Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Divergent Reactivity of Sulfoxonium Ylide with Allyl Carbonate and Allyl Carbamate

Vinayak Hanchate, Sudharshan Nagabhushana Reddy, Anil Kumar, and Kandikere Ramaiah Prabhu*

Department of Organic Chemistry,

Indian Institute of Science,

Bangalore 560 012,

Karnataka, India

* E-mail: prabhu@iisc.ac.in

Table of Contents

General Information	. 3
Experimental Section	. 4
Detailed optimization studies	. 4
Table SI – 1. Detail Optimization Studies for (4 + 2) Annulation	. 4
Table SI – 2. Detail Optimization Studies for (4 + 1) Annulation	. 5
General Procedure	. 8
Unsuccessful Substrates	10
Mechanistic Studies	11
Mechanistic Study for (4 + 2) Annulation	11
Mechanistic Study for (4 + 1) Annulation	15
Control Experiments	19
Characterization Data	20
¹ H and ¹³ C NMR Spectra	30

Note - References are provided in the footnote, wherever applicable.

General Information

All chemicals were purchased from commercial suppliers and used as delivered unless otherwise specified. Reactions were carried out using distilled solvents. NMR spectra were recorded on a BRUKER-AV400 spectrometer in CDCl₃ and DMSO-d₆ (400 MHz, ¹H and 100 MHz, ¹³C). Tetramethylsilane (TMS; $\delta = 0$ ppm) or residual non-deuterated CDCl₃ signal ($\delta = 7.27$ ppm); and residual non-deuterated DMSO signal ($\delta = 2.5$ ppm) served as internal standards for 1H NMR. The corresponding residual non-deuterated solvent signals (CDCl₃: $\delta = 77.16$ ppm; DMSO: $\delta = 39.50$ ppm) were used as internal standards for ¹³C NMR. Chemical shifts (δ) are reported in parts per million downfield from the internal reference and coupling constants in Hertz (Hz). IR spectra were measured using a Perkin-Elmer FT-IR Spectrometer. Mass spectra were measured with Micromass Q-TOF (ESI-HRMS). The melting points of the products were determined using a Buchi melting point apparatus. Flash column chromatography was carried out using Merck silica gel 60 F₂₅₄ TLC plates. Visualization was accomplished with short wave UV light or KMnO₄ staining solutions followed by heating. Flash column chromatography was performed using silica gel (230-400 mesh) with solvents distilled prior to use.

No attempts were made to optimize yields for substrate preparation. All spectral data obtained was according to the previously reported. All sulfoxonium ylide derivatives,¹ allyl carbonates derivatives,² and allyl carbamates³ derivatives were prepared according to the reported literature procedure.

¹ (a) Liu, L.; Lin, J.; Pang, M.; Jin, H.; Yu, X.; Wang, S. Photo-Thermo-Mechanochemical Approach to Synthesize Quinolines via Addition/Cyclization of Sulfoxonium Ylides with 2-Vinylanilines Catalyzed by Iron(II) Phthalocyanine. *Org. Lett.* **2022**, *24*, 1146–1151. (b) Zhu, S.; Shi, K.; Zhu, H.; Jia, Z.-K.; Xia, X.-F.; Wang, D.; Zou, L.-H. Copper-Catalyzed Annulation or Homocoupling of Sulfoxonium Ylides: Synthesis of 2,3-Diaroylquinolines or α, α, β -Tricarbonyl Sulfoxonium Ylides. *Org. Lett.* **2020**, *22*, 1504–1509.

² Hoang, G. L.; Yang, Z.-D.; Smith, S. M.; Pal, R.; Miska, J. L.; Pérez, D. E.; Pelter, L. S. W.; Zeng, X. C.; Takacs, J. M. Enantioselective Desymmetrization via Carbonyl-Directed Catalytic Asymmetric Hydroboration and Suzuki–Miyaura Cross-Coupling. *Org. Lett.* **2015**, *17*, 940–943.

³ Jeschke, S.; Gentschev, A.-C.; Wiemhöfer, H.-D. Disiloxanes with Cyclic or Non-Cyclic Carbamate Moieties as Electrolytes for Lithium-Ion Batteries. *Chem. Commun.* **2013**, *49*, 1190–1192.

Experimental Section

Table ESI – 1. Detail Optimization Studies for (4 + 2) Annulation

		+	Ac	Rh(III) (5 mol %) activator (20 mol % additive (1 equiv)		, ,
	1a (0.2 mmo	I)	2b (mmol)	solvent (2 mL) temperature, 12 h	Jaa	
entry	2b	temp.	solvent	additive	activator	yield
	(mmol)	(°C)	(2 mL)	(1 equiv)	(20 mol %)	(%)
1	0.4	80	DCE	AcOH	AgSbF ₆	18
2	0.4	100	DCE	AcOH	AgSbF ₆	5
3	0.4	60	DCE	AcOH	AgSbF ₆	14
4	0.4	40	DCE	AcOH	AgSbF ₆	10
5	0.4	rt	DCE	AcOH	AgSbF ₆	5
6	0.4	80	TFE	AcOH	AgSbF ₆	12
7	0.4	80	EtOAc	AcOH	AgSbF ₆	21
8	0.4	80	1,4-dioxane	AcOH	AgSbF ₆	21
9	0.4	80	EtOH	AcOH	AgSbF ₆	00
10	0.4	80	THF	AcOH	AgSbF ₆	00
11	0.4	80	CH ₃ CN	AcOH	AgSbF ₆	38
12	0.4	80	toluene	AcOH	AgSbF ₆	23
13	0.4	80	HEIP	AcOH	AgSbF ₆	04
14	0.4	80	DMSO	AcOH	AgSbF ₆	00
15	0.4	80	CH ₃ CN		AgSbF ₆	32
16	0.4	80	CH ₃ CN	NaOAc	AgSbF ₆	08
17	0.4	80	CH ₃ CN	AcOH + NaOAc	AgSbF ₆	16
18	0.4	80	CH ₃ CN	AcOH (0.5)	AgSbF ₆	34
19	0.8	80	CH ₃ CN	AcOH	AgSbF ₆	42
20	0.4	80	CH ₃ CN	Cu(OAc) ₂ .H ₂ O	AgSbF ₆	
21	0.8	80	CH ₃ CN	PivOH	AgSbF ₆	41
22	0.8	80	CH ₃ CN	AdCO ₂ H	AgSbF ₆	51
23	0.8	80	CH ₃ CN	ClCH ₂ CO ₂ H	AgSbF ₆	56
24	0.8	80	CH ₃ CN	H ₂ O (10)	AgSbF ₆	40
25	0.8	80	CH ₃ CN	PhCO ₂ H	AgSbF ₆	44
26	0.8	80	CH ₃ CN	propionic acid	AgSbF ₆	45
27	0.8	80	CH ₃ CN	TFA	AgSbF ₆	
28	0.8	80	CH ₃ CN	Zn(OAc)2.2H2O	AgSbF ₆	39
29	0.8	80	CH ₃ CN	Cl ₂ CHCO ₂ H	AgSbF ₆	23
30	0.8	80	CH ₃ CN	Cl ₃ CHCO ₂ H	AgSbF ₆	07

(a) Temperature, Solvent, and Additive Screening

(b) Other Parameters Screening

	1a (0.2 mmo	+	2b (mmol)	Rh(III) (5 mol %) activator (20 mol %) additive (1 equiv) solvent (2 mL) temperature, 12 h	3aa	>
entry	2b	temp.	solvent	additive	activator	yield
	(mmol)	(°C)	(2 mL)	(1 equiv)	(20 mol %)	(%)
31	0.8	80	CH ₃ CN	ClCH ₂ CO ₂ H	AgBF ₄	42
32	0.8	80	CH ₃ CN	ClCH ₂ CO ₂ H	AgNTf ₂	62
33	0.8	80	CH ₃ CN	ClCH ₂ CO ₂ H	AgPF ₆	57
34	0.8	80	CH ₃ CN	ClCH ₂ CO ₂ H (0.2)	AgNTf ₂	46
35	0.8	80	CH ₃ CN	$ClCH_2CO_2H(2)$	AgNTf ₂	54
36	0.8	80	CH ₃ CN (1 mL)	ClCH ₂ CO ₂ H	AgNTf ₂	64
37	0.8	80	CH ₃ CN (4 mL)	ClCH ₂ CO ₂ H	AgNTf ₂	46
38	0.8	90	CH ₃ CN (1 mL)	ClCH ₂ CO ₂ H	AgNTf ₂	33
39	0.8	70	CH ₃ CN (1 mL)	ClCH ₂ CO ₂ H	AgNTf ₂	68
40	0.8	60	CH ₃ CN (1 mL)	ClCH ₂ CO ₂ H	AgNTf ₂	62
41	0.6	60	CH ₃ CN (1 mL)	ClCH ₂ CO ₂ H	AgNTf ₂	55
42	1.0	60	CH ₃ CN (1 mL)	ClCH ₂ CO ₂ H	AgNTf ₂	60

(c) Ally carbonate Substrate Screening

ĺ	0 0 S 1a (0.2 mmol)	÷	2a (0.8 mmol)	Rh(III) (5 mol %) activator (20 mol %) additive (1 equiv) solvent (1 mL) temperature, 12 h	Generation Saa	>
entry	2a	temp.	solvent	additive	activator	yield
	(mmol)	(°C)	(1 mL)	(1 equiv)	(20 mol %)	(%)
43	0.8	70	CH ₃ CN	ClCH ₂ CO ₂ H	AgNTf ₂	68
44	0.8	60	CH ₃ CN	ClCH ₂ CO ₂ H	AgNTf ₂	76 (73)
45	0.8	50	CH ₃ CN	ClCH ₂ CO ₂ H	AgNTf ₂	55
46 ^{<i>a</i>}	0.8	50	CH ₃ CN	ClCH ₂ CO ₂ H	AgNTf ₂	56
47^{b}	0.8	50	CH ₃ CN	ClCH ₂ CO ₂ H	AgNTf ₂	75
48 ^c	0.8	50	CH ₃ CN	ClCH ₂ CO ₂ H	AgNTf ₂	60

^a 2.5 mol % of catalyst loading. ^b 7.5 mol % of catalyst loading. ^c Under air atmosphere.

Optimization table SI-1, experimentations have been performed as shown in *general experimental procedure A*. In all the cases, the crude products were submitted directly for ¹H-NMR analysis for calculating the yields in which 1,3,5-trimethoxybenzene (11.2 mg, 0.0667 mmol) has been used as an internal standard isolated yield in parenthesis. nd = not detected.

Table ESI – 2. Detail Optimization Studies for (4 + 1) Annulation

(a) Solvent, Temperature, Additive, and Activator Screening

		` +	Rh(III) (5 mol %) activator (20 mol %) additive (1 equiv) solvent (2 mL)		~_ ~
	1a (0.2 mmol)		4a (3.0 equiv) temperature, 12 h	5aa	U
entry	solvent	temp.	additive	activator	yield
	(1 mL)	(°C)	(1 equiv)	(20 mol %)	(%)
1	TFE	80	NaOAc	AgSbF ₆	30
2	HFIP	80	NaOAc	AgSbF ₆	48
3	EtOH	80	NaOAc	AgSbF ₆	nd
4	THF	80	NaOAc	$AgSbF_6$	nd
5	EtOAc	80	NaOAc	AgSbF ₆	10
6	toluene	80	NaOAc	AgSbF ₆	trace
7	dioxane	80	NaOAc	AgSbF ₆	18
8	CH ₃ CN	80	NaOAc	AgSbF ₆	10
9	DCE	80	NaOAc	AgSbF ₆	9
10	HFIP	60	NaOAc	AgSbF ₆	43
11	HFIP	90	NaOAc	AgSbF ₆	48
12	HFIP	100	NaOAc	AgSbF ₆	44
13	HFIP	80	Na ₂ CO ₃	AgSbF ₆	32
14	HFIP	80	NaOPiv (1 w/w)	AgSbF ₆	51
15	HFIP	80	HCO ₂ Na	AgSbF ₆	nd
16	HFIP	80	CsOAc	AgSbF ₆	36
17	HFIP	80	F3CCO2Na	AgSbF ₆	25
18	HFIP	80	LiOAc	AgSbF ₆	35
19	HFIP	80	Cs ₂ CO ₃	AgSbF ₆	nr
20	HFIP	80	CsOPiv	AgSbF ₆	42
21	HFIP	80	NaOPiv (2 w/w)	AgSbF ₆	58
22	HFIP	80	NaOPiv (3 w/w)	AgSbF ₆	59
23	HFIP	80	NaOPiv (2 w/w)	AgNTf ₂	58
24	HFIP	80	NaOPiv (2 w/w)	AgBF ₄	59
25	HFIP	80	NaOPiv (2 w/w)	AgPF ₆	57

	1a (0.2 mm	+ nol)	4a (3.0 equiv)	Rh(III) (5 mol %) activator (20 mol %) additive (1 equiv) solvent (2 mL) temperature, 12 h	5aa	~
entry	solvent	temp.	additive		activator	yield
	(1 mL)	(°C)	(1 equiv)		(20 mol %)	(%)
26 ^a	HFIP	80	Na	ıOAc	AgSbF ₆	54
27^{b}	HFIP	80	Na	nOAc	AgSbF ₆	57
28^{c}	HFIP	80	Na	nOAc	AgSbF ₆	51
29^{d}	HFIP	80	NaOAc		AgSbF ₆	58
30	HFIP	80	NaOPiv (2 w/v	w) + 5 equiv H ₂ O	AgSbF ₆	35
31	HFIP	80	NaOPiv (2 w/w)) + 4 ÅMS (2 w/w)	AgSbF ₆	73 (71)
32	HFIP	80	NaOPiv (2 w/w)) + 4 ÅMS (3 w/w)	AgSbF ₆	69

(a) Other Parameters Screening

^{*a*} 2.0 equiv of allyl methyl carbamate was used. ^{*b*} 4.0 equiv of allyl methyl carbamate was used. ^{*c*} Solvent HFIP (0.5 mL) used. ^{*d*} Solvent HFIP (2.0 mL) used.

Optimization table SI-2, experimentations have been performed as shown in *general experimental procedure B*. In all the cases, the crude products were submitted directly for ¹H-NMR analysis for calculating the yields in which 1,3,5-trimethoxybenzene (11.2 mg, 0.0667 mmol) has been used as an internal standard; isolated yield in parenthesis. nd = not detected.

General Procedure

A. Experimental procedure for (4 + 2) annulation

To an oven-dried 8-mL screw-cap reaction vial, equipped with a magnetic stir bar was charged with sulfoxonium ylides (0.2 mmol) and allyl carbonate derivatives (0.8 mmol, 4.0 equiv), catalyst $[Cp*RhCl_2]_2$ (6.2 mg, 5 mol %, 0.05 equiv), activator AgNTf₂ (16 mg, 20 mol %, 0.2 equiv), additive chloroacetic acid (19.0 mg, 0.2 mmol, 1.0 equiv), and acetonitrile solvent (1 mL). The vial was sealed under argon atmosphere with a screw cap and placed in a pre-heated metal block at 60 °C, and the reaction mixture was stirred at the same temperature for 12 h. After completion of the reaction, the reaction mixture was cooled to room temperature, filtered through a silica (100-200 mess size) pad using a mixture of EtOAc and petroleum ether (1:1, 100 mL), and concentrated under vacuo. In the optimization Table-1, the crude products were submitted directly for ¹H-NMR analysis for calculating the yields wherein 1,3,5-trimethoxybenzene (11.2 mg, 0.0667 mmol) has been used as an internal standard. For the substrate scope (Scheme – 2, left column), the crude product was purified on a silica gel (100-200 mess size) flash column chromatography using EtOAc/ petroleum ether as eluent (1:99 to 3:97 ν/ν) to obtain the desired cyclopropanation product.

B. Experimental procedure for (4 + 1) annulation.

To an oven-dried 8-mL screw-cap reaction vial, equipped with a magnetic stir bar was charged with sulfoxonium ylides (0.2 mmol) and allyl carbamate derivatives (0.6 mmol, 3.0 equiv), catalyst $[Cp*RhCl_2]_2$ (6.2 mg, 5 mol %, 0.05 equiv), activator AgSbF₆ (13.4 mg, 20 mol %, 0.2 equiv), additive sodium pivalate hydrated (2 times w/w), powder molecular sieves 4 A° (2 times w/w), and HFIP solvent (2 mL). The vial was sealed under argon atmosphere with a screw cap and placed in a pre-heated metal block at 80 °C, and the reaction mixture was stirred at the same temperature for 16 h. After completion of the reaction, the reaction mixture was cooled to room temperature, filtered through a silica (100-200 mess size) pad using a mixture of EtOAc and petroleum ether (1:1, 100 mL), and concentrated under vacuo. In the optimization Table-2, the crude products were submitted directly for ¹H-NMR analysis for calculating the yields wherein 1,3,5-trimethoxybenzene (11.2 mg, 0.0667 mmol) has been used as an internal standard. For the substrate scope (Scheme – 2, right column), the crude product was purified on a silica gel (100-200 mess size) flash column chromatography using EtOAc/petroleum ether as eluent (10:90 to 30:90 v/v) to obtain the desired indanone product.

C. Experimental procedure for the scale-up reaction of (4 + 2) annulation (3aa).

To an oven-dried 50-mL screw-cap reaction vial, equipped with a magnetic stir bar was charged with sulfoxonium ylides **1a** (1.0 g, 5.1 mmol) and allyl ethyl carbonate (2.65 g, 20.4 mmol, 4.0 equiv), $[Cp*RhCl_2]_2(0.15 g, 5 mol \%, 0.05 equiv)$, AgNTf₂ (0.4 g, 20 mol %, 0.2 equiv), additive chloroacetic acid (0.48 mg, 05.1 mmol, 1.0 equiv), and acetonitrile solvent (20 mL, 0.4 M). The tube was sealed under argon atmosphere with a screw cap and placed in a pre-heated oil bath at 60 °C, and the reaction mixture was stirred at the same temperature for 12 h. After completion of the reaction, the reaction mixture of EtOAc and petroleum ether (1:1, 100 mL), and concentrated under vacuo. The crude product was purified on a silica gel (100-200 mess size) flash column chromatography using EtOAc/ petroleum ether as eluent (1:99 to 3:97 v/v) to obtain the desired cyclopropanation product in 70% yield (0.565 g).

D. Experimental procedure for the scale-up reaction of (4 + 1) annulation (5aa).

To an oven-dried 50-mL screw-cap reaction vial, equipped with a magnetic stir bar was charged with sulfoxonium ylides **1a** (1.0 g, 5.1 mmol) and allyl methyl carbamate (1.75 g, 15.3 mmol, 3.0 equiv), $[Cp*RhCl_2]_2$ (0.12 g, 5 mol %, 0.05 equiv), AgSbF₆ (0.35 g, 20 mol %, 0.2 equiv), additive sodium pivalate hydrated (2.0 g, 2 times w/w), powder molecular sieves 4 Å (2.0 g, 2 times w/w), and HFIP solvent (50 mL, 1M). After completion of the reaction, the reaction mixture was cooled to room temperature, filtered through a silica (100-200 mess size) pad using a mixture of EtOAc and petroleum ether (1:1, 100 mL), and concentrated under vacuo. The crude product was purified on a silica gel (100-200 mess size) flash column chromatography using EtOAc/ petroleum ether as eluent (10:90 to 30:90 v/v) to obtain the desired cyclopropanation product in 67% yield (0.802 g).

Unsuccessful Substrates

Scheme-ESI-1. Scope for ylides, allyl carbonates, and allyl carbamates.

Mechanistic Studies

1. Mechanistic Study for (4 + 2) Annulation

(a) Deuteration incorporation studies

To an oven-dried 8-mL screw-cap reaction vial, equipped with a magnetic stir bar was charged with sulfoxonium ylide **1a** (39.3 mg, 0.2 mmol), CD_3CO_2D (38.4 mg, 0.6 mmol, 3.0 equiv), $[Cp*RhCl_2]_2$ (6.2 mg, 5 mol%, 0.05 equiv), AgNTf₂ (16 mg, 20 mol %, 0.2 equiv), chloroacetic acid (19.0 mg, 0.2 mmol, 1.0 equiv), and acetonitrile solvent (1 mL, 0.5 M). The vial was sealed under argon atmosphere sealed with a screw cap and placed in a pre-heated metal block at 60 °C, and the reaction mixture was stirred at the same temperature for 12 h. After completion of the reaction, the reaction mixture was cooled to room temperature. The crude reaction mixture was purified on a silica gel column (5% MeOH in EtOAc) to give the desired product **deuterio-1a** in 46% yield. The deuterium incorporation was calculated from ¹H-NMR spectroscopy (see the following ¹H NMR spectrum).

Kinetic isotopic effect studies using $1a/1a \cdot d_5$ (parallel reactions): Two oven-dried 8-mL screw-cap reaction vials, equipped with a magnetic stir bar was charged with sulfoxonium ylide 1a (39.3 mg, 0.2 mmol), and $1a \cdot d_5$ (40.3 mg, 0.2 mmol) separately. To each vial were added ethyl allyl carbonate 2c (26.1 mg, 0.2 mmol, 1.0 equiv), $[Cp*RhCl_2]_2$ (6.2 mg, 5 mol %, 0.05 equiv), AgNTf_2 (16 mg, 20 mol %, 0.2 equiv), chloroacetic acid (19.0 mg, 0.2 mmol, 1.0 equiv), and acetonitrile solvent (1 mL, 0.5 M). The vial was sealed under argon atmosphere sealed with a screw cap and placed in a pre-heated metal block at 60 °C, and the reaction mixture was stirred at the same temperature for 1 h. After that, the reaction mixtures were cooled to 0 °C rapidly and was quenched with pentane. These two reaction mixtures were combined, and the solvent was removed under vacuum. The residue was purified on a silica gel column to obtain a mixture of **3aa** and **3aa**-*d*_4 as a colorless oil. Based on ¹H-NMR analysis, the calculated *KIE* value is 2.57.

(c) Reaction in the presence of deuterated acetic acid

To an oven-dried 8-mL screw-cap reaction vial, equipped with a magnetic stir bar was charged with sulfoxonium ylides **1a** (40 mg, 0.2 mmol) and allyl ethyl carbonate **2c** (104 mg, 0.8 mmol), catalyst $[Cp*RhCl_2]_2$ (6.2 mg, 5 mol %, 0.05 equiv), AgNTf₂ (16 mg, 20 mol %, 0.2 equiv), chloroacetic acid (19.0 mg, 0.2 mmol, 1.0 equiv), and acetonitrile solvent (1 mL, 0.5 M). The vial was sealed under argon atmosphere sealed with a screw cap and placed in a pre-heated metal block at 60 °C, and the reaction mixture was stirred at the same temperature for 12 h. After completion of the reaction, the reaction mixture was cooled to room temperature, filtered through a short silica (100-200 mess size) bed using a mixture of EtOAc and petroleum ether (1:1, 100 mL), and concentrated under vacuo. The crude product was purified on a silica gel (100-200 mess size) flash column chromatography using EtOAc/ petroleum ether as eluent (1:99 to 3:97 *v/v*) to obtain the desired cyclopropanation product **3aa** in 56% yield (18 mg). No deuteration incorporation was observed in cyclopropane ring.

2. Mechanistic Study for (4 + 1) Annulation

(d) Deuteration incorporation studies

To an oven-dried 8-mL screw-cap reaction vial, equipped with a magnetic stir bar was charged with sulfoxonium ylide **1a** (39.3 mg, 0.2 mmol), CD₃OD (72.0 mg, 2.0 mmol, 10.0 equiv), $[Cp*RhCl_2]_2$ (6.2 mg, 5 mol%, 0.05 equiv), AgNTf₂ (16 mg, 20 mol %, 0.2 equiv), chloroacetic acid (19.0 mg, 0.2 mmol, 1.0 equiv), and acetonitrile solvent (1 mL, 0.5 M). The vial was sealed under argon atmosphere sealed with a screw cap and placed in a pre-heated metal block at 80 °C, and the reaction mixture was stirred at the same temperature for 1 h. After completion of the reaction, the reaction mixture was cooled to room temperature. The crude reaction mixture was purified on a silica gel column (5% MeOH in EtOAc) to give the desired product **deuterio-1a** in 54% yield. The deuterium incorporation was calculated from ¹H-NMR spectroscopy (see the following ¹H NMR spectrum).

Kinetic isotopic effect studies using $1a/1a \cdot d_5$ (parallel reactions): Two oven-dried 8-mL screw-cap reaction vials, equipped with a magnetic stir bar was charged with sulfoxonium ylide 1a (39.3 mg, 0.2 mmol), and $1a \cdot d_5$ (40.3 mg, 0.2 mmol) separately. To each vial were added allyl methyl carbamate 4a (23.1 mg, 0.2 mmol, 1.0 equiv), [Cp*RhCl₂]₂ (6.2 mg, 5 mol %, 0.05 equiv), AgSbF₆ (13.4 mg, 20 mol %, 0.2 equiv), sodium pivalate hydrated (80 mg, 2 times w/w), powder molecular sieves 4 A° (80 mg, 2 times w/w), and HFIP solvent (2 mL, 1M). The vial was sealed under argon atmosphere sealed with a screw cap and placed in a pre-heated metal block at 80 °C, and the reaction mixture was stirred at the same temperature for 1 h. After that, the reaction mixtures were cooled to 0 °C rapidly and was quenched with pentane. After that, the crude products were directly submitted for ¹H–NMR analysis for calculating the yield, wherein 1,3,5-trimethoxybenzene (11.2 mg, 0.667 mmol) has been used as an internal standard. The calculated yield for substrate 1a is 67%, whereas for substrate $1a - d_5$ is 49%. Based on observed yields, the calculated *KIE* value is 1.36.

(f) Reaction in the presence of deuterated sulfoxonium ylides

To an oven-dried 8-mL screw-cap reaction vial, equipped with a magnetic stir bar was charged with deuterated sulfoxonium ylides $1a-d_5$ (40.3 mg, 0.2 mmol) and allyl methyl carbamate 4a (69.1 mg, 0.6 mmol, 3.0 equiv), [Cp*RhCl₂]₂ (6.2 mg, 5 mol %, 0.05 equiv), AgSbF₆ (13.7 mg, 20 mol %, 0.2 equiv), sodium pivalate hydrated (80 mg, 2 times w/w), powder molecular sieves $4A^{\circ}$ (80 mg, 2 times w/w), and HFIP solvent (2 mL, 1 M). The vial was sealed under argon atmosphere sealed with a screw cap and placed in a pre-heated metal block at 80 °C, and the reaction mixture was stirred at the same temperature for 16 h. After completion of the reaction, the reaction mixture was cooled to room temperature and the crude product was purified on a silica gel (100-200 mess size) flash column chromatography using EtOAc/ petroleum ether as eluent (10:90 to 30:70 v/v) to obtain the desired product **5aa-d**₄ in 48% yield (28.1 mg). No deuteration incorporation was observed in aliphatic regions.

(g) Control studies.

Deuterium labeling experiments of sulfoxonium ylide **1a** were conducted to gain insights into the reaction mechanism (Scheme 4). Deuteration of sulfoxonium ylide under both annulation conditions revealed that C-H activation is reversible, and α -carbon is involved in the metallacycle (Schemes 4a and 4d). The kinetic isotopic effect for both reactions was calculated by parallel reactions of undeuterated sulfoxonium ylide **1a** and pentadeuterated sulfoxonium ylide **1a**-*d*₅ with allyl carbonate (**2a**) and allyl carbamate (**4a**) under their respective optimal conditions for 1 h. The KIE value of 2.57 was observed for (4+2) annulation, suggesting that the C-H activation step may be the rate-determining in the catalytic cycle, whereas the KIE value of 1.36 was observed for (4+1) annulation, suggesting that the C-H activation of the undeuterated product **3aa**, suggesting that the reaction does not involve the regeneration of the catalyst by protodemetallation (Scheme 4c). When the deuterated sulfoxonium ylides **1a**-*d*₅ were reacted with **4a**, no deuterium incorporation was observed in the aliphatic regions of the product (Scheme 4f).

Characterization Data

1,1a,7,7a-Tetrahydro-2H-cyclopropa[b]naphthalen-2-one (3aa).

Prepared as shown in *general experimental procedure A*. **Yield** = 73% (42.2 mg); **Appearance** - Yellow Liquid; $R_f = 0.7$ (10% EtOAc /Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 7.3 Hz, 1H), 7.45 (td, J = 7.5, 1.1 Hz, 1H), 7.30 (t, J = 7.5 Hz, 1H), 7.17 (d, J = 7.6 Hz, 1H), 3.33 (dd, J = 17.4, 4.9 Hz, 1H), 3.21 (d, J = 17.4 Hz, 1H),

2.14 (td, J = 8.2, 4.2 Hz, 1H), 2.02 – 1.89 (m, 1H), 1.32 (td, J = 8.5, 4.9 Hz, 1H), 0.83 (dd, J = 10.6, 4.7 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 198.4, 138.6, 133.2, 131.3, 129.1, 127.2, 127.1, 28.1, 25.5, 14.1, 13.0; FT-IR (cm⁻¹) 2922, 1670, 1601; HRMS (ESI-TOF) m/z [M + H]⁺ Calcd for C₁₁H₁₀OH 159.0810; Found 159.0815.

5-Methyl-1,1a,7,7a-tetrahydro-2H-cyclopropa[b]naphthalen-2-one (3ba).

Prepared as shown in *general experimental procedure A*. Yield = 70% (42.2 mg); Appearance – Pale Yellow Liquid; $R_f = 0.60$ (10% EtOAc /Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.67 (s, 1H), 7.27 (t, J = 3.1 Hz, 1H), 7.06 (d, J = 7.8 Hz, 1H), 3.28 (dd, J = 17.3, 4.8 Hz, 1H), 3.17 (d, J = 17.2 Hz, 1H), 2.34 (s, 3H), 2.12 (td, J = 8.0,

 $\overline{4.3}$ Hz, 1H), 1.92 (tt, J = 7.7, 3.8 Hz, 1H), 1.34 – 1.27 (m, 1H), 0.81 (dd, J = 10.6, 4.6 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 198.8, 136.9, 135.7, 134.1, 131.0, 128.9, 127.2, 27.7, 25.5, 21.0, 14.2, 13.0; FT-IR (cm⁻¹) 2119, 1671, 1612; HRMS (ESI-TOF) m/z [M + H]⁺ Calcd for C₁₂H₁₂OH 173.0966; Found 173.0966.

5-(tert-Butyl)-1,1a,7,7a-tetrahydro-2H-cyclopropa[b]naphthalen-2-one (3ca).

Prepared as shown in *general experimental procedure A*. **Yield** = 55% (42.2 mg); **Appearance** – Yellow Liquid; $R_f = 0.7$ (10% EtOAc /Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 8.2 Hz, 1H), 7.33 (d, J = 8.2 Hz, 1H), 7.15 (s, 1H), 3.33 (dd, J = 17.3, 4.9 Hz, 1H), 3.19 (d, J = 17.4 Hz, 1H), 2.10 (td, J = 8.4, 4.3 Hz,

1H), 1.96 - 1.86 (m, 1H), 1.71 (s, 1H), 1.31 (s, 9H), 0.83 (dd, J = 10.5, 4.7 Hz, 1H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 198.2, 156.8, 138.5, 128.7, 127.0, 125.7, 124.5, 35.1, 31.2, 28.3, 25.3, 14.1, 13.0. FT-IR (cm⁻¹) 2962, 1671, 1606; HRMS (ESI-TOF) m/z [M + H]⁺ Calcd for C₁₅H₁₈OH 215.1436; Found 215.1437.

5-Bromo-1,1a,7,7a-tetrahydro-2H-cyclopropa[b]naphthalen-2-one (3da).

Prepared as shown in *general experimental procedure A*. **Yield** = 61% (42.2 mg); **Appearance** – Yellow Liquid; $R_f = 0.70$ (10% EtOAc /Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8.3 Hz, 1H), 7.44 (d, J = 8.3 Hz, 1H), 7.36 (s, 1H), 3.32 (dd, J = 17.6, 4.9 Hz, 1H), 3.18 (d, J = 17.5 Hz, 1H), 2.14 (td, J = 8.4, 4.3 Hz,

1H), 1.94 (tt, J = 7.6, 3.8 Hz, 1H), 1.35 (td, J = 8.5, 5.0 Hz, 1H), 0.82 (dd, J = 10.6, 4.8 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 197.4, 140.4, 131.9, 130.6, 130.1, 128.9, 128.1, 27.8, 25.3, 14.1, 12.9;FT-IR (cm⁻¹) 2922, 1671, 1587; HRMS (ESI-TOF) m/z [M + H]⁺ Calcd for C₁₁H₉BrOH 236.9915; Found 236.9915.

5-Chloro-1,1a,7,7a-tetrahydro-2H-cyclopropa[b]naphthalen-2-one (3ea).

Prepared as shown in *general experimental procedure A*. **Yield** = 55% (42.2 mg); **Appearance** – Yellow Liquid; $R_f = 0.60$ (10% EtOAc /Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.3 Hz, 1H), 7.30 – 7.27 (m, 1H), 7.18 (s, 1H), 3.32 (dd, J = 17.6, 5.0 Hz, 1H), 3.19 (d, J = 17.5 Hz, 1H), 2.14 (td, J = 8.0, 4.3 Hz, 1H),

2.00 – 1.90 (m, 1H), 1.39 – 1.32 (m, 1H), 0.82 (dd, J = 10.7, 4.8 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 197.2, 140.3, 139.4, 129.7, 128.9, 128.8, 127.7, 27.9, 25.3, 14.1, 12.9; FT-IR (cm⁻¹) 2923, 1673, 1592; HRMS (ESI-TOF) m/z [M + H]⁺ Calcd for C₁₁H₉ClOH 193.0420; Found 193.0422.

5-Iodo-1,1a,7,7a-tetrahydro-2H-cyclopropa[b]naphthalen-2-one (3fa).

Prepared as shown in *general experimental procedure A*. **Yield** = 69% (39 mg); **Appearance** – Yellow Liquid; $R_f = 0.60$ (10% EtOAc /Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 8.2 Hz, 1H), 7.63 – 7.47 (m, 2H), 3.30 (dd, J = 17.6, 5.0 Hz, 1H), 3.16 (d, J = 17.5 Hz, 1H), 2.14 (td, J = 8.3, 4.3 Hz, 1H), 2.01 – 1.89

(m, 1H), 1.35 (td, J = 8.5, 5.0 Hz, 1H), 0.82 (dd, J = 10.7, 4.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 197.7, 140.3, 137.9, 136.5, 130.6, 128.6, 100.9, 27.6, 25.3, 14.1, 12.9; FT-IR (cm⁻¹) 2922, 1668, 1581; HRMS (ESI-TOF) m/z [M + H]⁺ Calcd for C₁₁H₉IOH 284.9776; Found 284.9779.

5-Methoxy-1,1a,7,7a-tetrahydro-2H-cyclopropa[b]naphthalen-2-one (3ga).

Prepared as shown in *general experimental procedure A*. **Yield** = 42% (42.2 mg); **Appearance** – Yellow Liquid; $R_f = 0.60$ (20% EtOAc /Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 8.7 Hz, 1H), 6.82 (dd, J = 8.7, 2.4 Hz, 1H), 6.63 (s, 1H), 3.83 (s, 3H), 3.31 (dd, J = 17.4, 5.1 Hz, 1H), 3.17 (d, J = 17.4 Hz, 1H), 2.08

(td, J = 8.3, 4.3 Hz, 1H), 1.89 (dt, J = 12.8, 6.4 Hz, 1H), 1.34 – 1.27 (m, 1H), 0.79 (dd, J = 10.6, 4.6 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 197.4, 163.6, 141.0, 129.4, 124.4, 113.3, 113.2, 55.5, 28.4, 24.9, 13.9, 13.1; FT-IR (cm⁻¹) 2839, 1662, 1601; HRMS (ESI-TOF) m/z [M + H]⁺ Calcd for C₁₂H₁₂O₂H 189.0916; Found 189.0919.

3-Methoxy-1,1a,7,7a-tetrahydro-2H-cyclopropa[b]naphthalen-2-one (3ha).

Prepared as shown in general experimental procedure A. Yield = 58% (42.2 mg); Appearance – Yellow Liquid; $R_f = 0.60$ (20% EtOAc /Hexane); ¹H NMR (400 MHz, **CDCl**₃) δ 7.34 (t, J = 8.0 Hz, 1H), 6.83 (d, J = 8.4 Hz, 1H), 6.74 (d, J = 7.6 Hz, 1H), 3.86 (s, 3H), 3.28 (dd, J = 17.0, 4.4 Hz, 1H), 3.13 (d, J = 16.9 Hz, 1H), 2.14 (td, J = 8.3, 4.3 Hz, 1H), 1.92 – 1.86 (m, 1H), 1.25 – 1.19 (m, 1H), 0.88 (dd, J = 10.6, 4.7 Hz,

1H); ¹³C NMR (101 MHz, CDCl₃ δ 198.4, 158.8, 140.7, 133.2, 121.2, 121.0, 110.4, 56.1, 29.2, 27.8, 14.5, 13.3; **FT-IR** (cm⁻¹) 2882, 1669, 1265; **HRMS** (ESI-TOF) m/z [M + Na]⁺ Calcd for C₁₂H₁₂O₂Na 189.0916; Found 189.0922.

4-Methoxy-1,1a,7,7a-tetrahydro-2H-cyclopropa[b]naphthalen-2-one(3ia).

Prepared as shown in general experimental procedure A. Yield = 32% (42.2 mg); Appearance – Yellow Liquid; $R_f = 0.6$ (10% EtOAc /Hexane); ¹H NMR (400 **MHz, CDCl**₃) δ 7.36 (d, *J* = 2.7 Hz, 1H), 7.09 (d, *J* = 8.4 Hz, 1H), 7.03 (dd, *J* = 8.4, 2.7 Hz, 1H), 3.82 (s, 3H), 3.26 (dd, J = 17.1, 4.9 Hz, 1H), 3.16 (d, J = 17.2 Hz, 1H), 2.13 (td, J = 8.2, 4.3 Hz, 1H), 1.93 (dt, J = 12.6, 6.3 Hz, 1H), 1.34 –

1.29 (m, 1H), 0.82 (dd, J = 10.6, 4.6 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 198.4, 158.8, 132.0, 130.9, 130.2, 121.3, 109.5, 55.6, 27.3, 25.3, 14.3, 13.0; FT-IR (cm⁻¹) 2838, 1668, 1608; HRMS (ESI-**TOF**) m/z [M + H]⁺ Calculated for C₁₂H₁₂O₂H 189.0916; Found 189.0920.

6-Methoxy-1,1a,7,7a-tetrahydro-2H-cyclopropa[b]naphthalen-2-one (3ia').

Prepared as shown in general experimental procedure A. Yield = 60% (42.2 mg); Appearance – Yellow Liquid; $R_f = 0.6$ (10% EtOAc /Hexane); ¹H NMR (400 MHz, **CDCl**₃) δ 7.49 (d, J = 7.8 Hz, 1H), 7.28 – 7.24 (m, 1H), 7.00 (d, J = 8.1 Hz, 1H), 3.85 (s, 3H), 3.49 (d, *J* = 18.4 Hz, 1H), 2.89 (dd, *J* = 18.4, 5.4 Hz, 1H), 2.17 – 2.08 (m, 1H), 2.04 - 1.89 (m, 1H), 1.37 - 1.28 (m, 1H), 0.81 (dd, J = 10.6, 4.6 Hz, 1H); ${}^{13}C{}^{1}H$ NMR (100 MHz,

CDCl₃) δ 198.6, 157.0, 132.1, 127.9, 127.2, 118.9, 114.1, 55.7, 25.3, 21.3, 14.5, 12.9; FT-IR (cm⁻¹) 2930, 1672, 1581; **HRMS (ESI-TOF)** m/z [M + H]⁺ Calcd for C₁₂H₁₂O₂H 189.0916; Found 189.0921.

3,6-Dimethoxy-1,1a,7,7a-tetrahydro-2H-cyclopropa[b]naphthalen-2-one (3ja).

Prepared as shown in general experimental procedure A. Yield = 71% (42.2 mg); Appearance – Yellow Liquid; $R_f = 0.5$ (20% EtOAc /Hexane); ¹H NMR (400 MHz, **CDCl**₃) δ 6.92 (d, J = 9.0 Hz, 1H), 6.78 (d, J = 9.1 Hz, 1H), 3.82 (s, 3H), 3.79 (s, 3H), 3.51 (d, *J* = 18.0 Hz, 1H), 2.82 (dd, *J* = 18.0, 4.8 Hz, 1H), 2.13 (td, *J* = 8.3, 4.2 Hz, 1H), 2.02 - 1.83 (m, 1H), 1.21 (td, J = 8.1, 5.0 Hz, 1H), 0.87 (dd, J = 10.5, 4.8 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.7, 152.7, 150.6, 129.3, 122.3, 114.5, 110.4,

56.6, 56.1, 27.8, 21.9, 15.0, 13.1; **FT-IR** (cm⁻¹) 2927, 1669, 1134; **HRMS** (ESI-TOF) m/z [M + Na]⁺ Calcd for C₁₃H₁₄O₃Na 241.0841; Found 241.0837.

4,6-Dimethoxy-1,1a,7,7a-tetrahydro-2H-cyclopropa[b]naphthalen-2-one (3ka).

Prepared as shown in *general experimental procedure A*. Yield = 64% (42.2 mg); Appearance – Yellow Liquid; $R_f = 0.60$ (20% EtOAc /Hexane); ¹H NMR (400 MHz, CDCl₃) δ 6.98 (d, J = 2.4 Hz, 1H), 6.60 (d, J = 2.4 Hz, 1H), 3.82 (s, 3H), 3.81 (s, 3H), 3.39 (d, J = 18.2 Hz, 1H), 2.83 (dd, J = 18.2, 5.5 Hz, 1H), 2.11 (ddd,

J = 6.0, 5.2, 2.6 Hz, 1H), 2.00 – 1.89 (m, 1H), 1.30 (td, J = 8.8, 4.7 Hz, 1H), 0.79 (dd, J = 10.5, 4.5 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃ δ 198.5, 159.2, 158.2, 132.3, 120.9, 103.7, 100.3, 55.7, 55.6, 25.3, 21.0, 14.5, 13.0; FT-IR (cm⁻¹) 2927, 1669, 1608; HRMS (ESI-TOF) m/z [M + H]⁺ Calcd for C₁₃H₁₄O₃H 219.1021; Found 219.1023.

5-Methoxy-4-methyl-1,1a,7,7a-tetrahydro-2H-cyclopropa[b]naphthalen-2-one (3la).

Prepared as shown in *general experimental procedure A*. Yield = 67% (42.2 mg); Appearance – Yellow liquid; $R_f = 0.5$ (20%EtOAc /Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.67 (s, J = 8.1 Hz, 1H), 6.53 (s, J = 8.1 Hz, 1H), 3.85 (s, 3H), 3.30 (dd, J = 17.4, 5.1 Hz, 1H), 3.15 (d, J = 17.4 Hz, 1H), 2.18 (s, J = 8.4, 4.3 Hz, 3H), 2.10 – 2.01 (m, 1H), 1.87 (dt, J=12.9, 6.4 Hz 1H), 1.28 (dd,

 $J = 8.6, 3.8 \text{ Hz}, 1\text{H}, 0.77(\text{dd}, J=10.5, 4.6\text{Hz}, 1\text{H}); {}^{13}\text{C}\{{}^{1}\text{H}\} \text{ NMR (100 MHz, CDCl}_{3}) \delta 197.6, 161.9, 138.7, 129.4, 126.0, 123.6, 109.2, 55.6, 28.2, 24.8, 15.9, 13.8, 13.1; FT-IR (cm⁻¹) 2923, 1658, 1607; HRMS (ESI-TOF) m/z [M + H]⁺ Calcd for C₁₃H₁₄O₂H 203.1072; Found 203.1073.$

7-Oxo-1a,2,7,7a-tetrahydro-1H-cyclopropa[b]naphthalene-4-carbonitrile (3ma).

Prepared as shown in *general experimental procedure A*. Yield = 32% (42.2 mg); Appearance – Pale Yellow Liquid; $R_f = 0.4$ (10% EtOAc /Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 8.0 Hz, 1H), 7.60 (d, J = 8.0 Hz, 1H), 7.52 (s, 1H), 3.37 (dd, J = 17.6, 4.8 Hz, 1H), 3.28 (d, J = 17.6 Hz, 1H), 2.22

(td, J = 8.3, 4.3 Hz, 1H), 2.10 - 1.97 (m, 1H), 1.42 (ddd, J = 9.1, 8.1, 5.3 Hz, 1.1)

1H), 0.84 (dd, *J* = 10.7, 5.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 196.7, 139.4, 134.5, 132.9, 130.6, 128.0, 118.1, 116.5, 27.9, 25.7, 14.4, 12.9; FT-IR (cm⁻¹) 2926, 2229, 1669; HRMS (ESI-TOF) m/z [M + H]⁺ Calcd for C₁₂H₉NOH 184.0762; Found 184.07766.

5-(Trifluoromethyl)-1,1a,7,7a-tetrahydro-2H-cyclopropa[b]naphthalen-2-one (3na).

Prepared as shown in *general experimental procedure A*. Yield = 49% (42.2 mg); Appearance – Pale Yellow Liquid; R_f =0.60 (10% EtOAc /Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.1 Hz, 1H), 7.56 (d, *J* = 8.1 Hz, 1H), 7.46 (s, 1H), 3.39 (dd, *J* = 17.6, 4.7 Hz, 1H), 3.30 (d, *J* = 17.5 Hz, 1H), 2.21 (td, *J* = 8.4, 4.3 Hz,

1H), 2.08 - 1.95 (m, 1H), 1.44 - 1.36 (m, 1H), 0.85 (dd, J = 10.7, 4.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 197.2, 139.2, 134.6 (q, $J_{C-F} = 32.6$ Hz), 134.0, 127.9, 126.1 (q, $J_{C-F} = 3.5$ Hz), 124.0 (q, J_{C-F} = 3.5 Hz), 124.0 (q,

3.6 Hz), 123.7 (q, $J_{C-F} = 272.9$ Hz), 28.1, 25.6, 14.4, 12.9; ¹⁹F NMR (377 MHz, CDCl₃) δ -63.16. FT-IR (cm⁻¹) 2926, 1678, 1329; HRMS (ESI-TOF) m/z $[M + H]^+$ Calcd for C₁₂H₉F₃OH 227.0684; Found 227.0686.

4-Methyl-1,1a,7,7a-tetrahydro-2H-cyclopropa[b]naphthalen-2-one (3oa).

3oa

Prepared as shown in general experimental procedure A. Yield = 78% (42.2 mg); Appearance – Colourless Liquid; $R_f = 0.6$ (10% EtOAc /Hexane); ¹H NMR (400 **MHz, CDCl**₃) δ 7.67 (s, 1H), 7.26 (d, J = 4.5 Hz, 1H), 7.06 (d, J = 7.8 Hz, 1H), 3.28 (dd, J = 17.4, 4.7 Hz, 1H), 3.17 (d, J = 17.2 Hz, 1H), 2.34 (s, 3H), 2.12 (td, J = 8.4, 4.3 Hz, 1H), 1.93 (dd, J = 12.7, 6.3 Hz, 1H), 1.34 – 1.28 (m, 1H), 0.81 (dd, J = 10.6, 4.6 Hz, 1H). ¹³C{¹H} **NMR** (101 MHz, CDCl₃ & 198.8, 136.9, 135.7, 134.1, 131.0, 128.9, 127.2, 27.7, 25.5, 21.0, 14.2, 13.0; **FT-IR** (cm⁻¹) 2921, 1671, 1611; **HRMS** (ESI-TOF) m/z [M + H]⁺ Calcd for C₁₂H₁₂OH 173.0966; Found

4-(Trifluoromethyl)-1,1a,7,7a-tetrahydro-2H-cyclopropa[b]naphthalen-2-one (3pa).

173.0965.

Prepared as shown in general experimental procedure A. Yield = 40% (42.2 mg); Appearance – Pale Yellow Liquid; $R_f = 0.7$ (10% EtOAc /Hexane); ¹H NMR (400 **MHz, CDCl**₃) δ 8.16 (s, 1H), 7.69 (dd, J = 8.0, 1.3 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 3.38 (dd, J = 18.0, 4.6 Hz, 1H), 3.30 (d, J = 17.7 Hz, 1H), 2.20 (td, J = 8.3,

4.3 Hz, 1H), 2.05 - 1.95 (m, 1H), 1.45 - 1.35 (m, 1H), 0.84 (dd, J = 10.7, 5.0 Hz, 1H); ${}^{13}C{}^{1}H$ NMR (**101 MHz, CDCl**₃ δ 196.9, 142.3, 131.6, 130.1, 129.8, 129.4 (dd, $J_{C-H} = 3.3 \text{ Hz}$), 124.4 (q, $J_{C-H} = 3.8 \text{ Hz}$), 123.9 (q, $J_{C-H} = 272.2 \text{ Hz}$), 28.1, 25.4, 14.3, 12.9; ¹⁹F NMR (377 MHz, CDCl₃) δ -62.74; FT-IR (cm⁻¹) 2926, 1676, 1616; **HRMS (ESI-TOF) m/z** [M + H]⁺ Calcd for C₁₂H₉F₃OH 227.0684; Found 227.0686.

Methyl (2-(3-oxo-2,3-dihydro-1H-inden-1-yl)ethyl)carbamate (5aa)

Prepared as shown in *general experimental procedure B*. **Yield** = 71% (66.1mg); **Appearance** – Yellow Oil; $R_f = 0.40$ (40% EtOAc /Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 7.6 Hz, 1H), 7.54 (t, J = 7.4 Hz, 1H), 7.46 (d, J = 7.5 Hz, 1H), 7.32 (t, J = 7.4 Hz, 1H), 4.83 (s, 1H), 3.60 (s, 3H), 3.32 (ddd, J = 30.2, 16.9, 5.1 Hz, 3H), 2.84 (dd, J = 19.0, 7.5 Hz, 1H), 2.33 (dd, J = 19.0, 3.3

Hz, 1H), 2.10 (dd, J = 12.9, 4.8 Hz, 1H), 1.61 (ddt, J = 13.5, 9.9, 6.7 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 205.6, 157.8, 157.0, 136.6, 134.8, 127.7, 125.5, 123.6, 52.0, 42.9, 39.5, 36.4, 35.7; FT-IR (cm⁻¹) 3342, 2947, 1710, 1534, 1023, 763; HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₁₃H₁₅NO₃Na 256.0950; Found 256.0950.

Methyl (2-(6-methyl-3-oxo-2,3-dihydro-1H-inden-1-yl)ethyl)carbamate (5ba).

Prepared as shown in *general experimental procedure B*. **Yield** = 68% (67.1 mg); **Appearance** – Yellow Oil; $R_f = 0.45(40\% \text{ EtOAc /Hexane})$; ¹**H NMR (400 MHz, CDCl₃)** δ 7.69 (d, J = 8.5 Hz, 1H), 7.02 – 6.88 (m, 2H), 4.89 (s, 1H), 3.91 (s, 3H), 3.70 (s, 3H), 3.35 (d, J = 6.6 Hz, 3H), 2.90 (dd, J = 18.7, 7.5 Hz, 1H), 2.39 (dd, J = 18.8, 3.2 Hz, 1H), 2.18 (d, J = 7.6 Hz, 1H), 1.69 (ddt, J = 13.5,

10.0, 6.7 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 205.8, 157.0, 155.2, 137.7, 136.7, 136.0, 125.1, 123.5, 52.0, 43.2, 39.5, 36.5, 35.3, 21.0; FT-IR (cm⁻¹) 2922, 2853, 2363, 1701, 1614, 1533, 1252, 1022; HRMS (ESI-TOF) m/z [M + Na] Calcd for C₁₄H₁₇NO₃Na 270.1106; Found 270.1106.

Methyl (2-(6-(tert-butyl)-3-oxo-2,3-dihydro-1H-inden-1-yl)ethyl)carbamate (5ca).

Prepared as shown in *general experimental procedure B*. **Yield** = 65% (75.1 mg); **Appearance** – Yellow Oil; $R_f = 0.40$ (20% EtOAc /Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 8.1 Hz, 1H), 7.43 (s, 1H), 7.36 (d, J = 8.1 Hz, 1H), 4.99 (s, 1H), 3.59 (s, 3H), 3.35 – 3.20 (m, 3H), 2.81 (dd, J = 18.9, 7.4 Hz, 1H), 2.31 (dd, J = 18.9, 3.1 Hz, 1H), 2.19 – 2.01 (m, 1H), 1.59 (dd, J

= 17.3, 13.5, 6.7 Hz, 1H), 1.28 (s, 9H) ;¹³C{¹H} NMR (100 MHz, CDCl₃) δ 203.9, 165.3, 160.9, 157.1, 129.8, 125.2, 115.5, 108.7, 55.6, 52.0, 43.0, 39.4, 36.3, 35.6 ;FT-IR (cm⁻¹) 3342, 2961, 1699, 1533, 1255, 756; HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₁₇H₂₃NO₃Na 312.1576; Found 312.1574.

Methyl (2-(6-methoxy-3-oxo-2,3-dihydro-1H-inden-1-yl)ethyl)carbamate (5da).

Prepared as shown in *general experimental procedure B*. **Yield** = 67% (70.0 mg); **Appearance** – Yellow Oil; $R_f = 0.40$ (40% EtOAc /Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 8.5 Hz, 1H), 6.91 (dd, J = 14.2, 5.7 Hz, 2H), 5.03 (s, 1H), 3.90 (d, J = 6.8 Hz, 3H), 3.67 (s, 3H), 3.39 – 3.26 (m, 3H), 2.87 (dd, J = 18.8, 7.5 Hz, 1H), 2.37 (dd, J = 18.8, 3.3 Hz, 1H), 2.22 – 2.08

(m, 1H), 1.66 (ddt, J = 13.4, 10.1, 6.7 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 203.9, 165.3, 160.9,

157.1, 129.8, 125.2, 115.5, 108.7, 55.6, 52.5, 43.0, 39.4, 36.3, 35.6;**FT-IR** (**cm**⁻¹) 3338, 2943, 1698, 1599,1193 ; **HRMS** (**ESI-TOF**) **m/z** [M + Na]⁺ Calcd for C₁₄H₁₇NO₄Na 286.1055; Found 286.1053.

Methyl (2-(6-cyano-3-oxo-2,3-dihydro-1H-inden-1-yl)ethyl)carbamate (5ea).

Prepared as shown in *general experimental procedure B*. **Yield** = 46% (47.4 mg); **Appearance** – Yellow Oil; $R_f = 0.35$ (40% EtOAc /Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.79 (m, 2H), 7.68 (d, J = 7.9 Hz, 1H), 4.88 (s, 1H), 3.68 (s, 3H), 3.49 (dd, J = 10.1, 7.4 Hz, 2H), 3.35 (d, J = 6.3 Hz, 1H), 3.00 (dd, J = 19.3, 7.6 Hz, 1H), 2.49 (dd, J = 19.3, 3.2

Hz, 1H), 1.81 – 1.59 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 203.9, 157.7, 157.1, 139.5, 131.4, 129.8, 124.4, 117.9, 117.8, 76.6, 52.2, 42.8, 39.2, 36.4, 35.7; FT-IR (cm⁻¹) 3351, 1718, 1531, 1255, 1192, 1037; HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₁₄H₁₄N₂O₃Na 281.0902; Found 281.0900.

Methyl (2-(3-oxo-6-(trifluoromethyl)-2,3-dihydro-1H-inden-1-yl)ethyl)carbamate (5fa).

Prepared as shown in *general experimental procedure B*. **Yield** = 48% (57.4mg); **Appearance** – Yellow Oil; $R_f = 0.50$ (40% EtOAc /Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.78 (m, 2H), 7.66 (d, J = 7.9 Hz, 1H), 4.87 (s, 1H), 3.68 (s, 3H), 3.49 (d, J = 3.2 Hz, 1H), 3.35 (s, 2H), 3.00 (dd, J = 19.2, 7.5 Hz, 1H), 2.49 (dd, J = 19.2, 3.3 Hz, 1H), 2.31 – 2.15 (m, 1H), 1.79

- 1.63 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 204.5, 158.0, 157.2, 139.2, 136.3, 136.0, 124.9, 124.3, 122.7, 52.2, 43.0, 39.4, 36.5, 35.8; ¹⁹F NMR (377 MHz, CDCl₃) δ -62.78; FT-IR (cm⁻¹) 3346, 1718, 1534, 1329, 1272, 1061; HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₁₄H₁₄F₃NO₃Na 324.0823; Found 324.0824.

Methyl (2-(6-bromo-3-oxo-2,3-dihydro-1H-inden-1-yl)ethyl)carbamate (5ga).

Prepared as shown in *general experimental procedure B*. **Yield** = 53% (65.9mg); **Appearance** –Yellow Oil; $R_f = 0.50$ (40% EtOAc /Hexane); ¹H **NMR (400 MHz, CDCl₃)** δ 7.70 (s, 1H), 7.58 (d, J = 8.1 Hz, 1H), 7.51 (d, J = 8.1 Hz, 1H), 5.07 (s, 1H), 3.66 (s, 3H), 3.41 (ddd, J = 14.1, 7.5, 3.6 Hz, 1H), 3.32 (dd, J = 13.2, 6.5 Hz, 2H), 2.90 (dd, J = 19.1, 7.5 Hz, 1H), 2.39 (dd, J = 13.2, 6.5 Hz, 2H), 2.90 (dd, J = 19.1, 7.5 Hz, 1H), 2.39 (dd, J = 10.1, 7.5 Hz, 10.1 Hz,

19.1, 3.3 Hz 1H), 2.22 – 2.10 (m, 1H), 1.66 (ddt, J = 13.4, 10.4, 6.5 Hz, 1H): ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 204.3, 159.5, 157.0, 135.3, 131.3, 130.1, 128.8, 124.8, 52.0, 42.7, 39.3, 36.2, 35.5 ; FT-IR (cm⁻¹) 3337, 2922, 2363, 1716, 1594, 1533, 1443, 1264, 1026; HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₁₃H₁₄BrNO₃Na 334.0055; Found 334.0053.

Methyl (2-(6-iodo-3-oxo-2,3-dihydro-1H-inden-1-yl)ethyl)carbamate (5ha).

Prepared as shown in *general experimental procedure B*. Yield = 40% (57.2mg); Appearance – Yellow Oil; *R_f* = 0.4 (40% EtOAc /Hexane);
¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.73 (d, *J* = 8.0 Hz, 1H), 7.43 (d, *J* = 8.0 Hz, 1H), 5.08 (s, 1H), 3.67 (s, 3H), 3.39 (dd, *J* = 10.1, 7.3 Hz, 1H), 3.32 (d, *J* = 6.2 Hz, 2H), 2.87 (dd, *J* = 19.1, 7.5 Hz, 1H), 2.37 (dd, *J* = 19.1, 3.1 Hz,

1H), 2.16 (d, *J* = 7.6 Hz, 1H), 1.66 (ddd, *J* = 16.8, 13.3, 6.5 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 204.6, 159.8, 157.0, 137.0, 135.8, 135.0, 124.7, 103.2, 52.0, 42.5, 39.3, 36.2, 35.4; FT-IR (cm⁻¹) 3335, 2922, 2363, 2331, 1710, 1588, 1533, 1263, 1193, 1023; HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₁₃H₁₄NO₃INa 381.9916; Found 381.9913.

Methyl (2-(4-chloro-3-oxo-2,3-dihydro-1H-inden-1-yl)ethyl)carbamate (5ia).

Prepared as shown in *general experimental procedure B*. **Yield** = 58% (61.9 mg); **Appearance** – Yellow Oil; $R_f = 0.40$ (40% EtOAc /Hexane); ¹**H NMR** (400 MHz, CDCl₃) δ 7.51 (t, J = 7.7 Hz, 1H), 7.43 (d, J = 7.5 Hz, 1H), 7.33 (d, J = 7.7 Hz, 1H), 4.86 (s, 1H), 3.68 (s, 3H), 3.42 – 3.24 (m, 3H), 2.95 (dd, J = 18.9, 7.7 Hz, 1H), 2.45 (dd, J = 18.9, 3.5 Hz, 1H), 2.23 – 2.07 (m, 1H), 1.67 (m,

J = 13.5, 10.1, 6.7 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 202.4, 160.2, 157.0, 135.1, 132.4, 131.8, 129.4, 123.9, 52.1, 43.5, 39.3, 36.5, 34.9; FT-IR (cm⁻¹) 3342, 1715, 1591, 1458, 1235, 1136, 1025; HRMS (ESI-TOF) m/z [M + Na] Calcd for C₁₃H₁₄ClNO₃Na 290.0560; Found 290.0560.

Methyl (2-(5-methyl-3-oxo-2,3-dihydro-1H-inden-1-yl)ethyl)carbamate(5ja).

Prepared as shown in *general experimental procedure B*. **Yield** = 72% (71.1 mg); **Appearance** – Yellow Oil; $R_f = 0.60$ (40% EtOAc /Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.55 (s, 1H), 7.44 (q, J = 8.2 Hz, 2H), 4.91 (s, 1H), 3.69 (s, 3H), 3.35 (dd, J = 15.2, 8.5 Hz, 3H), 2.91 (dd, J = 18.9, 7.3 Hz, 1H), 2.39 (d, J = 19.2 Hz, 4H), 2.20 – 2.09 (m, 1H), 1.68 (tt, J = 16.8, 6.9 Hz, 1H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 205.8, 157.0, 155.2, 137.7, 136.7, 136.0, 125.1, 123.5, 77.3, 77.2, 77.0, 76.6, 52.0, 43.2, 39.5, 36.5, 35.3, 21.0; FT-IR (cm⁻¹) 2961,2872, 1714, 1622, 1266, 1006; HRMS (ESI-TOF) m/z [M + Na] Calcd for C₁₄H₁₇NO₃Na 270.1106; Found 270.1103. Methyl (2-(3-oxo-5-(trifluoromethyl)-2,3-dihydro-1H-inden-1-yl)ethyl)carbamate (5ka).

Prepared as shown in *general experimental procedure B*. **Yield** = 68% (71.5 mg); **Appearance** – Yellow Oil; $R_f = 0.40$ (40% EtOAc /Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.39 –7.32 (m, 2H), 7.06 (dd, J = 6.9, 1.4 Hz, 1H), 4.79 (s, 1H), 3.91 (s, 3H), 3.66 (s, 3H), 3.50 (s, 1H), 3.25 (d, J = 40.3 Hz, 2H), 2.86 (dd, J = 19.1, 7.5 Hz, 1H), 2.44

(d, J = 18.9 Hz, 1H), 2.28 (s, 1H), 1.62 (dt, J = 13.7, 7.9 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 205.9, 157.1, 156.9, 145.8, 138.3, 129.3, 115.4, 115.4, 77.3, 55.5, 55.4, 52.0, 43.1, 39.5, 34.6, 33.8; FT-IR (cm⁻¹) 3341, 1710, 1599, 1265, , 1063, 1035; HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₁₄H₁₇NO₄Na 286.1055; Found 286.1053.

Methyl (2-(3-oxo-5-(trifluoromethyl)-2,3-dihydro-1H-inden-1-yl)ethyl)carbamate (5la).

Prepared as shown in *general experimental procedure B*. **Yield** = 43% 51.7 mg); **Appearance** – Yellow Oil; $R_f = 0.40$ (40% EtOAc /Hexane); ¹**H NMR (400 MHz, CDCl₃)** δ 8.00 (s, 1H), 7.86 (d, *J* = 7.9 Hz, 1H), 7.70 (d, *J* = 7.9 Hz, 1H), 5.07 (s, 1H), 3.67 (s, 3H), 3.51 (s, 1H), 3.36 (d, *J* = 6.3 Hz, 2H), 2.99 (dd, *J* = 19.2, 7.6 Hz, 1H), 2.49 (dd, *J* = 19.2, 3.2 Hz,

1H), 2.21 (dt, J = 11.9, 7.4 Hz, 1H), 1.81 – 1.64 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 204.23, 161.0, 157.1, 137.0, 131.3, 131.2, 126.3, 120.9, 120.88, 52.1, 42.9, 39.3, 36.2, 35.8; ¹⁹F NMR (377 MHz, CDCl₃) δ -62.78; FT-IR (cm⁻¹) 3349, 1712, 1534, 1262, 1167, 1024; HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₁₄H₁₄F₃NO₃Na 324.0823; Found 324.0820.

Ethyl (2-(3-oxo-2,3-dihydro-1H-inden-1-yl)ethyl)carbamate (5ab).

Prepared as shown in *general experimental procedure B*. **Yield** = 69% (68.2mg); **Appearance** – Yellowish Oil; $R_f = 0.45(40\% \text{ EtOAc /Hexane})$; ¹**H NMR (400 MHz, CDCl₃)** δ 7.67 (d, J = 7.6 Hz, 1H), 7.55 (t, J = 7.4 Hz, 1H), 7.46 (d, J = 7.6 Hz, 1H), 7.32 (t, J = 7.4 Hz, 1H), 4.76 (s, 1H), 4.05 (dd, J = 13.9, 6.9 Hz, 2H), 3.39 – 3.17 (m, 3H), 2.84 (dd, J = 19.0, 7.5 Hz, 1H),

2.33 (dd, J = 19.0, 3.3 Hz, 1H), 2.10 (dd, J = 13.0, 4.7 Hz, 1H), 1.61 (ddt, J = 13.6, 10.1, 6.8 Hz, 1H), 1.17 (t, J = 6.9 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 205.7, 157., 156.6, 136.6, 134.8, 127.7, 125.5, 123.6, 60.8, 42.9, 39.4, 36.4, 35.7, 14.6; FT-IR (cm⁻¹) 3349, 1711, 1603, 1255,1041; HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₁₄H₁₇NO₃Na 270.1106; Found 270.1104.

Benzyl (2-(3-oxo-2,3-dihydro-1H-inden-1-yl)ethyl)carbamate (5ac).

Prepared as shown in *general experimental procedure B*. **Yield** = 66% (50.3 mg); **Appearance** – Colourless Oil; $R_f = 0.50$ (40% EtOAc /Hexane); ¹**H NMR (400 MHz, CDCl**₃) δ 7.75 (d, J = 7.6 Hz, 1H), 7.62 (t, J = 7.2 Hz, 1H), 7.54 (d, J = 7.4 Hz, 1H), 7.44 – 7.30 (m, 6H), 5.12 (s, 3H), 3.37 (dd, J = 16.4, 9.4 Hz, 3H), 2.91 (dd, J = 19.0, 7.3 Hz, 1H), 2.40 (d, J = 19.1 Hz, 1H), 2.18 (d, J = 7.5 Hz, 1H). 1.76 – 1.59 (m, 1H);

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 205.6, 157.8, 156.3, 136.5, 136.3, 134.7, 128.4, 128.0, 127.9, 127.6, 125.4, 123.5, 66.6, 42.8, 39.4, 36.3, 35.6; FT-IR (cm⁻¹) 3339, 2931, 1710, 1250, 1015, 769; HRMS (ESI-TOF) m/z [M + Na]⁺ Calcd for C₁₉H₁₉NO₃Na 332.1263; Found 332.1262.

Phenyl (2-(3-oxo-2,3-dihydro-1H-inden-1-yl)ethyl)carbamate (5ad).

Prepared as shown in *general experimental procedure B*. **Yield** = 62% (52.1 mg); **Appearance** – Colourless Oil; $R_f = 0.5$ (40% EtOAc /Hexane); ¹**H NMR (400 MHz, CDCl**₃) δ 7.78 (d, J = 7.6 Hz, 1H), 7.65 (t, J = 7.4 Hz, 1H), 7.58 (d, J = 7.7 Hz, 1H), 7.41 (dt, J = 15.7, 7.6 Hz, 3H), 7.23 (t, J = 7.4 Hz, 1H), 7.14 (d, J = 7.9 Hz, 2H), 5.20 (s, 1H), 3.55 – 3.38 (m, 3H),

2.97 (dd, J = 19.0, 7.6 Hz, 1H), 2.45 (dd, J = 19.0, 3.3 Hz, 1H), 2.28 (ddd, J = 20.8, 7.6, 4.4 Hz, 1H), 1.79 (ddd, J = 16.8, 13.7, 7.0 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 205.6, 157.7, 154.7, 150.8, 136.6, 134.9, 129.3, 127.8, 125.5, 125.4, 123.7, 121.5, 42.9, 39.7, 36.2, 35.7; FT-IR (cm⁻¹) 3331, 2931, 1712, 1490, 1206, 761; HRMS (ESI-TOF) m/z [M + H] + Calcd for C₁₅H₁₅NO₃H 318.1106; Found 318.1103.

4-Methyl-N-(2-(3-oxo-2,3-dihydro-1H-inden-1-yl)ethyl)benzenesulfonamide (5ae).

Prepared as shown in *general experimental procedure B*. **Yield** = 47% (31.1 mg); **Appearance** – Yellow Oil; $R_f = 0.35$ (40% EtOAc /Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 7.8 Hz, 2H), 7.71 (d, J = 7.6 Hz, 1H), 7.58 (dd, J = 10.5, 4.4 Hz, 1H), 7.45 – 7.34 (m, 2H), 7.34 – 7.28 (m, 2H), 5.43 (d, J = 6.0 Hz, 1H), 3.43 (s, 1H),

3.15 – 2.98 (m, 2H), 2.81 (ddd, J = 19.0, 7.5, 1.0 Hz, 1H), 2.43 (s, 3H), 2.26 (dd, J = 19.0, 2.3 Hz, 1H), 2.14 (dt, J = 12.1, 7.5 Hz, 1H), 1.68 – 1.57 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 205.6, 157.6, 143.5, 136.6, 136.4, 134.8, 129.7, 127.7, 127.0, 125.5, 123.5, 42.6, 41.5, 35.9, 35.2, 21.4; FT-IR (cm⁻¹) 3273, 2926, 1706, 1326, 1157, 762; HRMS (ESI-TOF) m/z [M + H]⁺ Calcd for C₁₅H₁₅NO₃H 330.1164; Found 330.1163. Vinayak, Sudharshan, Anil, Prabhu/Organic Chemistry/Indian Institute of Science, Bangalore (India)

¹H and ¹³C NMR Spectra

Vinayak, Sudharshan, Anil, Prabhu/Organic Chemistry/Indian Institute of Science, Bangalore (India)

Vinayak, Sudharshan, Anil, Prabhu/Organic Chemistry/Indian Institute of Science, Bangalore (India)

Vinayak, Sudharshan, Anil, Prabhu/Organic Chemistry/Indian Institute of Science, Bangalore (India)

 $^{\circ}$

M L D

.437 202. 00

 \square \square

N O U O J

-205.812

205.739

