Supporting Information

Triple *ipso*-defluoroetherification of (trifluoromethyl)alkenes with fluoroalkylated alcohols: Access to fluoroalkylated orthoesters by C(sp³)-F bonds cleavage

Jia Nie, Huanfeng Jiang, and Chuanle Zhu*

School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, P. R. China; Pazhou Lab, Guangzhou, 510330, China

E-mail: cechlzhu@scut.edu.cn; Fax and Tel.: (+86) 20-87112906

A. General Information	2
B. Experiment Section	3
1) Substrates Preparation	3
2) Optimization of the Reaction Conditions	4
3) General Procedure for the Reaction of Fluoroalkylated Alcohols with Alke	nes4
4) Characterization of Obtained Products	5
5) General Procedure for Gram-Scale Synthesis	15
6) General Procedure for Further Derivatization of the Obtained Fluor	oalkylated
orthesters	15
7) Control Experiments	16
C. References	
D. NMR Spectra of Compounds	19

A. General Information

Melting points were measured using a melting point instrument and are uncorrected. Chemical shifts were reported in ppm from the solvent resonance as the internal standard (CDCl₃ $\delta_{\rm H}$ = 7.26 ppm, $\delta_{\rm C}$ = 77.16 ppm). Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), td (triplet of doublets), m (multiplet), and *etc.* Coupling constants were reported in Hertz (Hz). ¹H, ¹³C and ¹⁹F NMR data are recorded with Bruker Advance III 400 MHz or 500 MHz. All ¹³C and ¹⁹F NMR spectra were performed under the conditions of ¹H-decoupled conditions, respectively. NMR spectra were recorded at room temperature unless otherwise stated. IR spectra were obtained with an infrared spectrometer on either potassium bromide pellets or liquid films between two potassium bromide pellets. HRMS was carried out on a high-resolution mass spectrometer (Thermo Q Exactive Plus ACPI/QE MS). TLC was performed using commercially available 100-400 mesh glass-backed silica-coated plates (GF₂₅₄). Visualization was typically performed using UV light and/or phosphomolybdic acid.

Materials. Commercially available reagents and solvents were purchased and used without further purification. The anhydrous THF was purchased from Energy Chemical (Energy Chemical, water ≤ 50 ppm). Analytical thin-layer chromatography was performed on 0.20 mm silica gel plates (GF₂₅₄) using UV light or phosphomolybdic acid as a visualizing agent. Flash column chromatography was carried out using silica gel (200-300 mesh) with the indicated solvent system. All reactions were conducted in oven-dried Schlenk tubes. All the reaction temperatures reported are oil bath temperatures.

B. Experiment Section

1) Substrates Preparation

1t and 1w was known compound and commercial available (from Energy Chemical and Bidepharm). Compound 1a-1r, 1s, $21u-1v^3$, $1x^4$, $1y^1$ were synthesized following the reported methods.

Alcohols 2 were known compounds. 2a-2l were purchased and used directly (from Energy Chemical, Bidepharm and Innochem).

2) Optimization of the Reaction Conditions^a

	OH +	base, solvent		F ₃ F ₅ F
Ph ^C CF;	³ CF ₃	temperature, 12h	Ph OCH	² CF ₃ OCH ₂ CF ₃
			OCH ₂ CI	- ₃ Ph ~ - *
1a	2a		3a	3a'
Entry	Base	Solvent Te	emperature (°C)	Yield of 3a (%) ^b
1	Cs_2CO_3	toluene	60	0
2	Cs_2CO_3	xylene	60	0
3	Cs_2CO_3	THF	60	0
4	Cs_2CO_3	MeCN	60	13
5	Cs_2CO_3	DMSO	60	95
6	Cs_2CO_3	DMF	60	82
7	Li ₂ CO ₃	DMSO	60	0
8	t-BuOLi	DMSO	60	80
9	t-BuONa	DMSO	60	72
10	t-BuOK	DMSO	60	68
11	КОН	DMSO	60	72
12	LiOH	DMSO	60	65
13	DBU	DMSO	60	0
14	DABCO	DMSO	60	0
15	Et ₃ N	DMSO	60	0
16	-	DMSO	30	0
17	Cs_2CO_3	DMSO	50	97
18	Cs_2CO_3	DMSO	40	99
19	Cs_2CO_3	DMSO	30	88
20	Cs_2CO_3	DMSO	80	88

^{*a*}Unless otherwise noted, the reactions were carried out with **1a** (0.2 mmol), **2a** (0.8 mmol), base (1.0 mmol), and solvent (2 mL) in a 25 mL Schlenk tube in an oil bath for 12 h. ^{*b*}Isolated yields.

3) General Procedure for the Reaction of Fluoroalkylated Alcohols with Alkenes

To a 25 mL Schlenk flask was charged with alkenes 1 (0.2 mmol, 1.0 equiv), fluoroalkylated alcohols (0.8 mmol, 4.0 equiv), Cs_2CO_3 (1.0 mmol, 5.0 equiv) and a solvent of DMSO (2.0 mL). The resulting solution was stirred at 40 °C for 12 h. Then the mixture was cooled to room temperature, quenched with H₂O (15 mL), extracted with EtOAc (15 mL × 3). The combined

organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. Further purification by flash column chromatography on silica gel provided the products 3.

4) Characterization of Obtained Products

(3,3,3-tris(2,2,2-trifluoroethoxy)prop-1-en-2-yl)benzene (3a)

83.3 mg, 99% yield; yellow oil, eluting with $EtOAc/PE = 1: 10; {}^{1}H$ NMR (500 MHz, CDCl₃) δ 7.58 (dd, *J* = 6.8, 3.0 Hz, 2H), 7.42-7.31 (m, 3H), 5.97 (s, 1H), 5.90 (s, 1H), 3.88 (q, J = 8.3 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) & 140.0, 134.6, 129.0, 128.7, 126.9, 123.3 (q, ${}^{1}J_{F-C}$ = 277.2 Hz), 122.2, 113.8, 60.8 (q, ${}^{2}J_{F-C}$ = 36.5 Hz); 19 F NMR (471 MHz, CDCl₃) δ -73.7

(s, 9F); IR (KBr): 2950, 1421, 1287, 1172, 1094, 960, 854, 761, 700, 625, 549 cm⁻¹; HRMS (APCI-QE, m/z): [M-H]⁻ Calcd. for C₁₅H₁₃F₉O₃-H, 411.0648; found, 411.0649.

2-(3,3,3-tris(2,2,2-trifluoroethoxy)prop-1-en-2-yl)naphthalene (3b)

117.0 mg, 98% yield; white solid, mp: 70-71 °C, eluting with EtOAc/PE = 1: 10; ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, J = 1.9 Hz, 1H), 7.97-7.84 (m, 3H), 7.73 (dd, *J* = 8.7, 1.9 Hz, 1H), 7.56 (dd, *J* = 6.3, 3.2 Hz, 2H), 6.17 (s, 1H), 6.06 (s, 1H), 3.99 (q, *J* = 8.3 Hz,

6H); ¹³C NMR (101 MHz, CDCl₃) δ 139.8, 133.3, 133.3, 131.7, 128.7, 128.3, 127.5, 126.9, 126.6, 126.5, 124.3, 123.3 (q, ${}^{1}J_{F-C}$ = 277.2 Hz), 122.6, 114.0, 60.9 (q, ${}^{2}J_{F-C}$ = 36.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -73.7 (s, 9F); IR (KBr): 2977, 1421, 1286, 1167, 1102, 1021, 962, 857, 821, 748, 467 cm⁻¹; HRMS (APCI-QE, m/z): [M]⁺ Calcd. for C₁₉H₁₅F₉O₃, 462.0878; found, 462.0871.

1-methyl-4-(3,3,3-tris(2,2,2-trifluoroethoxy)prop-1-en-2-yl)benzene (3c)

74.1 mg, 84% yield; yellow oil, eluting with PE; ¹H NMR (400 MHz, CDCl₃) δ 7.56-7.48 (m, 2H), 7.20 (d, J = 8.0 Hz, 2H), 5.98 (s, 1H), 5.90 (s, 1H), 3.90 (q, J = 8.3 Hz, 6H), 2.39 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) & 139.6, 139.1, 131.5, 129.4, 126.7, 123.3

 $(q, {}^{1}J_{F-C} = 277.2 \text{ Hz}), 121.4, 113.9, 60.8 (q, {}^{2}J_{F-C} = 36.5 \text{ Hz}), 21.1; {}^{19}\text{F} \text{ NMR} (471 \text{ MHz}, \text{CDCl}_{3}) \delta$ -73.7 (s, 9F); IR (KBr): 2895, 1513, 1419, 1284, 1164, 1096, 1017, 960, 823, 754, 686, 542, 473

cm⁻¹; HRMS (APCI-QE, m/z): $[M-H]^-$ Calcd. for C₁₆H₁₅F₉O₃-H, 425.0805; found, 425.0805.

1,2-dimethyl-4-(3,3,3-tris(2,2,2-trifluoroethoxy)prop-1-en-2-yl)benzene (3d)

74.1 mg, 80% yield; yellow oil, eluting with PE; ¹H NMR (500 MHz, CDCl₃) δ 7.40-7.30 (m, 2H), 7.12 (d, *J* = 7.9 Hz, 1H), 5.94 (s, 1H), 5.85 (s, 1H), 3.87 (q, J = 8.3 Hz, 6H), 2.27 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 139.7, 137.7, 136.9, 132.0, 129.9, 127.9, 124.2, 122.3 (q, ${}^{1}J_{F-C} = 277.2$ Hz), 121.3, 114.0, 60.8 (q, ${}^{2}J_{F-C} = 36.5$ Hz), 19.8, 19.5; ${}^{19}F$ NMR (471 MHz, CDCl₃) δ -73.7 (s, 9F); IR (KBr): 2963, 1607, 1513, 1461, 1422, 1287, 1168, 1097, 1023, 964, 841, 804, 746, 689, 605, 546 cm⁻¹; HRMS (APCI-QE, m/z): [M-H]⁻ Calcd. for

C₁₇H₁₇F₉O₃-H, 439.0961; found, 439.0961.

1-(tert-butyl)-4-(3,3,3-tris(2,2,2-trifluoroethoxy)prop-1-en-2-yl)benzene (3e)

87.1 mg, 97% yield; yellow oil, eluting with PE; ¹H NMR (400 MHz, CDCl₃) δ 7.60-7.53 (m, 2H), 7.45-7.39 (m, 2H), 6.00 (s, 1H), 5.92 (s, 1H), 3.90 (q, J = 8.4 Hz, 6H), 1.36 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 152.2, 139.6, 131.4, 126.5, 125.6, 123.3 (q, ${}^{I}J_{F-C} =$

277.8 Hz), 121.6, 113.9, 60.8 (q, ${}^{2}J_{F-C}$ = 36.4 Hz), 34.6, 31.1; ¹⁹F NMR (471 MHz, CDCl₃) δ -73.7 (s, 9F); IR (KBr): 2963, 1741, 1411, 1283, 1168, 1108, 965, 840, 747, 556 cm⁻¹; HRMS (APCI-QE, m/z): [M+H]⁺ Calcd. for C₁₉H₂₁F₉O₃+H, 469.1420; found, 469.1412.

methyl(4-(3,3,3-tris(2,2,2-trifluoroethoxy)prop-1-en-2-yl)phenyl)sulfane (3f)

91.7 mg, 99% yield; yellow oil, eluting with PE; ¹H NMR (500 MHz, CDCl₃) δ 7.45 (dd, J = 8.5, 1.3 Hz, 2H), 7.15 (dd, J = 8.4, 1.3 Hz, 2H), 5.89 (d, J = 1.2 Hz, 1H), 5.80 (d, J = 1.2 Hz, 1H), 3.79 (q, J = 8.3 Hz, 6H), 2.42 (d, J = 1.3 Hz, 3H); ¹³C NMR (126

MHz, CDCl₃) δ 140.1, 139.1, 130.8, 127.1, 126.1, 123.3 (q, ${}^{I}J_{F-C} = 277.2$ Hz), 121.4, 113.8, 60.8 $(q, {}^{2}J_{F-C} = 36.5 \text{ Hz})$, 15.2; ${}^{19}\text{F}$ NMR (471 MHz, CDCl₃) δ -73.7 (s, 9F); IR (KBr): 2962, 1598, 1495, 1422, 1285, 1168, 1095, 1019, 961, 834, 750, 689 cm⁻¹; HRMS (APCI-QE, m/z): [M]⁺ Calcd. for C₁₆H₁₅F₉O₃S, 458.0598; found, 458.0590.

5-(3,3,3-tris(2,2,2-trifluoroethoxy)prop-1-en-2-yl)benzo[d][1,3]dioxole (3g)

94.8 mg, 95% yield; yellow oil, eluting with EtOAc/PE = 1: 10; ¹H NMR (500 MHz, CDCl₃) δ 7.14-7.05 (m, 2H), 6.80 (d, J = 8.2Hz, 1H), 5.99 (s, 2H), 5.88 (s, 1H), 5.83 (s, 1H), 3.87 (q, J = 8.3 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 148.2, 148.0, 139.3,

128.4, 123.3 (q, ${}^{J}J_{F-C} = 277.2$ Hz), 121.1, 121.0, 113.8, 108.4, 107.2, 101.4, 60.8 (q, ${}^{2}J_{F-C} = 36.5$ Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ -73.8 (s, 9F); IR (KBr): 3304, 1491,1420, 1284, 1237, 1168, 1100, 960, 812, 751, 688 cm⁻¹; HRMS (APCI-QE, m/z): [M-H]⁻ Calcd. for C₁₆H₁₃F₉O₅-H, 455.0547; found, 455.0545.

1-fluoro-4-(3,3,3-tris(2,2,2-trifluoroethoxy)prop-1-en-2-yl)benzene (3h)

92.2 mg, 96% yield; yellow oil, eluting with PE; ¹H NMR (400 MHz, CDCl₃) δ 7.64-7.55 (m, 2H), 7.08 (t, J = 8.7 Hz, 2H), 5.96 (s, 1H), 5.90 (s, 1H), 3.90 (q, J = 8.3 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 163.1 (d, ${}^{I}J_{F-C}$ = 250.5 Hz), 139.0, 130.6 (d, ${}^{4}J_{F-C}$ = 3.0 Hz), 128.8 (d, ${}^{3}J_{F-C}$ = 8.1 Hz), 123.2 (q, ${}^{1}J_{F-C}$ = 277.8 Hz), 121.8, 115.6 (d, ${}^{2}J_{F-C}$ = 21.2 Hz),

113.7, 60.8 (q, ${}^{2}J_{F-C}$ = 36.4 Hz); 19 F NMR (471 MHz, CDCl₃) δ -73.8 (s, 9F), δ -112.5 (s, 1F); IR (KBr): 2378, 1636, 1511, 1421, 1282, 1165, 1097, 962, 843, 751, 604, 536, 472 cm⁻¹; HRMS (APCI-QE, m/z): $[M-H]^-$ Calcd. for C₁₅H₁₂F₁₀O₃-H, 429.0554; found, 429.0555.

1-chloro-4-(3,3,3-tris(2,2,2-trifluoroethoxy)prop-1-en-2-yl)benzene (3i)

80.7 mg, 92% yield; white solid, mp: 64-65 °C, eluting with PE; ¹H NMR (500 MHz, CDCl₃) δ 7.53 (d, J = 8.7 Hz, 2H), 7.34 (d, J= 8.6 Hz, 2H), 5.97 (s, 1H), 5.90 (s, 1H), 3.87 (q, J = 8.3 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 138.9, 135.1, 133.0, 128.9, 128.2,

123.2 (q, ${}^{1}J_{F-C}$ = 277.2 Hz), 122.4, 113.6, 60.8 (q, ${}^{2}J_{F-C}$ = 36.5 Hz); 19 F NMR (471 MHz, CDCl₃) δ -73.7 (s, 9F); IR (KBr): 2977, 2316, 1495, 1421, 1286, 1169, 1095, 1016, 961, 842, 749 cm⁻¹; HRMS (APCI-QE, m/z): [M-H]⁻ Calcd. for C₁₅H₁₂ClF₉O₃-H, 445.0259; found, 445.0262.

1,3-dichloro-5-(3,3,3-tris(2,2,2-trifluoroethoxy)prop-1-en-2-yl)benzene (3j)

62.1 mg, 66% yield; white solid, mp: 68-69 °C, eluting with EtOAc/PE = 1: 10; ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 1.9 Hz, 2H), 7.39 (t, J = 1.9 Hz, 1H), 6.00 (s, 1H), 5.94 (s, 1H), 3.92 (q, J = 8.2 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 138.3, 137.7,

135.2, 128.9, 125.6, 123.1 (q, ${}^{I}J_{F-C}$ = 277.8 Hz), 123.6, 113.3, 61.0 (q, ${}^{2}J_{F-C}$ = 36.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -73.7 (s, 9F); IR (KBr): 3055, 1559, 1420, 1269, 1169, 1100, 961, 857, 803, 743 cm⁻¹; HRMS (APCI-QE, m/z): [M+H]⁺ Calcd. for C₁₅H₁₁Cl₂F₉O₃+H, 481.0014; found, 481.0014.

1-bromo-4-(3,3,3-tris(2,2,2-trifluoroethoxy)prop-1-en-2-yl)benzene (3k)

88.7 mg, 86% yield; yellow solid, mp: 72-73 °C, eluting with PE; ¹H NMR (400 MHz, CDCl₃) δ 7.57-7.44 (m, 4H), 6.00 (s, 1H), 5.93 (s, 1H), 3.90 (q, J = 8.3 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 139.0, 133.4, 131.8, 128.5, 123.4, 123.2 (q, ^{*i*}J_{*F*-C} = 277.8

Hz), 122.4, 113.6, 60.5 (q, ${}^{2}J_{F-C}$ = 36.4 Hz); ¹⁹F NMR (471MHz, CDCl₃) δ -73.7 (s, 9F); IR (KBr): 2962, 1489, 1421, 1286, 1169, 1090, 961, 836, 752, 689, 548 cm⁻¹; HRMS (APCI-QE, m/z): [M]⁺ Calcd. for C₁₅H₁₂BrF₉O₃, 489.9826; found, 489.9830.

N-methyl-4-(3,3,3-tris(2,2,2-trifluoroethoxy)prop-1-en-2-yl)benzamide (31)

88.0 mg, 94% yield; yellow solid, mp: 144-145 °C, eluting with EtOAc; ¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, J = 8.1 Hz, 2H),
7.57 (d, J = 8.2 Hz, 2H), 6.34-6.18 (m, 1H), 5.98 (s, 1H), 5.89 (s, 1H), 3.81 (q, J = 8.3 Hz, 6H), 2.95 (d, J = 4.9 Hz, 3H); ¹³C NMR

(126 MHz, CDCl₃) δ 167.5, 139.2, 137.4, 134.9, 127.2, 127.1, 123.3, 123.2 (q, ${}^{I}J_{F-C} = 277.2$ Hz), 113.6, 60.8, 26.9 (q, ${}^{2}J_{F-C} = 36.5$ Hz); 19 F NMR (471 MHz, CDCl₃) δ -73.7 (s, 9F); IR (KBr): 3340, 2914, 1724, 1630, 1546, 1411, 1282, 1163, 1088, 955, 855, 766, 634, 467 cm⁻¹; HRMS (APCI-QE, m/z): [M+H]⁺ Calcd. for C₁₇H₁₆F₉NO₄+H, 470.1008; found, 470.1008.

methyl 4-(3,3,3-tris(2,2,2-trifluoroethoxy)prop-1-en-2-yl)benzoate (3m)

49.8 mg, 57% yield; yellow oil, eluting with EtOAc/PE = 1: 10; ¹H NMR (500 MHz, CDCl₃) δ 8.07-7.99 (m, 2H), 7.65 (d, *J* = 8.1 Hz, 2H), 6.06 (s, 1H), 5.98 (s, 1H), 3.98-3.82 (m, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 166.6, 139.4, 139.0, 130.5, 129.9, 127.0,

123.6, 123.2 (q, ${}^{I}J_{F-C} = 277.2$ Hz), 113.6, 60.9 (q, ${}^{2}J_{F-C} = 36.5$ Hz), 52.2; ${}^{19}F$ NMR (471 MHz, CDCl₃) δ -73.7 (s, 9F); IR (KBr): 3152, 2974, 1752, 1641, 1426, 1288, 1173, 1097, 960, 856, 746, 688, 626 cm⁻¹; HRMS (APCI-QE, m/z): [M+H]⁺ Calcd. for C₁₇H₁₅F₉O₅, 471.0849; found, 471.0849.

4-(3,3,3-tris(2,2,2-trifluoroethoxy)prop-1-en-2-yl)benzaldehyde (3n)

93.3 mg, 76% yield; yellow solid, mp: 68-69 °C, eluting with EtOAc/PE = 1: 10; ¹H NMR (500 MHz, CDCl₃) δ 10.03 (d, J = 1.8 Hz, 1H), 7.92-7.85 (m, 2H), 7.75 (d, J = 8.1 Hz, 2H), 6.09 (s, 1H), 6.01 (s, 1H), 3.91 (q, J = 8.3 Hz, 6H); ¹³C NMR (126 MHz,

CDCl₃) δ 191.6, 140.6, 139.4, 136.3, 129.8, 127.6, 124.1, 123.1 (q, ${}^{1}J_{F-C} = 277.2$ Hz), 113.6, 60.9 (q, ${}^{2}J_{F-C} = 36.5$ Hz); 19 F NMR (471 MHz, CDCl₃) δ -73.7 (s, 9F); IR (KBr): 2921, 1670, 1606, 1418, 1283, 1167, 1088, 959, 842, 754, 687 cm⁻¹; HRMS (APCI-QE, m/z): [M+H]⁺ Calcd. for C₁₆H₁₃F₉O₄+H, 441.0743; found, 441.0744.

4-(3,3,3-tris(2,2,2-trifluoroethoxy)prop-1-en-2-yl)benzonitrile (30)

70.2 mg, 80% yield; white solid, mp: 94-95 °C, eluting with EtOAc/PE = 1: 10; ¹H NMR (500 MHz, CDCl₃) δ 7.67-7.54 (m, 4H), 5.98 (s, 1H), 5.92 (s, 1H), 3.82 (q, J = 8.2 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 139.2, 138.9, 132.3, 127.7, 124.2,

123.1 (q, ${}^{1}J_{F-C}$ = 277.2 Hz), 118.4, 113.4, 112.6, 60.9 (q, ${}^{2}J_{F-C}$ = 36.5 Hz); 19 F NMR (471 MHz, CDCl₃) δ -73.7 (s, 9F); IR (KBr): 2967, 2229, 1608, 1421, 1281, 1169, 1092, 960, 848, 752, 688, 555 cm⁻¹; HRMS (APCI-QE, m/z): [M+H]⁺ Calcd. for C₁₆H₁₂F₉NO₃+H, 438.0746; found, 438.0745.

1-(trifluoromethyl)-4-(3,3,3-tris(2,2,2-trifluoroethoxy)prop-1-en-2-yl)benzene (3p)

95.2 mg, 99% yield; yellow oil, eluting with EtOAc/PE = 1: 10;
¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, J = 8.3 Hz, 2H), 7.63 (d, J = 8.3 Hz, 2H), 6.04 (s, 1H), 5.98 (s, 1H), 3.90 (q, J = 8.2 Hz, 6H);
¹³C NMR (126 MHz, CDCl₃) δ 139.1, 138.2, 130.9 (q, ²J_{F-C})

= 37.8 Hz), 127.3, 125.5 (q, ${}^{3}J_{F-C}$ = 3.8 Hz), 123.9 (q, ${}^{1}J_{F-C}$ = 272.3 Hz), 123.6, 123.1 (q, ${}^{1}J_{F-C}$ = 277.2 Hz), 113.6, 60.9 (q, ${}^{2}J_{F-C}$ = 36.5 Hz); 19 F NMR (471 MHz, CDCl₃) δ -63.0 (s, 3F), δ -73.8 (s, 9F); IR (KBr): 2977, 1421, 1329, 1286, 1169, 1078, 1019, 962, 850, 744, 696 cm⁻¹; HRMS (APCI-QE, m/z): [M]⁺ Calcd. for C₁₆H₁₂F₁₂O₃, 480.0595; found, 480.0602.

3-(3,3,3-tris(2,2,2-trifluoroethoxy)prop-1-en-2-yl)benzo[b]thiophene (3q)

64.6 mg, 62% yield; white solid, mp: 63-64 °C, eluting with EtOAc/PE = 1: 10; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (ddt, *J* = 6.9, 2.8, 1.4 Hz, 2H), 7.75 (s, 1H), 7.53-7.39 (m, 2H), 6.25 (s, 1H), 6.12 (s, 1H), 3.95 (q, *J* = 8.3 Hz, 6H); ¹³C NMR (101 MHz,

CDCl₃) δ 140.3, 137.5, 134.5, 129.0, 126.0, 124.8, 124.7, 123.4, 123.3 (q, ${}^{I}J_{F-C}$ = 277.8 Hz), 123.2, 122.2, 113.7, 61.0 (q, ${}^{2}J_{F-C}$ = 36.4 Hz); 19 F NMR (376 MHz, CDCl₃) δ -73.6 (s, 9F); IR (KBr): 2959, 1420, 1283, 1167, 1101, 1072, 961, 855, 741 cm⁻¹; HRMS (APCI-QE, m/z): [M]⁺ Calcd. for C₁₇H₁₃F₉O₃S, 468.0442; found, 468.0437.

3-(3,3,3-tris(2,2,2-trifluoroethoxy)prop-1-en-2-yl)benzofuran (3r)

83.4 mg, 97% yield; yellow oil, eluting with EtOAc/PE = 1: 10;
¹H NMR (500 MHz, CDCl₃) δ 7.60 (d, J = 7.8 Hz, 1H), 7.47 (d, J = 8.2 Hz, 1H), 7.34 (t, J = 7.8 Hz, 1H), 7.24 (t, J = 7.5 Hz, 1H), 7.11 (s, 1H), 6.47 (s, 1H), 6.05 (s, 1H), 3.90 (q, J = 8.2 Hz, 1z)

6H); ¹³C NMR (126 MHz, CDCl₃) δ 154.7, 149.3, 130.5, 128.7, 125.8, 123.3, 123.2 (q, ${}^{1}J_{F-C} =$ 277.2 Hz), 122.1, 121.3, 112.7, 111.0, 106.8, 60.9 (q, ${}^{2}J_{F-C} =$ 36.5 Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ -73.7 (s, 9F); IR (KBr): 1627, 1421, 1285, 1169, 1100, 1019, 959, 851, 752, 689 cm⁻¹; HRMS (APCI-QE, m/z): [M]⁺ Calcd. for C₁₇H₁₃F₉O₄, 452.0670; found, 452.0675.

(E)-(3,3,3-tris(2,2,2-trifluoroethoxy)prop-1-ene-1,2-diyl)dibenzene (3s)

73.9 mg, 76% yield; yellow oil, eluting with EtOAc/PE = 1: 10; ¹H NMR (500 MHz, CDCl₃) δ 7.33 (dd, *J* = 5.1, 2.1 Hz, 3H), 7.24-7.13 (m, 5H), 7.08 (s, 1H), 7.02-6.97 (m, 2H), 3.99 (q, *J* = 8.3 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 134.4, 134.2, 134.0,

132.8, 130.0, 129.6, 128.8, 128.5, 128.4, 128.3, 123.3 (q, ${}^{I}J_{F-C}$ = 277.2 Hz), 114.1, 61.0 (q, ${}^{2}J_{F-C}$ = 36.5 Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ -73.6 (s, 9F), IR (KBr): 2921, 1419, 1285, 1231, 1167, 964, 850, 755, 702 cm⁻¹; HRMS (APCI-QE, m/z): [M]⁺ Calcd. for C₂₁H₁₇F₉O₃, 488.1034; found, 488.1039.

(3-(tris(2,2,2-trifluoroethoxy)methyl)but-3-en-1-yn-1-yl)benzene (3u)

54.7 mg, 62% yield; yellow solid, mp: 46-47 °C, eluting with PE; ¹H NMR (500 MHz, CDCl₃) δ 7.50-7.42 (m, 2H), 7.36 (d, *J* = 7.3 Hz, 3H), 6.13 (s, 1H), 6.01 (s, 1H), 4.06 (q, *J* = 8.3 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 131.7, 129.3, 128.8, 128.5, 125.4,

123.3 (q, ${}^{I}J_{F-C} = 277.2$ Hz), 121.8, 111.9, 92.9, 83.6, 61.3 (q, ${}^{2}J_{F-C} = 36.5$ Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ -73.9 (s, 9F), IR (KBr): 2919, 1649, 1421, 1287, 1172, 1113, 961, 851, 756, 690, 642 cm⁻¹; HRMS (APCI-QE, m/z): [M+H]⁺ Calcd. for C₁₇H₁₃F₉O₃+H, 437.0794; found, 437.0795.

2-(tris(2,2,2-trifluoroethoxy)methyl)but-1-en-3-yne (3v')

51.4 mg, 70% yield; yellow oil, eluting with EtOAc/PE = 1: 10; ¹H NMR (500 MHz, CDCl₃) δ 6.17 (s, 1H), 6.04 (s, 1H), 4.01 (q, J = 8.3 Hz, 6H), 3.10 (s, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 131.1, 124.7, 123.2 (q, ¹J_{F-C} = 277.2 Hz), 111.6, 81.2, 78.1, 61.3

(q, ${}^{2}J_{F-C}$ = 36.5 Hz); 19 F NMR (471 MHz, CDCl₃) δ -74.0 (s, 9F), IR (KBr): 2979, 2890, 2318, 1763, 1425, 1289, 1184, 963, 755, 688, 755, 688, 443 cm⁻¹; HRMS (APCI-QE, m/z): [M-H]⁻ Calcd. for C₁₁H₉F₉O₃-H, 359.0335; found, 359.0335.

(3,3,3-tris(2,2,3,3,3-pentafluoropropoxy)prop-1-en-2-yl)benzene (3y)

103.6 mg, 71% yield; yellow oil, eluting with EtOAc/PE = 1: 10; ¹H NMR (500 MHz, CDCl₃) δ 7.53 (dd, J = 6.4, 3.1 Hz, 2H), 7.40-7.31 (m, 3H), 5.95 (s, 1H), 5.83 (s, 1H), 3.93 (t, J = 12.8Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 139.8, 134.6, 128.9,

128.6, 126.9, 122.0, 118.4 (qt, *J* = 286.0 Hz, *J* = 35.3 Hz), 113.9, 112.4 (tq, *J* = 254.5 Hz, *J* = 37.8 Hz), 59.8 (t, *J* =27.7 Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ -83.8 (s, 3F), δ -123.4 (s, 2F); IR (KBr): 2962, 1363, 1206, 1110, 1057, 945, 755, 521 cm⁻¹; HRMS (APCI-QE, m/z): [M+H]⁺ Calcd. for C₁₈H₁₃F₁₅O₃+H, 563.0698; found, 563.0695.

(3,3,3-tris(2,2,3,3-tetrafluoropropoxy)prop-1-en-2-yl)benzene (3z)

81.8 mg, 77% yield; colorless oil, eluting with EtOAc/PE = 1: 10; ¹H NMR (500 MHz, CDCl₃) δ 7.45-7.40 (m, 2H), 7.30-7.26 (m, 3H), 5.87-5.60 (m, 5H), 3.79 (t, J = 12.5 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 140.0, 135.0, 128.9, 128.5, 126.9, 122.1, 114.5 (tt, J = 249.5 Hz, J = 27.7 Hz), 113.8, 109.1 (tt, J = 250.7 Hz, J = 35.3 Hz), 60.0 (t, J = 30.2Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ -124.0 (t, J = 3.7 Hz, 2F), -138.4 --138.4 (m, 2F); IR (KBr): 2962, 1409, 1179, 1107, 943, 837, 779, 702, 546 cm⁻¹; HRMS (APCI-QE, m/z): [M-H]⁻ Calcd. for C₁₈H₁₆F₁₂O₃-H, 507.0835; found, 507.0832.

(3,3,3-tris((2,2,3,3,4,4,5,5-octafluoropentyl)oxy)prop-1-en-2-yl)benzene (3aa)

94.6 mg, 57% yield; yellow oil, eluting with EtOAc/PE = 1: 10; ¹H NMR (500 MHz, CDCl₃) δ 7.45 (dd, J = 6.8, 3.0 Hz, 2H), 7.31-7.24 (m, 3H), 6.06-5.72 (m, 5H), 3.91 (t, J = 13.6 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 139.0, 133.8, 127.9, 127.5, 126.0,

121.1, 113.1, 116.2-104.3 (complex signal, 4C), 59.0 (t, J = 26.5 Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ -119.7 (t, J = 10.8 Hz, 2F), -125.3 (d, J = 8.8 Hz, 2F), -130.2 (d, J = 6.0 Hz, 2F), -137.4 (d, J = 8.4 Hz, 2F); IR (KBr): 2967, 1405, 1266, 1174, 1126, 904, 756, 539 cm⁻¹; HRMS (APCI-QE, m/z): [M-H]⁻ Calcd. for C₂₄H₁₆F₂₄O₃-H, 807.0643; found, 807.0648.

(3,3,3-tris((2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctyl)oxy)prop-1-en-2-yl)benzene

(3ab)

186.2 mg, 68% yield; colorless oil, eluting with EtOAc/PE = 1: 10; ¹H NMR (500 MHz, CDCl₃) δ 7.52 (dd, J = 6.7, 2.9 Hz, 2H), 7.39-7.28 (m, 3H), 5.93 (s, 1H), 5.82 (s, 1H), 3.99 (t, J = 13.3Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 140.0, 134.7, 128.9, 128.5, 127.0, 121.8, 114.1, 118.3-108.2 (complex signal, 7C), 60.2 (t, J=26.5 Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ -81.2 (t, J = 10.0 Hz, 3F), -119.6 (t, J = 13.2 Hz, 2F), -122.2--122.3 (m, 4F), -122.9--123.0 (m, 2F), -123.4--123.5 (m, 2F), -126.3--126.4 (m, 2F); IR (KBr): 2964, 2905, 2430, 1895, 1458, 1407, 1205, 1026, 953, 890, 784, 710, 650, 568, 529 cm⁻¹; HRMS (APCI-QE, m/z): [M+H]⁺ Calcd. for C₃₃H₁₃F₄₅O₃+H, 1313.0219; found, 1313.0214.

2-(3,3,3-tris(2,2-difluoroethoxy)prop-1-en-2-yl)naphthalene (3af)

78.0 mg, 96% yield; yellow oil, yellow oil, eluting with EtOAc/PE = 1: 20; ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, J = 1.9 Hz, 1H), 7.82-7.67 (m, 3H), 7.59 (dd, J = 8.7, 1.9 Hz, 1H), 7.41 (dt, *J* = 6.3, 3.5 Hz, 2H), 5.97 (s, 1H), 5.90 (s, 1H), 5.76 (tt,

J = 55.1, 4.0 Hz, 3H), 3.65 (td, J = 13.8, 4.0 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 140.6, 133.2, 133.2, 132.7, 128.6, 128.2, 127.5, 126.7, 126.5, 126.4, 124.6, 122.4, 114.0, 113.6 (t, ${}^{I}J_{F-C} = 240.7$ Hz), 62.2(t, ${}^{2}J_{F-C}$ = 29.0Hz); 19 F NMR (471 MHz, CDCl₃) δ -125.0 (s, 6F); IR (KBr): 2986, 1629, 1419, 1267, 1085, 940, 900, 822, 755, 478 cm⁻¹; HRMS (APCI-QE, m/z): [M+H]⁺ Calcd. for C₁₉H₁₈F₆O₃+H, 409.1233; found, 409.1237.

methyl 2-(naphthalen-2-yl)acrylate (3ah')⁵

28.5 mg, 67% yield; yellow oil, eluting with EtOAc/PE = 1: 20; ¹H NMR (500 MHz, CDCl₃) δ 7.86-7.79 (m, 1H), 7.79-7.70 (m, 3H), 7.47-7.36 (m, 3H), 6.36 (d, *J* = 1.3 Hz, 1H), 5.93 (d, *J* = 1.2 Hz, 1H), 3.77 (s, 3H).

ethyl 2-(naphthalen-2-yl)acrylate (3ai')⁶

43.9 mg, 95% yield; yellow oil, eluting with EtOAc/PE = 1: 20; ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, *J* = 1.9 Hz, 1H), 7.74 (td, J = 8.8, 4.7 Hz, 3H), 7.44 (dd, J = 8.6, 1.8 Hz, 1H), 7.41-7.34 (m, 2H), 6.33 (d, J = 1.4 Hz, 1H), 5.91 (d, J = 1.4 Hz, 1H), 4.31-

4.17 (m, 2H), 1.25 (td, *J* = 7.1, 1.5 Hz, 3H).

1-methoxy-4-(3,3,3-tris(2,2,2-trifluoroethoxy)prop-1-en-2-yl)benzene (3aj)

25.2 mg, 25% yield; yellow oil, eluting with PE; ¹H NMR (500 MHz, CDCl₃) δ 7.47 (d, J = 8.6 Hz, 2H), 6.82 (d, J = 8.6 Hz, 2H), 5.83 (s, 1H), 5.76 (s, 1H), 3.79 (m, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 160.2, 139.0, 128.1, 126.7, 123.3 (q, ${}^{l}J_{F-C} =$ 277.2 Hz), 120.5, 114.0, 113.9, 60.8 (q, ${}^{2}J_{F-C}$ = 36.5Hz), 55.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -73.7 (s, 9F); IR (KBr): 2920, 1642, 1389, 1271, 1170, 1095, 755 cm⁻¹; HRMS (APCI-QE, m/z):

[M]⁺ Calcd. for C₁₆H₁₅F₉O₄, 442.0827; found, 442.0822.

1-(3,3-difluoro-3-(2,2,2-trifluoroethoxy)prop-1-en-2-yl)-4-methoxybenzene (3aj')

4.1 mg, 6% yield; yellow oil, eluting with PE; ¹H NMR (500 MHz, CDCl₃) δ 7.38-7.27 (m, 2H), 6.88-6.73 (m, 2H), 5.76 (d, J = 1.3 Hz, 1H), 5.54 (t, J = 1.6 Hz, 1H), 4.21 (q, J = 8.2 Hz, 2H), 3.74 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 159.9, 139.9 (t, ²J_F-

 $_{C}$ = 29.0 Hz), 128.8, 127.2, 122.8 (q, ${}^{I}J_{F-C}$ = 277.2 Hz), 121.9 (t, ${}^{I}J_{F-C}$ = 264.6 Hz), 118.5 (t, ${}^{3}J_{F-C}$ = 6.3Hz), 113.7, 60.8 (qt, J = 36.5Hz, 6.3 Hz), 55.3; ¹⁹F NMR (471 MHz, CDCl₃) δ -72.5 (s, 2F), -74.2 (s, 3F); ¹IR (KBr): 2922, 2855, 1611, 1516, 1427, 1291, 1174, 1041, 952, 837, 752, 655, 534 cm⁻¹; HRMS (APCI-QE, m/z): [M+H]⁺ Calcd. for C₁₂H₁₂F₅O₂+H, 283.0752; found, 283.0746.

2,2,2-trifluoroethyl 2-(4-methoxyphenyl)acrylate (3aj'')

5) General Procedure for Gram-Scale Synthesis

To a 100 mL Schlenk flask was charged with alkenes **1b** (2.5 mmol, 1.0 equiv), fluoroalkylated alcohols (10 mmol, 4.0 equiv), Cs_2CO_3 (12.5 mmol, 5.0 equiv) and a solvent of DMSO (25 mL). The resulting solution was stirred at 40 °C for 12 h. Upon competition of the reaction, H₂O (50 mL) was added, and extracted with EtOAc (50 mL× 3). The combined organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated in *vacuo*. The residue was purified by column chromatography on silica gel to afford fluoroalkylated orthester product **3b** (97% yield, 1.125 g).

6) General Procedure for Further Derivatization of the Obtained Fluoroalkylated orthesters

A 25 mL oven-dried Schlenk tube equipped with a magnetic stirring bar, 3v' (72.0 mg, 0.2 mmol) and azidoacetic acid ethyl ester (51.6 mg, 0.4 mmol) were dissolved in 2 mL of a 1:1 water/tertbutanol mixture. Sodium ascorbate (4.0 mg, 0.02 mmol, 200 µL of freshly prepared 0.1 M solution in water) and copper(II) sulfate pentahydrate (3.2 mg, 0.02 mmol, 200 µL of freshly

prepared 0.1 M solution in water) were added. The mixture was vigorously stirred at 60 °C for 12 h. Then the mixture was stopped stirring, added water (15 mL), extracted with EtOAc (15 mL \times 3). The combined organic layer was dried over anhydrous Na₂SO4, filtered and concentrated in vacuo. Further purification by flash column chromatography on silica gel (eluting with petroleum ether/ethyl acetate = 1:5) provided product **4** in 97% isolated yield.

ethyl 2-(4-(3,3,3-tris(2,2,2-trifluoroethoxy)prop-1-en-2-yl)-1H-1,2l2,3l2-triazol-1-yl)acetate (4)

109.1 mg, 97% yield; colorless oil, eluting with PE; ¹H NMR (500 MHz, CDCl₃) δ 7.87 (s, 1H), 6.77 (s, 1H), 6.00 (s, 1H), 5.18 (s, 2H), 4.26 (q, *J* = 7.2 Hz, 2H), 3.87 (q, *J* = 8.3 Hz, 6H), 1.28 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 165.8,

141.0, 129.9, 123.6, 123.1 (q, ${}^{I}J_{F-C}$ = 277.2 Hz), 121.6, 113.1, 62.5, 60.8 (q, ${}^{2}J_{F-C}$ = 36.5 Hz), 51.0, 13.9; 19 F NMR (471 MHz, CDCl₃) δ -73.8 (s, 9F); IR (KBr): 2975, 1751, 1424, 1286, 1172, 1096, 960, 855, 749, 692, 620 cm⁻¹; HRMS (APCI-QE, m/z): [M+H]⁺ Calcd. for C₁₅H₁₆F₉N₃O₅+H, 490.1019; found, 490.1019.

$$\begin{array}{c|c} OCH_2CF_3 \\ OCH_2CF_3 \\ OCH_2CF_3 \\ 3a \end{array} \xrightarrow{H_2SO_4: CF_3CH_2OH= 1:1}_{rt, 5min} OCH_2CF_3 \\ 0 \\ 5, 82\% \end{array}$$

3a (82.5 mg, 0.2 mmol) was added into a 10 mL Schlenk tube. Then 2.5 mL ethyl acetate and 2.5 ml 2,2,2-Trifluoroethanol were added. Then H_2SO_4 solution (2.5 ml) was added. The mixture was stirred for 5 min. The combined organic layers were washed with saturated NaHCO₃ and brine, dried over anhydrous Na₂SO₄, filtered and concentrated to give the **5**. The residue was purified by flash column chromatography over silica gel using petroleum ether/ethyl acetate (1:10), providing product **5** in 82% isolated yield.

2,2,2-trifluoroethyl 2-phenylacrylate (5)⁷

37.5 mg, 82% yield; yellow oil, eluting with PE; ¹H NMR (500 MHz, CDCl₃) δ 7.49-7.33 (m, 5H), 6.48 (s, 1H), 6.04 (s, 1H), 4.61 (q, *J* = 8.4 Hz, 2H); ¹⁹F NMR (471 MHz, CDCl₃) δ -73.6 (s, 9F).

7) Control Experiments

To a 25 mL Schlenk flask was charged with alkenes **1b** (0.2 mmol, 1.0 equiv), **1x** (0.8 mmol, 4.0 equiv), Cs_2CO_3 (1.0 mmol, 5.0 equiv), and a solvent of DMSO (2.0 mL). The resulting solution was stirred at 40 °C for 12 h. Then the mixture was cooled to room temperature, quenched with H₂O (15 mL), extracted with EtOAc (15 mL × 3). The combined organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The yield was determined by ¹⁹F NMR spectroscopy of the crude product.

Typical Procedure for Radical Trapping Experiment:

To a 25 mL Schlenk flask was charged with alkenes **1b** (0.2 mmol, 1.0 equiv), fluoroalkylated alcohols (0.8 mmol, 4.0 equiv), Cs_2CO_3 (1.0 mmol, 5.0 equiv), **additives** (0.4 mmol, 2.0 equiv) and a solvent of DMSO (2.0 mL). The resulting solution was stirred at 40 °C for 12 h. Then the mixture was cooled to room temperature, quenched with H₂O (15 mL), extracted with EtOAc (15 mL × 3). The combined organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. Further purification by flash column chromatography on silica gel provided the products **3b**.

The reaction between 1a and 2a in DMSO-d₆ monitored by ¹⁹F NMR:

To an oven-dried NMR tube was added **1a** (0.06 mmol, 1.0 equiv), **2a** (0.22 mmol, 4.0 equiv), Cs_2CO_3 (0.28 mmol, 5.0 equiv), and a solvent of DMSO- d_6 (0.55 mL). The resulting solution was stirred at room temperature. Then the reaction mixture was monitored by ¹⁹F NMR in different time. We tried different reaction concentrations, and this is the best set of spectra we have ever had. However, the peaks of **3a**'⁸ were not detected.

C. References

[1] Lan, Y.; Yang, F. Y.; and Wang, C. ACS Catal. 2018, 8, 9245-9251.

[2] Zhang, C. X.; Li, D.; Zhao, Y. L.; Zhao, J. F.; Qu, J. P.; and Zhou, Y. H. *ChemistrySelect*. 2020, **5**, 13099-13102.

[3] Chen, S. J.; Zhang, J. H.; Yang, M. F.; Liu, F. G.; Xie, Z. P.; Liu, Y. L.; Lin, W. X.; Wang, D.

R.; Li, X. R.; and Wang, J. H. Chem. Commun. 2019, 55, 3879-3882.

[4] Güell, I. and Ribas, X. Eur. J. Org. Chem. 2014, 15, 3188-3195.

[5] Kohsaka, Y.; Yamaguchi, E.; and Kitayama, T. Polymer Chemistry. 2014, 52, 2806-2814.

[6] Gualandi, A.; Mazzarella, D.; Martinez, A. O.; Mengozzi, L.; Calcinelli, F.; Matteucci, E.;

Monti, F.; Armaroli, N.; Sambri, L.; and Cozzi, P. G. ACS Catal. 2017, 7, 5357-5362.

[7] Dai, D. T.; Xu, J. L.; Chen, Z. Y.; Wang, Z. L.; Xu, Y. H. Org. Lett. 2021, 23, 1898-1903.

[8] Cai, Y. Y.; Zeng, H.; Zhu, C. L.; Liu, C.; Liu, G. Y.; and Jiang, H. F. Org. Chem. Front. 2020, 7, 1260-1265.

D. NMR Spectra of Compounds

H NMR (500 MHz, CDCl₃) spectrum for 3a

¹³C NMR (126 MHz, CDCl₃) spectrum for 3a

¹⁹F NMR (471 MHz, CDCl₃) spectrum for 3a

¹H NMR (400 MHz, CDCl₃) spectrum for 3b

¹³C NMR (101 MHz, CDCl₃) spectrum for 3b

¹⁹F NMR (376 MHz, CDCl₃) spectrum for 3b

¹H NMR (400 MHz, CDCl₃) spectrum for 3c

¹³C NMR (126 MHz, CDCl₃) spectrum for 3c

¹⁹F NMR (471 MHz, CDCl₃) spectrum for 3c

¹H NMR (500 MHz, CDCl₃) spectrum for 3d

¹³C NMR (126 MHz, CDCl₃) spectrum for 3d

¹⁹F NMR (471 MHz, CDCl₃) spectrum for 3d

¹H NMR (400 MHz, CDCl₃) spectrum for 3e

¹³C NMR (101 MHz, CDCl₃) spectrum for 3e

¹⁹F NMR (471 MHz, CDCl₃) spectrum for 3e

¹H NMR (500 MHz, CDCl₃) spectrum for 3f

¹³C NMR (126 MHz, CDCl₃) spectrum for 3f

¹⁹F NMR (471 MHz, CDCl₃) spectrum for 3f

¹H NMR (500 MHz, CDCl₃) spectrum for 3g

¹³C NMR (126 MHz, CDCl₃) spectrum for 3g

¹⁹F NMR (471 MHz, CDCl₃) spectrum for 3g

¹H NMR (400 MHz, CDCl₃) spectrum for 3h

¹³C NMR (101 MHz, CDCl₃) spectrum for 3h

¹⁹F NMR (471 MHz, CDCl₃) spectrum for 3h

¹H NMR (500 MHz, CDCl₃) spectrum for 3i

¹³C NMR (126 MHz, CDCl₃) spectrum for 3i

¹⁹F NMR (471 MHz, CDCl₃) spectrum for 3i

¹H NMR (400 MHz, CDCl₃) spectrum for 3j

¹³C NMR (101 MHz, CDCl₃) spectrum for 3j

¹⁹F NMR (376 MHz, CDCl₃) spectrum for 3j

¹H NMR (400 MHz, CDCl₃) spectrum for 3k

¹³C NMR (101 MHz, CDCl₃) spectrum for 3k

¹⁹F NMR (471 MHz, CDCl₃) spectrum for 3k

¹H NMR (500 MHz, CDCl₃) spectrum for 31

¹³C NMR (126 MHz, CDCl₃) spectrum for 31

¹⁹F NMR (471 MHz, CDCl₃) spectrum for 31

¹H NMR (500 MHz, CDCl₃) spectrum for 3m

¹³C NMR (126 MHz, CDCl₃) spectrum for 3m

¹⁹F NMR (471 MHz, CDCl₃) spectrum for 3m

¹H NMR (500 MHz, CDCl₃) spectrum for 3n

¹³C NMR (126 MHz, CDCl₃) spectrum for 3n

¹⁹F NMR (471 MHz, CDCl₃) spectrum for 3n

¹H NMR (500 MHz, CDCl₃) spectrum for 30

¹³C NMR (126 MHz, CDCl₃) spectrum for 30

¹⁹F NMR (471 MHz, CDCl₃) spectrum for 30

¹H NMR (500 MHz, CDCl₃) spectrum for 3p

¹³C NMR (126 MHz, CDCl₃) spectrum for 3p

¹⁹F NMR (471 MHz, CDCl₃) spectrum for 3p

¹H NMR (400 MHz, CDCl₃) spectrum for 3q

¹³C NMR (101 MHz, CDCl₃) spectrum for 3q

¹⁹F NMR (376 MHz, CDCl₃) spectrum for 3q

¹H NMR (500 MHz, CDCl₃) spectrum for 3r

¹³C NMR (126 MHz, CDCl₃) spectrum for 3r

¹⁹F NMR (471 MHz, CDCl₃) spectrum for 3r

¹H NMR (500 MHz, CDCl₃) spectrum for 3s

¹³C NMR (126 MHz, CDCl₃) spectrum for 3s

¹⁹F NMR (471 MHz, CDCl₃) spectrum for 3s

¹H NMR (500 MHz, CDCl₃) spectrum for 3u

¹³C NMR (126 MHz, CDCl₃) spectrum for 3u

¹⁹F NMR (471 MHz, CDCl₃) spectrum for 3u

¹H NMR (500 MHz, CDCl₃) spectrum for 3v'

¹³C NMR (126 MHz, CDCl₃) spectrum for 3v'

¹⁹F NMR (471 MHz, CDCl₃) spectrum for 3v'

¹H NMR (500 MHz, CDCl₃) spectrum for 3y

¹³C NMR (126 MHz, CDCl₃) spectrum for 3y

¹⁹F NMR (471 MHz, CDCl₃) spectrum for 3y

¹H NMR (500 MHz, CDCl₃) spectrum for 3z

¹³C NMR (126 MHz, CDCl₃) spectrum for 3z

¹⁹F NMR (471 MHz, CDCl₃) spectrum for 3z

¹H NMR (500 MHz, CDCl₃) spectrum for 3aa

¹³C NMR (126 MHz, CDCl₃) spectrum for 3aa

¹⁹F NMR (471 MHz, CDCl₃) spectrum for 3aa

¹H NMR (500 MHz, CDCl₃) spectrum for 3ab

¹³C NMR (126 MHz, CDCl₃) spectrum for 3ab

¹⁹F NMR (471 MHz, CDCl₃) spectrum for 3ab

¹H NMR (500 MHz, CDCl₃) spectrum for 3af

¹³C NMR (126 MHz, CDCl₃) spectrum for 3af

¹⁹F NMR (471 MHz, CDCl₃) spectrum for 3af

¹H NMR (500 MHz, CDCl₃) spectrum for 3ah'

¹H NMR (500 MHz, CDCl₃) spectrum for 3ai'

¹H NMR (500 MHz, CDCl₃) spectrum for 3aj

¹³C NMR (126 MHz, CDCl₃) spectrum for 3aj

¹⁹F NMR (376 MHz, CDCl₃) spectrum for 3aj

¹H NMR (500 MHz, CDCl₃) spectrum for 3aj'

¹³C NMR (126 MHz, CDCl₃) spectrum for 3aj'

¹⁹F NMR (471 MHz, CDCl₃) spectrum for 3aj'

¹H NMR (400 MHz, CDCl₃) spectrum for 3aj"

¹³C NMR (126 MHz, CDCl₃) spectrum for 3aj"

¹⁹F NMR (376 MHz, CDCl₃) spectrum for 3aj"

¹H NMR (500 MHz, CDCl₃) spectrum for 4

¹³C NMR (126 MHz, CDCl₃) spectrum for 4

¹⁹F NMR (471 MHz, CDCl₃) spectrum for 4

¹H NMR (500 MHz, CDCl₃) spectrum for 5

¹⁹F NMR (471 MHz, CDCl₃) spectrum for 5

