Remote template effect in the synthesis of bipyridine-strapped porphyrins

Mathilde Berthe, Yoshiyuki Kagawa, Axel Riquet, Takashi Hayashi, Jean Weiss and Jennifer A. Wytko

Content

Experimental methods and procedures

	S2-S4
Figures S1 – S16: ¹ H and ¹³ C NMR and MS spectra of compounds 3, 2, [2Zn] and 5	S5-S12
Figure S17. Relevant distances and angles of solvent molecules observed within the strap of 5 in its crystal structure.	S13
Figure S18 . MALDI-TOF mass spectrum of the crude mixture of the copper(I)-templated synthesis of 2 .	S13
Figure S19-20 . UV-visible spectra of 2 before and after addition of Zn(OAc) ₂ •2H ₂ O and TFA.	S14
Figure S21-23. UV-visible spectra of 2, [2Zn] and 5.	S15
Table S1. Comparision of UV-visible data of bipyridine-strapped porphyrins 2, 5 and [2Zn] with those of the phenanthroline-strapped porphyrins 1 and [1Zn].	S16
Figure S24. Fluorescence spectra of 1, 2, [2Zn] and 5.	S16
Table S2. Comparison of emission wavelengths of 1, 2, 5, [1Zn] and [2Zn].	S16

Experimental Methods

General. 4'-Bromo-[1,1'-biphenyl]-2-carbaldehyde (4)^{S1} and dipyrrylmethane^{S2} were prepared according to literature procedures. 6,6'-Dibromo-2,2'-bipyridine (95%) was purchased from ABCR (Karlsruhe, Germany). Dichloromethane stabilized with ~0.2% EtOH was purchased from Carlo Erba (Val de Reuil, France) and used as received. All other reagents were purchased from Sigma Aldrich or Fischer Scientific and were used as received. Column chromatography was performed with silica gel from Merck (Kieselgel 60; 63-200 µm or 40-63 µm) or alumina (Merck aluminum oxide 60 standardized). ¹H NMR spectra were recorded on Bruker Advance 300 (300 MHz), 400 (400 MHz) or 500 (500 MHz) spectrometers. Chemical shifts are given in ppm and were determined by taking the solvent as a reference. All coupling constants are in Hz. Mass spectrometry was performed on a Bruker Daltonics microTOF spectrometer (Bruker Daltonik GmbH, Bremen, Germany) by the Service de Spectrométrie de Masse de la Fédération de Chimie "Le Bel" (FR 2010).

X-ray crystallography. The crystals were placed in oil, and a single crystal was selected, mounted on a glass fibre and placed in a low-temperature N_2 stream.

For compounds [**2Zn**] and **3**, X-Ray diffraction data collection was carried out on a Bruker PHOTON-III DUO CPAD diffractometer equipped with an Oxford Cryosystem liquid N₂ device, using Mo-K α radiation ($\lambda = 0.71073$ Å). The crystal-detector distance was 37 mm. The cell parameters were determined (APEX3 software)^{S3} from reflections taken from one set of 180 frames, each at 1s exposure. The structures were solved using the program SHELXT-2014.^{S4} The refinement and all further calculations were carried out using SHELXL-2014.^{S5} The H-atoms were included in calculated positions and treated as riding atoms using SHELXL default parameters. The non-H atoms were refined anisotropically, using weighted full-matrix least-squares on F². A semi-empirical absorption correction was applied using SADABS in APEX3;^{S3} transmission factors: $T_{min}/T_{max} = 0.7215/0.7458$; $T_{min}/T_{max} =$ 0.6692/0.7456; respectively for [**2Zn**] and **3**. For **3**, the structure was refined as a two-component twin with the twin law -1 0 0 0 -1 0 0.99 0 1 and a BASF of 0.04485.

For compounds 2 and 5, X-ray diffraction data collection was carried out on a Bruker PHOTON-III DUO CPAD diffractometer equipped with an Oxford Cryosystem liquid N₂ device, using Cu-K α radiation ($\lambda = 1.54178$ Å). The crystal-detector distance was 40 mm. The cell parameters were determined (APEX3 software^{S3} for 1 and APEX4 software^{S6} for 5) from reflections taken from one set of 180 frames, each at 1s exposure. The structure was solved using the program SHELXT-2014.^{S4} The refinement and all further calculations were carried out using SHELXL-2014.^{S5} The hydrogen atoms of the NH group were located from Fourier difference. The other H-atoms were included in calculated positions and treated as riding atoms using SHELXL default parameters. The non-H atoms were refined anisotropically, using weighted full-matrix least-squares on F². A semi-empirical absorption correction was applied using SADABS in APEX3^{S3} for 2 and APEX4^{S6} for 5; transmission factors: T_{min}T_{max} = 0.6227/0.7528; T_{min}/T_{max} = 0.4011/0.7528; respectively for 2 and 5. For 2, the methylenes C56, C57, C59 and C60 of the cyclohexane solvent are disordered over two positions with an occupancy ratio of 0.80/0.20 For 5, the SQUEEZE instruction in PLATON^{S7} was applied. The residual electron density was assigned to one molecule of the dichloromethane solvent.

^{S1} L. A. Fontana, M. P. Almeida, A. F. P. Alcântara, V. H. Rigolin, M. A. Ribeiro, W. P. Barros, J. Megiatto. *ChemRxiv* 2020. DOI: 10.26434/chemrxiv.12625772.v1

⁸² a) P. S. Clezy, G. A. Smythe, Aust. J. Chem. 1969, 22, 239-249; b) R. Chong, P. S. Clezy, A. J. Liepa, A. W. Nichol, Aust. J. Chem. 1969, 22, 229-238.

^{S3} "M86-EXX229V1 APEX3 User Manual", Bruker AXS Inc., Madison, USA, 2016.

^{S4} G. M. Sheldrick, Acta Cryst. 2015, A71, 3-8.

⁸⁵ G. M. Sheldrick, *Acta Cryst.* 2015, C71, 3-8.

^{S6} "M86-EXX278V1 APEX4 User Manual," Bruker Corporation, 2021.

^{S7} A. L Spek, *J.Appl.Cryst.* 2003, **36**, 7-13

4',4'''-([2,2'-Bipyridine]-6,6'-diyl)bis(([1,1'-biphenyl]-2-carbaldehyde)) (3). To a degassed mixture

of compound **4** (1.13 g, 3.36 mmol) and 6,6'-dibromo-2,2'-bipyridine (550 mg, 1.75 mmol) in 2 M Na₂CO₃ aq. (1 mL) and 1,4-dioxane (5 mL), Pd(dppf)Cl₂ (26 mg, 0.035 mmol) was added. The mixture was stirred at 90 °C for 20 h. After cooling to room temperature, the mixture was extracted with CH₂Cl₂ and the organic layer was dried over MgSO₄. After removal of solvent under reduced pressure, the residue was filtered through a SiO₂ column (CH₂Cl₂) and recrystallized from CH₂Cl₂/Et₂O to yield compound **3** (832 mg, 1.61 mmol, 92%) as a white powder. mp (from CH₂Cl₂/Et₂O). ¹H NMR δ H(300 MHz; CDCl₃) 10.10 (2 H, d, J =

0.7, H_{CHO}), 8.67 (2 H, dd, J = 7.8, 0.8, H_3), 8.30 (4 H, dt, J = 8.4, 1.8, H_0), 8.08 (2 H, dd, J = 8.3, 1.6, H_9), 7.99 (2 H, t, J = 7.8, H_4), 7.88 (2 H, dd, J = 7.8, 0.8, H_5), 7.72–7.67 (2 H, m, H_7), 7.58–7.52 (8 H, m, $H_{m,6,8}$).¹³C NMR δ H(100 MHz, CDCl₃) 192.4, 156.0, 155.6, 145.5, 139.3, 138.4, 137.9, 133.9, 133.7, 130.8, 130.6, 128.0, 127.8, 127.1, 120.5, 119.9. ESI HRMS: m/z = 517.1909 ([M+H]⁺, 100%)

Zinc(II)-templated synthesis of the bipyridine-strapped porphyrin 2. To a degassed solution of compound 3 (100 mg, 0.194 mmol) and $Zn(OAc)_2 \cdot 2H_2O$ (36 mg, 0.19 mmol) in CH_2Cl_2 (stabilized with 0.2% EtOH; 700 mL), dipyrrylmethane (57 mg, 0.39 mmol) and then TFA (0.4 mL, 5 mmol) were added under argon atmosphere. The reaction mixture was stirred for 20 h at room temperature, then DDQ (365 mg, 1.61 mmol) was added and the solution was stirred for 4 h. NEt₃ (12 mL) was added and the solution was stirred for 20 min. The organic layer was washed with H₂O (3 x 500 mL) and dried over Na₂SO₄. After removal of the solvent, the product was purified by SiO₂ column chromatography

(CH₂Cl₂) and the collected red fraction were recrystallized from CH₂Cl₂/Et₂O to yield porphyrin **2** (61 mg, 0.079 mmol, 41%). mp >300 °C (from CH₂Cl₂/Et₂O). UV-visible (solvent) λ (nm (ϵ (M⁻¹cm⁻¹)): 284 (23000), sh 396 (2900), 413 (150000), sh 479 (2100), 506 (7500), 539 (2400), 579 (3000), sh 586 (3000), 635 (1300). ¹H NMR δ H(400 MHz; CDCl₃) 10.14 (2 H, s, H_{meso}), 9.25 (4 H, d, *J* = 4.5, H_β), 8.93 (4 H, d, *J* = 4.5, H_β), 8.67 (2 H, dd, *J* = 7.2, 1.2 H₉), 7.94-7.83 (6 H, m, H_{6,7,8}), 7.48 (2 H, t, *J* = 7.8, H₄), 7.31 (2 H, dd, *J* = 7.8, 0.9, H₅), 7.12 (2 H, dd, *J* = 7.8, 0.9, H₃), 6.78 (4 H, m, H_o), 6.67 (4 H, m, H_m), -3.15 (2 H, s, H_{N-H}). ¹³C NMR δ C(126 MHz, CDCl₃) 157.5, 157.3, 147.2, 145.3, 144.8, 141.6, 139.9, 136.8, 136.7, 134.6, 131.7, 130.5, 129.2, 128.8, 128.7, 126.3, 125.6, 120.6, 119.6, 117.2, 105.4. MALDI-TOF MS: *m/z* = 767.320 ([M+H]⁺, 100%).

Lithium-templated synthesis of the bipyridine-strapped porphyrin 2.

To a degassed solution of compound **3** (100 mg, 0.194 mmol) and lithium trifluoromethanesulfonate (151 mg, 0.970 mmol) in CH₂Cl₂ (stabilized with 0.2% EtOH; 700 mL), dipyrrylmethane (57 mg, 0.39 mmol) and TFA (0.4 mL, 5 mmol) were added under Ar. The solution was stirred for 20 h at room temperature, then DDQ (365 mg, 1.61 mmol) was added and the solution was stirred for 4 h. NEt₃ (12 mL) was added and the solution was stirred for 20 min. The organic layer was washed with H₂O until the aqueous layer was pale yellow and dried over Na₂SO₄. After removal of the solvent, the product was purified by SiO₂ column chromatography (CH₂Cl₂) and the collected red fraction were recrystallized from CH₂Cl₂/Et₂O to yield the porphyrin **2** (13 mg, 0.017 mmol, 9%).

Attempted copper(I)-templated synthesis of the bipyridine-strapped porphyrin 2.

To a degassed solution of **3** (100 mg, 0.194 mmol) and Cu(MeCN)₄BF₄ (31 mg, 0.097 mmol) in CH₂Cl₂ (stabilized with 0.2% EtOH; 700 mL) dipyrrylmethane (57 mg, 0.39 mmol) and TFA (0.4 mL, 5 mmol) were added under Ar. The reaction mixture was stirred for 20 h at room temperature, then DDQ (365 mg, 1.61 mmol) was added and the solution was stirred for 4 h. NEt₃ (12 mL) was added and the solution

was stirred for 20 min. The organic layer was washed with H_2O until the aqueous layer was pale yellow. The organic layer was then washed with a saturated aqueous solution of EDTA and an aqueous solution of KCN, and dried over Na₂SO₄. Purification by column chromatography over alumina (CH₂Cl₂) then over SiO₂ (CH₂Cl₂) gave a main red fraction that still contained numerous porphyrins (see Figure S17).

Bipyridine-strapped Zn(II) porphyrin [2Zn]. A solution of strapped porphyrin **2** (61 mg, 0.080 mmol) and Zn(OAc)₂·2H₂O (175 mg, 0.795 mmol) in CHCl₃ (9 mL) and MeOH (1 mL) was refluxed for 14 h. The solution was cooled, then washed with water. The organic layer was dried over Na₂SO₄ and solvent was removed under vacuum. The crude residue was purified by column chromatography (alumina, CH₂Cl₂) to yield a purple solid (54 mg, 0.065 mmol, 82%). The porphyrin could be recrystallized from CH₂Cl₂/pentane if necessary. Crystals of [**2Zn**] suitable for X-ray crystallography were grown from acetone/CH₂Cl₂ mp >300 °C (from CH₂Cl₂/pentane). UV-visible λ max (CH₂Cl₂)/nm (ϵ /dm³

mol⁻¹ cm⁻¹): 290 (39000), sh 398 (26000), 419 (260000), 512 (1800), 547 (13000), 583 (1600). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 10.06 (s, 2H_{meso}), 9.22 (d, J = 4.5 Hz, 4H, H_β), 8.97 (d, J = 4.5 Hz, 4H, H_β), 8.62 (dd, J = 7.4, 1.1 Hz, 2H, H₉), 7.94-7.82 (m, 4H, H_{7.8}), 7.78 (dd, J = 7.5, 1.5 Hz, 2H, H₆), 7.45 (t, J = 7.8 Hz, 2H, H₄), 7.23 (dd, J = 7.8 Hz, 0.9 Hz, 2H, H₃), 7.10 (dd, J = 7.8 Hz, 0.9 Hz 2H, H₅), 6.75 (d, J = 8.5 Hz, 4H, H₀), 6.62 (d, J = 8.5 Hz, 4H, H_m). ¹³C NMR (126 MHz, CDCl₃) δ (ppm): 157.4, 157.0, 150.3, 149.4, 145.3, 142.8, 141.8, 137.0, 136.7, 134.0, 131.8, 129.4, 128.5, 128.4, 125.8, 125.6, 120.6, 120.1, 117.8, 106.1. MALDI-TOF MS: m/z = 829.331 ([M+H]⁺, 100%).

Double bipyridine-strapped porphyrin 5. To a degassed solution of compound **3** (250 mg, 0.484 mmol) and Zn(OAc)₂.2H₂O (106 mg, 0.484 mmol) in degassed CH₂Cl₂ (1.75 L), freshly distilled pyrrole (67 μ L, 0.97 mmol) and then 1 mL of TFA were added under argon atmosphere. The reaction mixture was stirred for 20 h at room temperature, then DDQ (1.1 g, 4.8 mmol) was added and the solution was stirred for 4 h. NEt₃ (30 mL) was added and the solution was stirred for 20 min. The organic layer was washed with H₂O (3 x 1.5 L) and dried over Na₂SO₄. After removal of the solvent, the product was purified by SiO₂ column chromatography (gradient of CH₂Cl₂ to CH₂Cl₂/MeOH: 9/1). The first red fraction was recrystallized from CH₂Cl₂/MeOH to yield compound **5** (20 mg, 0.016 mmol, 7%). mp (from CH₂Cl₂/MeOH). UV-visible λ max (CH₂Cl₂/nm (ϵ /dm³ mol⁻¹ cm⁻¹): 287 (92000), sh 412 (56000), 430 (305000), 491 (3600), 524 (16000), 559 (6200), 599 (5400), 656

(2800). ¹H NMR δ H(500 MHz; CDCl₃) 8.72 (4 H, d, *J* = 7.3, H₉), 8.57 (8 H, s, H_β), 7.81 (4 H, dt, *J* = 7.4, 1.4, H₇), 7.73 (8 H, m, H_{6,8}), 7.52 (4 H, t, *J* = 7.8, H₄), 7.36 (4 H, d, *J* = 7.8, H₅), 7.21 (4 H, dt, *J* = 7.8, H₃), 6.92 (8 H, d, *J* = 8.5, H_o), 6.73 (8 H, dt, *J* = 8.5, H_m), -2.65 (2 H, s, H_{N-H}).¹³C NMR δ C(126 MHz, CDCl₃) 157.9, 157.5, 144.4, 142.0, 140.8, 140.7, 136.9, 135.3, 129.2, 129.0, 128.4, 126.7, 125.4, 120.6, 119.8, 118.1. ESI-HR MS: *m/z* 1223.4525 ([M+H]⁺, 100%), 612.2315 ([M+2H]²⁺, 20%).

Figure S1. ¹H NMR spectrum (300 MHz, CDCl₃) of compound **3** (recrystallized from CH₂Cl₂/Et₂O and dried under vacuum for 5 days).

Figure S2. Aromatic region of the ¹H NMR spectrum (300 MHz, CDCl₃) of compound **3** (recrystallized from CH_2Cl_2/Et_2O and dried under vacuum for 5 days).

Figure S3. ¹³C NMR spectrum (126 MHz, CDCl₃) of compound 3.

e S4. ESI HRMS spectrum of compound 3.

Figure S5. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 2.

Figure S6. Aromatic region of the ¹H NMR spectrum (300 MHz, CDCl₃) of compound 2.

Figure S7. ¹³C NMR spectrum (126 MHz, CDCl₃) of compound **2**.

Figure S8. MALDI-TOF MS spectrum of compound 2.

Figure S9. ¹H NMR spectrum (300 MHz, CDCl₃) of compound [2Zn].

Figure S10. ¹H NMR spectrum (300 MHz, CDCl₃) of compound [2Zn] (aromatic region).

Figure S11. ¹³C NMR spectrum (126 MHz, CDCl₃) of compound [2Zn]

Figure S12. MALDI-TOF MS spectrum of compound [2Zn].

Figure S13. ¹H NMR spectrum (500 MHz, CDCl₃) of compound 5.

Figure S14. Aromatic region ¹H NMR spectrum (500 MHz, CDCl₃) of compound 5.

Figure S15. ¹³C NMR spectrum (126 MHz, CDCl₃) of compound 5.

Figure S17. Relevant distances and angles of solvent molecules observed within the strap of **5** in its crystal structure. (a) Distances between the hydroxyl protons of methanol and the nitrogen atoms of the bipyridine strap of **5**. (b) Distances and angles between the CH_2Cl_2 molecule and porphyrin **5**. The MeOH molecule was omitted for sake of clarity.

Figure S18. MALDI-TOF mass spectrum of the crude product of the attempted copper-templated synthesis of **2**.

Figure S19. UV-vis spectra of **3** (blue line, 0.1 mM, CH_2Cl_2) after addition of 1 eq of $Zn(OAc)_2 \cdot 2H_2O$ (dotted black line) and after addition of 1 eq of $Zn(OAc)_2 \cdot 2H_2O$ and an excess of TFA (red line).

Figure S20. UV-vis spectra of 3 (blue line, 0.1 mM, CH_2Cl_2) after addition of excess TFA (black line) and after the addition of 1 eq of $Zn(OAc)_2 \cdot 2H_2O$ and an excess of TFA (red line).

Figure S21. UV-visible spectrum of 2 in CH₂Cl₂.

Figure S22. UV-visible spectrum of [2Zn] in CH₂Cl₂.

Figure S23. UV-visible spectrum of 5 in CH₂Cl₂.

mose of the	phenanti	nonne-s	uapp	eu porpri	yrms	I anu		ij. An sp	ectia i	ecolueu in CH_2CI_2
compound	λ (nm)								reference	
1	284		412	sh 479ª	506	540	580	sh 586ª	635	S8
2	284	sh 396	413	sh 479	506	539	579	sh 586	635	
5	287	sh 412	430	491	524	559	599		656	
[1Z n]	284, 308		418		546	578				S9
[2Zn]	290	sh 298	419	512	547	583				

Table S1. Comparison of UV-visible data of bipyridine-strapped porphyrins 2, 5 and [2Zn] with those of the phenanthroline-strapped porphyrins 1 and [1Zn]. All spectra recorded in CH_2Cl_2 .

^a Not reported in the literature reference but observed in the spectrum.

Figure S24. Emission spectra in $CH_2Cl_2 + 0.01\%$ of 2,6-lutidine (to prevent photoprotonation^{S10}). (a) 1 (λ_{ex} = 506 nm), (b) 2 (λ_{ex} = 506 nm), (c) 5 (λ_{ex} = 524 nm) and (d) [2Zn] (λ_{ex} = 512 nm).

Table S2. Comparison of emission wavelengths of 1, 2, 5,[1Zn] and [2Zn] in $CH_2Cl_2+ 0.01\%$ 2,6-lutidine.

compound	λ _{em} (n	m)	$\lambda_{ex}(nm)$	reference				
1	636	703	506					
2	636	702	506					
5	658	728	524					
[1Z n]	595	646	556	S10				
[2Zn]	588	640	512					

^{S8} J. A. Wytko, E. Graf and J. Weiss, J. Org. Chem. 1992, 57, 1015.

^{S9} P. Ochsenbein, M. Bonin, K. Schenk, J. Froidevaux, J. Wytko, E. Graf and J. Weiss *Eur. J. Inorg. Chem.* 1999, 7, 1175.