Supplementary Information

Circularly polarized luminescence enlargement from crystals to oriented films of enantiopure 2D hybrid perovskite

Xuan-Hui Zhao, ${ }^{a, b}$ Na-Na Li, ${ }^{a, c}$ Jing Peng, ${ }^{a}$ Jun Xu, ${ }^{a}$ Peng Luo, ${ }^{a}$ Xi-Yan Dong ${ }^{a, b^{*}}$ and Xiaozong Hu ${ }^{b *}$
*Correspondence: dongxiyan0720@hpu.edu.cn (X. Y. Dong), huxz@zzu.edu.cn (X. $\mathrm{Hu})$

Experimental section

Reagents and Materials Used. (R)-1-4-fluorophenethylamine (R-FMBA, 98\%) and (S)-1-(4fluorophenethylamine (\boldsymbol{S}-FMBA, 98\%) were purchased from Bidepharm Ltd. (Shanghai, China). The rac-FMBA is obtained by mixing \boldsymbol{R}-FMBA and \boldsymbol{S}-FMBA in equal amount Lead(II) bromide $\left(\mathrm{PbBr}_{2}, 99 \%\right)$ was purchased from Aladdin Ltd. (Shanghai, China). Hydrobromic acid (HBr), dichloromethane (DCM) were purchased from Kermel Ltd. (Tianjin, China).

Materials Preparation. Synthesis and purification of $\left(R-\mathrm{FMBA}_{2} \mathrm{PbBr}_{4}(\boldsymbol{R} \mathbf{- 1})\right.$ and $(S-F M B A)_{2} \mathrm{PbBr}_{4}(\boldsymbol{S}-\mathbf{1})$. Lead (II) bromide ($183.5 \mathrm{mg}, 0.5 \mathrm{mmol}$) and \boldsymbol{R}-FMBA (140 $\mathrm{mg}, 1 \mathrm{mmol})$ were mixed and dissolved in $\mathrm{HBr}(10 \mathrm{~mL})$. The mixture was heated and stirred to form a transparent precursor solution, and after the volatilization of the solvent, $\boldsymbol{R} \mathbf{- 1}$ flake crystals were obtained. The obtained crystals were thoroughly washed with DCM and then dried in vacuo, and pure $\boldsymbol{R} \mathbf{- 1}$ ware was obtained. The method for obtaining $\boldsymbol{S} \mathbf{- 1}$ is similar to that of $\boldsymbol{R} \mathbf{- 1}$. Synthesis and purification of and (rac-FMBA) ${ }_{8} \mathrm{~Pb}_{3} \mathrm{Br}_{14} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ ($\boldsymbol{r a c} \boldsymbol{c} \mathbf{1}$). \boldsymbol{R}-FMBA ($70 \mathrm{mg}, 0.05 \mathrm{mmol}$) and \boldsymbol{S}-FMBA (70 $\mathrm{mg}, 0.05 \mathrm{mmol}$) are mixed in equal amounts with $\mathrm{PbBr}_{2}(183.5 \mathrm{mg}, 0.5 \mathrm{mmol})$ and dissolved in HBr , heated and stirred until clear to obtain acicular crystal rac-1. The purification process is the same as that of $\boldsymbol{R} \mathbf{- 1}$.

Thin films Preparation. Dissolve 40 mg of $\boldsymbol{R} \mathbf{- 1}$ or \boldsymbol{S}-1crystals in $100 \mu \mathrm{~L}$ of DMF, drop the solution onto the quartz plate on the spin coater (acetone ultrasonic for 15 min , ethanol ultrasonic for 15 min , dried and treated with plasma cleaning machine for 15 min). Turn on the spin coater for $1000 \mathrm{r} / \mathrm{min}$ for 10 s and $3000 \mathrm{r} / \mathrm{min}$ for the 20 s immediately. After annealing at $90{ }^{\circ} \mathrm{C}$ for 10 min , uniform $\boldsymbol{R} \mathbf{- 1}$ or $\boldsymbol{S} \mathbf{- 1}$ films were obtained. It is worth noting that films of different sizes perpendicular to the bottom can be obtained after annealing in the above operation.

Material Characterizations. Crystallographic data collection and refinement of the structure. Single-crystal X-ray diffraction measurements of $\boldsymbol{R} \mathbf{- 1 ,} \boldsymbol{S} \mathbf{- 1}$ and $\boldsymbol{r a c} \mathbf{- 1}$ were performed on a Rigaku XtaLAB Pro diffractometer. Data collection and reduction were
performed using the program CrysAlisPro. ${ }^{1}$ All the structures were solved with direct methods (SHELXS) ${ }^{2}$ and refined by full-matrix least-squares on F2 using OLEX2, ${ }^{3}$ which utilizes the SHELXL-2015 module. ${ }^{4}$ All the atoms were refined anisotropically. Hydrogen atoms were placed in calculated positions refined using idealized geometries and assigned fixed isotropic displacement parameters. The crystal structures are visualized by DIAMOND 3.2. Powder X-ray diffraction (PXRD) patterns of $\boldsymbol{R} \mathbf{- 1}, \boldsymbol{S} \mathbf{- 1}$ and rac-1 were collected at room temperature in the air using an X'Pert PRO diffractometer. Thermogravimetry analyses (TGA) were performed on a TA Q50 system under N_{2} atmosphere (flow rate $=60 \mathrm{~mL} / \mathrm{min}$) in the temperature range $30-800$ ${ }^{\circ} \mathrm{C}$ at a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$. UV-visible diffuse reflectance spectra of samples were recorded at room temperature in the range of $240-800 \mathrm{~nm}$ using a UH4150 spectrophotometer equipped with an integrating sphere. The room temperature steadystate spectroscopy, time-resolved photoluminescence (PL), temperature-dependent emission spectra and photoluminescence quantum yield were measured on the HORIBA FluoroLog-3 fluorescence spectrometer. The circular dichroism (CD) spectra of powder samples were measured on JASCO J-1500 by potassium bromide tablet pressing method. Circularly polarized luminescence (CPL) spectra of powder samples were measured on a JASCO CPL-300.

Supporting Figures

(a)

(b)

(c)

Fig. S1. Hydrogen bonding interactions of Br atoms with $\mathbf{F M B A}^{+}$spacer cations in (a) $\boldsymbol{R} \boldsymbol{- 1}$, (b) \boldsymbol{S} 1 and (c) rac-1.

Fig. S2 (a) The plane view of $\left[\mathrm{PbBr}_{6}\right]$ the layers in (a) $\boldsymbol{R} \mathbf{- 1}$ and (b) $\boldsymbol{S} \mathbf{- 1}$ show two different equatorial $\mathrm{Pb}-\mathrm{Br}-\mathrm{Pb}$ bond angles, and the $2_{1^{-}}$axis that exists in the helical arrangement of different Br atoms on the equatorial plane (pink and blue).

Fig. S3. Schematic diagram of the inorganic layer part of rac-1.

Fig. $\mathbf{S 4}\left[\mathrm{PbBr}_{6}\right]^{4-}$ octahedron in (a) $\boldsymbol{R} \mathbf{- 1}$, (b) $\boldsymbol{S} \mathbf{- 1}$, (b) $\boldsymbol{r a c} \mathbf{- 1}$ (dark red: Pb 1 ; red: Pb).

Fig. S5. PXRD patterns of our as-synthesized (a) $\boldsymbol{R} \mathbf{- 1}$, (b) $\boldsymbol{S} \mathbf{- 1}$, and (c) rac-1.

Fig. S6. TGA curve of $\boldsymbol{R} \mathbf{- 1}, \boldsymbol{S} \mathbf{- 1}$ and $\boldsymbol{r a c} \mathbf{- 1}$ crystals.

Fig. S7. The solid UV-vis spectra of (a) $\boldsymbol{R} \mathbf{- 1}$ (b) $\boldsymbol{S} \mathbf{- 1}$, and (c) rac-1. The optical band gap diagrams of (d) $\boldsymbol{R} \mathbf{- 1}$, (e) $\boldsymbol{S} \mathbf{- 1}$ and (f) rac-1 are simulated according to the solid UV-Vis absorption and the Tacu equation.

Fig. S8. (a) Excitation and luminescence profiles of $\boldsymbol{S} \mathbf{- 1}$. Inset is a $\boldsymbol{S} \mathbf{- 1}$ fluorescent photograph. (b) Temperature-dependent PL spectra of $\boldsymbol{S} \mathbf{- 1}$.

Fig. S9. Decay curves of (a, b) $\boldsymbol{R} \mathbf{- 1}$, (c, d) $\boldsymbol{S} \mathbf{- 1}$ and (e) $\boldsymbol{r a c} \mathbf{- 1}$ at 298 K .

Fig. S10. Photoluminescent decay curves of (a) $\boldsymbol{R} \mathbf{- 1}$, (b) $\boldsymbol{S} \mathbf{- 1}$ and (c) $\boldsymbol{r a c} \boldsymbol{- 1}$ at 83 K .

Fig. S11. (a) XRD pattern of $\boldsymbol{S} \mathbf{- 1}$ thin film and simulation pattern of corresponding single crystals. (b) SEM photograph of $\boldsymbol{S} \mathbf{- 1}$ films. (c) Mapping diagram of partial element distribution in specific places of $\boldsymbol{S} \mathbf{- 1}$ films.

Fig. S12. UV-Vis absorption of (a) $\boldsymbol{R} \mathbf{- 1}$, (b) $\boldsymbol{S} \mathbf{- 1}$ films.

Fig. S13. (a) CD signals and (b) $g_{C D}$ of $\boldsymbol{R} \mathbf{- 1}$ and $\boldsymbol{S} \mathbf{- 1}$ thin films with different sizes.

Fig. S14. (a, b) CD and LD spectra of $\boldsymbol{R} / \boldsymbol{S}$-1 thin films. (c, d) CD signals from different azimuth $\left(90^{\circ}\right)$ of $\boldsymbol{R} / \boldsymbol{S} \mathbf{- 1}$ thin films. (e, f) CD signals under flip of $\boldsymbol{R} / \boldsymbol{S} \mathbf{- 1}$ thin films.

Supporting Tables

Table S1. Crystal data and structure refinement for $R-1, S-1$ and rac-1

Compound	$\boldsymbol{R}-1$	S-1	rac-1
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{Br}_{4} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{~Pb}$	$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{Br}_{4} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{~Pb}$	$\mathrm{C}_{64} \mathrm{H}_{92} \mathrm{Br}_{14} \mathrm{~F}_{8} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{~Pb}_{3}$
Formula weight	807.18	807.18	2897.76
Temperature / K	200.00	200.00	296
Crystal system	orthorhombic	orthorhombic	triclinic
Space group	$P 2{ }_{1} 1_{1}{ }_{1}$	$P 2{ }_{1} 1_{1}{ }_{1}$	$P-1$
a / \AA	7.84310(10)	7.84030(10)	8.1612(2)
b / \AA	8.79770(10)	8.79580(10)	17.5034(4)
c / \AA	$33.4343(4)$	33.4329(4)	18.6108(5)
$\alpha /^{\circ}$	90	90	115.7360(10)
$\beta{ }^{\circ}$	90	90	102.2250(10)
$\gamma /{ }^{\circ}$	90	90	95.0980(10)
V / \AA^{3}	2307.01(5)	2305.59(5)	2290.62(10)
Z	4	4	1
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	2.324	2.325	2.101
μ / mm^{-1}	22.504	22.518	11.662
$\mathrm{F}(000)$	1488.0	1488.0	1356.0
2Θ range for data collection $/{ }^{\circ}$	10.398 to 132.996	10.4 to 132.984	4.426 to 55.17
Reflections collected	7114	6740	133130
Data/restraints/parameters	3815/0/230	3744/0/231	7908/1/456
Goodness-of-fit on F^{2}	1.027	1.065	1.012
Final R indexes $[\mathrm{I}>=2 \sigma$ (I)]	$\begin{aligned} \mathrm{R}_{1}= & 0.0310, \mathrm{wR}_{2} \\ = & 0.0726 \end{aligned}$	$\begin{aligned} \mathrm{R}_{1}= & 0.0373, \mathrm{wR}_{2} \\ = & 0.1019 \end{aligned}$	$\begin{gathered} \mathrm{R}_{1}=0.0281, \mathrm{wR}_{2}= \\ 0.0565 \end{gathered}$
Final R indexes [all data]	$\begin{aligned} \mathrm{R}_{1}= & 0.0344, \mathrm{wR}_{2} \\ = & 0.0741 \end{aligned}$	$\begin{aligned} \mathrm{R}_{1}= & 0.0380, \mathrm{wR}_{2} \\ = & 0.1025 \end{aligned}$	$\begin{gathered} \mathrm{R}_{1}= \\ 0.0468, \mathrm{wR}_{2}= \\ 0.0616 \end{gathered}$
Flack parameter	-0.028(8)	-0.013(10)	-
CCDC	2252841	2252843	2253014

$\boldsymbol{R}-\mathbf{1}:{ }^{1} 2-\mathrm{X},-1 / 2+\mathrm{Y}, 3 / 2-\mathrm{Z} ;{ }^{2} 1-\mathrm{X},-1 / 2+\mathrm{Y}, 3 / 2-\mathrm{Z} ;{ }^{3} 2-\mathrm{X}, 1 / 2+\mathrm{Y}, 3 / 2-\mathrm{Z} ;{ }^{4} 1-\mathrm{X}, 1 / 2+\mathrm{Y}, 3 / 2-\mathrm{Z}$
$\boldsymbol{S} \mathbf{- 1}:{ }^{1}-\mathrm{X}, 1 / 2+\mathrm{Y}, 1 / 2-\mathrm{Z} ;{ }^{2} 1-\mathrm{X}, 1 / 2+\mathrm{Y}, 1 / 2-\mathrm{Z} ;{ }^{3}-\mathrm{X},-1 / 2+\mathrm{Y}, 1 / 2-\mathrm{Z} ;{ }^{4} 1-\mathrm{X},-1 / 2+\mathrm{Y}, 1 / 2-\mathrm{Z}$
rac-1: ${ }^{12-X,}-1-Y, 1-Z ;{ }^{2}-1+\mathrm{X},+\mathrm{Y},+\mathrm{Z}$

Table S2. The main bond length in $R-1, S-1$, and rac-1.

$\boldsymbol{R - 1}$		$S-1$	
Bond	(\AA)	Bond	(\AA)
$\mathrm{Pb} 1-\mathrm{Br} 1$	$3.0158(11)$	$\mathrm{Pb} 1-\mathrm{Br} 1$	$2.9483(11)$
$\mathrm{Pb} 1-\mathrm{Br} 2$	2.9502(11)	$\mathrm{Pb} 1-\mathrm{Br} 1^{1}$	3.2329(12)
$\mathrm{Pb} 1-\mathrm{Br} 2{ }^{1}$	$3.2333(10)$	$\mathrm{Pb} 1-\mathrm{Br} 2$	2.9530(11)
$\mathrm{Pb} 1-\mathrm{Br} 3$	2.9516(11)	$\mathrm{Pb} 1-\mathrm{Br} 3$	3.0170(11)
$\mathrm{Pb} 1-\mathrm{Br} 4$	$2.9497(10)$	$\mathrm{Pb} 1-\mathrm{Br} 4^{2}$	3.1080(11)
$\mathrm{Pb} 1-\mathrm{Br} 4^{2}$	$3.1077(10)$	$\mathrm{Pb} 1-\mathrm{Br} 4$	2.9462(11)
$r a c-1$			
Bond	(\AA)	Bond	(\AA)
$\mathrm{Pb} 1-\mathrm{Br} 1^{1}$	$3.0164(4)$	$\mathrm{Pb} 2-\mathrm{Br} 2^{2}$	$3.2508(5)$
$\mathrm{Pb} 1-\mathrm{Br} 1$	$3.0164(4)$	$\mathrm{Pb} 2-\mathrm{Br} 3$	$3.2005(5)$
$\mathrm{Pb} 1-\mathrm{Br} 2^{1}$	2.9934(4)	$\mathrm{Pb} 2-\mathrm{Br} 4$	$3.0792(5)$
$\mathrm{Pb} 1-\mathrm{Br} 2$	2.9934(4)	$\mathrm{Pb} 2-\mathrm{Br} 5$	2.8792(5)
$\mathrm{Pb} 1-\mathrm{Br} 3$	3.0117(4)	$\mathrm{Pb} 2-\mathrm{Br} 6$	$2.8455(5)$
$\mathrm{Pb} 1-\mathrm{Br} 3{ }^{1}$	3.0117(4)	$\mathrm{Pb} 2-\mathrm{Br} 7$	3.0061(5)

Table S3. The major bond angles in $R-1, S-1$, and rac-1.

R-1		S-1	
Angle	(${ }^{\circ}$)	Angle	(${ }^{\circ}$)
$\mathrm{Br} 1-\mathrm{Pb} 1-\mathrm{Br} 2^{1}$	103.03(3)	$\mathrm{Br} 1-\mathrm{Pb} 1-\mathrm{Br} 1^{1}$	96.711(16)
$\mathrm{Br} 1-\mathrm{Pb} 1-\mathrm{Br} 4^{2}$	90.58(3)	$\mathrm{Br} 1-\mathrm{Pb} 1-\mathrm{Br} 2$	87.28(3)
$\mathrm{Br} 2-\mathrm{Pb} 1-\mathrm{Br} 1$	85.77(3)	$\mathrm{Br} 1-\mathrm{Pb} 1-\mathrm{Br} 3$	85.80(3)
$\mathrm{Br} 2-\mathrm{Pb} 1-\mathrm{Br} 2^{1}$	96.713(14)	$\mathrm{Br} 1-\mathrm{Pb} 1-\mathrm{Br} 4^{2}$	172.40(3)
$\mathrm{Br} 2-\mathrm{Pb} 1-\mathrm{Br} 3$	87.27(3)	$\mathrm{Br} 2-\mathrm{Pb} 1-\mathrm{Br} 1^{1}$	88.84(3)
$\mathrm{Br} 2-\mathrm{Pb} 1-\mathrm{Br} 4^{2}$	172.43(3)	$\mathrm{Br} 2-\mathrm{Pb} 1-\mathrm{Br} 3$	166.85(4)
$\mathrm{Br} 3-\mathrm{Pb} 1-\mathrm{Br} 1$	166.85(3)	$\mathrm{Br} 2-\mathrm{Pb} 1-\mathrm{Br} 4^{2}$	97.52(3)
$\mathrm{Br} 3-\mathrm{Pb} 1-\mathrm{Br} 2^{1}$	88.85(3)	$\mathrm{Br} 3-\mathrm{Pb} 1-\mathrm{Br} 1^{1}$	103.06(3)
$\mathrm{Br} 3-\mathrm{Pb} 1-\mathrm{Br} 4^{2}$	97.56(3)	$\mathrm{Br} 3-\mathrm{Pb} 1-\mathrm{Br} 4^{2}$	90.59(3)
$\mathrm{Br} 4-\mathrm{Pb} 1-\mathrm{Br} 1$	83.40(3)	$\mathrm{Br} 4-\mathrm{Pb} 1-\mathrm{Br} 1^{1}$	171.08(3)
$\mathrm{Br} 4-\mathrm{Pb} 1-\mathrm{Br} 2^{1}$	171.08(3)	$\mathrm{Br} 4-\mathrm{Pb} 1-\mathrm{Br} 1$	89.91(3)
$\mathrm{Br} 4^{2}-\mathrm{Pb} 1-\mathrm{Br} 2^{1}$	77.64(3)	$\mathrm{Br} 4^{2}-\mathrm{Pb} 1-\mathrm{Br} 1^{1}$	77.58(3)
$\mathrm{Br} 4-\mathrm{Pb} 1-\mathrm{Br} 2$	89.87(3)	$\mathrm{Br} 4-\mathrm{Pb} 1-\mathrm{Br} 2$	85.51(3)
$\mathrm{Br} 4-\mathrm{Pb} 1-\mathrm{Br} 3$	85.45(3)	$\mathrm{Br} 4-\mathrm{Pb} 1-\mathrm{Br} 3$	83.31(3)
$\mathrm{Br} 4-\mathrm{Pb} 1-\mathrm{Br} 4^{2}$	96.293(11)	$\mathrm{Br} 4-\mathrm{Pb} 1-\mathrm{Br} 4^{2}$	96.313(12)
$r a c-1$			
Angle	(${ }^{\circ}$)	Angle	${ }^{\circ}$)
$\mathrm{Br} 2{ }^{1}-\mathrm{Pb} 1-\mathrm{Br} 1$	91.982(13)	$\mathrm{Br} 4-\mathrm{Pb} 2-\mathrm{Br} 3$	99.196(13)
$\mathrm{Br} 2-\mathrm{Pb} 1-\mathrm{Br} 1^{1}$	88.020(13)	$\mathrm{Br} 4-\mathrm{Pb} 2-\mathrm{Br} 5$	90.911(15)
$\mathrm{Br} 2-\mathrm{Pb} 1-\mathrm{Br} 1$	88.017(13)	$\mathrm{Br} 5-\mathrm{Pb} 2-\mathrm{Br} 2^{2}$	177.472(15)
$\mathrm{Br} 2^{1}-\mathrm{Pb} 1-\mathrm{Br} 1^{1}$	91.981(13)	Br5-Pb2-Br3	94.202(14)
$\mathrm{Br} 2-\mathrm{Pb} 1-\mathrm{Br} 3{ }^{1}$	93.525(13)	Br5-Pb2-Br4	90.911(15)
$\mathrm{Br} 2-\mathrm{Pb} 1-\mathrm{Br} 3$	86.475(13)	$\mathrm{Br} 5-\mathrm{Pb} 2-\mathrm{Br} 7$	94.954(15)
$\mathrm{Br} 2^{1}-\mathrm{Pb} 1-\mathrm{Br} 3$	93.524(13)	Br6-Pb2-Br2 ${ }^{2}$	86.808(14)
$\mathrm{Br} 2^{1}-\mathrm{Pb} 1-\mathrm{Br} 3^{1}$	86.476(13)	$\mathrm{Br} 6-\mathrm{Pb} 2-\mathrm{Br} 3$	169.941(13)
$\mathrm{Br} 3-\mathrm{Pb} 1-\mathrm{Br} 1^{1}$	86.265(12)	$\mathrm{Br} 6-\mathrm{Pb} 2-\mathrm{Br} 4$	83.565(14)
$\mathrm{Br} 3{ }^{1}-\mathrm{Pb} 1-\mathrm{Br} 1^{1}$	93.734(13)	$\mathrm{Br} 6-\mathrm{Pb} 2-\mathrm{Br} 5$	95.428(15)
$\mathrm{Br} 3{ }^{1}-\mathrm{Pb} 1-\mathrm{Br} 1$	86.268(12)	$\mathrm{Br} 6-\mathrm{Pb} 2-\mathrm{Br} 7$	88.780(14)
$\mathrm{Br} 3-\mathrm{Pb} 1-\mathrm{Br} 1$	93.733(12)	$\mathrm{Br} 7-\mathrm{Pb} 2-\mathrm{Br} 2^{2}$	83.898(13)
$\mathrm{Br} 3-\mathrm{Pb} 2-\mathrm{Br} 2^{2}$	83.507(12)	$\mathrm{Br} 7-\mathrm{Pb} 2-\mathrm{Br} 3$	87.498(13)
$\mathrm{Br} 4-\mathrm{Pb} 2-\mathrm{Br} 2^{2}$	90.512(14)	$\mathrm{Br} 7-\mathrm{Pb} 2-\mathrm{Br} 4$	170.769(15)

Table S4. Experimental hydrogen bonding parameters single crystal X-ray structures for HOIPs are studied in this work. The subscripts 'eq' and 'ax' indicate equatorial and axial directions respectively.

Compound	H-bond	$\text { length }(\AA)$	angle at $\mathrm{H}\left({ }^{\circ}\right)$
$R-1$	$\mathrm{N}-\mathrm{H}---\mathrm{Br}_{\text {eq }}$	2.683	150.22
	$\mathrm{N}-\mathrm{H}---\mathrm{Br}_{\text {eq }}$	2.694	128.47
	$\mathrm{N}-\mathrm{H}---\mathrm{Br}_{\mathrm{ax}}$	2.651	153.74
	$\mathrm{N}-\mathrm{H}---\mathrm{Br}_{\mathrm{ax}}$	2.647	162.62
	$\mathrm{N}-\mathrm{H}---\mathrm{Br}_{\mathrm{ax}}$	2.484	162.62
	$\mathrm{N}-\mathrm{H}---\mathrm{Br}_{\mathrm{ax}}$	2.543	165.18
	C-H--- $\mathrm{Br}_{\mathrm{ax}}$	2.981	143.79
	C-H--- $\mathrm{Br}_{\text {ax }}$	3.084	139.91
	C-H---Brax	2.906	171.26
$S-1$	$\mathrm{N}-\mathrm{H}---\mathrm{Br}_{\mathrm{eq}}$	2.706	128.20
	$\mathrm{N}-\mathrm{H}---\mathrm{Br}_{\text {eq }}$	2.653	157.76
	$\mathrm{N}-\mathrm{H}---\mathrm{Br}_{\mathrm{ax}}$	2.526	165.54
	$\mathrm{N}-\mathrm{H}---\mathrm{Br}_{\mathrm{ax}}$	2.502	161.43
	$\mathrm{N}-\mathrm{H}---\mathrm{Br}_{\mathrm{ax}}$	2.596	164.07
	$\mathrm{N}-\mathrm{H}---\mathrm{Br}_{\mathrm{ax}}$	2.603	160.89
	C-H--- $\mathrm{Br}_{\mathrm{ax}}$	3.116	138.93
	C-H---Brax	2.981	140.93
	$\mathrm{C}-\mathrm{H}---\mathrm{Br}_{\mathrm{ax}}$	2.902	173.25
rac-1	$\mathrm{N}-\mathrm{H}---\mathrm{Br}_{\mathrm{eq}}$	2.735	135.58
	$\mathrm{N}-\mathrm{H}---\mathrm{Br}_{\text {eq }}$	2.767	132.31
	$\mathrm{N}-\mathrm{H}---\mathrm{Br}_{\text {eq }}$	2.913	146.88
	$\mathrm{N}-\mathrm{H}---\mathrm{Br}_{\text {eq }}$	2.726	136.60
	$\mathrm{N}-\mathrm{H}---\mathrm{Br}_{\text {eq }}$	3.025	127.61
	$\mathrm{N}-\mathrm{H}---\mathrm{Br}_{\text {eq }}$	2.855	128.82
	$\mathrm{N}-\mathrm{H}---\mathrm{Br}_{\text {ax }}$	2.474	163.23
	$\mathrm{N}-\mathrm{H}---\mathrm{Br}_{\text {ax }}$	2.592	170.42
	$\mathrm{N}-\mathrm{H}---\mathrm{Br}_{\text {ax }}$	2.709	165.97
	$\mathrm{N}-\mathrm{H}---\mathrm{Br}_{\mathrm{ax}}$	2.524	167.96
	$\mathrm{N}-\mathrm{H}---\mathrm{Br}_{\mathrm{ax}}$	2.620	166.72
	$\mathrm{N}-\mathrm{H}---\mathrm{Br}_{\mathrm{ax}}$	2.575	172.39
	$\mathrm{N}-\mathrm{H}---\mathrm{Br}_{\mathrm{ax}}$	2.524	165.92
	C-H---Brax	3.113	136.90
	C-H--- $\mathrm{Br}_{\mathrm{ax}}$	3.098	123.58
	C-H---Brax	3.080	146.50
	$\mathrm{O}-\mathrm{H}---\mathrm{Br}_{\text {eq }}$	2.702	156.08
	$\mathrm{O}-\mathrm{H}---\mathrm{Br}_{\mathrm{eq}}$	2.523	153.29

Supplementary References

1. CrysAlisPro, Version 1.171.36.31. Agilent Technologies Inc., Santa Clara, CA, USA 2012.
2. G. M. Sheldrick, Acta Cryst. A, 2008, 64, 112-122.
3. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann,
J. Appl. Cryst., 2009, 42, 339-341.
4. G. M. Sheldrick, Acta Cryst. C, 2015, 71, 3-8.
