Supporting Information

Direct Electrochemical Synthesis of Quinones from Simple

Aromatics and Heteroaromatics

Ling Zhang,^a Youtian Fu,^a Lei Yang ^a, Liming Cao ^a, Junjun Yi ^a, Maolin Sun ^b Ruihua Cheng,^b Yueyue Ma,^{*b} and Jinxing Ye^{*ab}

^a Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; Shanghai Key Laboratory of New Drug Desigr E-mail: yejx@ecust.edu.cn

^b School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.

E-mail: mayueyue20121@gdut.edu.cn; jinxingye@gdut.edu.cn

A: General Remarks	3
B: Optimization Tables	4
C: General Procedure for the Electrolysis	4
D. Mechanism research experiments	7
E: Characterization Data for the Electrolysis Products	9
F: NMR Spectra of Products	19
G: References	54

A: General Remarks

A1. Solvents.

The acetonitrile used in the experiment is chromatographic grade. Other solvents were from commercial sources and used without purification unless otherwise noted. **A2. Analytical methods.**

¹H NMR spectra, ¹³C NMR spectra and ¹⁹F NMR spectra were recorded on a Bruker AV-400/600 spectrometer (400/500 MHz and 100/125 MHz). Chemical shifts (δ) for protons are reported in parts per million (ppm) downfield from tetramethylsilane and are referenced to residual solvent peak. Chemical shifts (δ) for carbon are reported in parts per million (ppm) downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent. ¹⁹F spectra were calibrated in relation to the reference measurement of CF₃COOH (-78.5 ppm). Data are reported as follows: chemical shift, multiplicity (br = broad, s = singlet, d = doublet, dd = doublet of doublets, t = triplet, dt = doublet of triplets, q = quartet, quint = quintet, m = multiplet), coupling constants (J) in Hertz (Hz), integration; "app" is used to denote the apparent splitting of a signal.

High resolution mass spectrometry (HRMS) was carried out using MicroMass GCT CA 055 instrument, recorded on a MicroMass LCTTM spectrometer and analyzed by orthogonal acceleration time-of-flight (OA- TOF).

B: Optimization Tables

Other factors were screened in Table S1., such as temperature, electrolyte and electric current.

Table S1.	Additional	optimization	for the	reaction.
I able 51.	1 Iuuntionui	optimization	101 the	reaction.

	$\begin{array}{c} \begin{array}{c} Pt (+)-Pt (-), \ 10 \ mA \\ \hline K_2 S_2 O_8 \ (2 \ eq.) \end{array} \end{array} \\ \hline nBu_4 NBF_4 \ (0.1 \ M) \\ CH_3 CN : H_2 O \ (5:1), \ r.t. \\ standard \ conditions \end{array}$	
Entry	Variation from the standard conditions	Yield ^[a] (%)
1	None	75
2	LiClO ₄ as electrolyte	71
3	LiPF ₄ as electrolyte	69
4	$0.08 \text{ M} n \text{Bu}_4 \text{NBF}_4$ as electrolyte	72
5	0.06 M nBu_4NBF_4 as electrolyte	71
6	0.04 M nBu_4NBF_4 as electrolyte	68
7	40°C	61
8	10°C	67
9	8 mA	63
10	12 mA	71
11	N ₂ atmosphere	70

Standard conditions: quinoline (65 mg, 0.5 mmol), K₂S₂O₈ (270 mg, 2 eq.), nBu₄NBF₄ (0.1 M), CH₃CN (2.5 mL),

H₂O (0.5 mL), Pt anode, Pt cathode, constant current = 10 mA, under r.t. for 10 h; ^[a]Isolated yield.

C: General Procedure for the Electrolysis

C1: General procedure for the making of electrolytic cell

The cathode and anode are assembled by commercially available PTFE screws, nuts and Pt sheets.

Figure S1. General procedure for the electrolysis: the materials used to make the electrolytic cell, the assemble of electrolytic cell and the electrolysis.

Two Pt elecrodes (10 mm×35 mm×1 mm) with the copper wires were cross the silica gel plug. Then elecrodes were placed into the cube (diameter 13 mm, length 70 mm) and the distance between two Pt sheets was almost 5 mm (Supplementary Figure S1).

C2: General procedure for electrolysis

An oven-dried undivided cell was equipped with a stir bar, substrate (0.5 mmol, 1 eq.), $K_2S_2O_8$ (270 mg, 1 mmol, 2 eq.), nBu_4NBF_4 (98 mg, 0.3 mmol, 0.1 M), CH₃CN (2.5 mL), H₂O (0.5 mL). Air has little effect on this reaction. Then the assembled electrodes were placed into the solution. The silica gel plug was sealed with film. The mixture was electrolyzed at a constant current of 10 mA until the substrates was completely consumed (Figure S1). The Pt electrodes were washed by water, ethanol and DCM in turn. Adding water dropwise to the reaction solution until all solids are dissolved. The aqueous layer was separated and extracted with EtOAc (3×10 mL), and the combined organic layers were washed with brine and dried over anhydrous Na₂SO₄. Following concentration in vacuo, the crude product was purified by column chromatography on silica gel to give pure product.

C3: Large scale general procedure for electrolysis

(a)

Figure S2. (a) The setup for large scale electrolysis; (b) The electrolysis

Two Pt electodes (65 mm×55 mm×1mm) were assembled into sealed cap. Then it was placed into the bake (diameter 35 mm, length 60 mm) and the distance between two Pt sheets was almost 24 mm (Figure S2, a)

An oven-dried undivided cell was equipped with a stir bar, 2-methylquinoline (715 mg, 5 mmol, 1 eq.), $K_2S_2O_8$ (2.7 g, 10 mmol, 2 eq), nBu_4NBF_4 (987 mg, 3 mmol, 0.1 M), CH₃CN (25 mL), H₂O (5 mL). Then the assembled electrodes were placed into the solution. The silica gel plug was sealed with film. Air has little effect on this reaction. The mixture was electrolyzed at a constant current of 100 mA until the 2-methylquinoline was completely consumed. (Figure S2). The Pt electrodes were washed by water, ethanol and DCM in turn. Adding water dropwise to the reaction solution until all solids are dissolved and extracted with EtOAc (3×100 mL), and the combined organic layers were washed with brine and dried over anhydrous Na₂SO₄. Following concentration in vacuo, the crude product was purified by column chromatography on silica gel to give pure product (622 mg, 72%).

C4. Transformations of the product 1 and 2^[1-3]

A solution of quinoline-5,8-dione (87 mg, 0.5 mmol, 1 eq.) in 10 mL ethanol was dropped into a solution of cerium (III) chloride (246 mg, 1 mmol, 2 eq.) and aminoacetophenone (203 mg, 1.5 mmol, 3 eq.) in 10 mL ethanol. The reaction media was stirred at room temperature overnight, hydrolyzed with 10% acetic acid. The mixture was then concentrated in vacuo and extracted with CH_2Cl_2 . The organic layers were dried over Na_2SO_4 and concentrated to dryness. The crude product was purified by flash chromatography to give compound as red solid (116 mg, 76%)

A solution of hypotaurine (50 mg, 0.46 mmol, 1 eq.) in water (4 mL) was added

to the quinone (109 mg, 0.69 mmol, 1.5 eq.) in 20 mL acetonitrile/ethanol (1:1) solution. The reaction mixture was stirred at room temperature for 18 h then the solvents were removed in vacuo to give an orange solid. Methanol was added, the mixture was sonicated for 1 min then the orange solid was isolated by filtration, then washed with methanol, providing bright yellow solid **37** (62 mg, 51%).

2-Aminophenols (109 mg, 1 mmol) in methanol/acetic acid (50:50 v/v, 10 mL) were added dropwise to an equimolar mixture of 5,8-quinolinquinone (159 mg, 1 mmol) and Zn (II) acetate (183 mg, 1 mmol) in acetic acid (20 mL), and the mixture was stirred and refluxed for 2. The reaction mixture was evaporated in vacuo and acidified (6 N HCl) to break the Zn complex and extracted by chloroform. The organic layers were dried over Na_2SO_4 and concentrated to dryness. The crude product was purified by flash chromatography to give compound **39** as yellow solid (94 mg, 38%).

D. Mechanism research experiments

D1: Divided cell experiment

This control experiment was carried out in an H-type divided cell. The anodic chamber was equipped with quinoline (65 mg, 0.5 mmol, 1 eq.), $K_2S_2O_8$ (270 mg, 1 mmol, 2 eq), nBu_4NBF_4 (98 mg, 0.3 mmol, 0.1 M) and CH₃CN (2.5 mL), H₂O (0.5 mL). The cathodic chamber was added nBu_4NBF_4 (98 mg, 0.3 mmol, 0.1 M) and CH₃CN (2.5 mL), H₂O (0.5 mL). The mixture was electrolyzed at a constant current of 10 mA for 10 h. Water was dropped to the reaction solution until all solids were dissolved and extracted with EtOAc (3×10 mL), and the combined organic layers were washed with brine and dried over anhydrous Na₂SO₄. Following concentration in vacuo, the crude product was purified by column chromatography on silica gel to give pure product 1 (51 mg, 64%).

This control experiment was carried out in an H-type divided cell. The cathodic chamber was equipped with quinoline (65 mg, 0.5 mmol, 1 eq.), $K_2S_2O_8$ (270 mg, 1 mmol, 2 eq), nBu_4NBF_4 (98 mg, 0.3 mmol, 0.1 M) and CH₃CN (2.5 mL), H₂O (0.5 mL). The anodic chamber was added nBu_4NBF_4 (98 mg, 0.3 mmol, 0.1 M) and CH₃CN (2.5 mL), H₂O (0.5 mL). The mixture was electrolyzed at a constant current of 10 mA for 10 h. No product was detected using TLC, and large amount of quinoline was left. **D2: The determination of the intermediate**

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} Pt (+)-Pt (-), 10 \text{ mA} \\ \end{array} \\ \hline \\ 1a \end{array} \\ \begin{array}{c} Pt (+)-Pt (-), 10 \text{ mA} \\ \end{array} \\ \hline \\ RBu_4 \text{NBF}_4 (0.1 \text{ M}) \\ CH_3 \text{CN}:\text{H}_2 \text{O} = 5:1, \text{r.t.} \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \textbf{40}, 28\% \end{array} \end{array}$$

∩н

An oven-dried undivided cell was equipped with a stir bar, quinolone 1 (65 mg, 0.5 mmol, 1 eq.), nBu_4NBF_4 (98 mg, 0.3 mmol, 0.1 M), CH₃CN (2.5 mL), H₂O (0.5 mL). Then the assembled electrodes were placed into the solution. The silica gel plug was sealed with film. The mixture was electrolyzed at a constant current of 10 mA for 10 h. The Pt electrodes were washed by water, ethanol and DCM in turn. Water was dropped to the reaction solution until all solids were dissolved and extracted with EtOAc (3×10 mL) The aqueous layer was separated and extracted with EtOAc (3×10 mL), and the combined organic layers were washed with brine and dried over anhydrous Na₂SO₄. Following concentration in vacuo, the crude product was purified by column chromatography on silica gel to give pure product (20.3 mg, 28%).

An oven-dried undivided cell was equipped with a stir bar, 5-hydroxyquinoline (72.5 mg, 0.5 mmol, 1 eq.), nBu_4NBF_4 (98 mg, 0.3 mmol, 0.1 M), CH₃CN (2.5 mL), H₂O (0.5 mL). Then the assembled electrodes were placed into the solution. The silica gel plug was sealed with film. The mixture was electrolyzed at a constant current of 10 mA for 10 h (Figure S1). The Pt electrodes were washed by water, ethanol and DCM in turn. Water was dropped to the reaction solution until all solids were dissolved and extracted with EtOAc (3×10 mL), and the combined organic layers were washed with

brine and dried over anhydrous Na₂SO₄. Following concentration in vacuo, the crude product was purified by column chromatography on silica gel to give pure product (21 mg, 26%).

OH

$$K_2S_2O_8 (2 \text{ eq.}), 90^{\circ}C$$

 $CH_3CN:H_2O = 5:1$ no product

A mixture of 5-hydroxyquinoline (65 mg, 0.5 mmol, 1 eq.) and $K_2S_2O_8$ (270 mg, 1 mmol, 2 eq.) in acetonitrile (2.5 mL), H_2O (0.5 mL) was heated at 90 °C for 10 h. No product was detected using TLC, and large amount of 5-hydroxyquinoline was left.

OH

$$Pt (+)-Pt (-), 10 \text{ mA}$$

 $nBu_4NBF_4 (0.1 \text{ M})$
OH
 $CH_3CN:H_2O = 5:1, r.t.$
41

An oven-dried undivided cell was equipped with a stir bar, 5,8-dihydroxyquinoline (0.5 mmol, 80.5 mg, 1 eq.), nBu_4NBF_4 (98 mg, 0.3 mmol, 0.1 M), CH₃CN (2.5 mL), H₂O (0.5 mL). Then the assembled electrodes were placed into the solution. The silica gel plug was sealed with film. The mixture was electrolyzed at a constant current of 10 mA for 10 h (Figure S1). No 5,8-quinolinequinone was detected using TLC, and large amount of 5,8-dihydroxyquinoline was left.

$$\begin{array}{c} OH \\ \hline \\ \\ \hline \\ \\ OH \\ \mathbf{41} \end{array} \xrightarrow{K_2 S_2 O_8 (2 \text{ eq.})} \\ \hline \\ CH_3 CN:H_2 O = 5:1, \text{ r.t.} \\ O \\ \\ \\ \\ O \\ 1, 78\% \end{array}$$

A mixture of 5,8-dihydroxyquinoline (80.5 mg, 0.5 mmol, 1 eq.) and $K_2S_2O_8$ (270 mg, 1 mmol, 2 eq.) in acetonitrile (2.5 mL) and H₂O (0.5 mL) were stired at room temperature for 10 h. After the reaction was finished, Water was dropped to the reaction solution until all solids were dissolved and extracted with EtOAc (3×100 mL), and the combined organic layers were washed with brine and dried over anhydrous Na₂SO₄. Following concentration in vacuo, the crude product was purified by column chromatography on silica gel to give pure product (62 mg, 78%).

D3: Cyclic voltammetry experiments for some substrates

The cyclic voltammograms were recorded in an electrolyte of nBu_4NBF_4 (0.1 M) in

 CH_3CN (3 mL) using a platinum disk working electrode, a Pt wire auxiliary and the Ag/AgCl reference electrode. The scan rate is 100 mV/s.

Figure S3 Red line: cyclic voltammogram of none in an electrolyte of nBu_4NBF_4 in CH₃CN; Blue line: cyclic voltammogram of quinaldine (0.02 M) in an electrolyte of nBu_4NBF_4 in CH₃CN, E_{ox} = 2.08 V.

Figure S4 Red line: cyclic voltammogram of none in an electrolyte of nBu_4NBF_4 in CH₃CN; Blue line: cyclic voltammogram of quinoline (0.02 M) in an electrolyte of nBu_4NBF_4 in CH₃CN, E_{ox} = 2.09 V

Figure S5 Red line: cyclic voltammogram of none in an electrolyte of nBu_4NBF_4 in CH₃CN; Blue line: cyclic voltammogram of 2-quinolinecarboxaldehyde (0.02 M) in an electrolyte of nBu_4NBF_4 in CH₃CN, E_{ox} = 2.27 V.

Figure S6 Red line: cyclic voltammogram of none in an electrolyte of nBu_4NBF_4 in CH₃CN; Blue line: cyclic voltammogram of methyl quinoline-6-carboxylate (0.02 M) in an electrolyte of nBu_4NBF_4 in CH₃CN, E_{ox} = 2.63 V.

D4: Cyclic voltammetry of quinolines under the conditions of different water content

In Figure S8, the first oxidative peak (1.73 V vs Ag/AgCl) of quinoline was not affected, but the second (2.16 V vs Ag/AgCl) increased with the increasing of water content. The oxidative peak of 2-formylquinoline (2.30 V vs Ag/AgCl) was not affected obviously until the amount of water increased to 4 equivalent. Therefore, the oxidations of water and arenes, especially the electron-deficient ones, were take place simultaneously.

Figure S7. Red line: cyclic voltammogram of none in an electrolyte of nBu_4NBF_4 in CH₃CN; Blue line: cyclic voltammogram of 1.1 μ L H₂O in an electrolyte of nBu_4NBF_4 in CH₃CN; Green line: cyclic voltammogram of 4.3 μ L H₂O in an electrolyte of nBu_4NBF_4 in CH₃CN; Black line: cyclic voltammogram of 8.6 μ L H₂O in an electrolyte of nBu_4NBF_4 in CH₃CN; Black line: cyclic voltammogram of 8.6 μ L H₂O in an electrolyte of nBu_4NBF_4 in CH₃CN; Black line: cyclic voltammogram of 8.6 μ L H₂O in an electrolyte of nBu_4NBF_4 in CH₃CN; Black line: cyclic voltammogram of 8.6 μ L H₂O in an electrolyte of nBu_4NBF_4 in CH₃CN; Black line: cyclic voltammogram of 8.6 μ L H₂O in an electrolyte of nBu_4NBF_4 in CH₃CN; Black line: cyclic voltammogram of 8.6 μ L H₂O in an electrolyte of nBu_4NBF_4 in CH₃CN; Black line: cyclic voltammogram of 8.6 μ L H₂O in an electrolyte of nBu_4NBF_4 in CH₃CN.

Figure S8. Red line: cyclic voltammogram of none in an electrolyte of nBu_4NBF_4 in CH₃CN; Blue line: cyclic voltammogram of quinoline (0.02 M) in an electrolyte of nBu_4NBF_4 in CH₃CN; Green line: cyclic voltammogram of quinoline (0.02 M) and 1.1 μ L H₂O (1 eq.) in an electrolyte of nBu_4NBF_4 in CH₃CN; Black line: cyclic voltammogram of quinoline (0.02 M) and 4.3 μ L H₂O (4 eq.) in an electrolyte of nBu_4NBF_4 in CH₃CN; Purple line: cyclic voltammogram of quinoline (0.02 M) and 4.3 μ L H₂O (4 eq.) in an electrolyte of nBu_4NBF_4 in CH₃CN; Purple line: cyclic voltammogram of quinoline (0.02 M) and 8.6 μ L H₂O (8 eq.) in an electrolyte of nBu_4NBF_4 in CH₃CN; Purple line:

Figure S9. Red line: cyclic voltammogram of none in an electrolyte of nBu_4NBF_4 in CH₃CN; Blue line: cyclic voltammogram of 2-quinolinecarboxaldehyde (0.02 M) in an electrolyte of nBu_4NBF_4 in CH₃CN; Green line: cyclic voltammogram of 2-quinolinecarboxaldehyde (0.02 M) and 1.1 µL H₂O (1 eq.) in an electrolyte of nBu_4NBF_4 in CH₃CN; Purple line: cyclic voltammogram of 2-quinolinecarboxaldehyde (0.02 M) and 1.1 µL H₂O (1 eq.) in an electrolyte of nBu_4NBF_4 in CH₃CN; Purple line: cyclic voltammogram of 2-quinolinecarboxaldehyde (0.02 M) and 4.3 µL H₂O (4 eq.) in an electrolyte of nBu_4NBF_4 in CH₃CN; Black line: cyclic voltammogram of 2-quinolinecarboxaldehyde (0.02 M) and 4.3 µL H₂O (4 eq.) in an electrolyte of nBu_4NBF_4 in CH₃CN; Black line: cyclic voltammogram of 2-quinolinecarboxaldehyde (0.02 M) and 8.6 µL H₂O (8 eq.) in an electrolyte of nBu_4NBF_4 in CH₃CN.

Figure S10. Cyclic voltammogram of 1 (0.02 M) in an electrolyte of nBu_4NBF_4 (0.1 M) in CH₃CN. E_{rel} = -0.51 V, E_{re2} = -1.21 V.

E: Characterization Data for the Electrolysis Products

quinoline-5,8-dione

Yellow solid, 75% yield, Electricity = 5.0 F mol⁻¹. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.02 (d, J = 4.7 Hz, 1H), 8.39 (d, J = 7.8 Hz, 1H), 7.69 (dd, J = 7.9, 4.6 Hz, 1H), 7.13 (d, J = 10.4 Hz, 1H), 7.04 (d, J = 10.4 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 184.5, 183.2, 154.8, 147.4, 139.1, 138.1, 134.6, 129.1, 127.9.

2-methylquinoline-5,8-dione

Yellow solid, 78% yield, Electricity = 4.8 F mol⁻¹. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.28 (d, *J* = 8.0 Hz, 1H), 7.54 (d, *J* = 8.0 Hz, 1H), 7.10 (d, *J* = 10.4 Hz, 1H), 7.01 (d, *J* = 10.4 Hz, 1H), 2.76 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 184.6, 183.5, 165.1, 146.9, 138.8, 137.8, 134.6, 127.8, 126.9, 25.3.

2-methylquinoline-5,8-dione

Yellow solid, 79% yield, Electricity = 4.7 F mol⁻¹. ¹H NMR (600 MHz, Acetone- d_6) δ 8.30 (d, J = 5.7 Hz, 1H), 7.74 (d, J = 5.6 Hz, 1H), 7.15 (d, J = 5.8 Hz, 1H), 7.11 (d, J = 10.6 Hz, 1H), 2.72 (s, 3H), ¹³C NMR (151 MHz, Acetone- d_6) δ 185.2, 183.5, 164.9, 147.5, 139.5, 138.0, 134.5, 127.9, 127.6, 24.5. HRMS (EI): exact mass calculated for C₁₀H₇NO₂ [M]⁺ require m/z = 177.0477, found m/z = 177.0479

2,6-dimethylquinoline-5,8-dione

Yellow solid, 70% yield, Electricity = 5.3 F mol⁻¹. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.25 (d, J = 8.0 Hz, 1H), 7.47 (d, J = 8.0 Hz, 1H), 6.91 (q, J = 1.6 Hz, 1H), 2.71 (s, 3H), 2.16 (d, J = 1.6 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 184.9, 183.6, 164.7, 147.5, 147.1, 135.7, 134.6, 127.4, 126.9, 25.1, 16.1.

6-bromo-2-methylquinoline-5,8-dione

Yellow solid, 63% yield, Electricity = 5.9 F mol⁻¹. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.35 (d, *J* = 8.1 Hz, 1H), 7.61 (s, 1H), 7.54 (d, *J* = 8.1 Hz, 1H), 2.76 (s, 3H).¹³C NMR (101 MHz, Chloroform-*d*) δ 180.9, 177.5, 165.7, 146.7, 140.2, 139.4, 135.6, 127.8, 126.1, 25.3.

3-bromoquinoline-5,8-dione

Yellow solid, 68% yield, Electricity = 5.5 F mol⁻¹. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.07 (d, J = 2.3 Hz, 1H), 8.53 (d, J = 2.3 Hz, 1H), 7.20 (d, J = 10.4 Hz, 1H), 7.11 (d, J = 10.5 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 183.3, 182.3, 155.8, 145.3, 139.3, 137.7, 136.7, 129.5, 125.9. HRMS (EI): exact mass calculated for C₉H₄BrNO₂ [M]⁺ require m/z = 236.9425, found m/z = 236.9427.

7-bromoquinoline-5,8-dione

Yellow solid, 57% yield, Electricity = 6.5 F mol⁻¹. ¹H NMR (400 MHz, Acetone- d_6) δ 9.09 (dd, J = 4.6, 1.7 Hz, 1H), 8.55 (dd, J = 7.9, 1.7 Hz, 1H), 7.92 (dd, J = 8.0, 4.6 Hz, 1H), 7.79 (s, 1H). ¹³C NMR (101 MHz, Acetone- d_6) δ 181.2, 178.6, 155.3, 148.2, 141.5, 139.1, 135.6, 129.3, 128.5.

4,7-dichloroquinoline-5,8-dione

Yellow solid, 65% yield, Electricity = 5.7 F mol⁻¹. ¹H NMR (400 MHz, Acetone- d_6) δ 8.94 (d, J = 5.2 Hz, 1H), 7.96 (d, J = 5.2 Hz, 1H), 7.45 (s, 1H).¹³C NMR (101 MHz, Acetone- d_6) δ 181.4, 175.7, 154.1, 150.4, 145.1, 144.3, 137.1, 131.3, 126.4. HRMS (EI): exact mass calculated for C₉H₃Cl₂NO₂ [M]⁺ require m/z = 226.9541, found m/z = 226.9544.

7-chloro-2-methylquinoline-5,8-dione

Yellow solid, 72% yield, Electricity = 5.2 F mol⁻¹. ¹H NMR (400 MHz, DMSO- d_6) δ 8.23 (d, J = 8.0 Hz, 1H), 7.73 (d, J = 8.0 Hz, 1H), 7.50 (s, 1H), 2.66 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 182.9, 176.4, 164.5, 147.2, 146.1, 135.3, 134.8, 128.3, 127.3, 25.0.

6-iodoquinoline-5,8-dione

Yellow solid, 74% yield, Electricity = 5.0 F mol⁻¹. ¹H NMR (400 MHz, Acetone- d_6) δ 9.08 (dd, J = 4.6, 1.7 Hz, 1H), 8.53 (dd, J = 7.9, 1.7 Hz, 1H), 8.12 (s, 1H), 7.89 (dd, J = 8.0, 4.6 Hz, 1H).¹³C NMR (151 MHz, Acetone- d_6) δ 180.6, 179.7, 155.0, 149.1, 148.0, 135.7, 128.2, 127.7, 121.4. HRMS (EI): exact mass calculated for C₉H₄INO₂ [M]⁺ require m/z = 284.9287, found m/z = 284.9286.

5,8-dioxo-5,8-dihydroquinoline-2-carbaldehyde

Yellow solid, 62% yield, Electricity = 6.0 F mol⁻¹. ¹H NMR (600 MHz, Acetone- d_6) δ 10.21 (s, 1H), 8.68 (d, J = 8.0 Hz, 1H), 8.35 (d, J = 8.0 Hz, 1H), 7.33 (d, J = 10.4 Hz, 1H), 7.26 (d, J = 10.5 Hz, 1H). ¹³C NMR (151 MHz, Acetone- d_6) δ 192.5, 184.6, 182.7, 155.8, 148.3, 140.2, 138.5, 136.4, 131.9, 124.8. HRMS (EI): exact mass calculated for C₁₀H₅NO₃ [M]⁺ require m/z = 187.0269, found m/z = 187.0266.

methyl 5,8-dioxo-5,8-dihydroquinoline-2-carboxylate

Yellow solid, 68% yield, Electricity = 5.5 F mol⁻¹. ¹H NMR (400 MHz, Acetone- d_6) δ 8.63 (d, J = 8.1 Hz, 1H), 8.50 (d, J = 8.0 Hz, 1H), 7.33-7.21 (m, 2H), 4.03 (s, 3H). ¹³C NMR (151 MHz, Acetone- d_6) δ 184.6, 182.6, 164.8, 152.2, 147.9, 140.2, 138.3, 136.1, 131.3, 128.6, 52.8. HRMS (EI): exact mass calculated for C₁₁H₇NO₄ [M]⁺ require m/z = 217.0375, found m/z = 217.0378.

5,8-dioxo-5,8-dihydroquinoline-2-carbonitrile

Yellow solid, 71% yield, Electricity = 5.3 F mol⁻¹. ¹H NMR (400 MHz, Acetone- d_6) δ 8.71 (d, J = 8.0 Hz, 1H), 8.43 (d, J = 8.0 Hz, 1H), 7.31 (q, J = 10.5 Hz, 2H). ¹³C NMR (101 MHz, Acetone- d_6) δ 184.1, 181.8, 148.8, 140.2, 138.7, 137.7, 136.7, 132.7, 131.3, 116.9. HRMS (EI): exact mass calculated for C₁₀H₄N₂O₂ [M]⁺ require m/z = 184.0273, found m/z = 184.0270.

quinoxaline-5,8-dione

Yellow solid, 62% yield, Electricity = 6.0 F mol⁻¹. ¹H NMR (400 MHz, Acetone- d_6) δ 9.11 (s, 2H), 7.29 (s, 2H). ¹³C NMR (101 MHz, Acetone- d_6) δ 183.5(×2), 149.3(×2), 144.8(×2), 139.1(×2).

benzo[d]thiazole-4,7-dione

Yellow solid, 58% yield, Electricity = 6.4 F mol⁻¹. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.13 (s, 1H), 6.91 (d, *J* = 2.9 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 180.1, 179.2, 159.2, 152.9, 139.6, 137.6, 137.4.

benzoquinone

Yellow solid, 56% yield, Electricity = 6.6 F mol⁻¹. ¹H NMR (400 MHz, Acetone- d_6) δ 6.87 (s, 4H). ¹³C NMR (101 MHz, Acetone- d_6) δ 187.9(×2), 137.1(×2).

2-iodocyclohexa-2,5-diene-1,4-dione

Yellow solid, 56% yield, Electricity = 6.6 F mol⁻¹. ¹H NMR (400 MHz, Acetone- d_6) δ

7.78 (d, J = 2.4 Hz, 1H), 7.12 (d, J = 10.1 Hz, 1H), 6.97 (dd, J = 10.1, 2.4 Hz, 1H). ¹³C NMR (151 MHz, Acetone- d_6) δ 184.7, 181.0, 146.6, 137.1, 135.1, 119.4.

2-(sec-butyl) cyclohexa-2,5-diene-1,4-dione

Yellow solid, 58% yield, Electricity = 6.4 F mol⁻¹. ¹H NMR (600 MHz, Acetone- d_6) δ 7.67 (d, J = 10.1 Hz, 1H), 7.60 (dd, J = 10.1, 2.5 Hz, 1H), 7.39 (dd, J = 2.5, 1.0 Hz, 1H), 3.66 (hd, J = 7.0, 1.0 Hz, 1H), 2.47-2.39 (m, 1H), 2.31 (dp, J = 13.5, 7.3 Hz, 1H), 1.96 (d, J = 6.9 Hz, 3H), 1.71 (t, J = 7.4 Hz, 3H). ¹³C NMR (151 MHz, Acetone- d_6) δ 188.2, 187.5, 153.9, 137.5, 136.3, 131.4, 33.7, 28.7, 18.7, 11.6.

2-isopropylcyclohexa-2,5-diene-1,4-dione

Yellow solid, 30% yield, Electricity = 12.4 F mol^{-1.} ¹H NMR (600 MHz, Acetone- d_6) δ 8.03 – 7.95 (m, 2H), 7.65 – 7.59 (m, 1H), 7.51 (t, J = 7.8 Hz, 1.93H), 6.81 (d, J = 10.1 Hz, 0.83H), 6.75 (dd, J = 10.1, 2.6 Hz, 0.86H), 6.55 (dd, J = 2.6, 1.2 Hz, 0.86H), 2.99 (pd, J = 6.9, 1.2 Hz, 1H), 2.58 (s, 3H), 1.13 (d, J = 6.9 Hz, 6H), .¹³C NMR (151 MHz, Acetone- d_6) δ 205.5, 197.1, 187.9, 186.9, 154.5, 137.3, 137.1, 135.9, 132.9, 130.1, 128.6, 128.2, 29.0 (dp, J = 38.7, 19.4 Hz), 26.6, 25.9, 20.7(×2).

2-(tert-butyl)cyclohexa-2,5-diene-1,4-dione

Yellow solid, 38% yield, Electricity = 9.8 F mol⁻¹. ¹H NMR (400 MHz, Acetone- d_6) δ 6.78 (d, J = 1.7 Hz, 2H), 6.61 (dd, J = 1.7, 0.7 Hz, 1H), 1.32 (s, 9H). ¹³C NMR (101 MHz, Acetone- d_6) δ 187.9, 187.5, 155.3, 138.6, 134.9, 131.3, 34.8, 28.4(×3).

2-methylcyclohexa-2,5-diene-1,4-dione

Yellow solid, 63% yield, Electricity = 5.9 F mol⁻¹. ¹H NMR (400 MHz, Acetone- d_6) δ 6.85 (d, J = 10.1 Hz, 1H), 6.79 (dd, J = 10.1, 2.5 Hz, 1H), 6.70 (dq, J = 3.1, 1.6 Hz, 1H), 2.05 (d, J = 1.7 Hz, 3H). ¹³C NMR (151 MHz, Acetone- d_6) δ 187.9, 187.9, 146.2,

137.1, 136.8, 133.4, 15.2.

2,6-dimethylcyclohexa-2,5-diene-1,4-dione

Yellow solid, 36% yield, Electricity = 10.3 F mol⁻¹. ¹H NMR (600 MHz, Acetone- d_6) δ 6.62 (s, 2H), 2.05 (s, 6H). ¹³C NMR (151 MHz, Acetone- d_6) δ 188.2, 187.7, 146.1(×2), 133.3(×2), 15.4(×2).

4'-methoxy-[1,1'-biphenyl]-2,5-dione

Yellow solid, 53% yield, Electricity = 7.0 F mol⁻¹. ¹H NMR (400 MHz, DMSO- d_6) δ 7.56 – 7.50 (m, 1H), 7.04 – 7.00 (m, 1H), 6.93 (s, 1H), 6.91 – 6.87 (m, 1H), 3.81 (s, 2H), 2.51 (p, J = 1.8 Hz, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 188.2, 187.5, 161.2, 145.0, 137.8, 136.5, 131.5(×2), 131.1, 125.4, 114.3(×2), 55.8.

naphthalene-1,4-dione

Yellow solid, 40% yield, 57% yield, 37% yield, Electricity = 9.3 F mol⁻¹, 6.5 F mol⁻¹, 10.0 F mol⁻¹. ¹H NMR (400 MHz, Acetone- d_6) δ 8.12 – 8.01 (m, 2H), 7.98-7.85 (m, 2H), 7.07 (s, 2H). ¹³C NMR (101 MHz, Acetone- d_6) δ 185.3(×2), 139.3(×2), 134.6(×2), 132.6(×2), 126.6(×2).

5,8-dioxo-5,8-dihydronaphthalene-2-carbaldehyde

Yellow solid, 62% yield, Electricity = 6.0 F mol⁻¹. ¹H NMR (400 MHz, Acetone- d_6) δ 10.31 (s, 1H), 8.58 (d, J = 1.7 Hz, 1H), 8.40 (dd, J = 7.9, 1.7 Hz, 1H), 8.27 (d, J = 7.9 Hz, 1H), 7.19 (d, J = 1.1 Hz, 2H). ¹³C NMR (101 MHz, Acetone- d_6) δ 192.1, 184.8, 184.6, 140.6, 139.6, 139.5, 135.8, 133.9, 133.3, 127.7, 127.5.

6-acetylnaphthalene-1,4-dione

Yellow solid, 67% yield, Electricity = 5.6 F mol⁻¹. ¹H NMR (400 MHz, Acetone- d_6) δ 8.56 (dd, J = 1.9, 0.6 Hz, 1H), 8.43 (dd, J = 8.1, 1.8 Hz, 1H), 8.18 (dd, J = 8.0, 0.5 Hz, 1H), 7.16 (d, J = 1.4 Hz, 2H), 2.77 (s, 3H). ¹³C NMR (101 MHz, Acetone- d_6) δ 196.9, 184.8, 184.7, 141.6, 139.6, 139.46, 134.9, 133.4, 132.8, 127.2, 126.2, 26.8.

5,8-dioxo-5,8-dihydronaphthalen-2-yl trifluoromethanesulfonate

Yellow solid, 54% yield, Electricity = 6.9 F mol⁻¹. ¹H NMR (400 MHz, Acetone- d_6) δ 8.31 (d, J = 8.5 Hz, 1H), 8.06 (d, J = 2.6 Hz, 1H), 8.01 (dd, J = 8.6, 2.6 Hz, 1H), 7.20 (d, J = 3.0 Hz, 2H). ¹³C NMR (101 MHz, Acetone- d_6) δ 183.9, 183.7, 153.5, 139.5, 139.4, 134.9, 132.4, 129.9, 127.4, 119.3 (q, J = 320.0 Hz), 119.5. ¹⁹F NMR (376 MHz, Acetone- d_6) δ -73.98.

anthracene-9,10-dione

Yellow solid, 68% yield, Electricity = 5.5 F mol⁻¹. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.32 (dd, J = 5.8, 3.3 Hz, 4H), 7.81 (dd, J = 5.8, 3.3 Hz, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 183.4(×2), 134.3(×2), 133.7(×2), 127.4(×2).

phenanthrene-9,10-dione

Yellow solid, 56% yield, Electricity = 6.7 F mol⁻¹. ¹H NMR (400 MHz, Acetone- d_6) δ 8.32 (d, J = 8.0 Hz, 2H), 8.17-8.10 (m, 2H), 7.85 (td, J = 7.7, 1.5 Hz, 2H), 7.60 (t, J = 7.5 Hz, 2H). ¹³C NMR (151 MHz, Acetone- d_6) δ 180.2(×2), 136.3(×2), 136.2(×2), 131.9(×2), 129.9(×2), 124.9(×2).

6-((2-acetylphenyl)amino)-2-methylquinoline-5,8-dione

Yellow solid, 76% yield,¹H NMR (400 MHz, Chloroform-*d*) δ 10.69 (s, 1H), 8.30 (d, J = 8.0 Hz, 1H), 8.05 (dd, J = 8.0, 1.6 Hz, 1H), 7.60 – 7.49 (m, 2H), 7.44 (d, J = 8.0 Hz, 1H), 7.12 (ddd, J = 8.2, 6.9, 1.5 Hz, 1H), 6.82 (s, 1H), 3.93 (s, 3H), 2.74 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 183.1, 181.6, 167.6, 165.7, 148.1, 143.3, 140.5, 134.9, 134.1, 132.2, 126.7, 125.4, 123.5, 120.5, 119.1, 106.1, 52.6, 25.5. HRMS (EI): exact mass calculated for C₁₈H₁₄N₂O₃ [M]⁺ require m/z = 306.1004, found m/z = 306.1007.

3,4-dihydro-2H-[1,4]thiazino[2,3-g]quinoline-5,10-dione 1,1-dioxide

Yellow solid, 51% yield, ¹H NMR (600 MHz, DMSO- d_6) δ 9.26 (d, J = 68.3 Hz, 1H), 8.98 (d, J = 46.7 Hz, 1H), 8.36 (d, J = 8.0 Hz, 1H), 7.93-7.71 (m, 1H), 3.87 (s, 2H), 3.39 (s, 2H). ¹³C NMR (151 MHz, DMSO- d_6) δ 177.8, 175.0, 154.1, 148.3, 147.3,

134.9, 130.9, 129.9, 111.4, 49.2(×2).

5H-pyrido[3,2-a]phenoxazin-5-one

Yellow solid, 38% yield, ¹H NMR (600 MHz, DMSO- d_6) δ 9.10 (dd, J = 4.5, 1.7 Hz, 1H), 9.03 (dd, J = 8.1, 1.7 Hz, 1H), 7.94 (dd, J = 8.1, 4.3 Hz, 2H), 7.73-7.66 (m, 1H), 7.59-7.54 (m, 1H), 7.54-7.49 (m, 1H), 6.60 (s, 1H). ¹³C NMR (151 MHz, DMSO- d_6) δ 181.9, 153.6, 151.5, 147.1, 144.3, 133.3, 132.9, 132.7, 130.1, 128.3, 127.1, 126.2, 116.6, 108.2, 55.4.

quinolin-5-ol

Yellow solid, 28% yield, Electricity = 13.3 F mol⁻¹. ¹H NMR (400 MHz, DMSO- d_6) δ 9.54-9.49 (m, 1H), 9.22 (dd, J = 8.5, 1.8 Hz, 1H), 8.20 (t, J = 8.0 Hz, 1H), 8.15-8.03 (m, 2H), 7.66 (d, J = 7.6 Hz, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 155.7, 151.1, 150.0, 131.8, 130.9, 121.1, 120.5, 119.1, 109.4.

quinoline-5,8-diol

Yellow solid, 26% yield, Electricity = 14.3 F mol⁻¹. ¹H NMR (400 MHz, DMSO- d_6) δ 8.81 (dd, J = 4.2, 1.7 Hz, 1H), 8.45 (dd, J = 8.5, 1.7 Hz, 1H), 7.48 (dd, J = 8.5, 4.2 Hz, 1H), 6.90 (d, J = 8.2 Hz, 1H), 6.79 (d, J = 8.2 Hz, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 148.5, 145.6, 144.8, 138.7, 131.2, 120.7, 120.1, 110.9, 108.9. HRMS (EI): exact mass calculated for C₉H₇NO₂ [M]⁺ require m/z = 161.0477, found m/z = 161.0478.

F: NMR Spectra of Products.

1: quinoline-5,8-dione

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

2: 2-methylquinoline-5,8-dione

3: 2-methylquinoline-5,8-dione

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 fl (ppm)

4: 2,6-dimethylquinoline-5,8-dione

5: 6-bromo-2-methylquinoline-5,8-dione

6. 3-bromoquinoline-5,8-dione

7: 7-bromoquinoline-5,8-dione

zlo zdo 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

8. 4,7-dichloroquinoline-5,8-dione

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

^{11: 5,8-}dioxo-5,8-dihydroquinoline-2-carbaldehyde

^{220 210 200 190 180 170 160 150 140 130 120 110 100 90} fl (ppm) 80 70 60 50 40 30 20 10 0 -10

13: 5,8-dioxo-5,8-dihydroquinoline-2-carbonitrile

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 fl (ppm) 70 60 50 -io , 40 30 20 10 ò

17: benzo[d]thiazole-4,7-dione

zio zdo 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

19: 2-iodocyclohexa-2,5-diene-1,4-dione

220 210 200 190 190 190 10 150 10 10 10 10 10 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

20: 2-(sec-butyl)cyclohexa-2,5-diene-1,4-dione

50 240 230 220 210 200 190 190 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 fl (ppm)

21: 2-isopropylcyclohexa-2,5-diene-1,4-dione and acetophenone

22: 2-(tert-butyl)cyclohexa-2,5-diene-1,4-dione

210 200 190 180 170 180 180 140 130 120 110 100 90 80 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

23: 2-methylcyclohexa-2,5-diene-1,4-dione

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -lo f1 (ppm)

24: 2,6-dimethylcyclohexa-2,5-diene-1,4-dione

220 210 200 190 180 170 160 160 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 f1 (ppm)

28: naphthalene-1,4-dione

2.10 2.10 2.09 2.08

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

29: 5,8-dioxo-5,8-dihydronaphthalene-2-carbaldehyde

210 200 190 180 170 160 150 140 130 110 100 fl (ppm) . 9

30: 6-acetylnaphthalene-1,4-dione

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

31: 5,8-dioxo-5,8-dihydronaphthalen-2-yl trifluoromethanesulfonate

32: anthracene-9,10-dione

210 200 190 180 170 180 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

35: 6-((2-acetylphenyl)amino)-2-methylquinoline-5,8-dione

210 200 190 190 170 160 150 140 130 120 110 100 90 80 70 60 80 40 30 20 10 0 -10 f1 (ppm)

37: 3,4-dihydro-2H-[1,4]thiazino[2,3-g]quinoline-5,10-dione 1,1-dioxide

39: 5H-pyrido[3,2-a]phenoxazin-5-one

41: quinoline-5,8-diol

G: References

- 1. E. Delfourne, F. Darro, P. Portefaix, C. Galaup, S. Bayssade, A. Bouteille, L. Le Corre, J. Bastide, F. Collignon, B. Lesur, A. Frydman, R. Kiss, J. Med. Chem., 2002, 45, 3765-3771.
- A. N. Pearce, E. W. Chia, M. V. Berridge, G. R. Clark, J. L. Harper, L. Larsen, E. W. Maas, M. J. Page, N. B. Perry, V. L. Webb, B. R. Copp, J. Nat. Prod., 2007, 70, 936-940.
- 3. A. Bolognese, G. Correale, M. Manfra, A. Lavecchia, O. Mazzoni, E. Novellino, V. Barone, P. La Colla, R. Loddo, J. Med. Chem., 2002, 45, 5217-5223.