Organocatalytic Radical Relay Trifunctionalization of Unactivated Alkenes by a Combination of Cyano Migration and Alkylacylation

Jingyi Wang, Yuchan Wang, Jibin Li, Zexuan Wei, Jie Feng,* Ding Du*

State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing, 210009, P. R. China Email: 1020162519@cpu.edu.cn (J. Feng); ddmn9999@cpu.edu.cn (D. Du)

Supporting Information

Table of contents

 General methods Preparation of substrates General procedure General procedure Radical trapping experiment Carbocation trapping experiment Characterization of the products Characterization s DFT calculations Copies of NMR spectra		
		\$3
		\$4 \$32 \$37

1. General methods

All reactions were carried out in dry glassware and were monitored by analytical thin layer chromatography (TLC), which was visualized by ultraviolet light (254 nm). All solvents were obtained from commercial sources and were purified according to standard procedures. Purification of the products was accomplished by flash chromatography using silica gel (200-300 mesh). All NMR spectra were recorded on Bruker spectrometers, running at 300 MHz or 400 MHz for ¹H and 75 MHz or 101 MHz for ¹³C respectively. Chemical shifts (δ) and coupling constants (J) are reported in ppm and Hz respectively. The solvent signals were used as references (residual CHCl₃ in CDCl₃: δ H = 7.26 ppm, δ c = 77.16 ppm). The following abbreviations are used to indicate the multiplicity in NMR spectra: s (singlet); d (doublet); t (triplet); q (quartet); m (multiplet). High resolution mass spectrometry (HRMS) was recorded on TOF perimer for ESI⁺.

2. Preparation of substrates

Trifluoroiodomethane, dibromodifluoromethane, perfluoro-1-iodohexane, ethyl 2bromo-2,2-difluoroacetate, and aldehydes except **2u-2w** are commercially available. Aldehydes **2u-2w**,^[1-3] hexenenitrile substrates, ^[4-5] and iodomethane bearing a tosyl group^[6] are known compounds which are prepared according to the literature procedures.

3. General procedure for radical trifunctionalization of hexenenitriles

To an oven-dried reaction tube (10 mL) equipped with a Teflon® stir bar and fitted with a rubber septum were added NHC-A (12 mg, 0.03 mmol, 15 mol%) and K_2CO_3 (27.64 mg, 0.2 mmol, 1.0 equiv.). Then, the reaction tube was evacuated and back-filled with nitrogen three times. Subsequently, dry 1,2-dichloroethane (DCE) (2 mL), aldehyde 2 (0.2 mmol, 1.0 equiv.), hexenenitrile 3 (0.3 mmol, 1.5 equiv.) and radical precursor 1 (0.8 mmol, 4.0 equiv.) were added under the protection of nitrogen. The reaction was stirred at 50 °C or 80 °C (oil bath) for 10-12 hours. The reaction mixture was concentrated under reduced pressure, and the resulting crude material was purified by column chromatography on silica gel (petroleum ether / acetone from 20/1 to 15/1) to afford the desired products 4.

4. Radical trapping experiment

To an oven-dried reaction tube (10 mL) equipped with a Teflon[®] stir bar and fitted with a rubber septum were added NHC-A (12 mg, 0.03 mmol, 15 mol%) and K₂CO₃ (27.64 mg, 0.2 mmol, 1.0 equiv.), after which the tube was evacuated and back-filled with nitrogen three times. Subsequently, dry 1,2-dichloroethane (DCE) (2 mL), 4-chlorobenzaldehyde **2a** (0.2 mmol, 1.0 equiv.), hexenenitrile **3a** (0.3 mmol, 1.2 equiv.) and trifluoromethyl iodide **1a** (156.7 mg, 0.8 mmol, 25% w/w in N,N-dimethylformamide, 4.0 equiv.) were added under the protection of nitrogen. TEMPO (93.8 mg, 0.6 mmol) was then added. The reaction was stirred at 50 °C (oil bath) for 10-12 hours. The reaction mixture was monitored by TLC and was further concentrated under reduced pressure. The resulting crude material was tested by LC-MS. No product was observed.

5. Carbocation trapping experiment

To an oven-dried reaction tube (10 mL) equipped with a Teflon[®] stir bar and fitted with a rubber septum were added NHC-A (12 mg, 0.03 mmol, 15 mol%) and K₂CO₃ (27.64 mg, 0.2 mmol, 1.0 equiv.), after which the tube was evacuated and back-filled with nitrogen three times. Subsequently, dry 1,2-dichloroethane (DCE) (2 mL), 4-chlorobenzaldehyde **2a** (0.2 mmol, 1.0 equiv.), hexenenitrile **3a** (0.3 mmol, 1.2 equiv.) and trifluoromethyl iodide **1a** (156.7 mg, 0.8 mmol, 25% w/w in N,N-dimethylformamide, 4.0 equiv.) were added under the protection of nitrogen. The reaction was stirred at 25 °C for 5 minutes, and methanol (0.6 mmol, 3.0 equiv.) was added. After stirring at 50 °C (oil bath) for another 10 hours, the reaction mixture was concentrated under reduced pressure. The resulting crude material was monitored by crude ¹H NMR and was purified by column chromatography on silica gel (petroleum ether / acetone from 20/1) to afford **4a** (82 mg, 90%).

6. Characterization of the products

5-(4-bromophenyl)-6-(4-chlorophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexanenitrile

(4a) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a colorless liquid (75.9 mg, 83% yield, dr = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (dd, J = 8.7, 2.1 Hz, 2H, two

isomers), 7.44 (d, J = 8.4 Hz, 2H, two isomers), 7.37 (d, J = 8.1 Hz, 2H, two isomers), 7.13 (dd, J = 8.4, 1.7 Hz, 2H, two isomers), 4.47 (t, J = 7.2 Hz, 1H, two isomers), 2.93 – 2.79 (m, 1H, two isomers), 2.60 – 2.42 (m, 1H, two isomers), 2.38 – 2.21 (m, 2H, two isomers), 2.13 – 1.92 (m, 1H, two isomers), 1.78 – 1.66 (m, 1H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 197.13 & 197.06 (two isomers), 140.09 & 140.07 (two isomers), 137.3 & 137.2 (two isomers), 134.34 & 134.31 (two isomers), 132.7 (overlap, two isomers), 130.2 (overlap, two isomers), 129.8 & 129.7 (two isomers), 129.2 (overlap, two isomers), 125.12 (q, ${}^{1}J_{C-F} = 278.2$ Hz) & 125.10 (q, ${}^{1}J_{C-F} = 278.3$ Hz) (two isomers), 122.0 (overlap, two isomers), 119.47 & 119.46 (two isomers), 52.52 & 52.48 (two isomers), 36.4 (q, ${}^{2}J_{C-F} = 30.0$ Hz) & 36.3 (q, ${}^{2}J_{C-F} = 30.0$ Hz) (two isomers), 30.9 & 30.6 (two isomers). ¹⁹F NMR (376 MHz, CDCl₃) δ - 64.9 (s, one isomer), -65.0 (s, one isomer). HRMS (ESI) calcd. for C₂₀H₁₆BrClF₃NNaO [M+Na]⁺: 479.9947; found: 479.9944. HRMS (ESI) calcd. for C₂₀H₁₇BrClF₃NO [M+H]⁺: 460.0108; found: 460.0089.

2-(4-bromophenyl)-5-(4-chlorobenzoyl)-7,7,7-trifluoroheptanenitrile (4a') The CN title compound was obtained when the reaction was CF_3 carried out using Cs₂CO₃ as a base in 1,2-DCE in the presence of precatalyst A (eluent: petroleum ether / acetone = 20/1, v/v) as a yellow liquid. ¹H NMR (400 MHz,

CDCl₃) δ 7.84 (dd, J = 8.6, 3.4 Hz, 2H, one isomers), 7.48 (dt, J = 8.2, 4.6 Hz, 4H, one isomers), 7.11 (dd, J = 8.2, 6.0 Hz, 2H, one isomers), 3.75 (dd, J = 9.4, 4.1 Hz, 1H, one isomers), 3.69 (dd, J = 13.6, 7.1 Hz, 1H, one isomers), 2.87 – 2.72 (m, 1H, one isomers), 2.27 – 2.17 (m, 1H, one isomers), 1.98 – 1.90 (m, 1H, one isomers), 1.86 – 1.77 (m, 2H, one isomers), 1.75 – 1.62 (m, 1H, one isomers). ¹³C NMR (101 MHz, CDCl₃) δ 199.2 & 199.1 (two isomers), 140.7 (overlap, two isomers), 134.15 & 134.10 (two

isomers), 133.9 & 133.8 (two isomers), 132.54 & 132.53 (two isomers), 130.4 (overlap, two isomers), 129.55 & 129.53 (two isomers), 128.91 & 128.87 (two isomers), 126.3 (q, ${}^{1}J_{C-F} = 278.0 \text{ Hz}$) (overlap, two isomers), 122.7 & 122.6 (two isomers), 119.59 & 119.57 (two isomers), 38.9 (q, ${}^{3}J_{C-F} = 3.2 \text{ Hz}$) (overlap, two isomers), 36.8 & 36.7 (two isomers), 35.5 (q, ${}^{2}J_{C-F} = 29.0 \text{ Hz}$) & 35.4 (q, ${}^{2}J_{C-F} = 29.1 \text{ Hz}$) (two isomers), 32.5 & 32.3 (two isomers), 29.9 & 29.8 (two isomers). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.59 (s, one isomer), -64.64 (s, one isomer). HRMS (ESI) calcd. for C₂₀H₁₆BrClF₃NNaO [M+Na]⁺: 479.9947; found: 479.9944. HRMS (ESI) calcd. for C₂₀H₁₇BrClF₃NO [M+H]⁺: 460.0108; found: 460.0089.

(m, 1H, two isomers), 7.46 – 7.39 (m, 2H, two isomers), 7.33 – 7.28 (m, 2H, two isomers), 7.28 – 7.21 (m, 2H, two isomers), 4.58 (t, J = 7.1 Hz, 1H, two isomers), 2.96 – 2.81 (m, 1H, two isomers), 2.58 – 2.47 (m, 1H, two isomers), 2.43 – 2.27 (m, 2H, two isomers), 2.13 – 1.98 (m, 1H, two isomers), 1.81 – 1.72 (m, 1H, two isomers), 1.67 – 1.56 (m, 1H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 198.5 & 198.4 (two isomers), 137.1 & 137.0 (two isomers), 136.2 & 136.1 (two isomers), 133.7 & 133.5 (two isomers), 129.6 (overlap, two isomers), 129.50 & 129.46 (two isomers), 128.84 & 128.78 (two isomers), 125.1 (q, ¹*J*_{C-F} = 275.1 Hz) (overlap, two isomers), 119.50 & 119.48 (two isomers), 52.33 & 52.28 (two isomers), 36.6 (q, ²*J*_{C-F} = 30.1 Hz) & 36.0 (q, ²*J*_{C-F} = 29.4 Hz) (two isomers), 31.0 & 30.8 (two isomers), 30.2 & 30.0 (two isomers), 25.8 (q, ³*J*_{C-F} = 2.8 Hz) & 25.6 (q, ³*J*_{C-F} = 3.4 Hz) (two isomers). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.89 (s, one isomer), -64.95 (s, one isomer). HRMS (ESI) calcd. for C₂₀H₁₈BrF₃NO [M+H]⁺: 424.0518, 426.0498; found: 424.0500, 426.0517.

5-(4-bromophenyl)-6-(4-fluorophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexanenitrile

(4c) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a yellow liquid (72.3 mg, 82% yield, dr =1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.88 (m, 2H, two isomers),

7.49 – 7.41 (m, 2H, two isomers), 7.14 (dd, J = 8.4, 1.9 Hz, 2H, two isomers), 7.11 – 7.02 (m, 2H, two isomers), 4.48 (t, J = 7.2 Hz, 1H, two isomers), 2.95 – 2.79 (m, 1H, two isomers), 2.61 – 2.43 (m, 1H, two isomers), 2.43 – 2.19 (m, 2H, two isomers), 2.15 – 1.88 (m, 1H, two isomers), 1.80 – 1.63 (m, 1H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 196.72 & 196.66 (two isomers), 165.91 (d, ¹ $J_{C-F} = 257.1$ Hz) & 165.89 (d, ¹ $J_{C-F} = 256.9$ Hz) (two isomers), 137.43 & 137.40 (two isomers), 132.7 (overlap, two isomers), 131.5 (d, ³ $J_{C-F} = 10.0$ Hz) (overlap, two isomers), 129.8 & 129.7 (two isomers), 125.12 (q, ¹ $J_{C-F} = 278.6$ Hz) & 125.09 (q, ^{1} $J_{C-F} = 278.2$ Hz) (two isomers), 121.9 (overlap, two isomers), 119.50 & 119.48 (two isomers), 116.0 (q, ² $J_{C-F} = 22.0$ Hz) (overlap, two isomers), 52.45 & 52.41 (two isomers), 36.4 (q, ² $J_{C-F} = 30.1$ Hz) & 36.3 (q, ² $J_{C-F} = 30.0$ Hz) (two isomers), 31.0 & 30.7 (two isomers), 30.2 & 30.0 (two isomers), 25.8 (q, ³ $J_{C-F} = 3.0$ Hz) & 25.7 (q, ³ $J_{C-F} = 3.1$ Hz) (two isomers). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.88 (s, one isomer), -64.94 (s, one isomer), -104.06 (s, one isomers), -104.10 (s, one isomers). HRMS (ESI) calcd. for C₂₀H₁₇BrF₄NO [M+H]⁺: 442.0425, 444.0404; found: 442.0426, 444.0409.}

5,6-bis(4-bromophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexanenitrile (4d) The title

compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a yellow liquid (68.4 mg, 68% yield, dr =1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.78 – 7.72 (m, 2H, two isomers), 7.54 (d, *J* = 8.5

Hz, 2H, two isomers), 7.49 – 7.41 (m, 2H, two isomers), 7.16 – 7.09 (m, 2H, two isomers), 4.46 (t, J = 7.2 Hz, 1H, two isomers), 2.93 – 2.80 (m, 1H, two isomers), 2.59 – 2.45 (m, 1H, two isomers), 2.40 – 2.24 (m, 2H, two isomers), 2.11 – 1.94 (m, 1H, two isomers), 1.80 – 1.54 (m, 2H, two isomers). ¹³C NMR (75 MHz, CDCl₃) δ 197.3 & 197.2 (two isomers), 137.2 & 137.2 (two isomers), 134.7 & 134.7 (two isomers), 132.7 (overlap, two isomers), 132.2 (overlap, two isomers), 130.3 (overlap, two isomers), 129.8 & 129.7 (two isomers), 128.9 & 128.8 (two isomers), 125.11 (q,

 ${}^{1}J_{C-F} = 275.5 \text{ Hz})$ & 125.09 (q, ${}^{1}J_{C-F} = 275.8 \text{ Hz}$) (two isomers), 122.0 (overlap, two isomers), 119.47 & 119.46 (two isomers), 52.50 & 52.47 (two isomers), 36.4 (q, ${}^{2}J_{C-F} = 29.9 \text{ Hz}$) & 36.3 (q, ${}^{2}J_{C-F} = 29.8 \text{ Hz}$) (two isomers), 30.9 & 30.6 (two isomers), 30.1 & 29.9 (two isomers), 25.8 (q, ${}^{3}J_{C-F} = 3.1 \text{ Hz}$) & 25.7 (q, ${}^{3}J_{C-F} = 3.0 \text{ Hz}$) (two isomers). ${}^{19}\text{F}$ NMR (376 MHz, CDCl₃) δ -64.87 (s, one isomer), -64.92 (s, one isomer). HRMS (ESI) calcd. for C₂₀H₁₇Br₂F₃NO [M+H]⁺: 503.9604, 501.9624; found: 503.9601, 501.9622.

5-(4-bromophenyl)-6-oxo-6-(p-tolyl)-2-(2,2,2-trifluoroethyl)hexanenitrile (4e) The

title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a colorless liquid (63.8 mg, 73%yield, dr =1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (dd, J = 8.2, 1.9 Hz, 2H, two isomers),

7.43 (d, J = 8.3 Hz, 2H, two isomers), 7.22 – 7.13 (m, 4H, two isomers), 4.52 (t, J = 7.2 Hz, 1H, two isomers), 2.93 – 2.81 (m, 1H, two isomers), 2.56 – 2.45 (m, 1H, two isomers), 2.36 (s, 3H, two isomers), 2.35 – 2.16 (m, 2H, two isomers), 2.09 – 1.94 (m, 1H, two isomers), 1.82 – 1.69 (m, 1H, two isomers), 1.69 – 1.61 (m, 1H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 197.94 & 197.87 (two isomers), 144.6 & 144.5 (two isomers), 137.9 & 137.8 (two isomers), 133.59 & 133.56 (two isomers), 132.5 (overlap, two isomers), 129.83 & 129.78 (two isomers), 129.6 (overlap, two isomers), 128.94 & 128.93 (two isomers), 125.16 (q, ${}^{1}J_{C-F} = 278.2$ Hz) & 125.12 (q, ${}^{1}J_{C-F} = 278.2$ Hz) (two isomers), 121.7 (overlap, two isomers), 119.54 & 119.49 (two isomers), 52.3 & 52.2 (two isomers), 36.4 (q, ${}^{2}J_{C-F} = 30.2$ Hz) & 36.3 (q, ${}^{2}J_{C-F} = 30.0$ Hz) (two isomers), 31.0 & 30.7 (two isomers), 31.8 (overlap, two isomers), 25.8 (q, ${}^{3}J_{C-F} = 2.9$ Hz) & 25.6 (q, ${}^{3}J_{C-F} = 2.9$ Hz) (two isomers), 21.8 (overlap, two isomers). 19F NMR (282 MHz, CDCl₃) δ -64.9 (s, one isomer), -65.0 (s, one isomer). HRMS (ESI) calcd. for C₂₁H₂₀BrF₃NO [M+H]⁺: 438.0675, 440.0655; found: 438.0685, 440.0662.

5-(4-bromophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)-6-(4-(trifluoromethoxy)phenyl)

(m, 2H, two isomers), 7.32 - 7.28 (m, 2H, two isomers), 7.24 - 7.17 (m, 4H, two

isomers), 4.50 (t, J = 7.1 Hz, 1H, two isomers), 2.95 – 2.82 (m, 1H, two isomers), 2.58 – 2.44 (m, 1H, two isomers), 2.39 – 2.24 (m, 2H, two isomers), 2.11 – 1.99 (m, 1H, two isomers), 1.77 – 1.68 (m, 1H, two isomers), 1.63 – 1.56 (m, 1H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 196.9 & 196.8 (two isomers), 152.9 (q, ${}^{3}J_{C-F} = 2.8$ Hz) (overlap, two isomers), 136.7 & 136.6 (two isomers), 134.24 & 134.21 (two isomers), 134.0 (overlap, two isomers), 130.9 (overlap, two isomers), 129.8 (overlap, two isomers), 129.44 & 129.40 (two isomers), 125.14 (q, ${}^{1}J_{C-F} = 278.3$ Hz) & 125.11 (q, ${}^{1}J_{C-F} =$ 278.6 Hz) (two isomers), 120.5 (overlap, two isomers), 120.3 (q, ${}^{1}J_{C-F} = 260.2$ Hz) (overlap, two isomers), 119.47 & 119.46 (two isomers), 52.53 & 52.51 (two isomers), 36.4 (q, ${}^{2}J_{C-F} = 30.0$ Hz) & 36.3 (q, ${}^{2}J_{C-F} = 30.2$ Hz) (two isomers), 31.0 & 30.8 (two isomers), 30.1 & 29.9 (two isomers), 25.8 (q, ${}^{3}J_{C-F} = 2.9$ Hz) & 25.7 (q, ${}^{3}J_{C-F} = 2.9$ Hz) (two isomers). ¹⁹F NMR (376 MHz, CDCl₃) δ -57.6 (overlap, two isomers), -64.9 (s, one isomer), -65.0 (s, one isomer). HRMS (ESI) calcd. for C₂₁H₁₇BrF₆NO₂ [M+H]⁺: 508.0341; found: 508.0331. HRMS (ESI) calcd. for C₂₁H₁₆BrF₆NO₂ [M+Na]⁺: 532.0141; found: 532.0137.

6-([1,1'-biphenyl]-4-yl)-5-(4-bromophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexane

nitrile (4g) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a yellow liquid (44.9 mg, 60%yield, dr = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 8.02 - 7.96 (m, 2H, two

isomers), 7.63 (d, J = 8.4 Hz, 2H, two isomers), 7.58 (d, J = 7.1 Hz, 2H, two isomers), 7.49 – 7.42 (m, 4H, two isomers), 7.42 – 7.37 (m, 1H, two isomers), 7.23 – 7.17 (m, 2H, two isomers), 4.58 (t, J = 7.1 Hz, 1H, two isomers), 2.95 – 2.85 (m, 1H, two isomers), 2.57 – 2.47 (m, 1H, two isomers), 2.42 – 2.28 (m, 2H, two isomers), 2.13 – 2.00 (m, 1H, two isomers), 1.80 – 1.72 (m, 1H, two isomers), 1.65 – 1.58 (m, 1H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 197.9 & 197.8 (two isomers), 146.27 & 146.25 (two isomers), 139.7 (overlap, two isomers), 137.71 & 137.66 (two isomers), 134.8 & 134.7 (two isomers), 132.6 (overlap, two isomers), 129.9 (overlap, two isomers), 129.8 (overlap, two isomers), 129.4 (overlap, two isomers), 129.1 (overlap, two isomers), 128.5 (overlap, two isomers), 127.5 (overlap, two isomers), 121.8 & 121.0 (two isomers), 119.52 & 119.49 (two isomers), 52.5 & 52.4 (two isomers),

36.4 (q, ${}^{2}J_{C-F}$ = 29.9 Hz) & 36.3 (q, ${}^{2}J_{C-F}$ = 30.3 Hz) (two isomers), 31.0 & 30.7 (two isomers), 30.3 & 30.1 (two isomers), 25.8 (q, ${}^{3}J_{C-F}$ = 2.9 Hz) & 25.7 (q, ${}^{3}J_{C-F}$ = 2.8 Hz) (two isomers). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.8 (s, one isomer), -64.9 (s, one isomer). HRMS (ESI) calcd. for C₂₆H₂₂BrF₃NO [M+H]⁺: 500.0832, 502.0811; found: 500.0831, 502.0813.

5-(4-bromophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)-6-(4-(trifluoromethyl)phenyl)

hexanenitrile (4h) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a yellow liquid (73.8 mg, 75% yield, dr = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 8.02 – 7.96 (m, 2H, two

isomers), 7.66 (d, J = 8.2 Hz, 2H, two isomers), 7.32 – 7.28 (m, 2H, two isomers), 7.19 (dd, J = 8.4, 1.7 Hz, 2H, two isomers), 4.53 (t, J = 7.2 Hz, 1H, two isomers), 2.96 – 2.82 (m, 1H, two isomers), 2.60 - 2.46 (m, 1H, two isomers), 2.40 - 2.25 (m, 2H, two isomers), 2.15 – 2.00 (m, 1H, two isomers), 1.79 – 1.68 (m, 1H, two isomers), 1.67 – 1.61 (m, 1H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 197.5 & 197.4 (two isomers), 138.75 & 138.74 (two isomers), 136.33 & 136.28 (two isomers), 134.71 $(q, {}^{2}J_{C-F} = 33.1 \text{ Hz}) \& 134.70 (q, {}^{2}J_{C-F} = 32.9 \text{ Hz})$ (two isomers), 134.1 (overlap, two isomers), 129.9 (overlap, two isomers), 129.5 & 129.4 (two isomers), 129.1 (overlap, two isomers), 125.9 (q, ${}^{3}J_{C-F} = 3.7 \text{ Hz}$) (overlap, two isomers), 125.12 (q, ${}^{1}J_{C-F} = 278.1$ Hz) & $125.09 (q, {}^{1}J_{C-F} = 278.0 \text{ Hz}) (\text{two isomers}), 123.5 (q, {}^{1}J_{C-F} = 273.8 \text{ Hz}) (\text{overlap},$ two isomers), 119.5 & 119.4 (two isomers), 52.8 (overlap, two isomers), 36.4 (q, ${}^{2}J_{C-}$ $_{\rm F}$ = 30.0 Hz) & 36.3 (q, $^2J_{\rm C-F}$ = 30.1 Hz) (two isomers), 30.8 & 30.6 (two isomers), 30.0 & 29.9 (two isomers), 25.7 (q, ${}^{3}J_{C-F}$ = 3.4 Hz) (overlap, two isomers). ${}^{19}F$ NMR (376 MHz, CDCl₃) δ -63.3 (overlap, two isomers), -64.89 (s, one isomer), -64.94 (s, one isomer). HRMS (ESI) calcd. for $C_{21}H_{16}BrF_6NO [M+Na]^+$: 514.0212; found: 514.0189. HRMS (ESI) calcd. for C₂₁H₁₇BrF₆NO [M+H]⁺: 494.0372; found: 494.0381.

5-(4-bromophenyl)-6-(4-nitrophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexanenitrile

(4i) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a ^CCF₃ yellow liquid (51.5 mg, 55%yield, dr = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 8.7 Hz, 2H, two isomers), 8.03

(dd, J = 8.9, 1.9 Hz, 2H, two isomers), 7.31 (d, J = 8.4 Hz, 2H, two isomers), 7.18 (dd, J = 8.4 Hz, 2H, two isomers), 7.18

J=8.4, 1.8 Hz, 2H, two isomers), 4.53 (t, J=7.1 Hz, 1H, two isomers), 2.97 – 2.83 (m, 1H, two isomers), 2.61 – 2.45 (m, 1H, two isomers), 2.43 – 2.25 (m, 2H, two isomers), 2.15 – 1.99 (m, 1H, two isomers), 1.80 – 1.69 (m, 1H, two isomers), 1.68 – 1.60 (m, 1H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 197.0 & 196.9 (two isomers), 150.4 (overlap, two isomers), 140.60 & 140.58 (two isomers), 135.92 & 135.86 (two isomers), 134.3 (overlap, two isomers), 130.0 (overlap, two isomers), 129.8 (overlap, two isomers), 129.50 & 129.46 (two isomers), 125.11 (q, ¹*J*_{C-F} = 277.4 Hz) & 125.09 (q, ¹*J*_{C-F} = 277.7 Hz) (two isomers), 124.0 (overlap, two isomers), 119.4 (overlap, two isomers), 53.2 (overlap, two isomers), 36.4 (q, ²*J*_{C-F} = 29.4 Hz) & 36.3 (q, ²*J*_{C-F} = 30.0 Hz) (two isomers), 30.7 & 30.6 (two isomers), 29.9 & 29.8 (two isomers), 25.7 (q, ³*J*_{C-F} = 2.7 Hz) (overlap, two isomers). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.8 (s, one isomer), -64.9 (s, one isomer). HRMS (ESI) calcd. for C₂₀H₁₇BrF₃N₂O₃ [M+Na]⁺: 491.0189; found: 491.0189. HRMS (ESI) calcd. for C₂₀H₁₇BrF₃N₂O₃ [M+H]⁺: 471.0349; found: 471.0352.

5-(4-bromophenyl)-6-(3-fluorophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexanenitrile

(4j) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a yellow liquid (65.3 mg, 74% yield, dr = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 7.8 Hz, 1H, two

isomers), 7.61 – 7.55 (m, 1H, two isomers), 7.45 (d, J = 8.4 Hz, 2H, two isomers), 7.41 – 7.33 (m, 1H, two isomers), 7.21 (td, J = 8.2, 2.5 Hz, 1H, two isomers), 7.14 (dd, J = 8.4, 1.7 Hz, 2H, two isomers), 4.48 (t, J = 7.2 Hz, 1H, two isomers), 2.93 – 2.82 (m, 1H, two isomers), 2.57 – 2.45 (m, 1H, two isomers), 2.39 – 2.24 (m, 2H, two isomers), 2.11 – 1.96 (m, 1H, two isomers), 1.77 – 1.67 (m, 1H, two isomers), 1.64 – 1.54 (m, 1H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 197.2 & 197.1 (two isomers), 162.9 (d, ¹*J*_{C-F} = 249.5 Hz) (overlap, two isomers), 138.21 & 138.19 (two isomers), 137.1 (d, ³*J*_{C-F} = 5.1 Hz) (overlap, two isomers), 132.7 (overlap, two isomers), 130.5 (d, ³*J*_{C-F} = 7.6 Hz) (overlap, two isomers), 129.80 & 129.76 (two isomers), 125.13 (q, ¹*J*_{C-F} = 278.6 Hz) & 125.11 (q, ¹*J*_{C-F} = 278.6 Hz) (two isomers), 120.6 (d, ²*J*_{C-F} = 21.6 Hz) (overlap, two isomers), 119.45 & 119.43 (two isomers), 115.5 (d, ²*J*_{C-F} = 30.0 Hz) & 36.3 (q, ²*J*_{C-F} =

30.0 Hz) (two isomers), 30.9 & 30.7 (two isomers), 30.1 & 29.9 (two isomers), 25.7 (q, ${}^{3}J_{C-F} = 2.8$ Hz) & 25.6 (q, ${}^{3}J_{C-F} = 2.9$ Hz) (two isomers). ${}^{19}F$ NMR (376 MHz, CDCl₃) δ -64.87 (s, one isomer), -64.93 (s, one isomer), -111.24 (s, one isomer), -111.23 (s, one isomer). HRMS (ESI) calcd. for C₂₀H₁₇BrF₄NO [M+H]⁺: 442.0425, 444.0404; found: 442.0426, 444.0411.

6-(3-bromophenyl)-5-(4-bromophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexanenitrile

(4k) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a yellow liquid (71.1 mg, 71% yield, dr =1:1). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (q, *J* = 1.6 Hz, 1H, two isomers),

7.82 - 7.77 (m, 1H, two isomers), 7.66 - 7.60 (m, 1H, two isomers), 7.48 - 7.43 (m, 2H, two isomers), 7.29 – 7.24 (m, 1H, two isomers), 7.13 (dt, J = 6.6, 1.8 Hz, 2H, two isomers), 4.47 (t, J = 7.2 Hz, 1H, two isomers), 2.93 – 2.82 (m, 1H, two isomers), 2.57 -2.45 (m, 1H, two isomers), 2.38 - 2.25 (m, 2H, two isomers), 2.11 - 1.95 (m, 1H, two isomers), 1.77 – 1.67 (m, 1H, two isomers), 1.62 – 1.55 (m, 1H, two isomers). ¹³C NMR (101 MHz, CDCl₃) & 197.03 & 196.96 (two isomers), 137.84 & 137.81 (two isomers), 137.03 & 136.97 (two isomers), 136.4 (overlap, two isomers), 132.7 (overlap, two isomers), 131.8 (overlap, two isomers), 130.4 (overlap, two isomers), 129.79 & 129.75 (two isomers), 127.3, 125.12 (q, ${}^{1}J_{C-F} = 278.6$ Hz) & 125.09 (q, ${}^{1}J_{C-F}$ = 278.2 Hz) (two isomers), 123.2 (overlap, two isomers), 122.0 (overlap, two isomers), 119.4 (overlap, two isomers), 52.60 & 52.57 (two isomers), 36.4 (q, ${}^{2}J_{C-F}$ = 29.8 Hz) & 36.3 (q, ${}^{2}J_{C-F}$ = 30.2 Hz) (two isomers), 30.9 & 30.6 (two isomers), 30.1 & 29.9 (two isomers), 25.8 (q, ${}^{3}J_{C-F} = 3.1$ Hz) & 25.7 (q, ${}^{3}J_{C-F} = 2.9$ Hz) (two isomers). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.85 (s, one isomer), -64.91 (s, one isomer). HRMS (ESI) calcd. for C₂₀H₁₇Br₂F₃NO [M+H]⁺: 503.9604, 501.9624; found: 503.9601, 501.9622.

5-(4-bromophenyl)-6-oxo-6-(m-tolyl)-2-(2,2,2-trifluoroethyl)hexanenitrile (41) The

title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a yellow liquid (64.7 mg, 74%yield, dr =1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.45 (dd, J = 11.4, 8.2 Hz, 4H, two isomers),

7.30 (t, J = 7.9 Hz, 1H, two isomers), 7.16 (dd, J = 8.3, 1.7 Hz, 2H, two isomers), 7.05

(dd, J = 8.2, 2.2 Hz, 1H, two isomers), 4.52 (t, J = 7.2 Hz, 1H, two isomers), 3.81 (s, 3H, two isomers), 2.92 – 2.82 (m, 1H, two isomers), 2.58 – 2.45 (m, 1H, two isomers), 2.40 – 2.25 (m, 2H, two isomers), 2.10 – 1.96 (m, 1H, two isomers), 1.78 – 1.68 (m, 1H, two isomers), 1.63 – 1.56 (m, 1H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 198.2 & 198.1 (two isomers), 160.0 (overlap, two isomers), 137.64 & 137.59 (two isomers), 137.48 & 137.46 (two isomers), 132.6 (overlap, two isomers), 129.81 & 129.78 (two isomers), 125.15 (q, ¹*J*_{C-F} = 278.2 Hz) & 125.12 (q, ¹*J*_{C-F} = 278.3 Hz) (two isomers), 121.8 (overlap, two isomers), 121.3 (overlap, two isomers), 119.9 (overlap, two isomers), 119.49 & 119.46 (two isomers), 113.33 & 113.30 (two isomers), 55.5 (overlap, two isomers), 52.52 & 52.47 (two isomers), 36.4 (q, ²*J*_{C-F} = 30.1 Hz) & 36.3 (q, ²*J*_{C-F} = 30.1 Hz) (two isomers), 31.0 & 30.8 (two isomers), 30.2 & 30.0 (two isomers), 25.8 (q, ³*J*_{C-F} = 2.9 Hz) & 25.6 (q, ³*J*_{C-F} = 2.8 Hz) (two isomers). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.89 (s, one isomer), -64.95 (s, one isomer). HRMS (ESI) calcd. for C₂₁H₂₀BrF₃NO [M+H]⁺: 438.0675, 440.0655; found: 438.0700, 440.0630.

5-(4-bromophenyl)-6-(3-methoxyphenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexane

nitrile (4m) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a yellow liquid (52.2 mg, 61%yield, dr =1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.67 (m, 2H, two isomers), 7.43

(d, J = 8.4 Hz, 2H, two isomers), 7.31 (dd, J = 16.1, 7.5 Hz, 2H, two isomers), 7.16 (dd, J = 8.5, 2.0 Hz, 2H, two isomers), 4.54 (t, J = 7.2 Hz, 1H, two isomers), 2.93 – 2.82 (m, 1H, two isomers), 2.57 – 2.46 (m, 1H, two isomers), 2.36 (s, 3H, two isomers), 2.34 – 2.21 (m, 2H, two isomers), 2.09 – 1.97 (m, 1H, two isomers), 1.75 – 1.69 (m, 1H, two isomers), 1.65 – 1.58 (m, 1H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 198.6 & 198.5 (two isomers), 138.8 (overlap, two isomers), 137.71 & 137.66 (two isomers), 136.19 & 136.17 (two isomers), 134.4 (overlap, two isomers), 132.5 (overlap, two isomers), 129.84 & 129.80 (two isomers), 129.3 (overlap, two isomers), 128.7 (overlap, two isomers), 126.0 (overlap, two isomers), 125.15 (q, ¹ $_{JC-F} = 278.5$ Hz) & 125.12 (q, ¹ $_{JC-F} = 278.3$ Hz) (two isomers), 121.7 (overlap, two isomers), 119.51 & 119.47 (two isomers), 52.4 & 52.3 (two isomers), 36.4 (q, ² $_{JC-F} = 30.1$ Hz) & 36.3 (q, ² $_{JC-F} = 29.9$ Hz) (two isomers), 31.0 & 30.7 (two isomers), 30.2 & 30.0 (two

isomers), 25.8 (q, ${}^{3}J_{C-F} = 2.9 \text{ Hz}$) & 25.6 (q, ${}^{3}J_{C-F} = 2.6 \text{ Hz}$) (two isomers), 21.5 (overlap, two isomers). 19 F NMR (376 MHz, CDCl₃) δ -64.87 (s, one isomer), -64.95 (s, one isomer). HRMS (ESI) calcd. for C₂₁H₂₀BrF₃NO₂ [M+H]⁺: 454.0625, 456.0604; found: 454.0617, 456.0615.

5-(4-bromophenyl)-6-(2-fluorophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexanenitrile

(4n) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a yellow liquid (57.3 mg, 65% yield, dr =1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (t, J = 7.0 Hz, 1H, two isomers),

7.43 (dd, J = 19.7, 7.0 Hz, 3H, two isomers), 7.20 - 7.02 (m, 4H, two isomers), 4.47 (t, J = 7.0 Hz, 1H, two isomers), 2.93 - 2.81 (m, 1H, two isomers), 2.58 - 2.46 (m, 1H, two isomers), 2.40 – 2.22 (m, 2H, two isomers), 2.07 – 1.92 (m, 1H, two isomers), 1.79 - 1.71 (m, 1H, two isomers), 1.63 - 1.52 (m, 1H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 197.5 & 197.4 (two isomers), 161.1 (d, ${}^{1}J_{C-F} = 254.6$ Hz) (overlap, two isomers), 136.6 (d, ${}^{3}J_{C-F} = 7.4$ Hz) (overlap, two isomers), 135.0 (d, ${}^{3}J_{C-F} = 9.2$ Hz) (overlap, two isomers), 132.3 (overlap, two isomers), 131.26 & 131.24 (two isomers), 131.25 & 131.22 (two isomers), 130.2 (overlap, two isomers), 125.14 (q, ${}^{1}J_{C-F} = 278.3$ Hz) & 125.12 (q, ${}^{1}J_{C-F} = 278.1$ Hz) (two isomers), 125.38 (d, ${}^{2}J_{C-F} = 12.7$ Hz) & 125.37 (d, ${}^{2}J_{C-F} = 12.8$ Hz) (two isomers), 124.8 (d, ${}^{4}J_{C-F} = 3.3$ Hz) (overlap, two isomers), 121.9 (overlap, two isomers), 119.45 & 119.44 (two isomers), 116.8 (d, ${}^{2}J_{C}$ - $_{\rm F}$ = 24.1 Hz) (overlap, two isomers), 56.4 (overlap, two isomers), 36.4 (q, $^2J_{\rm C-F}$ = 30.0 Hz) & 36.3 (q, ${}^{2}J_{C-F} = 30.0$ Hz) (two isomers), 30.6 & 30.4 (two isomers), 30.2 & 30.1 (two isomers), 25.7 (q, ${}^{3}J_{C-F} = 3.0 \text{ Hz}$) & 25.6 (q, ${}^{3}J_{C-F} = 3.1 \text{ Hz}$) (two isomers). 19 F NMR (376 MHz, CDCl₃) δ -64.9 (s, one isomer), -65.0 (s, one isomer), -109.6 (d, J = 25.2 Hz, two isomers). HRMS (ESI) calcd. for $C_{20}H_{17}BrF_4NO [M+H]^+$: 442.0425, 444.0404; found: 442.0420, 444.0410.

5-(4-bromophenyl)-6-(naphthalen-2-yl)-6-oxo-2-(2,2,2-trifluoroethyl)hexane

nitrile (40) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a yellow liquid (72.9 mg, 77%yield, dr =1:1). ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, *J* = 3.2 Hz, 1H, two isomers),

7.96 (dt, J = 8.5, 1.5 Hz, 1H, two isomers), 7.91 (d, J = 8.0 Hz, 1H, two isomers), 7.83

(dd, J = 8.4, 3.2 Hz, 2H, two isomers), 7.56 (dt, J = 21.4, 6.9 Hz, 2H, two isomers),7.44 (d, J = 8.4 Hz, 2H, two isomers), 7.23 (dd, J = 8.4, 1.7 Hz, 2H, two isomers), 4.71 (t, J = 7.2 Hz, 1H, two isomers), 2.97 - 2.84 (m, 1H, two isomers), 2.61 - 2.47 (m, 1H, two isomers)two isomers), 2.45 – 2.27 (m, 2H, two isomers), 2.18 – 2.00 (m, 1H, two isomers), 1.84 - 1.73 (m, 1H, two isomers), 1.71 - 1.64 (m, 1H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 198.35 & 198.27 (two isomers), 137.75 & 137.69 (two isomers), 135.7 (overlap, two isomers), 133.44 & 133.41 (two isomers), 132.6 (overlap, two isomers), 132.5 (overlap, two isomers), 130.68 & 130.67 (two isomers), 129.85 & 129.81 (two isomers), 129.8 (overlap, two isomers), 129.0 (overlap, two isomers), 128.8 (overlap, two isomers), 127.9 (overlap, two isomers), 127.1 (overlap, two isomers), 125.16 (q, ${}^{1}J_{C-F} = 278.3$ Hz) & 125.12 (q, ${}^{1}J_{C-F} = 278.3$ Hz) (two isomers), 124.3 (overlap, two isomers), 121.8 (overlap, two isomers), 119.54 & 119.51 (two isomers), 52.5 & 52.4 (two isomers), 36.5 (q, ${}^{2}J_{C-F} = 30.1 \text{ Hz}$) & 36.3 (q, ${}^{2}J_{C-F} = 29.9 \text{ Hz}$) (two isomers), 31.1 & 30.8 (two isomers), 30.3 & 30.1 (two isomers), 25.8 (q, ${}^{3}J_{C-F} =$ 2.9 Hz) & 25.7 (q, ${}^{3}J_{C-F} = 3.0$ Hz) (two isomers). ${}^{19}F$ NMR (376 MHz, CDCl₃) δ -64.86 (s, one isomer), -64.92 (s, one isomer). HRMS (ESI) calcd. for C₂₄H₂₀BrF₃NO [M+H]⁺: 474.0675, 476.0655; found: 474.0680, 476.0664.

5-(4-bromophenyl)-6-(furan-2-yl)-6-oxo-2-(2,2,2-trifluoroethyl)hexanenitrile (4p)

The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 15/1, v/v) as a yellow liquid (49.6 mg, 60%yield, dr =1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.57 – 7.52 (m, 1H, two isomers), 7.48 –

7.40 (m, 2H, two isomers), 7.20 (dd, J = 8.4, 1.8 Hz, 3H, two isomers), 6.50 (dd, J = 3.6, 1.7 Hz, 1H, two isomers), 4.36 (t, J = 7.4 Hz, 1H, two isomers), 2.94 – 2.79 (m, 1H, two isomers), 2.62 – 2.41 (m, 1H, two isomers), 2.38 – 2.20 (m, 2H, two isomers), 2.13 – 1.94 (m, 1H, two isomers), 1.79 – 1.67 (m, 1H, two isomers), 1.64 – 1.52 (dd, J = 13.1, 4.1 Hz, 1H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 187.32 & 187.30 (two isomers), 152.09 & 152.08 (two isomers), 146.95 & 146.94 (two isomers), 137.02 & 136.95 (two isomers), 132.3 (overlap, two isomers), 129.99 & 129.96 (two isomers), 125.13 (q, ${}^{1}J_{C-F} = 278.5$ Hz) & 125.09 (q, ${}^{1}J_{C-F} = 278.4$ Hz) (two isomers), 121.9 (overlap, two isomers), 119.44 & 119.41 (two isomers), 118.55 & 118.52 (two isomers), 112.8 (overlap, two isomers), 52.41 & 52.37 (two isomers),

36.4 (q, ${}^{2}J_{C-F}$ = 30.0 Hz) & 36.3 (q, ${}^{2}J_{C-F}$ = 30.1 Hz) (two isomers), 30.1 & 30.0 (two isomers), 29.9 & 29.7 (two isomers), 25.7 (q, ${}^{3}J_{C-F}$ = 3.0 Hz) & 25.6 (q, ${}^{3}J_{C-F}$ = 3.0 Hz) (two isomers). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.9 (s, one isomer), -65.0 (s, one isomer). HRMS (ESI) calcd. for C₁₈H₁₆BrF₃NO₂ [M+H]⁺: 414.0312, 412.0291; found: 414.0310, 416.0291.

5-(4-bromophenyl)-6-oxo-6-(thiophen-2-yl)-2-(2,2,2-trifluoroethyl)hexanenitrile

(4q) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a yellow liquid (47.2 mg, 55%yield, dr = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.65 (m, 1H, two

isomers), 7.64 – 7.58 (m, 1H, two isomers), 7.49 – 7.41 (m, 2H, two isomers), 7.24 – 7.16 (m, 2H, two isomers), 7.11 – 7.04 (m, 1H, two isomers), 4.36 (t, J = 7.3 Hz, 1H, two isomers), 2.87 (d, J = 7.6 Hz, 1H, two isomers), 2.57 – 2.44 (m, 1H, two isomers), 2.40 – 2.24 (m, 2H, two isomers), 2.12 – 1.96 (m, 1H, two isomers), 1.78 – 1.69 (m, 1H, two isomers), 1.65 – 1.59 (m, 1H, two isomers). ¹³C NMR (75 MHz, CDCl₃) δ 191.2 & 191.1 (two isomers), 143.24 & 143.21 (two isomers), 137.55 & 137.52 (two isomers), 134.68 & 134.65 (two isomers), 132.94 & 132.90 (two isomers), 132.5 (overlap, two isomers), 129.8 & 129.7 (two isomers), 128.5 (overlap, two isomers), 125.11 (q, ¹*J*_{C-F} = 275.6 Hz) & 125.08 (q, ¹*J*_{C-F} = 275.6 Hz) (two isomers), 121.9 (overlap, two isomers), 119.5 & 119.4 (two isomers), 53.85 & 53.79 (two isomers), 30.2 & 29.9 (two isomers), 25.7 (q, ³*J*_{C-F} = 2.9 Hz) & 25.6 (q, ³*J*_{C-F} = 3.0 Hz) (two isomers). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.9 (s, one isomer), -65.0 (s, one isomer). HRMS (ESI) calcd. for C₁₈H₁₆BrF₃NOS [M+H]⁺: 430.0083, 432.0063; found: 430.0082, 432.0065.

5-(4-bromophenyl)-6-oxo-6-(pyridin-3-yl)-2-(2,2,2-trifluoroethyl)hexanenitrile

(4r) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a yellow liquid (50.9 mg, 60% yield, dr =1:1). ¹H NMR (400 MHz, CDCl₃) δ 8.66 (d, J = 4.7 Hz, 1H, two isomers),

8.02 (d, J = 7.8 Hz, 1H, two isomers), 7.81 (t, J = 7.7 Hz, 1H, two isomers), 7.50 – 7.38 (m, 3H, two isomers), 7.28 (dd, J = 8.5, 2.2 Hz, 2H, two isomers), 5.40 (q, J = 7.4 Hz,

1H, two isomers), 3.01 - 2.86 (m, 1H, two isomers), 2.61 - 2.45 (m, 1H, two isomers), 2.44 - 2.23 (m, 2H, two isomers), 2.21 - 2.03 (m, 1H, two isomers), 1.84 - 1.71 (m, 1H, two isomers), 1.68 - 1.59 (m, 1H, two isomers). ¹³C NMR (75 MHz, CDCl₃) δ 200.0 & 199.9 (two isomers), 152.36 & 152.30 (two isomers), 149.0 (overlap, two isomers), 137.19 & 137.17 (two isomers), 137.0 (overlap, two isomers), 132.0(overlap, two isomers), 130.63 & 130.60 (two isomers), 127.57 & 127.56 (two isomers), 125.15 (q, ${}^{1}J_{C-F} = 275.7$ Hz) & 125.12 (q, ${}^{1}J_{C-F} = 275.6$ Hz) (two isomers), 122.97 & 122.95 (two isomers), 121.5 (overlap, two isomers), 119.5 (overlap, two isomers), 49.5 & 49.3 (two isomers), 36.4 (q, ${}^{2}J_{C-F} = 29.8$ Hz) & 36.3 (q, ${}^{2}J_{C-F} = 29.7$ Hz) (two isomers), 30.2 & 30.1 (two isomers), 29.74 & 29.69 (two isomers), 25.6(q, ${}^{3}J_{C-F} = 2.9$ Hz) & 25.5 (q, ${}^{3}J_{C-F} = 3.0$ Hz) (two isomers). ${}^{19}F$ NMR (376 MHz, CDCl₃) δ -64.9 (s, one isomer), -65.0 (s, one isomer). HRMS (ESI) calcd. for C₁₉H₁₇BrF₃N₂O [M+H]⁺: 425.0471, 427.0451; found: 425.0478, 427.0460.

6-(benzo[b]thiophen-2-yl)-5-(4-bromophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)

hexanenitrile (4s) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a colorless liquid (71.9 mg, 75% yield, dr = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 5.8 Hz,

1H, two isomers), 7.83 (t, J = 7.7 Hz, 2H, two isomers), 7.47 (dt, J = 6.7, 2.2 Hz, 2H, two isomers), 7.45 – 7.42 (m, 1H, two isomers), 7.38 (t, J = 7.5 Hz, 1H, two isomers), 7.24 (dd, J = 8.4, 1.8 Hz, 2H, two isomers), 4.49 (t, J = 7.3 Hz, 1H, two isomers), 2.95 – 2.86 (m, 1H, two isomers), 2.59 – 2.46 (m, 1H, two isomers), 2.43 – 2.24 (m, 2H, two isomers), 2.15 – 2.00 (m, 1H, two isomers), 1.81 – 1.73 (m, 1H, two isomers), 1.69 – 1.61 (m, 1H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 192.8 & 192.7 (two isomers), 142.7 (overlap, two isomers), 142.6 & 142.5 (two isomers), 139.0 (overlap, two isomers), 137.35 & 137.31 (two isomers), 132.6 (overlap, two isomers), 130.15 & 130.11 (two isomers), 125.3 (overlap, two isomers), 125.13 (q, ¹*J*_{C-F} = 278.4 Hz) & 125.09 (q, ¹*J*_{C-F} = 278.4 Hz) (two isomers), 123.0 (overlap, two isomers), 122.1 (overlap, two isomers), 119.5 & 119.4 (two isomers), 53.78 & 53.72 (two isomers), 30.9 & 30.5 (two

isomers), 30.2 & 29.9 (two isomers), 25.8 (q, ${}^{3}J_{C-F}$ = 3.0 Hz) & 25.6 (q, ${}^{3}J_{C-F}$ = 3.0 Hz) (two isomers). ${}^{19}F$ NMR (376 MHz, CDCl₃) δ -64.86 (s, one isomer), -64.91 (s, one isomer). HRMS (ESI) calcd. for C₂₂H₁₈BrF₃NOS [M+H]⁺: 480.0240, 482.0219; found: 480.0246, 482.0230.

6-(benzofuran-2-yl)-5-(4-bromophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexane

nitrile (4t) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a colorless liquid (48.2 mg, 52%yield, dr = 1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.67 (d, J = 7.9 Hz, 1H, two isomers),

7.54 (d, J = 8.4 Hz, 1H, two isomers), 7.50 (dd, J = 1.7, 0.8 Hz, 2H, two isomers), 7.48 -7.43 (m, 3H, two isomers), 7.33 - 7.28 (m, 1H, two isomers), 7.27 (d, J = 1.6 Hz, 1H, two isomers), 7.24 (d, J = 1.6 Hz, 1H, two isomers), 4.52 (t, J = 7.4 Hz, 1H, two isomers), 2.98 – 2.82 (m, 1H, two isomers), 2.65 – 2.45 (m, 1H, two isomers), 2.44 – 2.24 (m, 2H, two isomers), 2.20 – 1.97 (m, 1H, two isomers), 1.83 – 1.60 (m, 2H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 189.32 & 189.28 (two isomers), 155.8 (overlap, two isomers), 151.87 & 151.85 (two isomers), 136.8 & 136.7 (two isomers), 132.5 (overlap, two isomers), 130.1 & 130.0 (two isomers), 128.8 (overlap, two isomers), 127.0 (overlap, two isomers), 125.13 (q, ${}^{1}J_{C-F} = 279.3 \text{ Hz}) \& 125.09$ (q, ${}^{1}J_{C-F} = 278.2$ Hz) (two isomers), 124.3 (overlap, two isomers), 123.5 (overlap, two isomers), 122.1 (overlap, two isomers), 119.42 & 119.40 (two isomers), 52.9 & 52.8 (two isomers), 36.5 (q, ${}^{2}J_{C-F}$ = 30.0 Hz) & 36.3 (q, ${}^{2}J_{C-F}$ = 30.2 Hz) (two isomers), 30.1 & 30.0 (two isomers), 29.9 & 29.7 (two isomers), 25.7 (q, ${}^{3}J_{C-F} = 3.1 \text{ Hz}$) & 25.6 (q, ${}^{3}J_{C-F} = 3.0 \text{ Hz}$) (two isomers). ${}^{19}\text{F}$ NMR (376 MHz, CDCl₃) δ -64.86 (s, one isomer), -64.93 (s, one isomer). HRMS (ESI) calcd. for C₂₂H₁₈BrF₃NO₂ [M+H]⁺: 464.0468, 466.0448; found 464.0473, 466.0452.

(1R,2R,5S)-2-isopropyl-5-methylcyclohexyl-4-(2-(4bromophenyl)-5-cyano-7,7,7-

trifluoroheptanoyl)benzoate (4u) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a colorless liquid

(62.9 mg, 52%yield, dr = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.4 Hz, 2H, two isomers), 7.94 (d, *J* = 8.0 Hz, 2H, two isomers), 7.44 (dd, *J* = 8.5, 2.6 Hz, 2H, two

isomers), 7.13 (ddd, J = 8.3, 3.4, 1.5 Hz, 2H, two isomers), 4.92 (tdd, J = 10.8, 4.2, 2.2 Hz, 1H, two isomers), 4.53 (t, J = 7.1 Hz, 1H, two isomers), 2.95 – 2.81 (m, 1H, two isomers), 2.58 - 2.45 (m, 1H, two isomers), 2.43 - 2.26 (m, 2H, two isomers), 2.15 - 2.45 (m, 2 2.00 (m, 2H, two isomers), 1.95 – 1.87 (m, 1H, two isomers), 1.77 – 1.69 (m, 3H, two isomers), 1.68 – 1.45 (m, 4H, two isomers), 1.15 – 1.03 (m, 2H, two isomers), 0.90 (t, J = 6.8 Hz, 6H, two isomers), 0.76 (d, J = 6.9 Hz, 3H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 197.9 & 197.8 (two isomers), 165.1 (overlap, two isomers), 139.1 & 139.0 (two isomers), 137.1 & 137.0 (two isomers), 134.9 (overlap, two isomers), 132.7 (overlap, two isomers), 130.0 (overlap, two isomers), 129.84 & 129.80 (two isomers), 128.7 & 128.6 (two isomers), 125.12 (q, ${}^{1}J_{C-F} = 278.0 \text{ Hz}$) & 125.10 (q, ${}^{1}J_{C-F} = 278.1 \text{ Hz}$) (two isomers), 122.0 (overlap, two isomers), 119.5 & 119.4 (two isomers), 75.7 (overlap, two isomers), 52.88 & 52.82 (two isomers), 47.32 & 47.31 (two isomers), 41.0 (overlap, two isomers), 36.4 (q, ${}^{2}J_{C-F} = 30.0 \text{ Hz}$) & 36.3 (q, ${}^{2}J_{C-F}$ = 29.9 Hz) (two isomers), 34.3 (overlap, two isomers), 31.5 (overlap, two isomers), 30.8 & 30.6 (two isomers), 30.1 (overlap, two isomers), 29.9 (overlap, two isomers), 26.7 & 26.6 (two isomers), 25.7 (q, ${}^{3}J_{C-F} = 2.9 \text{ Hz}$) & 25.6 (q, ${}^{3}J_{C-F} = 2.8 \text{ Hz}$) (two isomers), 23.7 & 23.6 (two isomers), 22.1 (overlap, two isomers), 20.9 & 20.8 (two isomers), 16.6 & 16.5 (two isomers). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.87 (s, one isomer), -64.92 (s, one isomer). HRMS (ESI) calcd. for C₃₁H₃₆BrF₃NO₃ [M+H]⁺: 606.1826, 608.1805; found: 606.1823, 608.1818.

((3aS,5R,5aR,8aR,8bS)-2,2,7,7-tetramethyltetrahydro-5H-bis([1,3]dioxolo)[4,5b:4',5'-d]pyran-5-yl)methyl-4-(2-(4-bromophenyl)-5-cyano-7,7,7-

trifluoroheptanoyl)benzoate (4v) The title compound was obtained according to the

Br CF₃

general condition (eluent: petroleum ether / acetone = 15/1, v/v) as a colorless liquid (90.8 mg, 64%yield, dr = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.2 Hz, 2H, two isomers), 7.92 (dd, J = 8.5, 1.8 Hz, 2H, two isomers), 7.43 (d, J = 8.3 Hz, 2H, two

isomers), 7.12 (d, J = 8.1 Hz, 2H, two isomers), 5.54 (d, J = 5.0 Hz, 1H, two isomers), 4.64 (dd, J = 7.9, 2.4 Hz, 1H, two isomers), 4.54 – 4.48 (m, 2H, two isomers), 4.42 (dd, J = 11.6, 7.7 Hz, 1H, two isomers), 4.34 (dd, J = 5.0, 2.5 Hz, 1H, two isomers), 4.29 (dd, J = 7.9, 1.5 Hz, 1H, two isomers), 4.17 – 4.12 (m, 1H, two isomers), 2.94 – 2.81

(m, 1H, two isomers), 2.58 – 2.44 (m, 1H, two isomers), 2.42 – 2.24 (m, 2H, two isomers), 2.14 – 1.97 (m, 1H, two isomers), 1.77 – 1.69 (m, 1H, two isomers), 1.65 – 1.56 (m, 1H, two isomers), 1.48 (s, 3H, two isomers), 1.45 (s, 3H, two isomers), 1.34 (s, 3H, two isomers), 1.32 (s, 3H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 197.9 & 197.8 (two isomers), 165.4 (overlap, two isomers), 139.34 & 139.31 (two isomers), 137.01 & 136.96 (two isomers), 134.11 & 134.09 (two isomers), 132.7 (overlap, two isomers), 130.1 (overlap, two isomers), 129.83 & 129.79 (two isomers), 128.7 (overlap, two isomers), 125.11 (q, ${}^{1}J_{C-F} = 278.8 \text{ Hz}$) & 125.08 (q, ${}^{1}J_{C-F} = 278.2$ Hz) (two isomers), 122.0 (overlap, two isomers), 119.43 & 119.42 (two isomers), 109.9 (overlap, two isomers), 108.9 (overlap, two isomers), 96.4 (overlap, two isomers), 71.2 (overlap, two isomers), 70.8 (overlap, two isomers), 70.6 (overlap, two isomers), 66.2 (overlap, two isomers), 64.5 (overlap, two isomers), 52.9 & 52.8 (two isomers), 36.4 (q, ${}^{2}J_{C-F}$ = 30.2 Hz) & 36.3 (q, ${}^{2}J_{C-F}$ = 30.0 Hz) (two isomers), 30.8 & 30.5 (two isomers), 30.1 & 29.9 (two isomers), 26.11 (overlap, two isomers), 26.07 (overlap, two isomers), 25.74 (q, ${}^{3}J_{C-F} = 3.0 \text{ Hz}$) & 25.65 (q, ${}^{3}J_{C-F} = 2.9 \text{ Hz}$) (two isomers), 25.6 (overlap, two isomers), 25.0 (overlap, two isomers), 24.6 (overlap, two isomers). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.87 (s, one isomer), -64.92 (s, one isomer). HRMS (ESI) calcd. for C₃₃H₃₆BrF₃NO₈ [M+H]⁺: 710.1571, 712.1551; found: 710.1577, 712.1566. (3R,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-

tetradecahydro-1H-

cyclopenta[a]phenanthren-3-yl-4-(2-(4-

bromophenyl)-5-cyano-7,7,7-

trifluoroheptanoyl)benzoate (4w) The title compound was obtained according to the general condition (eluent: petroleum

ether / acetone = 20/1, v/v) as a white solid (81.9 mg, 49%yield, dr = 1:1, MP: 78-79°C). ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.3 Hz, 2H, two isomers), 7.92 (dd, *J* = 8.4, 1.5 Hz, 2H, two isomers), 7.44 (d, *J* = 8.4 Hz, 2H, two isomers), 7.13 (dd, *J* = 8.4, 1.7 Hz, 2H, two isomers), 5.41 (d, *J* = 4.0 Hz, 1H, two isomers), 4.89 – 4.80 (m, 1H, two isomers), 4.53 (t, *J* = 7.1 Hz, 1H, two isomers), 2.94 – 2.82 (m, 1H, two isomers), 2.59 – 2.47 (m, 1H, two isomers), 2.43 (d, *J* = 7.6 Hz, 2H, two isomers), 2.40 – 2.24 (m, 2H,

CF₃

ċΝ

two isomers), 2.22 - 2.00 (m, 2H, two isomers), 2.00 - 1.88 (m, 3H, two isomers), 1.88-1.64 (m, 4H, two isomers), 1.64 - 1.42 (m, 8H, two isomers), 1.40 - 1.32 (m, 3H, two isomers), 1.21 - 1.09 (m, 6H, two isomers), 1.05 (s, 3H, two isomers), 1.03 - 0.96 (m, 3H, two isomers), 0.92 (d, J = 6.5 Hz, 3H, two isomers), 0.86 (dd, J = 6.6, 1.6 Hz, 6H, two isomers), 0.68 (s, 3H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 197.9 & 197.9 (two isomers), 165.0 (overlap, two isomers), 139.5 (overlap, two isomers), 139.12 & 139.09 (two isomers), 137.10 & 137.05 (two isomers), 134.97 & 134.95 (two isomers), 132.7 (overlap, two isomers), 130.0 (overlap, two isomers), 129.85 & 129.81 (two isomers), 128.6 (overlap, two isomers), 125.12 (q, ${}^{1}J_{C-F} = 278.5$ Hz) & $125.10 (q, {}^{1}J_{C-F} = 278.6 \text{ Hz}) (two isomers), 123.2 (overlap, two isomers), 122.0 (overlap, 123.2 (overlap, 123.2)))$ two isomers), 119.45 & 119.43 (two isomers), 75.4 (overlap, two isomers), 56.8 (overlap, two isomers), 56.3 (overlap, two isomers), 52.92 & 52.88 (two isomers), 50.2 (overlap, two isomers), 42.5 (overlap, two isomers), 39.9 (overlap, two isomers), 39.7 (overlap, two isomers), 38.3 (overlap, two isomers), 37.1 (overlap, two isomers), 36.8 (overlap, two isomers), 36.4 (q, ${}^{2}J_{C-F} = 30.1 \text{ Hz}$) & 36.33 (q, ${}^{2}J_{C-F} = 30.2 \text{ Hz}$) (two isomers), 36.32 (overlap, two isomers), 35.9 (overlap, two isomers), 32.06 & 32.00 (two isomers), 30.8 & 30.5 (two isomers), 30.1 & 30.0 (two isomers), 28.4 (overlap, two isomers), 28.2 (overlap, two isomers), 27.9 (overlap, two isomers), 25.8 (q, ${}^{3}J_{C-F} = 2.9 \text{ Hz}$) & 25.7 (q, ${}^{3}J_{C-F} = 3.1 \text{ Hz}$) (two isomers), 24.4 (overlap, two isomers), 24.0 (overlap, two isomers), 23.0 (overlap, two isomers), 22.7 (overlap, two isomers), 21.2 (overlap, two isomers), 19.5 (overlap, two isomers), 18.9 (overlap, two isomers), 12.0 (overlap, two isomers). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.87 (s, one isomer), -64.92 (s, one isomer). HRMS (ESI) calcd. for C₄₈H₆₂BrF₃NO₃ [M+H]⁺: 836.3860, 838.3840; found: 836.3860, 838.3857.

6-(4-chlorophenyl)-5-(4-fluorophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexanenitrile

(4aa) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a colorless liquid (67.5 mg, 85%yield, dr =1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.81 (m, 2H, two isomers),

7.36 (d, J = 8.2 Hz, 2H, two isomers), 7.25 – 7.19 (m, 2H, two isomers), 7.00 (t, J = 8.5 Hz, 2H, two isomers), 4.50 (t, J = 7.1 Hz, 1H, two isomers), 2.93 – 2.81 (m, 1H, two isomers), 2.59 – 2.46 (m, 1H, two isomers), 2.39 – 2.24 (m, 2H, two isomers), 2.11 –

1.96 (m, 1H, two isomers), 1.79 - 1.68 (m, 1H, two isomers), 1.66 - 1.57 (m, 1H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 197.44 & 197.37 (two isomers), 162.3 (d, ¹*J*_{C-F} = 246.8 Hz) (overlap, two isomers), 140.0 (overlap, two isomers), 134.42 (d, ⁴*J*_{C-F} = 1.7 Hz) (overlap, two isomers), 134.04 & 134.01 (two isomers), 130.2 (overlap, two isomers), 129.7 (d, ³*J*_{C-F} = 3.9 Hz) & 129.6 (d, ³*J*_{C-F} = 3.8 Hz) (two isomers), 129.1 (overlap, two isomers), 125.17 (q, ¹*J*_{C-F} = 279.0 Hz) & 125.13 (q, ¹*J*_{C-F} = 278.2 Hz) (two isomers), 119.5 (overlap, two isomers), 116.5 (d, ²*J*_{C-F} = 21.6 Hz) (overlap, two isomers), 36.4 (q, ²*J*_{C-F} = 29.5 Hz) & 36.3 (q, ²*J*_{C-F} = 30.0 Hz) (two isomers), 31.0 & 30.8 (two isomers), 30.1 & 29.9 (two isomers), 25.73 (q, ³*J*_{C-F} = 1.6 Hz) & 25.68 (q, ³*J*_{C-F} = 1.7 Hz) (two isomers). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.89 (s, one isomer), -64.95 (s, one isomer), -114.2 (overlap, two isomers). HRMS (ESI) calcd. for C₂₀H₁₇ClF₄NO [M+H]⁺: 398.0929; found: 398.0954. **5,6-bis(4-chlorophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexanenitrile (4ab)** The title

compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a colorless liquid (62.8 mg, 76%yield, dr =1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.81 (m, 2H, two isomers), 7.36 (d, J = 7.9

Hz, 2H, two isomers), 7.32 - 7.27 (m, 2H, two isomers), 7.23 - 7.14 (m, 2H, two isomers), 4.49 (t, J = 6.9 Hz, 1H, two isomers), 2.94 - 2.81 (m, 1H, two isomers), 2.57 - 2.45 (m, 1H, two isomers), 2.40 - 2.25 (m, 2H, two isomers), 2.11 - 1.96 (m, 1H, two isomers), 1.78 - 1.68 (m, 1H, two isomers), 1.65 - 1.57 (m, 1H, two isomers). 13 C NMR (101 MHz, CDCl₃) δ 197.2 & 197.1 (two isomers), 140.0 (overlap, two isomers), 136.8 (overlap, two isomers), 134.3 (overlap, two isomers), 133.9 (overlap, two isomers), 129.7 (overlap, two isomers), 129.4 (overlap, two isomers), 129.2 (overlap, two isomers), 125.04 (q, $^{1}J_{C-F} = 261.0$ Hz) & 125.00 (q, $^{1}J_{C-F} = 259.3$ Hz) (two isomers), 119.5 (overlap, two isomers), 52.4 (overlap, two isomers), 36.4 (q, $^{2}J_{C-F} = 29.6$ Hz) & 36.3 (q, $^{2}J_{C-F} = 29.2$ Hz) (two isomers), 30.9 & 30.7 (two isomers), 30.1 & 29.9 (two isomers), 25.7 (q, $^{3}J_{C-F} = 1.7$ Hz) & 25.6 (q, $^{3}J_{C-F} = 1.9$ Hz) (two isomers). 19 F NMR (376 MHz, CDCl₃) δ -64.87 (s, one isomer), -64.93 (s, one isomer). HRMS (ESI) calcd. for C₂₀H₁₆Cl₂F₃NNaO [M+Na]⁺: 436.0453; found: 436.0448.

6-(4-chlorophenyl)-6-oxo-5-(p-tolyl)-2-(2,2,2-trifluoroethyl)hexanenitrile (4ac)

The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a colorless liquid (66.8 mg, 85%yield, dr = 1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.86 (dd, J = 8.7, 1.8 Hz, 2H, two

isomers), 7.34 (d, J = 8.4 Hz, 2H, two isomers), 7.12 (s, 4H, two isomers), 4.45 (t, J = 7.1 Hz, 1H, two isomers), 2.95 – 2.77 (m, 1H, two isomers), 2.59 – 2.36 (m, 2H, two isomers), 2.29 (s, 3H, two isomers), 2.24 – 1.92 (m, 2H, two isomers), 1.76 – 1.59 (m, 2H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 197.53 & 197.47 (two isomers), 139.54 & 139.52 (two isomers), 137.5 (overlap, two isomers), 135.12 & 135.07 (two isomers), 134.53 & 134.51 (two isomers), 130.2 (overlap, two isomers), 130.1 (overlap, two isomers), 128.9 (overlap, two isomers), 127.9 & 127.8 (two isomers), 125.07 (q, ${}^{1}J_{C-F} = 278.3$ Hz) & 125.04 (q, ${}^{1}J_{C-F} = 278.5$ Hz) (two isomers), 119.5 (overlap, two isomers), 52.8 (overlap, two isomers), 36.3 (q, ${}^{2}J_{C-F} = 30.1$ Hz) & 36.2 (q, ${}^{2}J_{C-F} = 30.0$ Hz) (two isomers), 30.8 & 30.5 (two isomers), 30.1 & 29.9 (two isomers), 25.6 (q, ${}^{3}J_{C-F} = 3.0$ Hz) (overlap, two isomers), 21.0 (overlap, two isomers). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.9 (s, one isomer), -65.0 (s, one isomer). HRMS (ESI) calcd. for C₂₁H₂₀ClF₃NO [M+H]+: 394.1180; found: 394.1184.

6-(4-chlorophenyl)-5-(4-methoxyphenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexane

nitrile (4ad) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone
 ^{CF3} = 20/1, v/v) as a colorless liquid (58.9 mg, 72%yield, dr = 1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.85 (dd, J = 8.6, 1.8

Hz, 2H, two isomers), 7.34 (d, J = 8.3 Hz, 2H, two isomers), 7.19 – 7.12 (m, 2H, two isomers), 6.89 – 6.81 (m, 2H, two isomers), 4.43 (t, J = 7.2 Hz, 1H, two isomers), 3.75 (s, 3H, two isomers), 2.95 – 2.77 (m, 1H, two isomers), 2.59 – 2.40 (m, 1H, two isomers), 2.39 – 2.18 (m, 2H, two isomers), 2.11 – 1.92 (m, 1H, two isomers), 1.77 – 1.67 (m, 1H, two isomers), 1.65 – 1.54 (m, 1H, two isomers). ¹³C NMR (75 MHz, CDCl₃) δ 197.7 & 197.6 (two isomers), 159.2 (overlap, two isomers), 139.6 (overlap, two isomers), 134.6 (overlap, two isomers), 130.3 (overlap, two isomers), 130.13 & 130.09 (two isomers), 129.2 & 129.1 (two isomers), 129.0 (overlap, two isomers), 125.16 (q, ¹*J*_{C-F} = 275.7 Hz) & 125.14 (q, ¹*J*_{C-F} = 275.5 Hz) (two isomers), 119.6

(overlap, two isomers), 114.9 (overlap, two isomers), 55.4 (overlap, two isomers), 52.3 (overlap, two isomers), 36.7 (q, ${}^{2}J_{C-F} = 29.8 \text{ Hz}$) & 36.0 (q, ${}^{2}J_{C-F} = 29.5 \text{ Hz}$) (two isomers), 30.9 & 30.7 (two isomers), 30.1 & 30.0 (two isomers), 25.7 (q, ${}^{3}J_{C-F} = 3.2 \text{ Hz}$) (overlap, two isomers). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.9 (s, one isomer), -65.0 (s, one isomer). HRMS (ESI) calcd. for C₂₁H₂₀ClF₃NO₂ [M+H]⁺: 410.1129; found: 410.1110.

5-(4-(tert-butyl)phenyl)-6-(4-chlorophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexane

nitrile (4ae) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a colorless liquid (73.1 mg, 84%yield, dr = 1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.88 (dd, J = 8.6, 1.7 Hz, 2H), 7.37 – 7.29 (m, 4H), 7.16 (dd, J = 8.3, 1.7 Hz, 2H), 4.47 (t,

J = 7.1 Hz, 1H), 2.91 - 2.79 (m, 1H), 2.57 - 2.43 (m, 1H), 2.38 - 2.23 (m, 2H), 2.08 - 1.95 (m, 1H), 1.80 - 1.71 (m, 1H), 1.66 - 1.59 (m, 1H), 1.27 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 197.7 & 197.6 (two isomers), 150.8 (overlap, two isomers), 139.7 (overlap, two isomers), 135.1 & 135.0 (two isomers), 134.69 & 134.67 (two isomers), 130.3 (overlap, two isomers), 129.0 (overlap, two isomers), 127.7 & 127.6 (two isomers), 126.4 (overlap, two isomers), 125.18 (q, $^{1}J_{C-F} = 278.3$ Hz) & 125.15 (q, $^{1}J_{C-F} = 278.6$ Hz) (two isomers), 119.6 (overlap, two isomers), 52.73 & 52.71 (two isomers), 36.4 (q, $^{2}J_{C-F} = 30.8$ Hz) & 36.3 (q, $^{2}J_{C-F} = 30.0$ Hz) (two isomers), 31.4 (overlap, two isomers), 31.0 & 30.7 (two isomers), 30.3 & 30.1 (two isomers), 25.7 (q, $^{3}J_{C-F} = 3.0$ Hz) & 25.6 (q, $^{3}J_{C-F} = 3.0$ Hz) (two isomers). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.9 (s, one isomer), -65.0 (s, one isomer). HRMS (ESI) calcd. for C₂₄H₂₆ClF₃NO [M+H]⁺: 436.1650; found: 436.1653.

6-(4-chlorophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)-5-(3-(trifluoromethyl)phenyl)

hexanenitrile (4af) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a colorless liquid (48.8 mg, 65%yield, dr = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (dd, J = 8.7,

2.5 Hz, 2H, two isomers), 7.55 - 7.44 (m, 4H, two isomers), 7.39 (d, J = 8.0 Hz, 2H, two isomers), 4.59 (t, J = 7.1 Hz, 1H, two isomers), 2.95 - 2.83 (m, 1H, two isomers), 2.59 - 2.46 (m, 1H, two isomers), 2.44 - 2.24 (m, 2H, two isomers), 2.13 - 1.97 (m,

1H, two isomers), 1.81 - 1.70 (m, 1H, two isomers), 1.67 - 1.62 (m, 1H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 197.0 & 196.9 (two isomers), 140.3 & 140.3 (two isomers), 139.31 & 139.28 (two isomers), 134.3 & 134.2 (two isomers), 131.4 (q, ²*J*_{C-F} = 32.8 Hz) (overlap, two isomers), 130.20 & 130.19 (two isomers), 130.1 (overlap, two isomers), 129.3 (overlap, two isomers), 125.11 (q, ¹*J*_{C-F} = 278.4 Hz) & 125.08 (q, ¹*J*_{C-F} = 278.2 Hz) (two isomers), 124.8 (q, ³*J*_{C-F} = 3.6 Hz) (overlap, two isomers), 123.9 (q, ¹*J*_{C-F} = 273.6 Hz) (overlap, two isomers), 119.44 & 119.39 (two isomers), 52.7 (overlap, two isomers), 36.4 (q, ²*J*_{C-F} = 30.2 Hz) & 36.3 (q, ²*J*_{C-F} = 30.1 Hz) (two isomers), 31.2 & 30.9 (two isomers), 30.2 & 30.0 (two isomers), 25.8 (q, ³*J*_{C-F} = 2.9 Hz) & 25.7 (q, ³*J*_{C-F} = 3.1 Hz) (two isomers). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.63 (s, one isomer), -62.64 (s, one isomer), -64.9 (s, one isomer), -65.0 (s, one isomer). HRMS (ESI) calcd. for C₂₁H₁₆ClF₆NNaO [M+Na]⁺: 470.0717; found: 470.0709.

5-(3-chlorophenyl)-6-(4-chlorophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexanenitrile

(4ag) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a colorless liquid (62.8 mg, 73%yield, dr =1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.85 (dd, *J* = 8.5, 1.7 Hz, 2H, two

isomers), 7.38 (d, J = 8.4 Hz, 2H, two isomers), 7.27 – 7.22 (m, 3H, two isomers), 7.14 (d, J = 6.9 Hz, 1H, two isomers), 4.48 (t, J = 7.2 Hz, 1H, two isomers), 2.95 – 2.82 (m, 1H, two isomers), 2.58 – 2.44 (m, 1H, two isomers), 2.41 – 2.23 (m, 2H, two isomers), 2.11 – 1.97 (m, 1H, two isomers), 1.79 – 1.69 (m, 1H, two isomers), 1.68 – 1.61 (m, 1H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 196.9 & 196.9 (two isomers), 140.3 & 140.23 (two isomers), 140.15 & 140.1 (two isomers), 135.4 (overlap, two isomers), 134.34 & 134.31 (two isomers), 130.8 (overlap, two isomers), 130.2 (overlap, two isomers), 129.20 (overlap, two isomers), 128.15 (overlap, two isomers), 128.2 (overlap, two isomers), 126.3 & 126.2 (two isomers), 125.13 (q, ¹ $_{C-F} = 278.4$ Hz) & 125.10 (q, ¹ $_{JC-F} = 278.4$ Hz) (two isomers), 119.5 & 119.4 (two isomers), 52.72 & 52.70 (two isomers), 36.4 (q, ² $_{JC-F} = 30.1$ Hz) & 36.3 (q, ² $_{JC-F} = 30.1$ Hz) (two isomers), 31.0 & 30.8 (two isomers), 30.2 & 30.0 (two isomers), 25.8 (q, ³ $_{JC-F} = 2.9$ Hz) & 25.7 (q, ³ $_{JC-F} = 2.9$ Hz) (two isomers). ¹⁹F NMR (376 MHz, CDCl₃) δ -

64.89 (s, one isomer), -64.95 (s, one isomer). HRMS (ESI) calcd. for C₂₀H₁₆Cl₂F₃NNaO [M+Na]⁺: 436.0453; found: 436.0448.

6-(4-chlorophenyl)-6-oxo-5-(m-tolyl)-2-(2,2,2-trifluoroethyl)hexanenitrile (4ah)

The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a colorless liquid (55.8 mg, 71%yield, dr = 1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.87 (dd, J = 8.6, 1.7 Hz, 2H, two

isomers), 7.35 (d, J = 8.4 Hz, 2H, two isomers), 7.20 (t, J = 7.8 Hz, 1H, two isomers), 7.05 (d, J = 8.0 Hz, 3H, two isomers), 4.44 (t, J = 7.0 Hz, 1H, two isomers), 2.93 – 2.78 (m, 1H, two isomers), 2.58 – 2.44 (m, 1H, two isomers), 2.42 – 2.32 (m, 1H, two isomers), 2.31 (s, 3H, two isomers), 2.30 – 2.19 (m, 1H, two isomers), 2.12 – 1.98 (m, 1H, two isomers), 1.81 – 1.69 (m, 1H, two isomers), 1.65 – 1.57 (m, 1H, two isomers). 13 C NMR (101 MHz, CDCl₃) δ 197.5 & 197.4 (two isomers), 139.60 & 139.58 (two isomers), 139.2 (overlap, two isomers), 138.12 & 138.06 (two isomers), 134.54 & 134.52 (two isomers), 130.2 (overlap, two isomers), 129.3 (overlap, two isomers), 128.9 (overlap, two isomers), 128.5 (overlap, two isomers), 128.43 & 128.42 (two isomers), 125.15 & 125.09 (two isomers), 125.07 (q, ${}^{1}J_{C-F} = 278.2 \text{ Hz})$ & 125.04 (q, ${}^{1}J_{C-F} = 278.3 \text{ Hz}$ (two isomers), 119.50 & 119.47 (two isomers), 53.15 & 53.11 (two isomers), 36.3 (q, ${}^{2}J_{C-F} = 30.0 \text{ Hz}$) & 36.2 (q, ${}^{2}J_{C-F} = 30.0 \text{ Hz}$) (two isomers), 30.9 & 30.6 (two isomers), 30.1 & 30.0 (two isomers), 25.6 (q, ${}^{3}J_{C-F} = 3.0 \text{ Hz}$) & 25.5 (q, ${}^{3}J_{C-F}$ = 3.0 Hz) (two isomers), 21.4 (overlap, two isomers). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.9 (s, one isomer), -65.0 (s, one isomer). HRMS (ESI) calcd. for C₂₁H₂₀ClF₃NO [M+H]⁺: 394.1180; found: 394.1184.

6-(4-chlorophenyl)-5-(3-methoxyphenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexane

nitrile (4ai) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = CF₃ 20/1, v/v) as a colorless liquid (52.8 mg, 65%yield, dr =1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.83 (m, 2H),

7.35 (d, J = 8.4 Hz, 2H), 7.23 (t, J = 8.0 Hz, 1H), 6.85 – 6.73 (m, 3H), 4.44 (t, J = 7.1 Hz, 1H), 3.77 (s, 3H), 2.95 – 2.78 (m, 1H), 2.59 – 2.43 (m, 1H), 2.37 – 2.23 (m, 2H), 2.16 – 1.97 (m, 1H), 1.79 – 1.69 (m, 1H), 1.68 – 1.61 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 197.4 & 197.3 (two isomers), 160.4 (overlap, two isomers), 139.80 &

139.78 (two isomers), 139.7 (overlap, two isomers), 134.61 & 134.59 (two isomers), 130.6 (overlap, two isomers), 130.3 (overlap, two isomers), 129.1 (overlap, two isomers), 125.17 (q, ${}^{1}J_{C-F} = 278.5 \text{ Hz}$) & 125.15 (q, ${}^{1}J_{C-F} = 278.2 \text{ Hz}$) (two isomers), 120.50 & 120.46 (two isomers), 119.6 (overlap, two isomers), 113.92 & 113.88 (two isomers), 112.9 (overlap, two isomers), 55.4 (overlap, two isomers), 53.30 & 53.28 (two isomers), 36.4 (q, ${}^{2}J_{C-F} = 30.1 \text{ Hz}$) & 36.3 (q, ${}^{2}J_{C-F} = 30.0 \text{ Hz}$) (two isomers), 30.8 & 30.6 (two isomers), 30.2 & 30.1 (two isomers), 25.8 (q, ${}^{3}J_{C-F} = 2.9 \text{ Hz}$) & 25.7 (q, ${}^{3}J_{C-F} = 3.0 \text{ Hz}$) (two isomers). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.93 (s, one isomer), -64.98 (s, one isomer). HRMS (ESI) calcd. for C₂₁H₂₀ClF₃NO₂ [M+H]⁺: 410.1129; found: 410.1110.

5-(2-chlorophenyl)-6-(4-chlorophenyl)-6-oxo-2-(2,2,2-trifluoroethyl)hexanenitrile

(4aj) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a CF₃ colorless liquid (63.6 mg, 77%yield, dr = 1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.85 (dd, J = 8.6, 1.8 Hz, 2H, two isomers), 7.44

(dd, J = 7.2, 2.1 Hz, 1H, two isomers), 7.36 (d, J = 8.5 Hz, 2H, two isomers), 7.23 – 7.13 (m, 2H, two isomers), 7.13 – 7.05 (m, 1H, two isomers), 5.02 (t, J = 6.9 Hz, 1H, two isomers), 2.97 – 2.83 (m, 1H, two isomers), 2.61 – 2.45 (m, 1H, two isomers), 2.41 – 2.21 (m, 2H, two isomers), 2.12 – 1.91 (m, 1H, two isomers), 1.89 – 1.77 (m, 1H, two isomers), 1.71 – 1.62 (m, 1H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 197.4 & 197.3 (two isomers), 140.04 & 140.03 (two isomers), 136.3 & 136.2 (two isomers), 134.2 (overlap, two isomers), 133.4 (overlap, two isomers), 130.42 & 130.41 (two isomers), 130.1 (overlap, two isomers), 129.22 & 129.19 (two isomers), 128.7 & 128.6 (two isomers), 128.09 & 128.07 (two isomers), 125.17 (q, ¹ $_{JC-F}$ = 278.4 Hz) & 48.7 (two isomers), 36.5 (q, ² $_{JC-F}$ = 30.3 Hz) & 36.3 (q, ² $_{JC-F}$ = 30.1 Hz) (two isomers), 30.4 & 30.1 (two isomers), 29.9 & 29.8 (two isomers), 25.8 (q, ³ $_{JC-F}$ = 3.0 Hz) & 25.7 (q, ³ $_{JC-F}$ = 2.9 Hz) (two isomers). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.9 (s, one isomer), -65.0 (s, one isomer). HRMS (ESI) calcd. for C₂₀H₁₆Cl₂F₃NNaO [M+Na]⁺: 436.0453; found: 436.0448.

6-(4-chlorophenyl)-6-oxo-5-(o-tolyl)-2-(2,2,2-trifluoroethyl)hexanenitrile (4ak)

The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a colorless liquid (68.4 mg, 87%yield, dr = 1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.72 (d, *J* = 7.9 Hz, 2H, two isomers), 7.35 – 7.30 (m, 2H, two isomers), 7.24 (d, *J* = 7.2 Hz, 1H, two

isomers), 7.17 – 7.05 (m, 2H, two isomers), 6.95 (dd, J = 8.2, 4.3 Hz, 1H, two isomers), 4.65 – 4.59 (m, 1H, two isomers), 2.92 – 2.83 (m, 1H, two isomers), 2.53 (s, 3H, two isomers), 2.51 – 2.40 (m, 1H, two isomers), 2.39 – 2.22 (m, 2H, two isomers), 2.05 – 1.87 (m, 1H, two isomers), 1.86 – 1.78 (m, 1H, two isomers), 1.70 – 1.59 (m, 1H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 198.3 & 198.2 (two isomers), 139.6 & 139.5 (two isomers), 137.14 (overlap, two isomers), 137.07 (overlap, two isomers), 134.83 & 134.78 (two isomers), 131.6 (overlap, two isomers), 129.93 & 129.92 (two isomers), 129.0 (overlap, two isomers), 127.7 (overlap, two isomers), 127.3 (overlap, two isomers), 127.2 & 127.1 (two isomers), 125.20 (q, ¹ $_{JC-F}$ = 278.2 Hz) & 125.15 (q, ¹ $_{JC-F}$ = 278.2 Hz) (two isomers), 119.6 & 119.5 (two isomers), 49.7 & 49.4 (two isomers), 36.4 (q, ² $_{JC-F}$ = 30.0 Hz) & 36.2 (q, ² $_{JC-F}$ = 30.0 Hz) (two isomers), 30.5 & 30.4 (two isomers), 30.1 & 29.9 (two isomers), 25.9 (q, ³ $_{JC-F}$ = 3.0 Hz) & 25.6 (q, ³ $_{JC-F}$ = 3.0 Hz) (two isomers), 19.87 & 19.85 (two isomers). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.86 (s, one isomer), -64.95 (s, one isomer). HRMS (ESI) calcd. for C₂₁H₂₀ClF₃NO [M+H]⁺: 394.1180; found: 394.1184.

Ethyl-2-(4-chlorobenzoyl)-5-cyano-7,7,7-trifluoroheptanoate (4al) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a yellow liquid (48.8 mg, 65%yield, dr =1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.92 (dd, J = 8.6, 1.7 Hz, 2H, two isomers), 7.51 –

7.40 (m, 2H, two isomers), 4.28 (t, J = 7.0 Hz, 1H, two isomers), 4.14 (q, J = 8.0 Hz, 2H, two isomers), 3.02 - 2.85 (m, 1H, two isomers), 2.63 - 2.48 (m, 1H, two isomers), 2.45 - 2.31 (m, 1H, two isomers), 2.29 - 2.10 (m, 2H, two isomers), 1.84 - 1.71 (m, 2H, two isomers), 1.16 (t, J = 7.1 Hz, 3H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 192.84 & 192.82 (two isomers), 169.02 & 168.96 (two isomers), 140.63 & 140.62 (two isomers), 134.23 & 134.19 (two isomers), 130.1 (overlap, two isomers),

129.3 (overlap, two isomers), 125.12 (q, ${}^{1}J_{C-F} = 278.2 \text{ Hz}$) & 125.11 (q, ${}^{1}J_{C-F} = 278.6$ Hz) (two isomers), 119.29 & 119.27 (two isomers), 62.1 (overlap, two isomers), 53.4 &, 53.3 (two isomers), 36.3 (q, ${}^{2}J_{C-F} = 30.1 \text{ Hz}$) & 36.2 (q, ${}^{2}J_{C-F} = 30.0 \text{ Hz}$) (two isomers), 29.8 & 29.7 (two isomers), 25.8 (overlap, two isomers), 25.6 (q, ${}^{3}J_{C-F} = 1.9$ Hz) (overlap, two isomers), 14.0 (overlap, two isomers). ¹⁹F NMR (376 MHz, CDCl₃) δ-64.89 (s, one isomer), -64.90 (s, one isomer). HRMS (ESI) calcd. for C₁₇H₁₈ClF₃NO₃ [M+H]⁺: 376.0922; found: 376.0927.

2-(4-chlorobenzoyl)-5-(2,2,2-trifluoroethyl)hexanedinitrile The title (4am) compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a yellow liquid (36.1 mg, 55%yield, dr =1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.97 – 7.90 (m, °CF₃ ĊΝ 2H, two isomers), 7.57 - 7.50 (m, 2H, two isomers), 4.37 (t, J =

7.7 Hz, 1H, two isomers), 3.05 – 2.94 (m, 1H, two isomers), 2.68 – 2.55 (m, 1H, two isomers), 2.47 - 2.28 (m, 2H, two isomers), 2.25 - 2.15 (m, 1H, two isomers), 2.06 -1.92 (m, 2H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 188.2 & 188.2 (two isomers), 141.9 (overlap, two isomers), 132.0 (overlap, two isomers), 130.3 (overlap, two isomers), 129.8 (overlap, two isomers), 125.0 (q, ${}^{1}J_{C-F} = 278.4$ Hz) (overlap, two isomers), 118.9 & 118.8 (two isomers), 116.3 & 116.2 (two isomers), 38.7 & 38.5 (two isomers), 36.5 (q, ${}^{2}J_{C-F} = 30.4 \text{ Hz}$) & 36.4 (q, ${}^{2}J_{C-F} = 30.2 \text{ Hz}$) (two isomers), 29.4 & 29.1 (two isomers), 26.3 & 26.1 (two isomers), 25.6 (q, ${}^{3}J_{C-F} = 3.1 \text{ Hz}$) & 25.4 (q, ${}^{3}J_{C-F} = 3.1$ Hz) (two isomers). ${}^{19}F$ NMR (376 MHz, CDCl₃) δ -64.78 (s, one isomer), -64.83 (s, one isomer). HRMS (ESI) calcd. for C₁₅H₁₃ClF₃N₂O [M+H]⁺: 329.0663; found: 329.0662.

2-(4-chlorobenzoyl)-2-phenethyl-5-(2,2,2-trifluoroethyl)hexanedinitrile (4an) The

O

NC

title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a yellow liquid (47.5 mg, 55% yield, dr = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 8.09 (dd, J = 8.6, 1.6 Hz, 2H, two isomers),

7.51 (d, J = 8.7 Hz, 2H, two isomers), 7.29 (t, J = 7.1 Hz, 2H, two isomers), 7.22 (t, J = 7.1 Hz, 1H, two isomers), 7.17 - 7.10 (m, 2H, two isomers), 3.00 - 2.89 (m, 1H, two isomers), 2.81 – 2.73 (m, 2H, two isomers), 2.61 – 2.47 (m, 2H, two isomers), 2.45 – 2.25 (m, 2H, two isomers), 2.23 – 2.16 (m, 1H, two isomers), 2.11 – 1.96 (m, 1H, two

isomers), 1.95 - 1.78 (m, 2H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 192.3 & 192.2 (two isomers), 141.18 & 141.16 (two isomers), 139.24 & 139.22 (two isomers), 132.7 (overlap, two isomers), 130.74 & 130.72 (two isomers), 129.4 (overlap, two isomers), 128.9 (overlap, two isomers), 128.5 (overlap, two isomers), 126.9 (overlap, two isomers), 124.96 (q, ${}^{1}J_{C-F}$ = 278.3 Hz) & 124.94 (q, ${}^{1}J_{C-F}$ = 278.1 Hz) (two isomers), 120.4 & 120.3 (two isomers), 118.8 & 118.7 (two isomers), 50.8 & 50.7 (two isomers), 39.51 & 39.49 (two isomers), 36.5 (q, ${}^{2}J_{C-F}$ = 30.3 Hz) & 36.4 (q, ${}^{2}J_{C-F}$ = 30.3 Hz) (two isomers), 33.53 & 33.52 (two isomers), 31.44 & 31.37 (two isomers), 28.1 & 27.9 (two isomers), 25.7 (q, ${}^{3}J_{C-F}$ = 2.9 Hz) & 25.6 (q, ${}^{3}J_{C-F}$ = 3.1 Hz) (two isomers). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.8 (s, one isomer), -64.9 (s, one isomer). HRMS (ESI) calcd. for C₂₃H₂₁ClF₃N₂O [M+H]⁺: 433.1289; found: 433.1295.

Ethyl-7-(4-bromophenyl)-8-(4-chlorophenyl)-4-cyano-2,2-difluoro-8-

oxooctanoate (4ao) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a yellow liquid (59.3 mg, 58%yield, dr =1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.83

(dd, J = 8.6, 2.1 Hz, 2H, two isomers), 7.44 (d, J = 8.3 Hz, 2H, two isomers), 7.36 (d, J = 8.3 Hz, 2H, two isomers), 7.13 (dd, J = 8.4, 1.6 Hz, 2H, two isomers), 4.47 (t, J = 7.2 Hz, 1H, two isomers), 4.38 – 4.30 (m, 2H, two isomers), 2.94 – 2.82 (m, 1H, two isomers), 2.58 – 2.44 (m, 1H, two isomers), 2.40 – 2.20 (m, 2H, two isomers), 2.08 – 1.95 (m, 1H, two isomers), 1.78 – 1.67 (m, 1H, two isomers), 1.67 – 1.61 (m, 1H, two isomers), 1.36 (td, J = 7.2, 2.3 Hz, 3H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 197.2 & 197.1 (two isomers), 163.1 (t, ² $J_{C-F} = 32.0$ Hz) (overlap, two isomers), 140.02 & 140.01 (two isomers), 137.35 & 137.29 (two isomers), 134.40 & 134.38 (two isomers), 132.6 (overlap, two isomers), 130.2 (overlap, two isomers), 129.81 & 129.78 (two isomers), 129.2 (overlap, two isomers), 121.9 (overlap, two isomers), 120.1 (overlap, two isomers), 30.9 & 30.7 (two isomers), 30.6 & 30.5 (two isomers), 25.09 (t, ³ $_{C-F} = 8.7$ Hz) & 25.05 (t, ³ $_{C-F} = 8.0$ Hz) (two isomers), 140.0 (overlap, two isomers), 19F NMR (376 MHz, CDCl₃) δ -104.0 (d, J = 36.5 Hz, one

isomer), -104.7 (d, J = 36.4 Hz, one isomer), -105.7 (d, J = 14.8 Hz, one isomer), -106.4 (d, J = 14.7 Hz, one isomer). HRMS (ESI) calcd. for C₂₃H₂₂BrClF₂NO₃ [M+H]⁺: 512.0435, 514.0414; found: 512.0444, 514.0421.

2-(2-bromo-2,2-difluoroethyl)-5-(4-bromophenyl)-6-(4-chlorophenyl)-6-

oxohexanenitrile (4ap) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a yellow liquid (67.2 mg, 65% yield, dr =1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.84 (dd, J = 8.7, 2.1

Hz, 2H, two isomers), 7.36 (d, J = 8.4 Hz, 2H, two isomers), 7.29 (d, J = 8.4 Hz, 2H, two isomers), 7.19 (dd, J = 8.5, 1.8 Hz, 2H, two isomers), 4.49 (t, J = 7.2 Hz, 1H, two isomers), 3.00 – 2.89 (m, 1H, two isomers), 2.87 – 2.73 (m, 1H, two isomers), 2.63 – 2.49 (m, 1H, two isomers), 2.40 - 2.25 (m, 1H, two isomers), 2.11 - 1.96 (m, 1H, two isomers), 1.77 – 1.68 (m, 1H, two isomers), 1.67 – 1.61 (m, 1H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 197.2 & 197.1 (two isomers), 140.03 & 140.02 (two isomers), 136.75 & 136.69 (two isomers), 134.4 & 134.3 (two isomers), 133.9 (overlap, two isomers), 130.2 (overlap, two isomers), 129.7 (overlap, two isomers), 129.43 & 129.40 (two isomers), 129.2 (overlap, two isomers), 119.70 (t, ${}^{1}J_{C-F} = 307.0$ Hz) & 119.67 (t, ${}^{1}J_{C-F}$ = 307.0 Hz) (two isomers), 119.59 & 119.57 (two isomers), 52.4 & 52.4 (two isomers), 46.2 (t, ${}^{2}J_{C-F} = 22.9 \text{ Hz}$) & 46.1 (t, ${}^{2}J_{C-F} = 22.9 \text{ Hz}$) (two isomers), 30.8 & 30.6 (two isomers), 30.2 & 30.0 (two isomers), 27.3 (t, ${}^{3}J_{C-F} = 2.7$ Hz) & 27.2 (t, ${}^{3}J_{C-F} = 2.6 \text{ Hz}$) (two isomers). ${}^{19}\text{F}$ NMR (376 MHz, CDCl₃) δ -43.9 (d, J = 13.2Hz, one isomer), -44.3 (d, J = 13.1 Hz, one isomer), -44.8 (d, J = 30.3 Hz, one isomer), -45.3 (d, J = 30.3 Hz, one isomer). HRMS (ESI) calcd. for C₂₀H₁₆Br₂ClF₂NNaO [M+Na]⁺: 541.9127,; found: 541.9141. HRMS (ESI) calcd. for C₂₀H₁₇Br₂ClF₂NO [M+H]⁺: 517.9328,; found: 517.9341.

2-(3-(4-bromophenyl)-4-(4-chlorophenyl)-4-oxobutyl)-4,4,5,5,6,6,7,7,8,8,9,9,9-

tridecafluorononanenitrile (4aq) The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a yellow liquid (59.4 mg, 42% yield, dr =1:1).

¹H NMR (400 MHz, CDCl₃) δ 7.86 (dd, J = 8.7, 2.4 Hz, 2H, two isomers), 7.48 (d, J = 8.3 Hz, 2H, two isomers), 7.40 (d, J = 8.5 Hz, 2H, two isomers), 7.16 (dd, J = 8.4, 2.0 Hz, 2H, two isomers), 4.50 (t, J = 7.2 Hz, 1H, two isomers), 3.06 – 2.95 (m, 1H, two

isomers), 2.62 - 2.50 (m, 1H, two isomers), 2.42 - 2.28 (m, 2H, two isomers), 2.14 - 2.04 (m, 1H, two isomers), 1.81 - 1.74 (m, 1H, two isomers), 1.70 - 1.65 (m, 1H, two isomers). ¹³C NMR (101 MHz, CDCl₃) δ 197.12 & 197.05 (two isomers), 140.15 & 140.12 (two isomers), 137.3 & 137.2 (two isomers), 134.34 & 134.32 (two isomers), 132.7 (overlap, two isomers), 130.2 (overlap, two isomers), 129.8 & 129.7 (two isomers), 129.2 (overlap, two isomers), 122.0 (overlap, two isomers), 119.67 & 119.66 (two isomers), 52.6 & 52.5 (two isomers), 37.7 (overlap, two isomers), 31.0 & 30.8 (two isomers), 30.7 & 30.6 (two isomers), 29.9 (overlap, two isomers). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.8 (t, *J* = 9.1 Hz, 3F), -113.3 - -113.6 (m, 2F), -121.7 - -121.9 (m, 2F), -122.7 - -123.0 (m, 2F), -123.3 - -123.6 (m, 2F), -126.1 - -126.2 (m, 2F). HRMS (ESI) calcd. for C₂₅H₁₆BrClF₁₃NO [M+Na]⁺: 729.9789, 731.9768; found: 729.9796, 731.9736.

5-(4-bromophenyl)-6-(4-chlorophenyl)-6-oxo-2-(2-tosylethyl)hexanenitrile (4ar)

The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a yellow liquid (78.0 mg, 70%yield, dr =1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.83 (d, J

= 8.5 Hz, 2H, two isomers), 7.76 (dd, J = 8.3, 1.7 Hz, 2H, two isomers), 7.42 (d, J = 8.3 Hz, 2H, two isomers), 7.36 (dd, J = 7.8, 5.4 Hz, 4H, two isomers), 7.11 (d, J = 8.4 Hz, 2H, two isomers), 4.45 (t, J = 7.2 Hz, 1H, two isomers), 3.27 - 3.12 (m, 2H, two isomers), 2.88 - 2.73 (m, 1H, two isomers), 2.45 (s, 3H, two isomers), 2.37 - 2.17 (m, 1H, two isomers), 2.11 - 1.97 (m, 2H, two isomers), 1.96 - 1.84 (m, 1H, two isomers), 1.65 - 1.45 (m, 2H, two isomers). 13 C NMR (101 MHz, CDCl₃) δ 197.21 & 197.18 (two isomers), 145.4 (overlap, two isomers), 140.0 & 139.9 (two isomers), 137.4 (overlap, two isomers), 130.2 (overlap, two isomers), 132.6 (overlap, two isomers), 130.3 (overlap, two isomers), 130.2 (overlap, two isomers), 129.81 & 129.77 (two isomers), 129.11 (overlap, two isomers), 128.08 & 128.07 (two isomers), 121.84 & 121.83 (two isomers), 120.47 & 120.46 (two isomers), 30.6 & 30.5 (two isomers), 30.1 & 29.8 (two isomers), 25.4 & 25.2 (two isomers), 21.8 (overlap, two isomers). 19 F NMR (376 MHz, CDCl₃) δ HRMS (ESI) calcd. for C₂₇H₂₆BrClFNO₃S [M+H]⁺: 558.0500, 560.0480; found: 558.0507, 560.0486.

4-(4-bromophenyl)-5-(4-chlorophenyl)-5-oxo-2-(2,2,2-trifluoroethyl)pentane

nitrile (6') The title compound was obtained according to the general condition (eluent: petroleum ether / acetone = 20/1, v/v) as a yellow liquid (62.0 mg, 70%yield, dr = 1:1). ¹H NMR (300 MHz, CDCl₃) δ 7.95 – 7.89 (m, 2H, one

isomers), 7.79 – 7.71 (m, 2H, one isomers), 7.55 – 7.47 (m, 4H, one isomers), 7.48 – 7.41 (m, 4H, one isomers), 7.21 - 7.17 (m, 2H, one isomers), 7.08 - 7.01 (m, 2H, one isomers), 4.11 - 4.00 (m, 1H, one isomers), 3.80 (t, J = 7.6 Hz, 1H, one isomers), 3.77-3.69 (m, 1H, one isomers), 3.60 (dd, J = 10.8, 5.4 Hz, 1H, one isomers), 2.85 -2.62(m, 2H, one isomers), 2.57 - 2.37 (m, 2H, one isomers), 2.36 - 2.20 (m, 2H, one isomers), 2.18 – 2.08 (m, 2H, one isomers). ¹³C NMR (101 MHz, CDCl₃) δ 198.9 & 197.9 (two isomers), 141.3 & 141.0 (two isomers), 133.8 (overlap, two isomers), 133.4 (overlap, two isomers), 133.0 (overlap, two isomers), 132.68 & 132.65 (two isomers), 130.1 & 129.9 (two isomers), 129.7 & 129.6 (two isomers), 129.2 & 128.9 (two isomers), 125.95 (q, ${}^{1}J_{C-F} = 278.4 \text{ Hz}$) & 125.88 (q, ${}^{1}J_{C-F} = 278.3 \text{ Hz}$) (two isomers), 123.1 & 122.9 (two isomers), 119.44 & 119.37 (two isomers), 38.5 & 37.2 (two isomers), 37.7 (q, ${}^{3}J_{C-F} = 2.0 \text{ Hz}$) & 37.3 (q, ${}^{3}J_{C-F} = 2.2 \text{ Hz}$) (two isomers), 36.9 (q, ${}^{2}J_{C-F} = 29.5$ Hz) & 35.7 (q, ${}^{2}J_{C-F} = 29.4$ Hz) (two isomers), 35.1 & 34.6 (two isomers). ¹⁹F NMR (282 MHz, CDCl₃) δ -64.0 (s, one isomer), -64.3 (s, one isomer). HRMS (ESI) calcd. for C₁₉H₁₅BrClF₃NO [M+H]⁺: 443.9973, 445.9952; found: 443.9962, 445.9945.

7. DFT calculations

Density functional theory (DFT) calculations have been performed to explore the detailed reaction mechanism and origin of the high regioselectivity for 1,4cyano migration in the process of trifunctionalization of hexenenitrile **3a** (Figure S1). The combination of NHC **A'** generated from precatalyst **A** under basic conditions with 4-chlorobenzaldehyde **2a** leads to enolate form of Breslow intermediate **Int-1**. The SET process between **Int-1** and CF₃I proceeds smoothly to give transient trifluoromethyl radical and persistent NHC-bound ketyl radical **S1**. Subsequent addition of trifluoromethyl radical to hexenenitrile **3a** generates intermediate **S2** through the transition state **TS1** ($\Delta G^{\ddagger} = 9.3$ kcal/mol).

Figure S1. Relative Gibbs free energy profiles of the reaction.

There are two possible pathways (path A & path B) for the radical-radical coupling of ketyl radical **S1** with the generated alkyl radical through addition of CF₃ radical. In path A, the direct radical-radical coupling of **S1** with **S2** gives intermediate **S3** through transition state **TS2** ($\Delta G^{\ddagger} = 46.6$ kcal/mol). The collapse of **S3** through transition state **TS3** gives birth to product **4a'** and **NHC A'** for the next catalytic cycle. In path B, the intramolecular radical addition of **S2** to the cyano group forms a five-member imine radical intermediate **S4** through transition state **TS4** ($\Delta G^{\ddagger} = 11.8$ kcal/mol). The following ring-opening of **S4** occurs to generate the cyano migrated benzylic radical intermediate **S5** through transition state **TS5** ($\Delta G^{\ddagger} = 12.4$ kcal/mol). The subsequent radical-radical coupling of **S5** with **S1** gives intermediate **S6** through transition state **TS6** (ΔG^{\ddagger}

= 15.5 kcal/mol). At the final step, the C-C bond cleavage leads to the dissociation of the final product **4a** along with NHC **A'**. It is obvious that benzylic radical **S5** generated by cyano migration is more stable than radical **S2** without cyano migration. Moreover, radical-radical coupling of **S1** with **S2** in path A requires much higher energy barrier than that in path B, thus disfavoring the direct radical-radical coupling and facilitating the cyano migration process. Therefore, high regioselectivity of this protocol can be rationalized by the above calculation results that path B associated with the 1,4-cyano migration process is much more energetically favorable than path A although the obtained migration product **4a** shows similar stability to product **4a'**.

All density functional theory (DFT) calculations were performed with the Gaussian 16 program package.⁷

Full geometry optimizations were operated to locate all of the stationary points, using (U)M06-2X density functional theory method⁸⁻⁹ with def2SVP ¹⁰basis for all atoms, and a polarized continuum model based on solute electron density (PCM)¹¹⁻¹² was employed to simulate the solvent effect of dichloroethane solvent in optimization. The spin-restricted DFT method was used for closed-shell species and the spinunrestricted DFT method for radical species and open-shell singlet species (TS2, TS6) with the "guess (mix, always)" keyword. In the meantime, the stability of the density function theory (DFT) wave-function of the auxiliary Kohn-Sham determinant was examined.¹³ Harmonic vibrational frequency calculations were conducted to characterize all stationary point. Herein, minima have zero imaginary frequencies, and transition states have only one imaginary vibrational frequency. Intrinsic reaction coordinate (IRC) calculations¹⁴⁻¹⁵ were implemented to track minimum energy paths connecting each transition state structure to two corresponding minima. The single point energy calculations of all stationary points were performed at the (U)M06-2X/def2TZVP,SDD level using the PCM-SMD model with dichloroethane as solvent. This theoretical level is denoted as PCM-SMD(dichloroethane)-(U)M06-2X/def2TZVP.

Unless mentioned otherwise, the Gibbs free energy of formation (Δ G) are obtained at the PCM-SMD (dichloroethane)-(U)M06-2X/def2TZVP level.

NHC-A 3a 4a **S1 S2** 4a' ø **S**3 **S4 S5** 2.365 0 C TS1 TS2 **S6** Q TS3 TS4 TS5 TS6 TS7 S35

Figure S2. DFT-optimized geometries of intermediates and transition states (Bond lengths are reported in angstroms (Å)).

References

1. M. S. Pearson, D. R. Carbery, J. Org. Chem. 2009, 74, 5320.

2. M. S. Liu, W. Shu, ACS Catal. 2020, 10, 12960.

3. L. Guo, W. Srimontree, C. Zhu, B. Maity, X. Liu, L. Cavallo, M. Rueping, *Nat. Commun.* 2019, *10*, 1957.

4. K. Guo, C. Gu, Y. Li, K. Chen, Y. Zhu, Adv. Synth. Catal. 2022, 364, 1388.

5. C. Chang, H. Zhang, X. Wu, C. Zhu, Chem. Commun. 2022, 58, 1005.

6. S. Cuadros, C. Rosso, G. Barison, G. Filippini, L. Dell' Amico, Org. Lett. 2022, 24, 2961.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2019.

- 8. Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
- 9. Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157.
- 10. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
- 11. M. Cossi, G. Scalmani, N. Rega, V. Barone, J. Chem. Phys. 2002, 117, 43.
- 12. A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B. 2009, 113, 6378.
- 13. R. Bauernschmitt, R. Ahlrichs, J. Chem. Phys. 1996, 104, 9047.
- 14. C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 1989, 90, 2154.
- 15. C. Gonzalez, H. B. Schlegel, J. Phys. Chem. 1990, 94, 5523.
8. Copies of NMR spectra

4a ¹H NMR (400 MHz, Chloroform-d)/¹³C {1H}NMR (101 MHz, Chloroform-d)

7.8473 7.8421 7.8255 7.8204 7.4551 7.4551 7.4352 7.3554 7.1351 7.1143 7.1143	4.4884 4.4705 4.4526	2.9299 2.8897 2.8897 2.8541 2.5541 2.5145 2.5145 2.5145 2.5145 2.3550 2.3350 2.3350 2.3350 2.3350 2.3350 2.3350 2.3350 2.33575 2.2075 2.1209 2.2075 2.1209 2.2075 2.1209 2.2075 2.1209 2.2075 2.1209 2.2075 2.1209 2.2075 2.1209 2.2075 2.1209 2.2075 2.1209 2.2075 2.1209 2.2075 2.1209 2.2075 2.1209 2.2075 2
	\searrow	

^{100 90} f1 (ppm) . 140 120 110

4a¹⁹F NMR (376 MHz, Chloroform-d)

C-H HMBC of 4a

4a'¹H NMR (300 MHz, Chloroform-d)/¹³C {1H}NMR (376 MHz, Chloroform-d)

4a¹⁹F NMR (376 MHz, Chloroform-*d*)

S41

4b¹⁹F NMR (376 MHz, Chloroform-d)

7.9523 7.94653 7.9300 7.9300 7.9300 7.9168 7.9168 7.4525 7.4518 7.4518 7.1518 7	4.4988 4.4808 4.4628	2.9310 2.8573 2.85673 2.85673 2.85673 2.85673 2.85670 2.85670 2.85670 2.85670 2.85670 2.85670 2.24990 2.24990 2.249070 2.2410716 2.2410717 2.24107
	\sim	

^{200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} fl (ppm)

4c¹⁹F NMR (376 MHz, Chloroform-*d*)

^{100 90} f1 (ppm)

4d¹⁹F NMR (376 MHz, Chloroform-d)

4e ¹H NMR (400 MHz, Chloroform-d)/¹³C {1H}NMR (101 MHz, Chloroform-d)

l.6518 l.6357 l.6170

130 120 110 100 90 fl (ppm) . 170 . 40

4e¹⁹F NMR (376 MHz, Chloroform-*d*)

4f¹⁹F NMR (376 MHz, Chloroform-*d*)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

4g¹⁹F NMR (376 MHz, Chloroform-d)

4h ¹H NMR (400 MHz, Chloroform-*d*)/¹³C {1H}NMR (101 MHz, Chloroform-*d*)

8,0073 7,0045 7,79871 7,79873 7,7983 7,73087 7,7307 7,	$ \underbrace{ \begin{array}{c} 4.5501 \\ 4.5322 \\ 4.5143 \end{array} } $	2.5610 2.25311 2.25311 2.25301 2.25303 2.25303 2.25303 2.25303 2.25303 2.25303 2.25303 2.25303 2.25303 2.25303 1.17756 1.17756 1.17756 1.17756 1.17756 1.17756 1.17756 1.17756 1.17756 1.17756 1.17756 1.17756 1.17756 1.17756 1.175566 1.175566 1.175566 1.175566 1.175566 1.175566 1.175566 1.175566 1.17556
---	--	--

4h ¹⁹F NMR (376 MHz, Chloroform-d)

4i ¹H NMR (400 MHz, Chloroform-*d*)/¹³C {1H}NMR (101 MHz, Chloroform-*d*)

8.2385 8.2169 8.0447 8.0398 8.0177 7.3211 7.3001 7.301 7.301 7.1885 7.179 7.1674 7.1674	4.5449 4.5271 4.5092	2.9180 2.8929 2.5688 2.57318 2.57318 2.53588 2.53585 2.53585 2.53585 2.35585 2.3585 2.3585 2.3585 2.3585 2.3585 2.3585 2.3585 2.3585 2.3585 2.3585 2.1044 2.2585 2.1044 1.7749 1.
	\checkmark	

4i¹⁹F NMR (376 MHz, Chloroform-d)

4j ¹H NMR (400 MHz, Chloroform-*d*)/ ¹³C {1H}NMR (101 MHz, Chloroform-*d*) ⁶⁶⁰⁹² ⁶⁶⁰⁹²² ⁶⁶⁰⁹² ⁶⁶⁰⁷² ⁶⁷⁰⁷² ⁶⁷⁰⁷²

4j¹⁹F NMR (376 MHz, Chloroform-*d*)

4k ¹⁹F NMR (376 MHz, Chloroform-d)

110 100 90 f1 (ppm) 80 70 60 50 40 30 20 10 0

200 190 180 170 160 150 140 130 120

4l¹⁹F NMR (376 MHz, Chloroform-*d*)

4m ¹H NMR (400 MHz, Chloroform-*d*)/¹³C {1H}NMR (101 MHz, Chloroform-*d*)

4m¹⁹F NMR (376 MHz, Chloroform-*d*)

4n ¹H NMR (400 MHz, Chloroform-*d*)/ ¹³C {1H}NMR (101 MHz, Chloroform-*d*) ¹³⁰ ¹

4n ¹⁹F NMR (376 MHz, Chloroform-*d*)

40¹⁹F NMR (376 MHz, Chloroform-d)

4p ¹H NMR (300 MHz, Chloroform-*d*)/¹³C {1H}NMR (101 MHz, Chloroform-*d*) ¹⁰⁹⁵² ¹⁰¹⁰⁰ ¹⁰

4p¹⁹F NMR (376 MHz, Chloroform-*d*)

4q¹⁹F NMR (376 MHz, Chloroform-*d*)

4r ¹H NMR (400 MHz, Chloroform-d)/¹³C {1H}NMR (75 MHz, Chloroform-d)

5.34298 5.3761 5.53766 5.53766 2.29764 2.29634 2.29188 2.29188 2.29188 2.24865 2.24268 1.27566 2.24268 2.24268 2.24268 2.24268 2.24268 2.24268 2.24268 2.24268 2.24268 2.24268 2.24268 2.24268 2.24268 2.25165 2.24268 2.22515 2.22515 2.22515 2.23021 2.22515 2.23021 2.22515 2.23021 2.22515 2.23021 2.23021 2.23021 2.23021 2.23021 2.23025 2.24268 2.23026 2.23006 2.23006 2.23006 2.23006 2.23006 2.23006 2.23006 2.23006

8.6698 8.6580 8.8580 8.80524 8.80524 7.8284 7.78992 7.78992 7.78992 7.74578 7.4678 7.4559 7.4559 7.4559 7.4559 7.4559 7.42678 7.26263 6.722684 6.722684 6.722684 7.226845 7.226844 7.226845 7.226845 7.226845 7.226845 7.226845 7.226845 7.226845 7.226845 7.226845 7.226845 7.226845 7.226845 7.226845 7.226845 7.226845 7.2268457 7.226845 7.226845 7.226845

4r¹⁹F NMR (376 MHz, Chloroform-*d*)

4s¹⁹F NMR (376 MHz, Chloroform-*d*)

S77

4t ¹⁹F NMR (376 MHz, Chloroform-*d*)

4u¹⁹F NMR (376 MHz, Chloroform-*d*)

4v¹⁹F NMR (376 MHz, Chloroform-*d*)

4w¹⁹F NMR (376 MHz, Chloroform-d)

4aa ¹H NMR (400 MHz, Chloroform-*d*)/¹³C {1H}NMR (101 MHz, Chloroform-*d*) ¹⁰⁰⁰ (1000 MHz, Chloroform-*d*)/¹³C {11}NMR (101 MHz, Chloroform-*d*) ¹⁰⁰⁰ (1000 MHz, Chloroform-*d*)/¹³C {1000 MH

4aa ¹⁹F NMR (376 MHz, Chloroform-d)

4ab ¹⁹F NMR (376 MHz, Chloroform-d)

7.8769 7.8709 7.8481 7.8420 7.3514 7.3514 7.3235 7.1184	4.4719 4.4482 2.94535 2.9095 2.9095 2.94539 2.9095 2.8741 2.5187 2.5187 2.5187 2.5187 2.5737 2.5187 2.5737 2.5737 2.5737 2.5737 2.5737 2.5737 2.5737 2.5737 2.5737 2.5737 2.5737 2.5737 2.5737 2.1177 1.7119 1.7719
\sim	

4ac ¹⁹F NMR (376 MHz, Chloroform-d)

4ad ¹H NMR (300 MHz, Chloroform-*d*)/ ¹³C {1H}NMR (75 MHz, Chloroform-*d*) ⁵¹⁸² ⁵¹⁸

4ad ¹⁹F NMR (376 MHz, Chloroform-d)

4ae ¹H NMR (300 MHz, Chloroform-*d*)/¹³C {1H}NMR (101 MHz, Chloroform-*d*)

4ae ¹⁹F NMR (376 MHz, Chloroform-d)

4af ¹H NMR (400 MHz, Chloroform-d)/¹³C {1H}NMR (101 MHz, Chloroform-d)

7.8714 7.8651 7.8651 7.8434 7.5231 7.5160 7.4655 7.4655 7.4655 7.4555 7.3750 7.3760	4.6111 4.5753 4.5754 2.9399 2.9161 2.8395 2.8860 2.8860 2.5860 2.5860 2.5801 2.5801 2.5801 2.5490 2.5400 2.5400 2.5400 2.5400 2.5400 2.5400 2.5400 2.5400 2.5400 2.5400 2.5400 2.5400 2.5400 2.5400 2.5400 2.5400 2.24000 2.24000 2.24000 2.24000 2.24000 2.24000 2.24000 2.24000 2.24000 2.24000 2.24000 2.24000 2.24000 2.24000 2.24000 2.24000 2.24000 2.240000000000	2.4669 2.4319 2.4319 2.4319 2.3378 2.3378 2.3378 2.3378 2.23996 2.29996 2.09996 1.9793 1.9793 1.9793 1.9793 1.7786
	<u> </u>	

4af ¹⁹F NMR (376 MHz, Chloroform-d)

4ag ¹H NMR 400 MHz, Chloroform-*d*)/ ¹³C {1H}NMR (101 MHz, Chloroform-*d*) ⁶⁸⁸² (2000) ⁶⁹⁸⁴ (2000)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

4ag ¹⁹F NMR (376 MHz, Chloroform-d)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm)

4ah ¹H NMR (300 MHz, Chloroform-*d*)/¹³C {1H}NMR (101 MHz, Chloroform-*d*)

7.28869 7.28526 7.28526 7.28526 7.735330 7.735330 7.735357 7.20595 7.20595 7.20595 7.20595 7.20595 7.20147 7.05555 7.20147 7.05555 7.20147 7.05555 7.20147 7.20171 7.2

4ah ¹⁹F NMR (376 MHz, Chloroform-d)

7.8771 7.8733 7.8560 7.8560 7.8518 7.2538 7.2538 7.2538 7.2538 7.2538 6.8347 6.8161 6.7998 6.7998 6.77998 6.77998	4.4583 4.4403 4.4226	3.7678 2.8924 2.8314 2.8313 2.8314 2.23148 2.23148 2.23148 2.23362 2.23243 1.9843 1.9843 1.9843 1.9843 1.9843 1.9843 1.9843 1.9843 1.9843 1.7573 1.9843 1.7573 1.9843 1.7574 1.75744 1.75744 1.75744 1.75744 1.75744 1.75744 1.75744 1.75744 1.7
	\searrow	

4ai ¹⁹F NMR (376 MHz, Chloroform-d)

4aj ¹⁹F NMR (376 MHz, Chloroform-d)

4ak ¹⁹F NMR (376 MHz, Chloroform-d)

4al ¹H NMR (400 MHz, Chloroform-*d*)/¹³C {1H}NMR (101 MHz, Chloroform-*d*)

4al ¹⁹F NMR (376 MHz, Chloroform-d)

130 120 110 100 90 fl (ppm) 150 140

4am¹⁹F NMR (376 MHz, Chloroform-d)

4an¹H NMR (400 MHz, Chloroform-*d*)/¹³C {1H}NMR (101 MHz, Chloroform-*d*)

8.100 8.096 8.079 8.075	7,516 (1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
\searrow	

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

4an¹⁹F NMR (376 MHz, Chloroform-d)

4ao¹⁹F NMR (376 MHz, Chloroform-d)

4ap¹H NMR (400 MHz, Chloroform-*d*)/¹³C {1H}NMR (101 MHz, Chloroform-*d*)

4ap¹⁹F NMR (376 MHz, Chloroform-*d*)

4aq¹H NMR (400 MHz, Chloroform-*d*)/¹³C {1H}NMR (101 MHz, Chloroform-*d*)

7.876 7.870 7.854 7.848 7.467 7.467 7.467 7.467 7.467 7.467 7.171 7.171 7.171 7.149	4.521 4.503 4.485 3.055 3.055 3.033 3.033 3.007 5.055 2.962 2.962 2.962 2.583 2.583 2.557 2.537 2.547 2.557 2.547 2.557 2.5477 2.547 2.547 2.547 2.547 2.547 2.547 2.547 2.547 2.547 2.547	2.390 2.390 2.355 2.323 2.119 2.119 2.119 2.119 2.013 2.013 2.013 1.202 1.7777 1.7777 1.7777 1.7777 1.7777 1.7777 1.7777 1.7777 1.7777 1.7777 1.7777 1.7777 1.7777 1.7777 1.77777 1.77777 1.77777 1.777777 1.77777777	1.650 1.697 1.670 1.660 1.650 1.650
	<u></u> n		

4aq¹⁹F NMR (376 MHz, Chloroform-d)

-80.7621 -80.7863 -80.8083	-113.3632	-113.4013	-113.4379	-113.4981	-113.5642	-121.7854	-122.8517	-123.3529	-123.3989	-123.4432	-123.5368	-123.5813	-126.1312	
< I /	L.,		_	- 1	ر	L.	1	1	_	_	_		_	

4ar¹H NMR (400 MHz, Chloroform-*d*)/¹³C {1H}NMR (101 MHz, Chloroform-*d*)

6'¹⁹F NMR (376 MHz, Chloroform-*d*)

9. The Cartesian coordinates of all the stationary points

NHC-A

С	2.2373	-0.7877	0.5793
С	1.1482	-0.4196	-0.1426
С	1.0306	-0.1731	-1.6202
С	3.6244	-1.0922	0.0884
С	2.3661	-0.1460	-2.3703
С	4.2940	0.0702	-0.6591
С	3.3993	0.7684	-1.6986
Н	2.7679	-1.1646	-2.4828
Н	3.5764	-1.9760	-0.5653
Н	5.1916	-0.3325	-1.1528
Н	0.3460	-0.9176	-2.0617
Н	4.2528	-1.3857	0.9408
Н	2.1583	0.2083	-3.3894
Н	4.6480	0.8157	0.0686
Н	4.0458	1.2270	-2.4605
Н	2.8595	1.6037	-1.2217
S	1.7702	-0.8928	2.2586
Ν	0.0212	-0.2485	0.6862
С	0.1341	-0.4527	2.0097
C	-1.2423	0.1528	0.1161
C	-2.1284	-0.8427	-0.3234
C	-1.5163	1.5246	-0.0025
C	-3.3492	-0.4271	-0.8658
C	-2.7489	1.8925	-0.5513
C	-3.6586	0.9262	-0.9740
Н	-4.0679	-1.1720	-1.2103
Н	-3.0010	2.9491	-0.6524

Н	-4.6158	1.2316	-1.3993
С	-0.5259	2.5681	0.4867
С	-0.8483	2.9553	1.9353
С	-0.4663	3.8017	-0.4150
Н	0.4748	2.1073	0.4827
Н	-0.8341	2.0688	2.5849
Н	-0.1145	3.6825	2.3132
Н	-1.8484	3.4126	1.9922
Н	-0.2882	3.5261	-1.4650
Н	-1.3979	4.3848	-0.3670
Н	0.3496	4.4625	-0.0893
С	-1.7952	-2.3168	-0.1665
С	-2.2834	-3.1667	-1.3400
С	-2.3536	-2.8375	1.1639
Н	-0.6985	-2.4086	-0.1237
Н	-1.9318	-2.7663	-2.3022
Н	-1.9086	-4.1949	-1.2370
Н	-3.3816	-3.2213	-1.3720
Н	-1.9543	-2.2550	2.0061
Н	-3.4515	-2.7544	1.1728
Н	-2.0867	-3.8950	1.3073
Н	0.5319	0.8015	-1.7574
S1			
С	1.0965	2.3842	0.4684
C	1.8242	1.2422	0.3751
C	3.3055	1.0752	0.5677
С	1.5626	3.7739	0.8007
С	4.1046	2.3795	0.6496
С	2.6188	4.3277	-0.1656
		5123	

С	3.7649	3.3524	-0.4866
Н	3.9629	2.8629	1.6280
Н	1.9577	3.7758	1.8277
Н	3.0268	5.2440	0.2878
Н	3.4808	0.4475	1.4572
Н	0.6958	4.4494	0.8157
Н	5.1675	2.1056	0.6032
Н	2.1309	4.6341	-1.1027
Н	4.6548	3.9378	-0.7582
Н	3.5102	2.7607	-1.3818
S	-0.6013	2.0672	0.1965
Ν	1.0503	0.1201	0.0752
С	-0.3000	0.3664	-0.0499
С	1.6264	-1.1996	0.0809
С	1.5282	-1.9675	1.2509
С	2.3044	-1.6462	-1.0654
С	2.1225	-3.2344	1.2466
С	2.8886	-2.9145	-1.0201
С	2.7962	-3.7047	0.1238
Н	2.0546	-3.8619	2.1376
Н	3.4159	-3.2957	-1.8964
Н	3.2540	-4.6950	0.1389
С	2.3436	-0.8184	-2.3389
С	1.2855	-1.3353	-3.3219
С	3.7297	-0.7858	-2.9854
Н	2.0734	0.2166	-2.0782
Н	0.2998	-1.3780	-2.8387
Н	1.2323	-0.6874	-4.2093
Н	1.5439	-2.3530	-3.6546
Н	4.5009	-0.4417	-2.2800
		5127	

Н	4.0262	-1.7789	-3.3542
Н	3.7255	-0.1035	-3.8476
С	0.7711	-1.4834	2.4758
С	1.6248	-1.5558	3.7447
С	-0.5321	-2.2763	2.6384
Н	0.5047	-0.4275	2.3190
Н	2.5572	-0.9835	3.6336
Н	1.0683	-1.1439	4.5991
Н	1.8898	-2.5949	3.9907
Н	-1.1196	-2.2638	1.7096
Н	-0.3124	-3.3272	2.8837
Н	-1.1408	-1.8579	3.4536
Н	3.6857	0.4868	-0.2828
С	-1.2753	-0.6091	-0.4244
0	-0.9582	-1.7424	-0.8373
С	-2.7317	-0.2502	-0.3491
С	-3.5781	-0.7943	-1.3254
С	-3.2960	0.5086	0.6844
С	-4.9471	-0.5541	-1.3027
Н	-3.1411	-1.4181	-2.1060
С	-4.6683	0.7499	0.7263
Н	-2.6703	0.8984	1.4890
С	-5.4810	0.2234	-0.2746
Н	-5.6037	-0.9656	-2.0693
Н	-5.1090	1.3318	1.5357
Cl	-7.1952	0.5251	-0.2329
2a			
С	-2.2974	-0.0857	0.0462
С	-1.6172	-0.7226	1.0823

S125

C	-0.2656	-0.4453	1.2752
С	0.4062	0.4575	0.4461
С	-0.2960	1.0828	-0.5876
С	-1.6486	0.8175	-0.7929
Н	-2.1372	-1.4242	1.7346
Н	0.2706	-0.9412	2.0873
Н	0.2117	1.7956	-1.2414
Н	-2.1930	1.3114	-1.5976
С	1.8967	0.6769	0.6412
Н	2.1389	0.5349	1.7063
С	2.7262	-0.3284	-0.1864
Н	2.3892	-1.3370	0.0958
Н	2.4808	-0.1942	-1.2522
С	4.2339	-0.2012	0.0355
Н	4.4663	-0.3361	1.1037
Н	4.5507	0.8194	-0.2400
С	5.0043	-1.1965	-0.7827
Н	4.8807	-1.1224	-1.8697
С	5.7935	-2.1457	-0.2807
Н	5.9379	-2.2497	0.7986
Н	6.3248	-2.8461	-0.9280
С	2.2838	2.0572	0.3091
Ν	2.5978	3.1297	0.0223
Br	-4.1379	-0.4491	-0.2224
4a'			
С	0.0636	0.4167	1.9423
0	-0.1117	0.4836	3.1388
С	0.0300	1.6638	1.1067
С	-0.4691	2.8255	1.7125
		5120	

С	0.4617	1.7207	-0.2251
С	-0.5544	4.0186	1.0066
Н	-0.7949	2.7737	2.7518
С	0.3874	2.9116	-0.9428
Н	0.8825	0.8434	-0.7152
С	-0.1250	4.0486	-0.3211
Н	-0.9486	4.9220	1.4714
Н	0.7257	2.9618	-1.9772
Cl	-0.2294	5.5331	-1.2147
С	0.2674	-0.9516	1.2846
С	1.6850	-1.0958	0.7512
С	-0.8423	-1.2672	0.2747
С	1.9670	-1.6198	-0.5141
С	2.7564	-0.7041	1.5653
Н	-0.7163	-0.6661	-0.6389
Н	-0.7499	-2.3226	-0.0259
С	-2.2343	-1.0308	0.8516
С	3.2824	-1.7465	-0.9625
Н	1.1618	-1.9363	-1.1778
С	4.0740	-0.8210	1.1329
Н	2.5595	-0.3009	2.5617
Н	-2.3608	0.0258	1.1410
Н	-2.3711	-1.6316	1.7636
С	-3.3604	-1.4005	-0.1282
С	4.3259	-1.3432	-0.1350
Н	3.4897	-2.1553	-1.9515
Н	4.8977	-0.5097	1.7753
Н	-3.2597	-2.4636	-0.4009
С	-4.7372	-1.1843	0.5102
С	-3.2080	-0.6253 \$127	-1.3723

Br	6.1150	-1.5067	-0.7382
Н	-4.9473	-0.1150	0.6500
Н	-4.7521	-1.6664	1.4969
C	-5.8663	-1.7834	-0.2868
Ν	-3.0407	0.0046	-2.3239
F	-5.9793	-1.2306	-1.4981
F	-7.0339	-1.6202	0.3357
F	-5.6926	-3.0969	-0.4723
Н	0.1635	-1.6520	2.1284
4a			
C	2.0965	-0.7068	-0.9873
0	1.6931	-0.9206	-2.1088
C	2.5289	0.6804	-0.6061
С	2.6602	1.6106	-1.6474
С	2.7733	1.0969	0.7085
С	3.0354	2.9227	-1.3923
Н	2.4615	1.2810	-2.6673
С	3.1401	2.4127	0.9815
Н	2.6721	0.4122	1.5485
С	3.2709	3.3133	-0.0730
Н	3.1442	3.6450	-2.2011
Н	3.3227	2.7399	2.0045
Cl	3.7319	4.9531	0.2598
С	2.1279	-1.8695	0.0108
С	1.0576	-1.7457	1.1100
С	3.5087	-2.1549	0.6078
Н	1.8523	-2.7322	-0.6136
С	-0.2886	-1.2721	0.5737
Н	0.9426	-2.7395 \$128	1.5710

Н	1.3934	-1.0763	1.9159
Н	3.4405	-3.0132	1.2914
Н	3.9109	-1.3080	1.1794
С	4.5320	-2.5046	-0.4395
С	-1.4027	-1.2746	1.6410
Н	-0.6195	-1.9191	-0.2530
Н	-0.2091	-0.2511	0.1654
F	4.1574	-3.5553	-1.1760
F	5.7109	-2.8034	0.1090
F	4.7385	-1.4879	-1.2894
С	-2.7309	-0.8317	1.0512
Н	-1.5114	-2.2976	2.0343
С	-1.0096	-0.4285	2.7795
С	-3.5753	-1.7861	0.4775
С	-3.0944	0.5165	1.0028
Ν	-0.6715	0.2497	3.6494
С	-4.7675	-1.4070	-0.1356
Н	-3.3031	-2.8433	0.5081
С	-4.2846	0.9115	0.3949
Н	-2.4478	1.2747	1.4506
С	-5.1109	-0.0570	-0.1706
Н	-5.4247	-2.1552	-0.5788
Н	-4.5667	1.9637	0.3633
Br	-6.7316	0.4714	-0.9979
S2			
С	-3.8196	-0.3039	0.0371
С	-3.0828	-0.6256	1.1753
С	-1.8391	-0.0279	1.3673
С	-1.3304	0.8823	0.4366
		S129	

С	-2.0858	1.1880	-0.6984
С	-3.3325	0.5998	-0.9044
Н	-3.4769	-1.3312	1.9065
Н	-1.2595	-0.2758	2.2593
Н	-1.7063	1.9019	-1.4329
Н	-3.9202	0.8450	-1.7890
С	0.0610	1.4561	0.6447
Н	0.2576	1.5222	1.7266
С	1.1412	0.5584	0.0064
Н	1.0119	-0.4520	0.4223
Н	0.9480	0.4874	-1.0758
С	2.5644	1.0463	0.2576
Н	2.7425	1.1410	1.3440
Н	2.6754	2.0733	-0.1473
С	3.5884	0.1483	-0.3430
Н	3.3252	-0.4459	-1.2221
С	5.0343	0.3149	-0.0229
Н	5.1790	0.7088	0.9940
С	0.1592	2.8279	0.1211
Ν	0.2507	3.8930	-0.3129
Br	-5.5164	-1.1042	-0.2307
Н	5.5390	1.0150	-0.7147
С	5.7869	-0.9872	-0.1104
F	5.3307	-1.8879	0.7661
F	7.0901	-0.8228	0.1357
F	5.6828	-1.5402	-1.3250
83			
C	4.5729	0.7396	-0.1217
С	4.1548	-0.5380 \$130	-0.3334

С	5.0005	-1.7434	-0.6370
С	5.9697	1.2908	-0.0656
С	6.4868	-1.4503	-0.8599
С	6.7924	1.0700	-1.3411
С	6.7172	-0.3568	-1.9108
Н	6.9848	-1.1944	0.0873
Н	6.4751	0.8315	0.7963
Н	7.8355	1.3206	-1.0976
Н	4.8577	-2.4888	0.1615
Н	5.9204	2.3654	0.1568
Н	6.9448	-2.3910	-1.1938
Н	6.4715	1.7872	-2.1107
Н	7.6437	-0.5593	-2.4659
Н	5.9048	-0.4179	-2.6547
S	3.2082	1.7641	0.1371
Ν	2.7525	-0.6549	-0.2731
С	2.1031	0.4704	0.0377
С	2.1695	-1.9142	-0.7462
С	1.8284	-2.9236	0.1572
С	2.1651	-2.1024	-2.1402
С	1.4593	-4.1655	-0.3714
С	1.7793	-3.3567	-2.6190
С	1.4336	-4.3842	-1.7438
Н	1.1807	-4.9710	0.3111
Н	1.7557	-3.5367	-3.6940
Н	1.1433	-5.3595	-2.1369
С	2.5136	-0.9733	-3.0977
С	1.2603	-0.1298	-3.3554
С	3.1465	-1.4505	-4.4038
Н	3.2519	-0.3198	-2.6058
		2121	

Н	0.7814	0.1386	-2.4046
Н	1.5065	0.7830	-3.9180
Н	0.5298	-0.7127	-3.9385
Н	4.0094	-2.1089	-4.2219
Н	2.4241	-1.9955	-5.0288
Н	3.4918	-0.5840	-4.9854
С	1.7884	-2.6970	1.6526
С	2.8333	-3.5265	2.4019
С	0.3756	-2.9489	2.1880
Н	2.0244	-1.6428	1.8251
Н	3.8523	-3.3066	2.0512
Н	2.7897	-3.3004	3.4775
Н	2.6533	-4.6048	2.2714
Н	-0.3429	-2.3709	1.5902
Н	0.1139	-4.0165	2.1361
Н	0.3090	-2.6347	3.2410
Н	4.6053	-2.2138	-1.5506
С	0.5617	0.5470	0.3316
0	-0.0272	-0.5249	-0.1467
С	0.0352	1.8806	-0.3067
С	-0.9131	1.7526	-1.3252
С	0.3843	3.1749	0.1017
С	-1.4838	2.8647	-1.9403
Н	-1.1973	0.7389	-1.6116
С	-0.1778	4.3023	-0.4962
Н	1.0885	3.3449	0.9173
С	-1.1081	4.1358	-1.5177
Н	-2.2239	2.7518	-2.7334
Н	0.0931	5.3041	-0.1630
Cl	-1.8289	5.5393	-2.2580
		2122	

С	0.3556	0.6171	1.9370
С	-1.0605	1.1145	2.2778
С	1.3449	1.3728	2.8499
Н	0.3987	-0.4454	2.2047
С	-2.2150	0.3948	1.5909
Н	-1.1930	1.0202	3.3690
Н	-1.1154	2.1937	2.0573
Н	0.8010	1.8117	3.6992
Н	1.8713	2.2075	2.3710
С	2.4040	0.5140	3.4911
С	-3.5644	1.1122	1.8033
Н	-2.3174	-0.6277	1.9865
Н	-2.0281	0.2859	0.5173
F	1.8812	-0.5429	4.1267
F	3.1048	1.2069	4.3934
F	3.2993	0.0214	2.6152
С	-4.6937	0.3507	1.1336
Н	-3.7737	1.1909	2.8818
С	-3.5016	2.4937	1.2922
С	-4.8304	0.3731	-0.2584
С	-5.5633	-0.4362	1.8902
Ν	-3.4478	3.5722	0.8843
С	-5.8223	-0.3726	-0.8893
Н	-4.1542	0.9864	-0.8603
С	-6.5608	-1.1914	1.2737
Н	-5.4660	-0.4639	2.9775
С	-6.6800	-1.1509	-0.1129
Н	-5.9283	-0.3495	-1.9739
Н	-7.2395	-1.8032	1.8679
Br	-8.0350	-2.1709 \$133	-0.9611

6	٩.	4
R	•	

С	-2.6991	-0.8502	-0.5811
С	-1.3551	-0.5110	-0.4588
С	-0.9605	0.6442	0.2281
С	-1.9460	1.4573	0.7926
С	-3.2989	1.1347	0.6792
С	-3.6622	-0.0188	-0.0089
Н	-2.9977	-1.7530	-1.1139
Н	-0.6006	-1.1664	-0.9008
Н	-1.6573	2.3604	1.3340
Н	-4.0607	1.7746	1.1248
С	0.4957	1.0220	0.3178
С	1.4325	-0.1120	0.7859
С	1.1500	1.4808	-0.9983
Н	0.6124	1.8242	1.0642
С	2.7195	-0.0779	-0.0560
С	2.6458	1.2866	-0.7551
Н	0.8746	2.5121	-1.2530
Н	0.8141	0.8284	-1.8201
Н	2.5975	-0.8705	-0.8141
Н	3.0291	2.0696	-0.0810
Н	3.2406	1.3162	-1.6765
С	3.9582	-0.3787	0.7762
Н	3.8481	-1.3484	1.2814
Н	4.1103	0.3890	1.5486
С	5.2137	-0.4474	-0.0499
Ν	1.1989	-0.9154	1.7031
Br	-5.4961	-0.4741	-0.1692
F	5.5303	0.7366 \$134	-0.5908

F	5.0974	-1.3160	-1.0616
F	6.2612	-0.8329	0.6830
S 5			
С	4.3339	0.0489	0.0521
С	3.3370	-0.8878	0.3363
С	2.0035	-0.5322	0.1952
С	1.6292	0.7696	-0.2333
С	2.6736	1.6914	-0.5130
С	4.0060	1.3411	-0.3737
Н	3.6080	-1.8910	0.6662
Н	1.2352	-1.2733	0.4191
Н	2.4158	2.6989	-0.8455
Н	4.7943	2.0617	-0.5927
С	0.2715	1.1536	-0.3819
Н	0.0648	2.1726	-0.7191
С	-0.8803	0.2452	-0.1063
Н	-0.8123	-0.6525	-0.7498
Н	-0.8227	-0.1364	0.9307
С	-2.2263	0.9290	-0.3185
Н	-2.3097	1.2837	-1.3580
Н	-2.2974	1.8147	0.3307
С	-3.4277	0.0250	0.0018
Н	-3.3452	-0.3161	1.0468
С	-4.7477	0.7878	-0.1612
Н	-4.9471	1.0189	-1.2166
Br	6.1538	-0.4371	0.2449
Н	-4.6789	1.7360	0.3886
С	-5.9405	0.0508	0.3895
F	-6.1706	-1.0959 5135	-0.2565

F	-7.0467	0.7897	0.2943
F	-5.7748	-0.2552	1.6814
С	-3.3884	-1.1834	-0.8405
Ν	-3.3173	-2.1142	-1.5179
S 6			
С	2.2207	-2.3025	-2.0945
С	3.0615	-1.6787	-1.2244
С	4.5345	-1.9199	-1.0428
С	2.5401	-3.3582	-3.1138
С	5.0688	-3.2015	-1.6961
С	3.0974	-4.6515	-2.5028
С	4.1833	-4.4274	-1.4379
Н	5.2150	-3.0552	-2.7769
Н	3.2635	-2.9347	-3.8252
Н	3.5043	-5.2520	-3.3300
Н	5.0942	-1.0408	-1.3956
Н	1.6381	-3.5821	-3.6991
Н	6.0720	-3.3695	-1.2816
Н	2.2743	-5.2362	-2.0664
Н	4.8035	-5.3324	-1.3770
Н	3.7130	-4.3186	-0.4466
S	0.6217	-1.6794	-1.9047
Ν	2.3952	-0.7204	-0.4447
С	1.0847	-0.5970	-0.6756
С	3.1929	0.1041	0.4547
С	3.8147	1.2429	-0.0922
С	3.4463	-0.3604	1.7519
С	4.7276	1.9191	0.7168
С	4.3668	0.3652	2.5228
		5136	

С	5.0069	1.4859	2.0125
Н	5.2270	2.8082	0.3269
Н	4.5889	0.0328	3.5383
Н	5.7259	2.0304	2.6262
С	2.7961	-1.5983	2.3542
С	2.0973	-1.2559	3.6744
С	3.8073	-2.7284	2.5870
Н	2.0305	-1.9623	1.6526
Н	1.4005	-0.4159	3.5532
Н	1.5311	-2.1247	4.0407
Н	2.8339	-0.9878	4.4468
Н	4.2754	-3.0765	1.6563
Н	4.6076	-2.3993	3.2668
Н	3.3048	-3.5899	3.0502
С	3.5200	1.7689	-1.4890
С	4.7357	1.6536	-2.4160
С	3.0340	3.2208	-1.4251
Н	2.6948	1.1767	-1.9084
Н	5.0538	0.6127	-2.5672
Н	4.4962	2.0752	-3.4032
Н	5.5921	2.2144	-2.0112
Н	2.1621	3.2782	-0.7630
Н	3.8308	3.8913	-1.0675
Н	2.7435	3.5608	-2.4314
Н	4.7307	-1.9632	0.0374
С	0.2017	0.5294	-0.0311
0	0.9393	1.6082	0.0179
С	-0.2998	0.0356	1.3471
С	-0.5412	1.0298	2.2997
С	-0.6007	-1.2909 \$137	1.6702

-1.1170	0.7202	3.5308
-0.2601	2.0518	2.0424
-1.1678	-1.6219	2.8999
-0.3857	-2.0979	0.9649
-1.4331	-0.6073	3.8155
-1.3153	1.4954	4.2717
-1.4057	-2.6559	3.1496
-2.1456	-1.0115	5.3549
-1.1398	0.7593	-0.9647
-1.4135	2.2461	-0.9146
-2.4285	-0.0241	-0.6527
-2.3273	2.8117	-0.0197
-0.7050	3.1059	-1.7633
-2.6360	0.0133	0.4281
-3.2592	0.5125	-1.1399
-2.5084	-1.4706	-1.1259
-2.5294	4.1928	0.0364
-2.8961	2.1776	0.6622
-0.8956	4.4833	-1.7303
0.0226	2.6847	-2.4588
-1.7589	-2.1097	-0.6379
-2.3237	-1.5243	-2.2104
-3.8932	-2.0918	-0.8693
-1.8100	5.0163	-0.8221
-3.2426	4.6193	0.7420
-0.3366	5.1394	-2.3982
-4.6567	-1.4691	-1.3634
-3.9724	-3.5127	-1.4400
-4.1960	-2.0721	0.5729
-2.0810	6.8967 \$138	-0.7647
	-1.1170 -0.2601 -1.1678 -0.3857 -1.4331 -1.3153 -1.4057 -2.1456 -1.1398 -1.4135 -2.4285 -2.3273 -0.7050 -2.6360 -3.2592 -2.5084 -2.5294 -2.5294 -2.8961 -0.8956 0.0226 -1.7589 -2.3237 -3.8932 -1.8100 -3.2426 -0.3366 -4.6567 -3.9724 -4.1960 -2.0810	-1.1170 0.7202 -0.2601 2.0518 -1.1678 -1.6219 -0.3857 -2.0979 -1.4331 -0.6073 -1.3153 1.4954 -1.4057 -2.6559 -2.1456 -1.0115 -1.1398 0.7593 -1.4135 2.2461 -2.3273 2.8117 -0.7050 3.1059 -2.6360 0.0133 -3.2592 0.5125 -2.5084 -1.4706 -2.5294 4.1928 -2.8961 2.1776 -0.8956 4.4833 0.0226 2.6847 -1.7589 -2.1097 -2.3237 -1.5243 -3.8932 -2.0918 -1.8100 5.0163 -3.8932 -2.0918 -1.8100 5.0163 -3.9724 -3.5127 -4.1960 -2.0721 -2.0810 6.8967

Н	-3.3497	-4.2095	-0.8621
Н	-3.6021	-3.5015	-2.4741
С	-5.3728	-4.0654	-1.4856
Ν	-4.3961	-2.0480	1.7087
F	-5.9134	-4.1793	-0.2692
F	-5.3931	-5.2766	-2.0443
F	-6.1861	-3.2819	-2.2028
Н	-0.8358	0.5422	-2.0020
TS1			
С	-3.1523	-0.1913	0.0444
С	-2.2033	-0.7647	0.8894
С	-0.9871	-0.1141	1.0797
С	-0.7132	1.0974	0.4367
С	-1.6784	1.6525	-0.4062
С	-2.9018	1.0139	-0.6062
Н	-2.4129	-1.7068	1.3959
Н	-0.2401	-0.5602	1.7404
Н	-1.4840	2.6004	-0.9125
Н	-3.6532	1.4531	-1.2624
С	0.6569	1.7275	0.6215
Н	0.9772	1.5736	1.6645
С	1.7007	1.0736	-0.3083
Н	1.6746	-0.0075	-0.1098
Н	1.3830	1.2165	-1.3532
С	3.1197	1.6108	-0.1013
Н	3.4054	1.5091	0.9579
Н	3.1322	2.6883	-0.3406
С	4.1089	0.8892	-0.9632
Н	3.9332	0.9200	-2.0441
		2133	

С	5.1222	0.1390	-0.4819
Н	5.3746	0.1603	0.5823
С	0.6214	3.1824	0.4100
Ν	0.6080	4.3199	0.2177
Br	-4.8124	-1.0662	-0.2204
Н	5.8322	-0.3485	-1.1530
С	3.9735	-1.8673	0.0148
F	3.3115	-1.5542	1.1148
F	4.7043	-2.9432	0.2170
F	3.1235	-2.0706	-0.9708

TS2

C	4.3760	0.8558	0.0649
С	3.9963	-0.4309	-0.0747
С	4.8498	-1.6614	0.0179
С	5.7202	1.4319	0.4125
С	6.3498	-1.4001	0.1715
С	6.8536	1.0343	-0.5419
С	6.8978	-0.4592	-0.9085
Н	6.5736	-1.0108	1.1766
Н	5.9669	1.1286	1.4418
Н	7.7991	1.3280	-0.0614
Н	4.4732	-2.2753	0.8535
Н	5.6434	2.5280	0.4397
Н	6.8533	-2.3745	0.1077
Н	6.7765	1.6294	-1.4641
Н	7.9365	-0.7276	-1.1480
Н	6.3230	-0.6295	-1.8334
S	2.9901	1.9265	-0.0881
		5140	

Ν	2.6097	-0.5863	-0.3043
С	1.8926	0.5739	-0.1822
С	2.1872	-1.7240	-1.1088
С	1.7984	-2.9241	-0.4949
С	2.3001	-1.6030	-2.5056
С	1.4822	-4.0090	-1.3186
С	1.9640	-2.7117	-3.2888
С	1.5562	-3.9066	-2.7040
Н	1.1653	-4.9493	-0.8632
Н	2.0268	-2.6377	-4.3761
Н	1.3004	-4.7624	-3.3303
С	2.7463	-0.3162	-3.1829
С	1.5494	0.3952	-3.8247
С	3.8570	-0.5611	-4.2081
Н	3.1627	0.3549	-2.4194
Н	0.7522	0.5694	-3.0888
Н	1.8566	1.3622	-4.2499
Н	1.1285	-0.2182	-4.6367
Н	4.7042	-1.0990	-3.7578
Н	3.4957	-1.1505	-5.0637
Н	4.2260	0.3980	-4.5996
С	1.6431	-3.0552	1.0069
С	2.3768	-4.2687	1.5820
С	0.1512	-3.0924	1.3638
Н	2.0856	-2.1592	1.4610
Н	3.4434	-4.2634	1.3140
Н	2.2980	-4.2678	2.6791
Н	1.9417	-5.2116	1.2186
Н	-0.3829	-2.2825	0.8474
Н	-0.2941	-4.0493 \$141	1.0501

Н	0.0081	-2.9855	2.4505
Н	4.6884	-2.2599	-0.8942
С	0.4551	0.6398	-0.4304
0	-0.1587	-0.3769	-0.7942
С	-0.1889	1.9963	-0.6163
С	-1.2206	2.0598	-1.5611
С	0.1480	3.1616	0.0849
С	-1.8835	3.2546	-1.8263
Н	-1.4996	1.1441	-2.0845
С	-0.5057	4.3642	-0.1680
Н	0.9007	3.1414	0.8748
С	-1.5155	4.4006	-1.1263
Н	-2.6841	3.3007	-2.5646
Н	-0.2521	5.2645	0.3910
Cl	-2.3502	5.8951	-1.4304
С	0.6508	0.4585	1.7659
С	-0.7558	0.8778	2.1761
С	1.6595	1.0614	2.7240
Н	0.7452	-0.6250	1.6518
С	-1.9464	0.2088	1.5004
Н	-0.8313	0.6745	3.2627
Н	-0.8467	1.9746	2.0856
Н	1.1571	1.6727	3.4891
Н	2.3964	1.7293	2.2401
С	2.4603	0.0334	3.4754
С	-3.2904	0.8142	1.9562
Н	-1.9712	-0.8638	1.7465
Н	-1.8928	0.2745	0.4088
F	1.6843	-0.8824	4.0690
F	3.2087	0.5936 \$142	4.4301

F	3.3025	-0.6425	2.6761
С	-4.4528	0.1009	1.2893
Н	-3.3853	0.7160	3.0491
С	-3.3320	2.2577	1.6626
С	-4.7768	0.3690	-0.0446
С	-5.1598	-0.8875	1.9763
Ν	-3.3607	3.3866	1.4234
С	-5.7942	-0.3327	-0.6858
Н	-4.2299	1.1413	-0.5924
С	-6.1801	-1.6010	1.3481
Н	-4.9149	-1.1082	3.0173
С	-6.4872	-1.3150	0.0203
Н	-6.0461	-0.1187	-1.7243
Н	-6.7316	-2.3705	1.8884
Br	-7.8737	-2.2777	-0.8429

TS3

С	4.2056	-2.0397	0.5142
С	3.0142	-2.5746	0.1353
С	2.7136	-3.9936	-0.2609
С	5.5243	-2.7287	0.7214
С	3.9436	-4.8950	-0.4073
С	6.0674	-3.4278	-0.5328
С	5.0300	-4.2716	-1.2934
Н	4.3522	-5.1629	0.5790
Н	5.4049	-3.4580	1.5357
Н	6.9036	-4.0667	-0.2110
Н	1.9848	-4.4324	0.4378
Н	6.2607	-1.9966 \$143	1.0801

Н	3.5942	-5.8371	-0.8516
Н	6.4933	-2.6767	-1.2142
Н	5.5609	-5.0594	-1.8461
Н	4.5351	-3.6508	-2.0594
S	4.0071	-0.3308	0.7485
Ν	2.0050	-1.5924	0.0752
С	2.3460	-0.3334	0.3671
С	0.6539	-1.9658	-0.3008
С	-0.2961	-2.1553	0.7159
С	0.3683	-2.1286	-1.6652
С	-1.5960	-2.4860	0.3166
С	-0.9437	-2.4659	-2.0086
С	-1.9186	-2.6334	-1.0300
Н	-2.3720	-2.6291	1.0686
Н	-1.2086	-2.5872	-3.0605
Н	-2.9400	-2.8889	-1.3172
С	1.4094	-1.9228	-2.7565
С	1.1766	-0.5996	-3.4947
С	1.4424	-3.0893	-3.7503
Н	2.4009	-1.8613	-2.2811
Н	1.1511	0.2359	-2.7848
Н	1.9683	-0.4374	-4.2412
Н	0.2095	-0.6247	-4.0217
Н	1.5710	-4.0617	-3.2520
Н	0.5148	-3.1346	-4.3399
Н	2.2743	-2.9545	-4.4566
С	0.0570	-2.0468	2.1949
С	0.6327	-3.3624	2.7359
С	-1.1299	-1.6078	3.0539
Н	0.8436	-1.2863 \$144	2.3036
Н	1.6012	-3.6041	2.2783
----	---------	---------	---------
Н	0.7911	-3.2833	3.8213
Н	-0.0605	-4.1967	2.5486
Н	-1.6275	-0.7199	2.6363
Н	-1.8803	-2.4075	3.1401
Н	-0.7836	-1.3646	4.0669
Н	2.1968	-3.9600	-1.2312
С	1.0308	1.1926	0.0131
0	0.1829	0.7345	-0.7760
С	1.9773	2.2572	-0.5751
С	1.5419	2.8601	-1.7623
С	3.1803	2.7054	-0.0142
С	2.2813	3.8640	-2.3845
Н	0.5916	2.5333	-2.1863
С	3.9384	3.7020	-0.6257
Н	3.5681	2.2814	0.9103
С	3.4812	4.2739	-1.8107
Н	1.9305	4.3290	-3.3062
Н	4.8793	4.0344	-0.1873
Cl	4.4243	5.5215	-2.5790
С	0.4999	1.4754	1.4481
С	-0.6776	2.4618	1.2699
С	1.5119	1.9419	2.4920
Н	0.0827	0.5154	1.7846
С	-1.9764	1.7078	0.9813
Н	-0.7978	3.0919	2.1613
Н	-0.4377	3.1428	0.4356
Н	1.7200	3.0186	2.4130
Н	2.4644	1.4027	2.4004
С	1.0629	1.6591	3.9014
		3143	

C	-3.0212	2.4962	0.1687
Н	-2.4595	1.4100	1.9252
Н	-1.7390	0.7940	0.4192
F	-0.1580	2.1305	4.1828
F	1.9011	2.1881	4.7980
F	1.0231	0.3382	4.1433
С	-4.2509	1.6393	-0.0756
Н	-3.3140	3.4050	0.7173
С	-2.4467	2.9483	-1.1110
С	-4.1773	0.5420	-0.9412
С	-5.4391	1.8856	0.6130
Ν	-1.9960	3.2941	-2.1156
С	-5.2742	-0.2957	-1.1224
Н	-3.2503	0.3367	-1.4839
С	-6.5463	1.0532	0.4451
Н	-5.5079	2.7369	1.2931
C	-6.4514	-0.0310	-0.4227
Н	-5.2167	-1.1462	-1.8018
Н	-7.4730	1.2486	0.9845
Br	-7.9486	-1.1705	-0.6576
TS4			
C	-2.8954	-0.9156	-0.5517
C	-1.5262	-0.7305	-0.3771
C	-1.0367	0.3540	0.3579
C	-1.9450	1.2562	0.9181
С	-3.3189	1.0868	0.7519
С	-3.7813	-0.0007	0.0151
Н	-3.2710	-1.7654	-1.1216
Н	-0.8314	-1.4522	-0.8121
		5140	

Н	-1.5786	2.1071	1.4963
Н	-4.0219	1.7924	1.1947
С	0.4498	0.6099	0.4901
С	1.2215	-0.6615	0.7087
С	1.0432	1.3684	-0.7047
Н	0.6274	1.2100	1.3978
С	2.9769	-0.0688	-0.3203
С	2.5612	1.3540	-0.5374
Н	0.6313	2.3851	-0.7493
Н	0.7596	0.8504	-1.6348
Н	2.8365	-0.7364	-1.1776
Н	2.8554	1.9724	0.3252
Н	3.0552	1.7775	-1.4278
С	4.1130	-0.4311	0.5836
Н	4.0514	-1.4908	0.8712
Н	4.1053	0.1748	1.5017
С	5.4559	-0.2209	-0.0721
Ν	1.3297	-1.7493	1.1433
Br	-5.6466	-0.2448	-0.2182
F	5.6402	1.0590	-0.4233
F	5.5872	-0.9512	-1.1846
F	6.4610	-0.5538	0.7409
TS5			
C	-2.8570	0.8839	-0.8271
C	-1.5411	1.1498	-0.4608
C	-0.9842	0.5930	0.7057

С

С

-1.7961

-3.1088

-0.5302	
	S147

-0.2523

1.4882

1.1311

С	-3.6321	0.0437	-0.0289
Н	-3.2786	1.3272	-1.7293
Н	-0.9496	1.8096	-1.0957
Н	-1.3780	-0.7054	2.3892
Н	-3.7246	-1.1868	1.7457
С	0.3979	0.8124	1.1120
С	1.4873	-0.8191	0.5393
С	1.2968	1.8480	0.4992
Н	0.5848	0.6290	2.1760
С	2.6701	-0.0939	-0.0467
С	2.7260	1.3130	0.5490
Н	1.2118	2.8011	1.0459
Н	1.0212	2.0439	-0.5465
Н	2.4555	-0.0069	-1.1251
Н	3.0805	1.2583	1.5909
Н	3.4224	1.9522	-0.0076
С	3.9171	-0.9588	0.1389
Н	3.7658	-1.9409	-0.3285
Н	4.1282	-1.1206	1.2053
С	5.1496	-0.3544	-0.4818
Ν	1.0075	-1.8640	0.8135
Br	-5.4225	-0.3253	-0.5252
F	5.5816	0.7221	0.1873
F	4.9319	0.0349	-1.7435
F	6.1580	-1.2280	-0.5038
TS6			
C	-2.9808	0.5857	-1.4779
C	-3.0068	0.6145	-0.1224
С	-4.1924	0.4315 \$148	0.7790

С	-4.1010	0.3214	-2.4430
С	-5.5513	0.4255	0.0701
С	-5.2700	1.3095	-2.3369
С	-5.7229	1.6034	-0.8972
Н	-5.7080	-0.5319	-0.4510
Н	-4.4557	-0.7068	-2.2669
Н	-6.1066	0.8845	-2.9118
Н	-4.0529	-0.5045	1.3471
Н	-3.7042	0.3280	-3.4681
Н	-6.3193	0.4683	0.8544
Н	-4.9986	2.2536	-2.8321
Н	-6.7747	1.9210	-0.9210
Н	-5.1578	2.4627	-0.4997
S	-1.3554	0.8164	-2.0548
Ν	-1.7349	0.8322	0.4392
С	-0.7235	0.8618	-0.4631
С	-1.6469	1.5248	1.7259
С	-1.6749	0.8255	2.9412
С	-1.6365	2.9311	1.6736
С	-1.6188	1.5690	4.1230
С	-1.5688	3.6291	2.8847
С	-1.5504	2.9580	4.1014
Н	-1.6218	1.0441	5.0802
Н	-1.5368	4.7198	2.8701
Н	-1.4955	3.5187	5.0355
С	-1.6821	3.7200	0.3731
С	-0.3014	4.3047	0.0546
С	-2.7522	4.8153	0.4030
Н	-1.9581	3.0396	-0.4437
Н	0.4733	3.5247 \$149	0.0544

Н	-0.3048	4.7957	-0.9299
Н	-0.0205	5.0544	0.8106
Н	-3.7381	4.4031	0.6630
Н	-2.5083	5.6024	1.1313
Н	-2.8268	5.2918	-0.5852
С	-1.7317	-0.6847	3.0207
С	-2.8723	-1.1748	3.9178
С	-0.3843	-1.2455	3.4877
Н	-1.9177	-1.0531	2.0050
Н	-3.8383	-0.7372	3.6263
Н	-2.9568	-2.2701	3.8560
Н	-2.6910	-0.9183	4.9723
Н	0.4175	-0.9063	2.8173
Н	-0.1552	-0.8965	4.5065
Н	-0.4098	-2.3463	3.5095
Н	-4.1823	1.2453	1.5227
С	0.6912	0.8179	-0.0277
0	0.8957	0.7793	1.2068
С	1.7827	1.4162	-0.8964
С	2.9024	1.8835	-0.1943
С	1.8007	1.4956	-2.2964
С	4.0118	2.4032	-0.8558
Н	2.8901	1.8076	0.8926
С	2.9000	2.0190	-2.9733
Н	0.9756	1.1232	-2.9034
С	4.0024	2.4657	-2.2470
Н	4.8800	2.7565	-0.2988
Н	2.9085	2.0700	-4.0619
Cl	5.3835	3.1068	-3.0925
С	0.9313	-1.2656 \$150	-0.8139

С	-0.3133	-2.0046	-0.8786
С	1.9981	-1.6532	0.1702
С	-0.9409	-2.5094	0.2803
С	-0.9993	-2.1669	-2.1052
Н	1.9579	-0.9579	1.0364
Н	1.8136	-2.6642	0.5716
С	3.3896	-1.6066	-0.4615
С	-2.2342	-3.0169	0.2445
Н	-0.4147	-2.4532	1.2338
С	-2.2872	-2.6896	-2.1590
Н	-0.5082	-1.8686	-3.0330
Н	3.5382	-0.6451	-0.9779
Н	3.4826	-2.3967	-1.2224
С	4.5374	-1.8028	0.5423
С	-2.9164	-3.0628	-0.9733
Н	-2.7216	-3.3562	1.1602
Н	-2.8072	-2.7850	-3.1132
Н	4.4094	-2.7749	1.0459
С	5.8908	-1.7909	-0.1790
С	4.4861	-0.7707	1.5928
Br	-4.7251	-3.6397	-1.0156
Н	6.1320	-0.7835	-0.5466
Н	5.8388	-2.4648	-1.0448
С	7.0369	-2.2674	0.6735
Ν	4.4341	0.0545	2.3973
F	7.2310	-1.4937	1.7455
F	8.1779	-2.2803	-0.0181
F	6.8300	-3.5110	1.1227
Н	1.3017	-0.9769	-1.8040

С	3.4824	-0.5116	-1.5628
С	3.3475	-1.2660	-0.4398
С	4.4219	-2.0632	0.2513
С	4.6852	-0.3370	-2.4497
С	5.8132	-1.4450	0.0722
С	5.5634	-1.5924	-2.4906
С	6.4764	-1.7548	-1.2722
Н	5.7319	-0.3541	0.2059
Н	5.2747	0.5357	-2.1210
Н	6.1817	-1.5710	-3.3994
Н	4.1754	-2.1300	1.3193
Н	4.3291	-0.0993	-3.4623
Н	6.4664	-1.8041	0.8804
Н	4.9036	-2.4701	-2.5887
Н	7.3533	-1.0978	-1.3833
Н	6.8620	-2.7864	-1.2604
S	1.9585	0.2455	-1.9227
Ν	2.0232	-1.2265	0.0505
С	1.1522	-0.4461	-0.5930
С	1.6799	-1.9839	1.2388
С	1.8547	-1.3537	2.4817
С	1.2717	-3.3260	1.1002
С	1.6754	-2.1325	3.6293
С	1.1119	-4.0566	2.2842
С	1.3270	-3.4748	3.5310
Н	1.8103	-1.6800	4.6126
Н	0.8053	-5.1004	2.2359
Н	1.2015	-4.0723	4.4352
С	0.9462	-3.9600	-0.2536

С	0.1466	-5.2588	-0.1205
С	2.1687	-4.2441	-1.1386
Н	0.3122	-3.2335	-0.7870
Н	-0.7040	-5.1595	0.5657
Н	-0.2511	-5.5459	-1.1046
Н	0.7857	-6.0819	0.2362
Н	2.6640	-3.3315	-1.4915
Н	2.9027	-4.8648	-0.6017
Н	1.8464	-4.8024	-2.0295
С	2.2341	0.1147	2.6010
С	3.7363	0.3011	2.8464
С	1.4263	0.8219	3.6914
Н	1.9768	0.5987	1.6484
Н	4.3441	-0.0747	2.0126
Н	3.9670	1.3696	2.9704
Н	4.0492	-0.2239	3.7627
Н	0.3530	0.6538	3.5366
Н	1.7102	0.4778	4.6974
Н	1.6234	1.9043	3.6537
Н	4.4175	-3.1021	-0.1180
С	-0.7218	0.0056	0.1950
0	-0.6052	0.1231	1.4257
С	-1.3900	-1.2685	-0.3278
С	-1.9082	-2.1479	0.6246
С	-1.5242	-1.5833	-1.6847
С	-2.5554	-3.3202	0.2411
Н	-1.7892	-1.8894	1.6777
С	-2.1557	-2.7581	-2.0864
Н	-1.0994	-0.9289	-2.4485
С	-2.6636	-3.6195 \$153	-1.1142

Н	-2.9606	-4.0088	0.9835
Н	-2.2457	-3.0151	-3.1419
Cl	-3.4110	-5.1162	-1.6018
С	-1.0488	1.2882	-0.6190
С	-0.0087	2.3839	-0.5183
С	-2.3927	1.8598	-0.1181
С	0.5940	2.7258	0.6994
С	0.3409	3.1127	-1.6605
Н	-2.2607	2.1427	0.9382
Н	-2.5892	2.7884	-0.6789
С	-3.5956	0.9322	-0.2551
С	1.5597	3.7299	0.7640
Н	0.3139	2.1760	1.5977
С	1.2963	4.1263	-1.6132
Н	-0.1250	2.8692	-2.6188
Н	-3.5153	0.0850	0.4414
Н	-3.6389	0.5082	-1.2707
С	-4.9326	1.6497	-0.0010
С	1.9076	4.4176	-0.3964
Н	2.0369	3.9782	1.7131
Н	1.5679	4.6773	-2.5137
Н	-5.0432	2.4654	-0.7341
С	-6.1088	0.6798	-0.1624
С	-4.9260	2.2792	1.3310
Br	3.2288	5.7793	-0.3179
Н	-6.1319	-0.0560	0.6531
Н	-5.9909	0.1340	-1.1084
С	-7.4495	1.3631	-0.2167
Ν	-4.8817	2.7569	2.3798
F	-7.7345	2.0115 \$154	0.9165

F	-8.4303	0.4842	-0.4288
F	-7.5018	2.2638	-1.2052
Н	-1.1584	1.0307	-1.6837