq) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone $=20 / 1$, $\mathrm{v} / \mathrm{v}$ ) as a yellow liquid ( $59.4 \mathrm{mg}, 42 \%$ yield, $\mathrm{dr}=1: 1$ ).
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.86$ (dd, $J=8.7,2.4 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.48 (d, $J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.40 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.16 (dd, $J=8.4,2.0$ $\mathrm{Hz}, 2 \mathrm{H}$, two isomers), 4.50 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $3.06-2.95$ (m, 1H, two
isomers), $2.62-2.50(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.42-2.28$ ( $\mathrm{m}, 2 \mathrm{H}$, two isomers), $2.14-$ $2.04(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.81-1.74(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.70-1.65(\mathrm{~m}, 1 \mathrm{H}$, two isomers). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 197.12$ \& 197.05 (two isomers), 140.15 \& 140.12 (two isomers), $137.3 \& 137.2$ (two isomers), $134.34 \& 134.32$ (two isomers), 132.7 (overlap, two isomers), 130.2 (overlap, two isomers), $129.8 \& 129.7$ (two isomers), 129.2 (overlap, two isomers), 122.0 (overlap, two isomers), 119.67 \& 119.66 (two isomers), $52.6 \& 52.5$ (two isomers), 37.7 (overlap, two isomers), 31.0 \& 30.8 (two isomers), 30.7 \& 30.6 (two isomers), 29.9 (overlap, two isomers). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-80.8(\mathrm{t}, J=9.1 \mathrm{~Hz}, 3 \mathrm{~F}),-113.3$ - -113.6 (m, 2F), -121.7 --121.9 (m, 2F), -122.7 - -123.0 (m, 2F), -123.3 - -123.6 (m, 2F), -126.1 --126.2 (m, 2F). HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{16} \mathrm{BrClF}_{13} \mathrm{NO}[\mathrm{M}+\mathrm{Na}]^{+}: 729.9789$, 731.9768; found: 729.9796, 731.9736.

## 5-(4-bromophenyl)-6-(4-chlorophenyl)-6-oxo-2-(2-tosylethyl)hexanenitrile (4ar)

 The title compound was obtained according to the general condition (eluent: petroleum ether / acetone $=20 / 1, \mathrm{v} / \mathrm{v}$ ) as a yellow liquid ( $78.0 \mathrm{mg}, 70 \%$ yield, $\mathrm{dr}=1: 1$ ). ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.83(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.76 (dd, $J=8.3,1.7 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.42 (d, $J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.36 (dd, $J=7.8,5.4 \mathrm{~Hz}, 4 \mathrm{H}$, two isomers), 7.11 (d, $J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}$, two isomers), 4.45 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, two isomers), $3.27-3.12$ (m, 2H, two isomers), $2.88-2.73(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $2.45(\mathrm{~s}, 3 \mathrm{H}$, two isomers), $2.37-2.17$ (m, 1 H , two isomers), $2.11-1.97(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $1.96-1.84(\mathrm{~m}, 1 \mathrm{H}$, two isomers), $1.65-1.45$ ( $\mathrm{m}, 2 \mathrm{H}$, two isomers). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 197.21$ \& 197.18 (two isomers), 145.4 (overlap, two isomers), 140.0 \& 139.9 (two isomers), 137.4 (overlap, two isomers), 135.79 \& 135.76 (two isomers), 134.37 \& 134.36 (two isomers), 132.6 (overlap, two isomers), 130.3 (overlap, two isomers), 130.2 (overlap, two isomers), 129.81 \& 129.77 (two isomers), 129.1 (overlap, two isomers), 128.08 \& 128.07 (two isomers), 121.84 \& 121.83 (two isomers), 120.47 \& 120.46 (two isomers), 53.6 (overlap, two isomers), $52.41 \& 52.38$ (two isomers), $31.0 \& 30.8$ (two isomers), 30.6 \& 30.5 (two isomers), $30.1 \& 29.8$ (two isomers), $25.4 \& 25.2$ (two isomers), 21.8 (overlap, two isomers). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ HRMS (ESI) calcd. for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{BrClFNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 558.0500, 560.0480; found: 558.0507, 560.0486.

## 4-(4-bromophenyl)-5-(4-chlorophenyl)-5-oxo-2-(2,2,2-trifluoroethyl)pentane


nitrile ( 6 ') The title compound was obtained according to the general condition (eluent: petroleum ether / acetone $=$ $20 / 1, \mathrm{v} / \mathrm{v}$ ) as a yellow liquid ( $62.0 \mathrm{mg}, 70 \%$ yield, $\mathrm{dr}=1: 1$ ). ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.95-7.89(\mathrm{~m}, 2 \mathrm{H}$, one isomers), $7.79-7.71$ ( $\mathrm{m}, 2 \mathrm{H}$, one isomers), $7.55-7.47$ ( $\mathrm{m}, 4 \mathrm{H}$, one isomers), 7.48 $7.41(\mathrm{~m}, 4 \mathrm{H}$, one isomers), $7.21-7.17(\mathrm{~m}, 2 \mathrm{H}$, one isomers), $7.08-7.01(\mathrm{~m}, 2 \mathrm{H}$, one isomers), $4.11-4.00(\mathrm{~m}, 1 \mathrm{H}$, one isomers), $3.80(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, one isomers), 3.77 - 3.69 ( $\mathrm{m}, 1 \mathrm{H}$, one isomers), $3.60(\mathrm{dd}, J=10.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}$, one isomers), $2.85-2.62$ ( $\mathrm{m}, 2 \mathrm{H}$, one isomers), $2.57-2.37(\mathrm{~m}, 2 \mathrm{H}$, one isomers), $2.36-2.20(\mathrm{~m}, 2 \mathrm{H}$, one isomers), $2.18-2.08$ ( $\mathrm{m}, 2 \mathrm{H}$, one isomers). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 198.9$ \& 197.9 (two isomers), 141.3 \& 141.0 (two isomers), 133.8 (overlap, two isomers), 133.4 (overlap, two isomers), 133.0 (overlap, two isomers), 132.68 \& 132.65 (two isomers), $130.1 \& 129.9$ (two isomers), $129.7 \& 129.6$ (two isomers), $129.2 \&$ 128.9 (two isomers), $125.95\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.4 \mathrm{~Hz}\right) \& 125.88\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=278.3 \mathrm{~Hz}\right.$ ) (two isomers), $123.1 \& 122.9$ (two isomers), $119.44 \& 119.37$ (two isomers), $38.5 \&$ 37.2 (two isomers), 37.7 ( $\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.0 \mathrm{~Hz}$ ) \& 37.3 ( $\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.2 \mathrm{~Hz}$ ) (two isomers), $36.9\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29.5 \mathrm{~Hz}\right) \& 35.7\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=29.4 \mathrm{~Hz}\right) \quad$ (two isomers), 35.1 \& 34.6 (two isomers). ${ }^{19} \mathrm{~F}$ NMR ( $282 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-64.0$ ( s , one isomer), -64.3 (s, one isomer). HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{BrClF}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 443.9973$, 445.9952; found: 443.9962, 445.9945.

## 7. DFT calculations

Density functional theory (DFT) calculations have been performed to explore the detailed reaction mechanism and origin of the high regioselectivity for 1,4cyano migration in the process of trifunctionalization of hexenenitrile 3a (Figure S1). The combination of NHC A' generated from precatalyst A under basic conditions with 4-chlorobenzaldehyde 2a leads to enolate form of Breslow intermediate Int-1. The SET process between Int-1 and $\mathrm{CF}_{3} \mathrm{I}$ proceeds smoothly to give transient trifluoromethyl radical and persistent NHC-bound ketyl radical S1. Subsequent addition of trifluoromethyl radical to hexenenitrile 3a generates intermediate $\mathbf{S} \mathbf{2}$ through the transition state $\mathbf{T S} 1\left(\Delta \mathbf{G}^{\ddagger}=9.3 \mathrm{kcal} / \mathrm{mol}\right)$.







Figure S1. Relative Gibbs free energy profiles of the reaction.

There are two possible pathways (path A \& path B) for the radical-radical coupling of ketyl radical $\mathbf{S 1}$ with the generated alkyl radical through addition of $\mathrm{CF}_{3}$ radical. In path A, the direct radical-radical coupling of $\mathbf{S} 1$ with $\mathbf{S} 2$ gives intermediate S3 through transition state TS2 ( $\Delta \mathrm{G}^{\ddagger}=46.6 \mathrm{kcal} / \mathrm{mol}$ ). The collapse of $\mathbf{S 3}$ through transition state TS3 gives birth to product 4a' and NHC A' for the next catalytic cycle. In path B, the intramolecular radical addition of $\mathbf{S 2}$ to the cyano group forms a five-member imine radical intermediate $\mathbf{S 4}$ through transition state TS4 ( $\Delta G^{\ddagger}=11.8 \mathrm{kcal} / \mathrm{mol}$ ). The following ring-opening of $\mathbf{S 4}$ occurs to generate the cyano migrated benzylic radical intermediate $\mathbf{S 5}$ through transition state TS5 ( $\left.\Delta G^{\ddagger}=12.4 \mathrm{kcal} / \mathrm{mol}\right)$. The subsequent radical-radical coupling of $\mathbf{S 5}$ with $\mathbf{S 1}$ gives intermediate $\mathbf{S 6}$ through transition state TS6 ( $\Delta G^{\ddagger}$
$=15.5 \mathrm{kcal} / \mathrm{mol})$. At the final step, the $\mathrm{C}-\mathrm{C}$ bond cleavage leads to the dissociation of the final product $\mathbf{4 a}$ along with NHC $\mathbf{A}^{\prime}$. It is obvious that benzylic radical $\mathbf{S 5}$ generated by cyano migration is more stable than radical $\mathbf{S 2}$ without cyano migration. Moreover, radical-radical coupling of $\mathbf{S} 1$ with $\mathbf{S 2}$ in path A requires much higher energy barrier than that in path B , thus disfavoring the direct radical-radical coupling and facilitating the cyano migration process. Therefore, high regioselectivity of this protocol can be rationalized by the above calculation results that path $B$ associated with the 1,4-cyano migration process is much more energetically favorable than path A although the obtained migration product $\mathbf{4 a}$ shows similar stability to product $\mathbf{4 a}{ }^{\prime}$.

All density functional theory (DFT) calculations were performed with the Gaussian 16 program package. ${ }^{7}$

Full geometry optimizations were operated to locate all of the stationary points, using (U)M06-2X density functional theory method ${ }^{8-9}$ with def2SVP ${ }^{10}$ basis for all atoms, and a polarized continuum model based on solute electron density (PCM) ${ }^{11-12}$ was employed to simulate the solvent effect of dichloroethane solvent in optimization. The spin-restricted DFT method was used for closed-shell species and the spinunrestricted DFT method for radical species and open-shell singlet species (TS2, TS6) with the "guess (mix, always)" keyword. In the meantime, the stability of the density function theory (DFT) wave-function of the auxiliary Kohn-Sham determinant was examined. ${ }^{13}$ Harmonic vibrational frequency calculations were conducted to characterize all stationary point. Herein, minima have zero imaginary frequencies, and transition states have only one imaginary vibrational frequency. Intrinsic reaction coordinate (IRC) calculations ${ }^{14-15}$ were implemented to track minimum energy paths connecting each transition state structure to two corresponding minima. The single point energy calculations of all stationary points were performed at the (U)M062X/def2TZVP,SDD level using the PCM-SMD model with dichloroethane as solvent.This theoretical level is denoted as PCM-SMD(dichloroethane)-(U)M062X/def2TZVP.

Unless mentioned otherwise, the Gibbs free energy of formation $(\Delta G)$ are obtained at the PCM-SMD (dichloroethane)-(U)M06-2X/def2TZVP level.

Figure S2. DFT-optimized geometries of intermediates and transition states (Bond lengths are reported in angstroms $(\AA)$ ).


## References

1. M. S. Pearson, D. R. Carbery, J. Org. Chem. 2009, 74, 5320.
2. M. S. Liu, W. Shu, ACS Catal. 2020, 10, 12960.
3. L. Guo, W. Srimontree, C. Zhu, B. Maity, X. Liu, L. Cavallo, M. Rueping, Nat. Commun. 2019, 10, 1957.
4. K. Guo, C. Gu, Y. Li, K. Chen, Y. Zhu, Adv. Synth.Catal. 2022, 364, 1388.
5. C. Chang, H. Zhang, X. Wu, C. Zhu, Chem. Commun. 2022, 58, 1005.
6. S. Cuadros, C. Rosso, G. Barison, G. Filippini, L. Dell’ Amico, Org. Lett. 2022, 24, 2961.
7. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2019.
8. Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
9. Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157.
10. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
11. M. Cossi, G. Scalmani, N. Rega, V. Barone, J. Chem. Phys. 2002, 117, 43.
12. A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B. 2009, 113, 6378.
13. R. Bauernschmitt, R. Ahlrichs, J. Chem. Phys. 1996, 104, 9047.
14. C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 1989, 90, 2154.
15. C. Gonzalez, H. B. Schlegel, J. Phys. Chem.1990, 94, 5523.

## 8. Copies of NMR spectra

4a ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- $d$ ) $)^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ( 101 MHz , Chloroform- $d$ )






| 100 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

4a ${ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )


$\qquad$
$\begin{array}{llll}0 & -10 & -20 & -30\end{array}$
$0 \quad-40$ $-50 \quad-$ $60 \quad-7$

## C-H HMBC of $\mathbf{4 a}$


$4 \mathbf{a}^{\text {1 }} \mathrm{H}$ NMR ( 300 MHz , Chloroform- $d$ ) ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ( 376 MHz , Chloroform- $d$ )




4a ${ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )
$\left.\begin{array}{l}6\left[t 9^{\circ}+9^{-}\right. \\ 668 s^{\circ}+9^{-}\end{array}\right\rangle$



4b ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- $d$ ) ${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}(101 \mathrm{MHz}$, Chloroform- $d$ )


4b ${ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )
$\left.\begin{array}{l}\angle L+66^{\circ}+9^{-} \\ \text {I } \angle 88^{\circ}+9^{-}\end{array}\right\rangle$

(a)

$4 \mathbf{c}^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- $d$ ) ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ( 101 MHz , Chloroform- $d$ )



$4{ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )





4d ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- $d$ )/ ${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}(75 \mathrm{MHz}$, Chloroform- $d$ )



(



4d ${ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )



[^0]$4 \mathbf{e}^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- $d$ ) ${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}(101 \mathrm{MHz}$, Chloroform- $d$ ) (9)


$4 \mathbf{e}^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )


\[

$$
\begin{aligned}
& 4 \mathbf{f}^{1} \mathrm{H} \text { NMR ( } 400 \mathrm{MHz} \text {, Chloroform- } d \text { ) }{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}(101 \mathrm{MHz} \text {, Chloroform- } d \text { ) }
\end{aligned}
$$
\]






$4 f{ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )


$\mathbf{4 g}{ }^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- $d$ ) ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ( 101 MHz , Chloroform- $d$ )





$\begin{array}{lllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \underset{\mathrm{fl}(\mathrm{ppm})}{100} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$
$\mathbf{4 g}{ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )





4h ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- $d$ ) ${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}(101 \mathrm{MHz}$, Chloroform- $d$ )







# 4h ${ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ ) 





4i ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- $d$ ) ${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}(101 \mathrm{MHz}$, Chloroform- $d$ )





$4 \mathbf{i}^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )




4j ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- $d$ ) ${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}$ ( 101 MHz , Chloroform- $d$ )







4j ${ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )
$\varsigma \angle Z 6^{\circ}+9^{-}$
$\varsigma \varepsilon \angle 8^{\circ}+9^{-}$
$C_{-111.2373}^{-111.2334}$



$4 \mathbf{k}{ }^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- $d$ ) $)^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}$ ( 101 MHz , Chloroform- $d$ )




4k ${ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )




$4 \mathbf{I}^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- $d$ ) ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ( 101 MHz , Chloroform- $d$ )




$41{ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )





4m ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- $d$ ) ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ( 101 MHz , Chloroform- $d$ )






4m ${ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )




4n ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- $d$ ) ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ( 101 MHz , Chloroform- $d$ )







4n ${ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )


$40{ }^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- $d$ ) ${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}$ ( 101 MHz , Chloroform- $d$ )







$\left.\begin{array}{lllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array}\right)$

## $40{ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )





4p ${ }^{1} \mathrm{H}$ NMR ( 300 MHz , Chloroform- $d$ ) $)^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ( 101 MHz , Chloroform- $d$ )






4p ${ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )




$\mathbf{4 q}{ }^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- $d$ ) $/{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ( 75 MHz , Chloroform- $d$ )



$\mathbf{4 q}{ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )




$4 \mathbf{r}^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- $d$ )/ ${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}(75 \mathrm{MHz}$, Chloroform- $d$ )





4r ${ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )



4s ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- $d$ ) ${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}(101 \mathrm{MHz}$, Chloroform- $d$ )




4s ${ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )



[^1]4t ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- $d$ ) ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ( 101 MHz , Chloroform- $d$ )




$4 t{ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )


$4 \mathbf{u}{ }^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- $d$ ) $)^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}(101 \mathrm{MHz}$, Chloroform- $d$ )







# 4u ${ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ ) 





[^2]4v ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- $d$ ) $)^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ( 101 MHz , Chloroform- $d$ )








## 4v ${ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )




4w ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- $d$ ) ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ( 101 MHz , Chloroform- $d$ )




|  |  |  |  |  | $\begin{aligned} & \text { N} \\ & \text { N } \\ & \text { N } \end{aligned}$ | $\begin{aligned} & \text { Ti } \\ & \stackrel{T}{O} \\ & \text { N } \end{aligned}$ |  |  | $\begin{aligned} & \text { T } \\ & \hline \text { 응 } \end{aligned}$ |  |  |  |  <br>  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | $\begin{gathered} 5.0 \\ \mathrm{f} 1(\mathrm{pp} \end{gathered}$ | n) | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 |





4w ${ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )
-64.8652
-64.9169


$$
\begin{array}{cccccccccccccccccccccc}
0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & \begin{array}{c}
-100 \\
\mathrm{fl}(\mathrm{ppm})
\end{array} & -110 & -120 & -130 & -140 & -150 & -160 & -170 & -180 & -190 & -200 \\
& & & & & \\
\hline
\end{array}
$$

4aa ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- $d$ )/ ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ( 101 MHz , Chloroform- $d$ )




升



4aa ${ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )

|  |
| :---: |
|  |  |
|  |  |





4ab ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- $d$ )/ ${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}$ ( 101 MHz , Chloroform- $d$ )





4ab ${ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )




4ac ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- $d$ )/ ${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}$ ( 101 MHz , Chloroform- $d$ )






4ac ${ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )
$\left.\begin{array}{l}\$ 8 \angle 6^{\circ}+9^{-} \\ {\left[1 \varepsilon 6^{\circ}\left\llcorner 9^{-}\right.\right.}\end{array}\right\rangle$




4ad ${ }^{1} \mathrm{H}$ NMR ( 300 MHz , Chloroform- $d$ ) $/{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}(75 \mathrm{MHz}$, Chloroform- $d$ )







4ad ${ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )



4ae ${ }^{1} \mathrm{H}$ NMR ( 300 MHz , Chloroform- $-d$ ) ${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}$ ( 101 MHz , Chloroform- $d$ )



| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{f} 1(\mathrm{ppm})$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

4ae ${ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )




4af ${ }^{1} \mathrm{H}$ NMR（ 400 MHz ，Chloroform－$d$ ）${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR（ 101 MHz ，Chloroform－$d$ ）






$\begin{array}{lllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

4af ${ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )

NOU U




4ag ${ }^{1} \mathrm{H}$ NMR 400 MHz , Chloroform- $d$ ) ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ( 101 MHz , Chloroform- $d$ )



$\begin{array}{llllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

4ag ${ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )




[^3]4ah ${ }^{1} \mathrm{H}$ NMR ( 300 MHz , Chloroform- $d$ ) $/{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ( 101 MHz , Chloroform- $d$ )



4ah ${ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )



4ai ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- $d$ ) $)^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}(101 \mathrm{MHz}$, Chloroform- $d$ )


4ai ${ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )

$$
K_{-64.9788}^{-64.9307}
$$




4aj ${ }^{1} \mathrm{H}$ NMR ( 300 MHz , Chloroform- $d$ ) ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ( 101 MHz , Chloroform- $d$ )



4aj ${ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )





4ak ${ }^{1} \mathrm{H}$ NMR ( 300 MHz , Chloroform- $d$ ) $/{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ( 101 MHz , Chloroform- $d$ )




4ak ${ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )



[^4]4al ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- $d$ ) ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ( 101 MHz , Chloroform- $d$ )





4al ${ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )




4am ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- $d$ ) $/{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ( 101 MHz , Chloroform- $d$ )







4am ${ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )



[^5]
## 4an ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- $d$ ) ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ( 101 MHz , Chloroform- $d$ )






4an ${ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )



4ao ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- $d$ ) $)^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ( 101 MHz , Chloroform- $d$ )





4ao ${ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )



4ap ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Chloroform- $d$ ) ${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}(101 \mathrm{MHz}$, Chloroform- $d$ )





[^6]4ap ${ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )

| $\begin{aligned} & \text { Nे } \\ & \text { n } \end{aligned}$ |
| :---: |
|  |  |





4aq ${ }^{1}{ }^{1}$ NMR ( 400 MHz , Chloroform- $d$ ) ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ( 101 MHz , Chloroform- $d$ )






| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{fl}(\mathrm{ppm})$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

$\mathbf{4 a q}{ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ )








# 6' ${ }^{1} \mathrm{H}$ NMR ( 300 MHz , Chloroform- $d$ ) $/{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ( 101 MHz , Chloroform- $d$ ) 

## 



正

# 6 ${ }^{19}$ F NMR ( 376 MHz , Chloroform- $d$ ) 




|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | -10 | -20 | -30 | -40 | -50 | -60 | -70 | -80 | -90 | -100 | -110 | -120 | -130 | -140 | -150 | -160 | -170 | -180 | -190 | -200 |

9. The Cartesian coordinates of all the stationary points

NHC-A
C

C
C

C
C
2.2373
$-0.7877$
0.5793

C
1.1482
$-0.4196$
$-0.1426$
1.0306
$-0.1731$
$-1.6202$
3.6244
$-1.0922$
0.0884

C
2.3661
$-0.1460$
$-2.3703$

C
C
H

H

H

H

H

H

H
H
H
S

N

C

C

C
C
C
C
C
H

H
-4.0679
$-3.0010$
2.9491
-1.6986
$-2.4828$
$-0.5653$
$-1.1528$
$-2.0617$
0.9408
$-3.3894$
0.0686
$-2.4605$
$-1.2217$
2.2586
0.6862
2.0097
0.1161
$-0.3234$
$-0.0025$
$-0.8658$
$-0.5513$
$-0.9740$
$-1.2103$
-0.6524

| H | -4.6158 | 1.2316 | -1.3993 |
| :---: | :---: | :---: | :---: |
| C | -0.5259 | 2.5681 | 0.4867 |
| C | -0.8483 | 2.9553 | 1.9353 |
| C | -0.4663 | 3.8017 | -0.4150 |
| H | 0.4748 | 2.1073 | 0.4827 |
| H | -0.8341 | 2.0688 | 2.5849 |
| H | -0.1145 | 3.6825 | 2.3132 |
| H | -1.8484 | 3.4126 | 1.9922 |
| H | -0.2882 | 3.5261 | -1.4650 |
| H | -1.3979 | 4.3848 | -0.3670 |
| H | 0.3496 | 4.4625 | -0.0893 |
| C | -1.7952 | -2.3168 | -0.1665 |
| C | -2.2834 | -3.1667 | -1.3400 |
| C | -2.3536 | -2.8375 | 1.1639 |
| H | -0.6985 | -2.4086 | -0.1237 |
| H | -1.9318 | $-2.7663$ | -2.3022 |
| H | -1.9086 | -4.1949 | -1.2370 |
| H | -3.3816 | -3.2213 | -1.3720 |
| H | -1.9543 | -2.2550 | 2.0061 |
| H | -3.4515 | -2.7544 | 1.1728 |
| H | -2.0867 | -3.8950 | 1.3073 |
| H | 0.5319 | 0.8015 | -1.7574 |
| S1 |  |  |  |
| C | 1.0965 | 2.3842 | 0.4684 |
| C | 1.8242 | 1.2422 | 0.3751 |
| C | 3.3055 | 1.0752 | 0.5677 |
| C | 1.5626 | 3.7739 | 0.8007 |
| C | 4.1046 | 2.3795 | 0.6496 |
| C | 2.6188 | 4.3277 | -0.1656 |
| S123 |  |  |  |


| C | 3.7649 | 3.3524 | -0.4866 |
| :---: | :---: | :---: | :---: |
| H | 3.9629 | 2.8629 | 1.6280 |
| H | 1.9577 | 3.7758 | 1.8277 |
| H | 3.0268 | 5.2440 | 0.2878 |
| H | 3.4808 | 0.4475 | 1.4572 |
| H | 0.6958 | 4.4494 | 0.8157 |
| H | 5.1675 | 2.1056 | 0.6032 |
| H | 2.1309 | 4.6341 | -1.1027 |
| H | 4.6548 | 3.9378 | -0.7582 |
| H | 3.5102 | 2.7607 | -1.3818 |
| S | -0.6013 | 2.0672 | 0.1965 |
| N | 1.0503 | 0.1201 | 0.0752 |
| C | -0.3000 | 0.3664 | -0.0499 |
| C | 1.6264 | -1.1996 | 0.0809 |
| C | 1.5282 | -1.9675 | 1.2509 |
| C | 2.3044 | -1.6462 | -1.0654 |
| C | 2.1225 | -3.2344 | 1.2466 |
| C | 2.8886 | -2.9145 | -1.0201 |
| C | 2.7962 | -3.7047 | 0.1238 |
| H | 2.0546 | -3.8619 | 2.1376 |
| H | 3.4159 | -3.2957 | -1.8964 |
| H | 3.2540 | -4.6950 | 0.1389 |
| C | 2.3436 | -0.8184 | -2.3389 |
| C | 1.2855 | -1.3353 | -3.3219 |
| C | 3.7297 | -0.7858 | -2.9854 |
| H | 2.0734 | 0.2166 | -2.0782 |
| H | 0.2998 | $-1.3780$ | -2.8387 |
| H | 1.2323 | -0.6874 | -4.2093 |
| H | 1.5439 | -2.3530 | -3.6546 |
| H | 4.5009 | -0.4417 | -2.2800 |


| H | 4.0262 | -1.7789 | -3.3542 |
| :---: | :---: | :---: | :---: |
| H | 3.7255 | -0.1035 | -3.8476 |
| C | 0.7711 | -1.4834 | 2.4758 |
| C | 1.6248 | -1.5558 | 3.7447 |
| C | -0.5321 | -2.2763 | 2.6384 |
| H | 0.5047 | -0.4275 | 2.3190 |
| H | 2.5572 | -0.9835 | 3.6336 |
| H | 1.0683 | -1.1439 | 4.5991 |
| H | 1.8898 | -2.5949 | 3.9907 |
| H | -1.1196 | $-2.2638$ | 1.7096 |
| H | -0.3124 | -3.3272 | 2.8837 |
| H | -1.1408 | -1.8579 | 3.4536 |
| H | 3.6857 | 0.4868 | -0.2828 |
| C | $-1.2753$ | -0.6091 | -0.4244 |
| O | -0.9582 | -1.7424 | -0.8373 |
| C | $-2.7317$ | -0.2502 | -0.3491 |
| C | -3.5781 | -0.7943 | -1.3254 |
| C | -3.2960 | 0.5086 | 0.6844 |
| C | -4.9471 | -0.5541 | -1.3027 |
| H | -3.1411 | -1.4181 | $-2.1060$ |
| C | -4.6683 | 0.7499 | 0.7263 |
| H | -2.6703 | 0.8984 | 1.4890 |
| C | -5.4810 | 0.2234 | -0.2746 |
| H | -5.6037 | -0.9656 | -2.0693 |
| H | -5.1090 | 1.3318 | 1.5357 |
| Cl | -7.1952 | 0.5251 | -0.2329 |

## 2a

C
$-2.2974$
$-0.0857$
0.0462

C
$-1.6172$
-0.7226
1.0823

| C | -0.2656 | -0.4453 | 1.2752 |
| :---: | :---: | :---: | :---: |
| C | 0.4062 | 0.4575 | 0.4461 |
| C | -0.2960 | 1.0828 | -0.5876 |
| C | -1.6486 | 0.8175 | -0.7929 |
| H | -2.1372 | -1.4242 | 1.7346 |
| H | 0.2706 | -0.9412 | 2.0873 |
| H | 0.2117 | 1.7956 | -1.2414 |
| H | -2.1930 | 1.3114 | -1.5976 |
| C | 1.8967 | 0.6769 | 0.6412 |
| H | 2.1389 | 0.5349 | 1.7063 |
| C | 2.7262 | -0.3284 | -0.1864 |
| H | 2.3892 | -1.3370 | 0.0958 |
| H | 2.4808 | -0.1942 | -1.2522 |
| C | 4.2339 | -0.2012 | 0.0355 |
| H | 4.4663 | -0.3361 | 1.1037 |
| H | 4.5507 | 0.8194 | -0.2400 |
| C | 5.0043 | -1.1965 | -0.7827 |
| H | 4.8807 | -1.1224 | -1.8697 |
| C | 5.7935 | -2.1457 | -0.2807 |
| H | 5.9379 | -2.2497 | 0.7986 |
| H | 6.3248 | -2.8461 | -0.9280 |
| C | 2.2838 | 2.0572 | 0.3091 |
| N | 2.5978 | 3.1297 | 0.0223 |
| Br | -4.1379 | -0.4491 | -0.2224 |
| 4a' |  |  |  |
| C | 0.0636 | 0.4167 | 1.9423 |
| O | -0.1117 | 0.4836 | 3.1388 |
| C | 0.0300 | 1.6638 | 1.1067 |
| C | -0.4691 | 2.8255 | 1.7125 |
|  | S126 |  |  |


| C | 0.4617 | 1.7207 | -0.2251 |
| :---: | :---: | :---: | :---: |
| C | -0.5544 | 4.0186 | 1.0066 |
| H | -0.7949 | 2.7737 | 2.7518 |
| C | 0.3874 | 2.9116 | -0.9428 |
| H | 0.8825 | 0.8434 | -0.7152 |
| C | -0.1250 | 4.0486 | -0.3211 |
| H | -0.9486 | 4.9220 | 1.4714 |
| H | 0.7257 | 2.9618 | -1.9772 |
| Cl | -0.2294 | 5.5331 | -1.2147 |
| C | 0.2674 | -0.9516 | 1.2846 |
| C | 1.6850 | -1.0958 | 0.7512 |
| C | -0.8423 | -1.2672 | 0.2747 |
| C | 1.9670 | -1.6198 | -0.5141 |
| C | 2.7564 | -0.7041 | 1.5653 |
| H | -0.7163 | -0.6661 | -0.6389 |
| H | -0.7499 | -2.3226 | -0.0259 |
| C | -2.2343 | -1.0308 | 0.8516 |
| C | 3.2824 | -1.7465 | -0.9625 |
| H | 1.1618 | -1.9363 | -1.1778 |
| C | 4.0740 | -0.8210 | 1.1329 |
| H | 2.5595 | -0.3009 | 2.5617 |
| H | -2.3608 | 0.0258 | 1.1410 |
| H | -2.3711 | -1.6316 | 1.7636 |
| C | -3.3604 | -1.4005 | -0.1282 |
| C | 4.3259 | -1.3432 | -0.1350 |
| H | 3.4897 | -2.1553 | -1.9515 |
| H | 4.8977 | -0.5097 | 1.7753 |
| H | -3.2597 | -2.4636 | -0.4009 |
| C | -4.7372 | -1.1843 | 0.5102 |
| C | -3.2080 | -0.6253 | -1.3723 |
|  |  |  |  |


| Br | 6.1150 | -1.5067 | -0.7382 |
| :--- | :--- | :--- | :--- |
| H | -4.9473 | -0.1150 | 0.6500 |
| H | -4.7521 | -1.6664 | 1.4969 |
| C | -5.8663 | -1.7834 | -0.2868 |
| N | -3.0407 | 0.0046 | -2.3239 |
| F | -5.9793 | -1.2306 | -1.4981 |
| F | -7.0339 | -1.6202 | 0.3357 |
| F | -5.6926 | -3.0969 | -0.4723 |
| H | 0.1635 | -1.6520 | 2.1284 |

$4 a$
C 2.0965
O
1.6931

C
C
-0.7068
$-0.9873$
$-0.9206$
$-2.1088$
$0.6804 \quad-0.6061$
1.6106
1.0969
0.7085
$-1.3923$
C
3.0354

H
2.4615
3.1401
2.6721
3.2709
3.1442
3.3227
3.7319
2.1279
1.0576

C

H

C

H
3.5087
$-2.1549$
0.6078
1.8523
$-0.2886$
$-1.2721$
0.5737
$-2.7395$
1.5710

| H | 1.3934 | -1.0763 | 1.9159 |
| :---: | :---: | :---: | :---: |
| H | 3.4405 | -3.0132 | 1.2914 |
| H | 3.9109 | -1.3080 | 1.1794 |
| C | 4.5320 | -2.5046 | -0.4395 |
| C | -1.4027 | -1.2746 | 1.6410 |
| H | -0.6195 | -1.9191 | -0.2530 |
| H | -0.2091 | -0.2511 | 0.1654 |
| F | 4.1574 | -3.5553 | -1.1760 |
| F | 5.7109 | -2.8034 | 0.1090 |
| F | 4.7385 | -1.4879 | -1.2894 |
| C | -2.7309 | -0.8317 | 1.0512 |
| H | -1.5114 | -2.2976 | 2.0343 |
| C | -1.0096 | -0.4285 | 2.7795 |
| C | -3.5753 | -1.7861 | 0.4775 |
| C | -3.0944 | 0.5165 | 1.0028 |
| N | -0.6715 | 0.2497 | 3.6494 |
| C | -4.7675 | -1.4070 | -0.1356 |
| H | -3.3031 | $-2.8433$ | 0.5081 |
| C | -4.2846 | 0.9115 | 0.3949 |
| H | -2.4478 | 1.2747 | 1.4506 |
| C | -5.1109 | -0.0570 | -0.1706 |
| H | -5.4247 | -2.1552 | -0.5788 |
| H | -4.5667 | 1.9637 | 0.3633 |
| Br | -6.7316 | 0.4714 | -0.9979 |

S2
C

C
-3.8196
$-0.3039$
0.0371
$-0.6256$
1.1753

C
$-3.0828$
$-0.0279$
1.3673

C
$-1.8391$
0.8823
0.4366

| C | -2.0858 | 1.1880 | -0.6984 |
| :---: | :---: | :---: | :---: |
| C | -3.3325 | 0.5998 | -0.9044 |
| H | -3.4769 | $-1.3312$ | 1.9065 |
| H | -1.2595 | -0.2758 | 2.2593 |
| H | -1.7063 | 1.9019 | -1.4329 |
| H | -3.9202 | 0.8450 | -1.7890 |
| C | 0.0610 | 1.4561 | 0.6447 |
| H | 0.2576 | 1.5222 | 1.7266 |
| C | 1.1412 | 0.5584 | 0.0064 |
| H | 1.0119 | -0.4520 | 0.4223 |
| H | 0.9480 | 0.4874 | -1.0758 |
| C | 2.5644 | 1.0463 | 0.2576 |
| H | 2.7425 | 1.1410 | 1.3440 |
| H | 2.6754 | 2.0733 | -0.1473 |
| C | 3.5884 | 0.1483 | -0.3430 |
| H | 3.3252 | -0.4459 | -1.2221 |
| C | 5.0343 | 0.3149 | -0.0229 |
| H | 5.1790 | 0.7088 | 0.9940 |
| C | 0.1592 | 2.8279 | 0.1211 |
| N | 0.2507 | 3.8930 | -0.3129 |
| Br | -5.5164 | -1.1042 | -0.2307 |
| H | 5.5390 | 1.0150 | -0.7147 |
| C | 5.7869 | -0.9872 | -0.1104 |
| F | 5.3307 | -1.8879 | 0.7661 |
| F | 7.0901 | -0.8228 | 0.1357 |
| F | 5.6828 | $-1.5402$ | -1.3250 |

S3
C
C
4.5729
0.7396
$-0.1217$
$-0.5380$
$-0.3334$

| C | 5.0005 | -1.7434 | -0.6370 |
| :---: | :---: | :---: | :---: |
| C | 5.9697 | 1.2908 | -0.0656 |
| C | 6.4868 | -1.4503 | -0.8599 |
| C | 6.7924 | 1.0700 | -1.3411 |
| C | 6.7172 | -0.3568 | -1.9108 |
| H | 6.9848 | -1.1944 | 0.0873 |
| H | 6.4751 | 0.8315 | 0.7963 |
| H | 7.8355 | 1.3206 | -1.0976 |
| H | 4.8577 | -2.4888 | 0.1615 |
| H | 5.9204 | 2.3654 | 0.1568 |
| H | 6.9448 | -2.3910 | -1.1938 |
| H | 6.4715 | 1.7872 | -2.1107 |
| H | 7.6437 | -0.5593 | -2.4659 |
| H | 5.9048 | -0.4179 | -2.6547 |
| S | 3.2082 | 1.7641 | 0.1371 |
| N | 2.7525 | $-0.6549$ | -0.2731 |
| C | 2.1031 | 0.4704 | 0.0377 |
| C | 2.1695 | -1.9142 | -0.7462 |
| C | 1.8284 | -2.9236 | 0.1572 |
| C | 2.1651 | -2.1024 | -2.1402 |
| C | 1.4593 | -4.1655 | -0.3714 |
| C | 1.7793 | -3.3567 | -2.6190 |
| C | 1.4336 | -4.3842 | -1.7438 |
| H | 1.1807 | -4.9710 | 0.3111 |
| H | 1.7557 | -3.5367 | -3.6940 |
| H | 1.1433 | -5.3595 | -2.1369 |
| C | 2.5136 | -0.9733 | -3.0977 |
| C | 1.2603 | -0.1298 | -3.3554 |
| C | 3.1465 | -1.4505 | -4.4038 |
| H | 3.2519 | -0.3198 | -2.6058 |


| H | 0.7814 | 0.1386 | -2.4046 |
| :---: | :---: | :---: | :---: |
| H | 1.5065 | 0.7830 | -3.9180 |
| H | 0.5298 | -0.7127 | -3.9385 |
| H | 4.0094 | -2.1089 | -4.2219 |
| H | 2.4241 | -1.9955 | -5.0288 |
| H | 3.4918 | -0.5840 | -4.9854 |
| C | 1.7884 | -2.6970 | 1.6526 |
| C | 2.8333 | -3.5265 | 2.4019 |
| C | 0.3756 | -2.9489 | 2.1880 |
| H | 2.0244 | -1.6428 | 1.8251 |
| H | 3.8523 | -3.3066 | 2.0512 |
| H | 2.7897 | -3.3004 | 3.4775 |
| H | 2.6533 | -4.6048 | 2.2714 |
| H | -0.3429 | -2.3709 | 1.5902 |
| H | 0.1139 | -4.0165 | 2.1361 |
| H | 0.3090 | -2.6347 | 3.2410 |
| H | 4.6053 | -2.2138 | -1.5506 |
| C | 0.5617 | 0.5470 | 0.3316 |
| O | -0.0272 | -0.5249 | -0.1467 |
| C | 0.0352 | 1.8806 | -0.3067 |
| C | -0.9131 | 1.7526 | -1.3252 |
| C | 0.3843 | 3.1749 | 0.1017 |
| C | -1.4838 | 2.8647 | -1.9403 |
| H | -1.1973 | 0.7389 | -1.6116 |
| C | -0.1778 | 4.3023 | -0.4962 |
| H | 1.0885 | 3.3449 | 0.9173 |
| C | -1.1081 | 4.1358 | -1.5177 |
| H | -2.2239 | 2.7518 | -2.7334 |
| H | 0.0931 | 5.3041 | -0.1630 |
| Cl | -1.8289 | 5.5393 | -2.2580 |
|  |  |  |  |


| C | 0.3556 | 0.6171 | 1.9370 |
| :---: | :---: | :---: | :---: |
| C | -1.0605 | 1.1145 | 2.2778 |
| C | 1.3449 | 1.3728 | 2.8499 |
| H | 0.3987 | -0.4454 | 2.2047 |
| C | -2.2150 | 0.3948 | 1.5909 |
| H | -1.1930 | 1.0202 | 3.3690 |
| H | -1.1154 | 2.1937 | 2.0573 |
| H | 0.8010 | 1.8117 | 3.6992 |
| H | 1.8713 | 2.2075 | 2.3710 |
| C | 2.4040 | 0.5140 | 3.4911 |
| C | -3.5644 | 1.1122 | 1.8033 |
| H | -2.3174 | -0.6277 | 1.9865 |
| H | -2.0281 | 0.2859 | 0.5173 |
| F | 1.8812 | -0.5429 | 4.1267 |
| F | 3.1048 | 1.2069 | 4.3934 |
| F | 3.2993 | 0.0214 | 2.6152 |
| C | -4.6937 | 0.3507 | 1.1336 |
| H | -3.7737 | 1.1909 | 2.8818 |
| C | -3.5016 | 2.4937 | 1.2922 |
| C | -4.8304 | 0.3731 | -0.2584 |
| C | $-5.5633$ | -0.4362 | 1.8902 |
| N | -3.4478 | 3.5722 | 0.8843 |
| C | -5.8223 | -0.3726 | -0.8893 |
| H | -4.1542 | 0.9864 | -0.8603 |
| C | -6.5608 | -1.1914 | 1.2737 |
| H | -5.4660 | -0.4639 | 2.9775 |
| C | -6.6800 | -1.1509 | -0.1129 |
| H | -5.9283 | -0.3495 | -1.9739 |
| H | -7.2395 | -1.8032 | 1.8679 |
| Br | -8.0350 | -2.1709 | -0.9611 |
|  |  |  |  |


| C | -2.6991 | -0.8502 | $-0.5811$ |
| :---: | :---: | :---: | :---: |
| C | $-1.3551$ | -0.5110 | -0.4588 |
| C | -0.9605 | 0.6442 | 0.2281 |
| C | -1.9460 | 1.4573 | 0.7926 |
| C | -3.2989 | 1.1347 | 0.6792 |
| C | -3.6622 | -0.0188 | -0.0089 |
| H | -2.9977 | -1.7530 | -1.1139 |
| H | -0.6006 | -1.1664 | -0.9008 |
| H | -1.6573 | 2.3604 | 1.3340 |
| H | -4.0607 | 1.7746 | 1.1248 |
| C | 0.4957 | 1.0220 | 0.3178 |
| C | 1.4325 | -0.1120 | 0.7859 |
| C | 1.1500 | 1.4808 | -0.9983 |
| H | 0.6124 | 1.8242 | 1.0642 |
| C | 2.7195 | -0.0779 | -0.0560 |
| C | 2.6458 | 1.2866 | -0.7551 |
| H | 0.8746 | 2.5121 | -1.2530 |
| H | 0.8141 | 0.8284 | -1.8201 |
| H | 2.5975 | -0.8705 | -0.8141 |
| H | 3.0291 | 2.0696 | -0.0810 |
| H | 3.2406 | 1.3162 | -1.6765 |
| C | 3.9582 | -0.3787 | 0.7762 |
| H | 3.8481 | -1.3484 | 1.2814 |
| H | 4.1103 | 0.3890 | 1.5486 |
| C | 5.2137 | -0.4474 | -0.0499 |
| N | 1.1989 | -0.9154 | 1.7031 |
| Br | -5.4961 | -0.4741 | -0.1692 |
| F | 5.5303 | 0.7366 | -0.5908 |
|  | S134 |  |  |


| F | 5.0974 | $-1.3160$ | -1.0616 |
| :---: | :---: | :---: | :---: |
| F | 6.2612 | -0.8329 | 0.6830 |
| S5 |  |  |  |
| C | 4.3339 | 0.0489 | 0.0521 |
| C | 3.3370 | -0.8878 | 0.3363 |
| C | 2.0035 | -0.5322 | 0.1952 |
| C | 1.6292 | 0.7696 | -0.2333 |
| C | 2.6736 | 1.6914 | -0.5130 |
| C | 4.0060 | 1.3411 | -0.3737 |
| H | 3.6080 | -1.8910 | 0.6662 |
| H | 1.2352 | -1.2733 | 0.4191 |
| H | 2.4158 | 2.6989 | -0.8455 |
| H | 4.7943 | 2.0617 | -0.5927 |
| C | 0.2715 | 1.1536 | -0.3819 |
| H | 0.0648 | 2.1726 | -0.7191 |
| C | -0.8803 | 0.2452 | -0.1063 |
| H | -0.8123 | -0.6525 | -0.7498 |
| H | -0.8227 | -0.1364 | 0.9307 |
| C | -2.2263 | 0.9290 | -0.3185 |
| H | -2.3097 | 1.2837 | -1.3580 |
| H | -2.2974 | 1.8147 | 0.3307 |
| C | -3.4277 | 0.0250 | 0.0018 |
| H | -3.3452 | -0.3161 | 1.0468 |
| C | -4.7477 | 0.7878 | -0.1612 |
| H | -4.9471 | 1.0189 | -1.2166 |
| Br | 6.1538 | -0.4371 | 0.2449 |
| H | -4.6789 | 1.7360 | 0.3886 |
| C | -5.9405 | 0.0508 | 0.3895 |
| F | -6.1706 | -1.0959 | -0.2565 |
|  |  | - |  |


| F | -7.0467 | 0.7897 | 0.2943 |
| :--- | :--- | :--- | :--- |
| F | -5.7748 | -0.2552 | 1.6814 |
| C | -3.3884 | -1.1834 | -0.8405 |
| N | -3.3173 | -2.1142 | -1.5179 |

S6

C

C
2.2207
$-2.3025$
$-2.0945$
$-1.6787$
$-1.2244$

C
4.5345
$-1.9199 \quad-1.0428$

C
2.5401
$-3.3582$
-3.1138
C
5.0688
$-3.2015 \quad-1.6961$
3.0974
-4.6515
$-2.5028$

C
4.1833

H
5.2150
3.2635
3.5043
5.0942
1.6381
6.0720
2.2743
4.8035
3.7130
0.6217
$-1.6794$
$-1.9047$
-0.7204
-0.4447
C
1.0847
$-0.5970$
$-0.6756$

C
3.1929

C
3.8147
3.4463

C
4.7276
4.3668
0.1041
0.4547
1.2429
$-0.0922$

C

C
$-0.3604$
1.7519
1.9191
0.7168
0.3652
2.5228

| C | 5.0069 | 1.4859 | 2.0125 |
| :---: | :---: | :---: | :---: |
| H | 5.2270 | 2.8082 | 0.3269 |
| H | 4.5889 | 0.0328 | 3.5383 |
| H | 5.7259 | 2.0304 | 2.6262 |
| C | 2.7961 | $-1.5983$ | 2.3542 |
| C | 2.0973 | -1.2559 | 3.6744 |
| C | 3.8073 | $-2.7284$ | 2.5870 |
| H | 2.0305 | -1.9623 | 1.6526 |
| H | 1.4005 | -0.4159 | 3.5532 |
| H | 1.5311 | $-2.1247$ | 4.0407 |
| H | 2.8339 | -0.9878 | 4.4468 |
| H | 4.2754 | -3.0765 | 1.6563 |
| H | 4.6076 | -2.3993 | 3.2668 |
| H | 3.3048 | -3.5899 | 3.0502 |
| C | 3.5200 | 1.7689 | -1.4890 |
| C | 4.7357 | 1.6536 | -2.4160 |
| C | 3.0340 | 3.2208 | -1.4251 |
| H | 2.6948 | 1.1767 | -1.9084 |
| H | 5.0538 | 0.6127 | -2.5672 |
| H | 4.4962 | 2.0752 | -3.4032 |
| H | 5.5921 | 2.2144 | -2.0112 |
| H | 2.1621 | 3.2782 | -0.7630 |
| H | 3.8308 | 3.8913 | -1.0675 |
| H | 2.7435 | 3.5608 | -2.4314 |
| H | 4.7307 | -1.9632 | 0.0374 |
| C | 0.2017 | 0.5294 | -0.0311 |
| O | 0.9393 | 1.6082 | 0.0179 |
| C | -0.2998 | 0.0356 | 1.3471 |
| C | -0.5412 | 1.0298 | 2.2997 |
| C | -0.6007 | -1.2909 | 1.6702 |
|  |  |  |  |


| C | -1.1170 | 0.7202 | 3.5308 |
| :---: | :---: | :---: | :---: |
| H | -0.2601 | 2.0518 | 2.0424 |
| C | -1.1678 | -1.6219 | 2.8999 |
| H | -0.3857 | -2.0979 | 0.9649 |
| C | -1.4331 | -0.6073 | 3.8155 |
| H | -1.3153 | 1.4954 | 4.2717 |
| H | -1.4057 | -2.6559 | 3.1496 |
| Cl | -2.1456 | -1.0115 | 5.3549 |
| C | -1.1398 | 0.7593 | -0.9647 |
| C | -1.4135 | 2.2461 | -0.9146 |
| C | -2.4285 | -0.0241 | -0.6527 |
| C | -2.3273 | 2.8117 | -0.0197 |
| C | -0.7050 | 3.1059 | -1.7633 |
| H | -2.6360 | 0.0133 | 0.4281 |
| H | -3.2592 | 0.5125 | -1.1399 |
| C | -2.5084 | -1.4706 | -1.1259 |
| C | -2.5294 | 4.1928 | 0.0364 |
| H | -2.8961 | 2.1776 | 0.6622 |
| C | -0.8956 | 4.4833 | -1.7303 |
| H | 0.0226 | 2.6847 | -2.4588 |
| H | -1.7589 | -2.1097 | -0.6379 |
| H | -2.3237 | -1.5243 | -2.2104 |
| C | -3.8932 | -2.0918 | -0.8693 |
| C | -1.8100 | 5.0163 | -0.8221 |
| H | -3.2426 | 4.6193 | 0.7420 |
| H | -0.3366 | 5.1394 | -2.3982 |
| H | -4.6567 | -1.4691 | -1.3634 |
| C | -3.9724 | -3.5127 | -1.4400 |
| C | -4.1960 | -2.0721 | 0.5729 |
| Br | $-2.0810$ | 6.8967 | -0.7647 |
| S138 |  |  |  |


| H | -3.3497 | -4.2095 | -0.8621 |
| :--- | :--- | :--- | :--- |
| H | -3.6021 | -3.5015 | -2.4741 |
| C | -5.3728 | -4.0654 | -1.4856 |
| N | -4.3961 | -2.0480 | 1.7087 |
| F | -5.9134 | -4.1793 | -0.2692 |
| F | -5.3931 | -5.2766 | -2.0443 |
| F | -6.1861 | -3.2819 | -2.2028 |
| H | -0.8358 | 0.5422 | -2.0020 |

## TS1

C
$-3.1523$
-0.1913
0.0444

C
$-2.2033$
$-0.7647$
0.8894
-0.1141 1.0797
C

C

C
H

H

H

H

C
0.6569
0.9772

C
H

H

C

H

H

C
4.1089
3.9332
0.9200
$-2.0441$

| C | 5.1222 | 0.1390 | -0.4819 |
| :--- | :--- | :--- | :--- |
| H | 5.3746 | 0.1603 | 0.5823 |
| C | 0.6214 | 3.1824 | 0.4100 |
| N | 0.6080 | 4.3199 | 0.2177 |
| Br | -4.8124 | -1.0662 | -0.2204 |
| H | 5.8322 | -0.3485 | -1.1530 |
| C | 3.9735 | -1.8673 | 0.0148 |
| F | 3.3115 | -1.5542 | 1.1148 |
| F | 4.7043 | -2.9432 | 0.2170 |
| F | 3.1235 | -2.0706 | -0.9708 |

TS2

C
4.3760
3.9963
4.8498
5.7202
6.3498
6.8536
6.8978
6.5736
5.9669
7.7991
4.4732
5.6434
6.8533
6.7765
7.9365
6.3230
2.9901

C
4.849

C

C
5.7202

C

C
6.8978

H
H

H
H
H

H
H

H

H
S

| 0.8558 | 0.0649 |
| :--- | :--- |
| -0.4309 | -0.0747 |
| -1.6614 | 0.0179 |
| 1.4319 | 0.4125 |
| -1.4001 | 0.1715 |
| 1.0343 | -0.5419 |
| -0.4592 | -0.9085 |
| -1.0108 | 1.1766 |
| 1.1286 | 1.4418 |
| 1.3280 | -0.0614 |
| -2.2753 | 0.8535 |
| 2.5280 | 0.4397 |
| -2.3745 | 0.1077 |
| 1.6294 | -1.4641 |
| -0.7276 | -1.1480 |
| -0.6295 | -1.8334 |
| 1.9265 | -0.0881 |


| N | 2.6097 | $-0.5863$ | -0.3043 |
| :---: | :---: | :---: | :---: |
| C | 1.8926 | 0.5739 | -0.1822 |
| C | 2.1872 | -1.7240 | -1.1088 |
| C | 1.7984 | $-2.9241$ | -0.4949 |
| C | 2.3001 | -1.6030 | -2.5056 |
| C | 1.4822 | -4.0090 | -1.3186 |
| C | 1.9640 | -2.7117 | -3.2888 |
| C | 1.5562 | -3.9066 | -2.7040 |
| H | 1.1653 | -4.9493 | -0.8632 |
| H | 2.0268 | -2.6377 | -4.3761 |
| H | 1.3004 | -4.7624 | -3.3303 |
| C | 2.7463 | -0.3162 | -3.1829 |
| C | 1.5494 | 0.3952 | -3.8247 |
| C | 3.8570 | -0.5611 | -4.2081 |
| H | 3.1627 | 0.3549 | -2.4194 |
| H | 0.7522 | 0.5694 | -3.0888 |
| H | 1.8566 | 1.3622 | -4.2499 |
| H | 1.1285 | -0.2182 | -4.6367 |
| H | 4.7042 | -1.0990 | -3.7578 |
| H | 3.4957 | -1.1505 | -5.0637 |
| H | 4.2260 | 0.3980 | -4.5996 |
| C | 1.6431 | -3.0552 | 1.0069 |
| C | 2.3768 | -4.2687 | 1.5820 |
| C | 0.1512 | -3.0924 | 1.3638 |
| H | 2.0856 | -2.1592 | 1.4610 |
| H | 3.4434 | -4.2634 | 1.3140 |
| H | 2.2980 | -4.2678 | 2.6791 |
| H | 1.9417 | -5.2116 | 1.2186 |
| H | -0.3829 | $-2.2825$ | 0.8474 |
| H | -0.2941 | -4.0493 | 1.0501 |
|  |  |  |  |


| H | 0.0081 | -2.9855 | 2.4505 |
| :---: | :---: | :---: | :---: |
| H | 4.6884 | -2.2599 | -0.8942 |
| C | 0.4551 | 0.6398 | -0.4304 |
| O | -0.1587 | -0.3769 | -0.7942 |
| C | -0.1889 | 1.9963 | -0.6163 |
| C | -1.2206 | 2.0598 | -1.5611 |
| C | 0.1480 | 3.1616 | 0.0849 |
| C | -1.8835 | 3.2546 | -1.8263 |
| H | -1.4996 | 1.1441 | -2.0845 |
| C | -0.5057 | 4.3642 | -0.1680 |
| H | 0.9007 | 3.1414 | 0.8748 |
| C | -1.5155 | 4.4006 | -1.1263 |
| H | -2.6841 | 3.3007 | -2.5646 |
| H | -0.2521 | 5.2645 | 0.3910 |
| Cl | $-2.3502$ | 5.8951 | -1.4304 |
| C | 0.6508 | 0.4585 | 1.7659 |
| C | -0.7558 | 0.8778 | 2.1761 |
| C | 1.6595 | 1.0614 | 2.7240 |
| H | 0.7452 | -0.6250 | 1.6518 |
| C | -1.9464 | 0.2088 | 1.5004 |
| H | -0.8313 | 0.6745 | 3.2627 |
| H | -0.8467 | 1.9746 | 2.0856 |
| H | 1.1571 | 1.6727 | 3.4891 |
| H | 2.3964 | 1.7293 | 2.2401 |
| C | 2.4603 | 0.0334 | 3.4754 |
| C | -3.2904 | 0.8142 | 1.9562 |
| H | -1.9712 | -0.8638 | 1.7465 |
| H | -1.8928 | 0.2745 | 0.4088 |
| F | 1.6843 | -0.8824 | 4.0690 |
| F | 3.2087 | 0.5936 | 4.4301 |
|  |  |  |  |


| F | 3.3025 | -0.6425 | 2.6761 |
| :--- | :--- | :--- | :--- |
| C | -4.4528 | 0.1009 | 1.2893 |
| H | -3.3853 | 0.7160 | 3.0491 |
| C | -3.3320 | 2.2577 | 1.6626 |
| C | -4.7768 | 0.3690 | -0.0446 |
| C | -5.1598 | -0.8875 | 1.9763 |
| N | -3.3607 | 3.3866 | 1.4234 |
| C | -5.7942 | -0.3327 | -0.6858 |
| H | -4.2299 | 1.1413 | -0.5924 |
| H | -6.1801 | -1.6010 | 1.3481 |
| C | -4.9149 | -1.1082 | 3.0173 |
| H | -6.4872 | -1.3150 | 0.0203 |
| H | -6.0461 | -0.1187 | -1.7243 |
| Br | -6.7316 | -2.3705 | 1.8884 |
|  | -7.8737 | -2.2777 | -0.8429 |

TS3

| C | 4.2056 | -2.0397 | 0.5142 |
| :--- | :---: | :---: | :---: |
| C | 3.0142 | -2.5746 | 0.1353 |
| C | 2.7136 | -3.9936 | -0.2609 |
| C | 5.5243 | -2.7287 | 0.7214 |
| C | 3.9436 | -4.8950 | -0.4073 |
| C | 6.0674 | -3.4278 | -0.5328 |
| C | 5.0300 | -4.2716 | -1.2934 |
| H | 4.3522 | -5.1629 | 0.5790 |
| H | 5.4049 | -3.4580 | 1.5357 |
| H | 6.9036 | -4.0667 | -0.2110 |
| H | 1.9848 | -4.4324 | 0.4378 |
| H | 6.2607 | -1.9966 | 1.0801 |
|  |  | S143 |  |


| H | 3.5942 | -5.8371 | -0.8516 |
| :---: | :---: | :---: | :---: |
| H | 6.4933 | -2.6767 | -1.2142 |
| H | 5.5609 | -5.0594 | -1.8461 |
| H | 4.5351 | -3.6508 | -2.0594 |
| S | 4.0071 | -0.3308 | 0.7485 |
| N | 2.0050 | -1.5924 | 0.0752 |
| C | 2.3460 | -0.3334 | 0.3671 |
| C | 0.6539 | -1.9658 | -0.3008 |
| C | -0.2961 | -2.1553 | 0.7159 |
| C | 0.3683 | -2.1286 | -1.6652 |
| C | -1.5960 | -2.4860 | 0.3166 |
| C | -0.9437 | -2.4659 | -2.0086 |
| C | -1.9186 | -2.6334 | -1.0300 |
| H | -2.3720 | -2.6291 | 1.0686 |
| H | -1.2086 | -2.5872 | -3.0605 |
| H | -2.9400 | -2.8889 | -1.3172 |
| C | 1.4094 | -1.9228 | -2.7565 |
| C | 1.1766 | -0.5996 | -3.4947 |
| C | 1.4424 | -3.0893 | -3.7503 |
| H | 2.4009 | -1.8613 | -2.2811 |
| H | 1.1511 | 0.2359 | -2.7848 |
| H | 1.9683 | -0.4374 | -4.2412 |
| H | 0.2095 | -0.6247 | -4.0217 |
| H | 1.5710 | -4.0617 | -3.2520 |
| H | 0.5148 | -3.1346 | -4.3399 |
| H | 2.2743 | -2.9545 | -4.4566 |
| C | 0.0570 | -2.0468 | 2.1949 |
| C | 0.6327 | -3.3624 | 2.7359 |
| C | -1.1299 | -1.6078 | 3.0539 |
| H | 0.8436 | -1.2863 | 2.3036 |


| H | 1.6012 | -3.6041 | 2.2783 |
| :---: | :---: | :---: | :---: |
| H | 0.7911 | -3.2833 | 3.8213 |
| H | -0.0605 | -4.1967 | 2.5486 |
| H | -1.6275 | -0.7199 | 2.6363 |
| H | -1.8803 | $-2.4075$ | 3.1401 |
| H | -0.7836 | -1.3646 | 4.0669 |
| H | 2.1968 | -3.9600 | -1.2312 |
| C | 1.0308 | 1.1926 | 0.0131 |
| O | 0.1829 | 0.7345 | -0.7760 |
| C | 1.9773 | 2.2572 | -0.5751 |
| C | 1.5419 | 2.8601 | -1.7623 |
| C | 3.1803 | 2.7054 | -0.0142 |
| C | 2.2813 | 3.8640 | -2.3845 |
| H | 0.5916 | 2.5333 | -2.1863 |
| C | 3.9384 | 3.7020 | -0.6257 |
| H | 3.5681 | 2.2814 | 0.9103 |
| C | 3.4812 | 4.2739 | -1.8107 |
| H | 1.9305 | 4.3290 | -3.3062 |
| H | 4.8793 | 4.0344 | -0.1873 |
| Cl | 4.4243 | 5.5215 | -2.5790 |
| C | 0.4999 | 1.4754 | 1.4481 |
| C | -0.6776 | 2.4618 | 1.2699 |
| C | 1.5119 | 1.9419 | 2.4920 |
| H | 0.0827 | 0.5154 | 1.7846 |
| C | -1.9764 | 1.7078 | 0.9813 |
| H | -0.7978 | 3.0919 | 2.1613 |
| H | -0.4377 | 3.1428 | 0.4356 |
| H | 1.7200 | 3.0186 | 2.4130 |
| H | 2.4644 | 1.4027 | 2.4004 |
| C | 1.0629 | 1.6591 | 3.9014 |
|  |  |  |  |


| C | -3.0212 | 2.4962 | 0.1687 |
| :---: | :---: | :---: | :---: |
| H | -2.4595 | 1.4100 | 1.9252 |
| H | -1.7390 | 0.7940 | 0.4192 |
| F | -0.1580 | 2.1305 | 4.1828 |
| F | 1.9011 | 2.1881 | 4.7980 |
| F | 1.0231 | 0.3382 | 4.1433 |
| C | -4.2509 | 1.6393 | -0.0756 |
| H | -3.3140 | 3.4050 | 0.7173 |
| C | -2.4467 | 2.9483 | -1.1110 |
| C | -4.1773 | 0.5420 | -0.9412 |
| C | -5.4391 | 1.8856 | 0.6130 |
| N | -1.9960 | 3.2941 | -2.1156 |
| C | -5.2742 | -0.2957 | -1.1224 |
| H | -3.2503 | 0.3367 | -1.4839 |
| C | -6.5463 | 1.0532 | 0.4451 |
| H | -5.5079 | 2.7369 | 1.2931 |
| C | -6.4514 | -0.0310 | -0.4227 |
| H | -5.2167 | -1.1462 | -1.8018 |
| H | -7.4730 | 1.2486 | 0.9845 |
| Br | -7.9486 | -1.1705 | -0.6576 |

TS4

| C | -2.8954 | -0.9156 | -0.5517 |
| :--- | :---: | :---: | :---: |
| C | -1.5262 | -0.7305 | -0.3771 |
| C | -1.0367 | 0.3540 | 0.3579 |
| C | -1.9450 | 1.2562 | 0.9181 |
| C | -3.3189 | 1.0868 | 0.7519 |
| C | -3.7813 | -0.0007 | 0.0151 |
| H | -3.2710 | -1.7654 | -1.1216 |
| H | -0.8314 | -1.4522 | -0.8121 |


| H | -1.5786 | 2.1071 | 1.4963 |
| :---: | :---: | :---: | :---: |
| H | -4.0219 | 1.7924 | 1.1947 |
| C | 0.4498 | 0.6099 | 0.4901 |
| C | 1.2215 | -0.6615 | 0.7087 |
| C | 1.0432 | 1.3684 | -0.7047 |
| H | 0.6274 | 1.2100 | 1.3978 |
| C | 2.9769 | -0.0688 | -0.3203 |
| C | 2.5612 | 1.3540 | -0.5374 |
| H | 0.6313 | 2.3851 | -0.7493 |
| H | 0.7596 | 0.8504 | -1.6348 |
| H | 2.8365 | -0.7364 | -1.1776 |
| H | 2.8554 | 1.9724 | 0.3252 |
| H | 3.0552 | 1.7775 | -1.4278 |
| C | 4.1130 | -0.4311 | 0.5836 |
| H | 4.0514 | -1.4908 | 0.8712 |
| H | 4.1053 | 0.1748 | 1.5017 |
| C | 5.4559 | -0.2209 | -0.0721 |
| N | 1.3297 | -1.7493 | 1.1433 |
| Br | -5.6466 | -0.2448 | -0.2182 |
| F | 5.6402 | 1.0590 | -0.4233 |
| F | 5.5872 | -0.9512 | -1.1846 |
| F | 6.4610 | -0.5538 | 0.7409 |

## TS5

| C | -2.8570 | 0.8839 | -0.8271 |
| :--- | :--- | :--- | :--- |
| C | -1.5411 | 1.1498 | -0.4608 |
| C | -0.9842 | 0.5930 | 0.7057 |
| C | -1.7961 | -0.2523 | 1.4882 |
| C | -3.1088 | -0.5302 | 1.1311 |


| C | -3.6321 | 0.0437 | -0.0289 |
| :---: | :---: | :---: | :---: |
| H | -3.2786 | 1.3272 | -1.7293 |
| H | -0.9496 | 1.8096 | -1.0957 |
| H | -1.3780 | -0.7054 | 2.3892 |
| H | -3.7246 | -1.1868 | 1.7457 |
| C | 0.3979 | 0.8124 | 1.1120 |
| C | 1.4873 | -0.8191 | 0.5393 |
| C | 1.2968 | 1.8480 | 0.4992 |
| H | 0.5848 | 0.6290 | 2.1760 |
| C | 2.6701 | -0.0939 | -0.0467 |
| C | 2.7260 | 1.3130 | 0.5490 |
| H | 1.2118 | 2.8011 | 1.0459 |
| H | 1.0212 | 2.0439 | -0.5465 |
| H | 2.4555 | -0.0069 | -1.1251 |
| H | 3.0805 | 1.2583 | 1.5909 |
| H | 3.4224 | 1.9522 | -0.0076 |
| C | 3.9171 | -0.9588 | 0.1389 |
| H | 3.7658 | -1.9409 | -0.3285 |
| H | 4.1282 | -1.1206 | 1.2053 |
| C | 5.1496 | -0.3544 | -0.4818 |
| N | 1.0075 | -1.8640 | 0.8135 |
| Br | -5.4225 | -0.3253 | -0.5252 |
| F | 5.5816 | 0.7221 | 0.1873 |
| F | 4.9319 | 0.0349 | -1.7435 |
| F | 6.1580 | -1.2280 | -0.5038 |

## TS6

C
C

C
-2.9808
0.5857
$-1.4779$
-3.0068
0.6145
$-0.1224$
4.1924
0.4315
0.7790

| C | -4.1010 | 0.3214 | -2.4430 |
| :---: | :---: | :---: | :---: |
| C | -5.5513 | 0.4255 | 0.0701 |
| C | -5.2700 | 1.3095 | -2.3369 |
| C | -5.7229 | 1.6034 | -0.8972 |
| H | -5.7080 | -0.5319 | -0.4510 |
| H | -4.4557 | -0.7068 | -2.2669 |
| H | -6.1066 | 0.8845 | -2.9118 |
| H | -4.0529 | -0.5045 | 1.3471 |
| H | -3.7042 | 0.3280 | -3.4681 |
| H | -6.3193 | 0.4683 | 0.8544 |
| H | -4.9986 | 2.2536 | -2.8321 |
| H | -6.7747 | 1.9210 | -0.9210 |
| H | -5.1578 | 2.4627 | -0.4997 |
| S | -1.3554 | 0.8164 | -2.0548 |
| N | -1.7349 | 0.8322 | 0.4392 |
| C | -0.7235 | 0.8618 | -0.4631 |
| C | -1.6469 | 1.5248 | 1.7259 |
| C | -1.6749 | 0.8255 | 2.9412 |
| C | -1.6365 | 2.9311 | 1.6736 |
| C | -1.6188 | 1.5690 | 4.1230 |
| C | -1.5688 | 3.6291 | 2.8847 |
| C | -1.5504 | 2.9580 | 4.1014 |
| H | -1.6218 | 1.0441 | 5.0802 |
| H | -1.5368 | 4.7198 | 2.8701 |
| H | -1.4955 | 3.5187 | 5.0355 |
| C | -1.6821 | 3.7200 | 0.3731 |
| C | -0.3014 | 4.3047 | 0.0546 |
| C | -2.7522 | 4.8153 | 0.4030 |
| H | -1.9581 | 3.0396 | -0.4437 |
| H | 0.4733 | 3.5247 | 0.0544 |
|  |  |  |  |


| H | -0.3048 | 4.7957 | -0.9299 |
| :---: | :---: | :---: | :---: |
| H | -0.0205 | 5.0544 | 0.8106 |
| H | -3.7381 | 4.4031 | 0.6630 |
| H | -2.5083 | 5.6024 | 1.1313 |
| H | -2.8268 | 5.2918 | -0.5852 |
| C | -1.7317 | -0.6847 | 3.0207 |
| C | $-2.8723$ | -1.1748 | 3.9178 |
| C | -0.3843 | -1.2455 | 3.4877 |
| H | -1.9177 | -1.0531 | 2.0050 |
| H | -3.8383 | -0.7372 | 3.6263 |
| H | -2.9568 | -2.2701 | 3.8560 |
| H | -2.6910 | -0.9183 | 4.9723 |
| H | 0.4175 | -0.9063 | 2.8173 |
| H | -0.1552 | -0.8965 | 4.5065 |
| H | -0.4098 | $-2.3463$ | 3.5095 |
| H | -4.1823 | 1.2453 | 1.5227 |
| C | 0.6912 | 0.8179 | -0.0277 |
| O | 0.8957 | 0.7793 | 1.2068 |
| C | 1.7827 | 1.4162 | -0.8964 |
| C | 2.9024 | 1.8835 | -0.1943 |
| C | 1.8007 | 1.4956 | -2.2964 |
| C | 4.0118 | 2.4032 | -0.8558 |
| H | 2.8901 | 1.8076 | 0.8926 |
| C | 2.9000 | 2.0190 | -2.9733 |
| H | 0.9756 | 1.1232 | $-2.9034$ |
| C | 4.0024 | 2.4657 | -2.2470 |
| H | 4.8800 | 2.7565 | -0.2988 |
| H | 2.9085 | 2.0700 | -4.0619 |
| Cl | 5.3835 | 3.1068 | -3.0925 |
| C | 0.9313 | -1.2656 | -0.8139 |
|  |  |  |  |


| C | -0.3133 | -2.0046 | -0.8786 |
| :---: | :---: | :---: | :---: |
| C | 1.9981 | -1.6532 | 0.1702 |
| C | -0.9409 | -2.5094 | 0.2803 |
| C | -0.9993 | -2.1669 | -2.1052 |
| H | 1.9579 | -0.9579 | 1.0364 |
| H | 1.8136 | -2.6642 | 0.5716 |
| C | 3.3896 | -1.6066 | -0.4615 |
| C | -2.2342 | -3.0169 | 0.2445 |
| H | -0.4147 | $-2.4532$ | 1.2338 |
| C | -2.2872 | -2.6896 | -2.1590 |
| H | -0.5082 | -1.8686 | -3.0330 |
| H | 3.5382 | -0.6451 | -0.9779 |
| H | 3.4826 | -2.3967 | -1.2224 |
| C | 4.5374 | -1.8028 | 0.5423 |
| C | -2.9164 | -3.0628 | -0.9733 |
| H | -2.7216 | -3.3562 | 1.1602 |
| H | -2.8072 | $-2.7850$ | -3.1132 |
| H | 4.4094 | -2.7749 | 1.0459 |
| C | 5.8908 | -1.7909 | -0.1790 |
| C | 4.4861 | -0.7707 | 1.5928 |
| Br | -4.7251 | -3.6397 | -1.0156 |
| H | 6.1320 | -0.7835 | -0.5466 |
| H | 5.8388 | -2.4648 | -1.0448 |
| C | 7.0369 | -2.2674 | 0.6735 |
| N | 4.4341 | 0.0545 | 2.3973 |
| F | 7.2310 | -1.4937 | 1.7455 |
| F | 8.1779 | $-2.2803$ | -0.0181 |
| F | 6.8300 | $-3.5110$ | 1.1227 |
| H | 1.3017 | -0.9769 | -1.8040 |

TS7

| C | 3.4824 | -0.5116 | -1.5628 |
| :---: | :---: | :---: | :---: |
| C | 3.3475 | -1.2660 | -0.4398 |
| C | 4.4219 | -2.0632 | 0.2513 |
| C | 4.6852 | -0.3370 | -2.4497 |
| C | 5.8132 | -1.4450 | 0.0722 |
| C | 5.5634 | -1.5924 | -2.4906 |
| C | 6.4764 | -1.7548 | -1.2722 |
| H | 5.7319 | -0.3541 | 0.2059 |
| H | 5.2747 | 0.5357 | -2.1210 |
| H | 6.1817 | -1.5710 | -3.3994 |
| H | 4.1754 | -2.1300 | 1.3193 |
| H | 4.3291 | -0.0993 | -3.4623 |
| H | 6.4664 | -1.8041 | 0.8804 |
| H | 4.9036 | -2.4701 | -2.5887 |
| H | 7.3533 | -1.0978 | -1.3833 |
| H | 6.8620 | -2.7864 | -1.2604 |
| S | 1.9585 | 0.2455 | -1.9227 |
| N | 2.0232 | -1.2265 | 0.0505 |
| C | 1.1522 | -0.4461 | -0.5930 |
| C | 1.6799 | -1.9839 | 1.2388 |
| C | 1.8547 | -1.3537 | 2.4817 |
| C | 1.2717 | -3.3260 | 1.1002 |
| C | 1.6754 | -2.1325 | 3.6293 |
| C | 1.1119 | -4.0566 | 2.2842 |
| C | 1.3270 | -3.4748 | 3.5310 |
| H | 1.8103 | -1.6800 | 4.6126 |
| H | 0.8053 | -5.1004 | 2.2359 |
| H | 1.2015 | -4.0723 | 4.4352 |
| C | 0.9462 | -3.9600 | -0.2536 |
|  |  |  |  |


| C | 0.1466 | -5.2588 | -0.1205 |
| :---: | :---: | :---: | :---: |
| C | 2.1687 | -4.2441 | -1.1386 |
| H | 0.3122 | -3.2335 | -0.7870 |
| H | -0.7040 | -5.1595 | 0.5657 |
| H | -0.2511 | -5.5459 | -1.1046 |
| H | 0.7857 | -6.0819 | 0.2362 |
| H | 2.6640 | -3.3315 | -1.4915 |
| H | 2.9027 | -4.8648 | -0.6017 |
| H | 1.8464 | -4.8024 | -2.0295 |
| C | 2.2341 | 0.1147 | 2.6010 |
| C | 3.7363 | 0.3011 | 2.8464 |
| C | 1.4263 | 0.8219 | 3.6914 |
| H | 1.9768 | 0.5987 | 1.6484 |
| H | 4.3441 | -0.0747 | 2.0126 |
| H | 3.9670 | 1.3696 | 2.9704 |
| H | 4.0492 | -0.2239 | 3.7627 |
| H | 0.3530 | 0.6538 | 3.5366 |
| H | 1.7102 | 0.4778 | 4.6974 |
| H | 1.6234 | 1.9043 | 3.6537 |
| H | 4.4175 | -3.1021 | -0.1180 |
| C | -0.7218 | 0.0056 | 0.1950 |
| O | -0.6052 | 0.1231 | 1.4257 |
| C | -1.3900 | -1.2685 | -0.3278 |
| C | -1.9082 | $-2.1479$ | 0.6246 |
| C | -1.5242 | -1.5833 | -1.6847 |
| C | -2.5554 | -3.3202 | 0.2411 |
| H | -1.7892 | -1.8894 | 1.6777 |
| C | -2.1557 | $-2.7581$ | -2.0864 |
| H | -1.0994 | -0.9289 | -2.4485 |
| C | -2.6636 | -3.6195 | -1.1142 |
|  |  |  |  |


| H | -2.9606 | -4.0088 | 0.9835 |
| :---: | :---: | :---: | :---: |
| H | -2.2457 | -3.0151 | -3.1419 |
| Cl | -3.4110 | -5.1162 | -1.6018 |
| C | -1.0488 | 1.2882 | -0.6190 |
| C | -0.0087 | 2.3839 | -0.5183 |
| C | -2.3927 | 1.8598 | -0.1181 |
| C | 0.5940 | 2.7258 | 0.6994 |
| C | 0.3409 | 3.1127 | -1.6605 |
| H | -2.2607 | 2.1427 | 0.9382 |
| H | -2.5892 | 2.7884 | -0.6789 |
| C | -3.5956 | 0.9322 | -0.2551 |
| C | 1.5597 | 3.7299 | 0.7640 |
| H | 0.3139 | 2.1760 | 1.5977 |
| C | 1.2963 | 4.1263 | -1.6132 |
| H | -0.1250 | 2.8692 | -2.6188 |
| H | -3.5153 | 0.0850 | 0.4414 |
| H | -3.6389 | 0.5082 | -1.2707 |
| C | -4.9326 | 1.6497 | -0.0010 |
| C | 1.9076 | 4.4176 | -0.3964 |
| H | 2.0369 | 3.9782 | 1.7131 |
| H | 1.5679 | 4.6773 | -2.5137 |
| H | -5.0432 | 2.4654 | -0.7341 |
| C | -6.1088 | 0.6798 | -0.1624 |
| C | -4.9260 | 2.2792 | 1.3310 |
| Br | 3.2288 | 5.7793 | -0.3179 |
| H | -6.1319 | -0.0560 | 0.6531 |
| H | -5.9909 | 0.1340 | -1.1084 |
| C | -7.4495 | 1.3631 | -0.2167 |
| N | -4.8817 | 2.7569 | 2.3798 |
| F | -7.7345 | 2.0115 | 0.9165 |
| S154 |  |  |  |


| F | -8.4303 | 0.4842 | -0.4288 |
| :--- | :--- | :--- | :--- |
| F | -7.5018 | 2.2638 | -1.2052 |
| H | -1.1584 | 1.0307 | -1.6837 |


[^0]:    

[^1]:    

[^2]:    

[^3]:    $\begin{array}{lllllllllllllllllllllllllllll}0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 & -110 & -120 & -130 & -140 & -150 & -160 & -170 & -180 & -190 & -200 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

[^4]:    

[^5]:    $\begin{array}{lllllllllllllllllllll}0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

[^6]:    $\begin{array}{lllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100\end{array}$

