Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Base-mediated cascade synthesis of indole diolefins: a route to spiro[cyclopentene-indole]thiones and thiepino[2,3-b]indoles

Sengodagounder Muthusamy,* Ramasamy Naveen and Muniyappankovilthottam Devaraj Senthil Kumar

> School of Chemistry, Bharathidasan University Tiruchirappalli – 620024, India. E-mail: muthu@bdu.ac.in

Table of Contents

1.	General information	S2
2.	General procedure for the synthesis of compounds 5	S2
3.	NMR Studies for the transformation of products 5 to 8	S6
4.	General procedure for the synthesis of alcohols 8/9	S8
5.	Experimental procedure for products 10-12	S11
6.	General procedure for the synthesis of diolefins 13/14	S13
7.	Optimization table for ring-closing metathesis reaction of di-olefin 13a	S20
8.	General procedure for the ring-closing metathesis reaction for	
	products 16/17	S21
9.	Single crystal X-ray analysis of compound 16f	S25
10.	Proposed cascade pathway for the formation of diolefins 13/14	S27
11.	¹ H, ¹³ C & selected DEPT-135 NMR copies of compounds 5 , 8-14 , 16 , 17	S28

1. General information

Capillary melting point apparatus was used to determine the melting points which are uncorrected. Infrared spectra were recorded as neat (ATR) on a Bruker Alpha FT-IR spectrophotometer (cm⁻¹). ¹H and ¹³C NMR spectra were recorded in Bruker Avance III 400 NMR spectrometer operating at 400 MHz (¹H) and 101 MHz (¹³C) at ambient temperature. The chemical shift (δ) values are given in parts per million (ppm) and coupling constants (*J*) in Hertz (Hz). All NMR studies used CDCl₃ (¹H NMR: δ 7.26 ppm; ¹³C NMR: δ 77.16 ppm) as a solvent and Tetramethylsilane (TMS) as an internal standard (δ 0.00 ppm). The following abbreviations are used in reporting NMR data: s, singlet; d, doublet; t, triplet; q, quartet; quint, quintet; m, multiplet; br, broad; dd, doublet of doublets; dt, doublet of triplets; td, triplet of doublets; ABq, AB quartet. High-resolution mass analyses were performed using the electrospray ionization (ESI) technique on a Thermo Exactive Orbitrap mass spectrometer. The diastereomeric ratios (dr) were determined from ¹H NMR.

Solvents were purified by distillation according to usual methods. DCM was dried using P_2O_5 . DMF was purified through vacuum distillation using CaH₂ and stored over 4Å molecular sieves. Toluene was dried by downward distillation and stored with sodium wire. Ultimate care has been taken while using sodium for solvent drying purposes. Thin-layer chromatography was performed on silica/alumina plates and components were visualized by observation under iodine or UV light at 254 nm. Crude samples were purified by either column (silica gel, 100-200 mesh) or flash (silica gel, 230-400 mesh) chromatography. For the elution process *n*-hexanes-EtOAc mixture was used as the eluent unless otherwise stated. All air and moisture-sensitive reactions were carried out in oven-dried glassware under a positive argon or nitrogen gas pressure using standard gas-tight syringes and septa with magnetic stirring. Anhydrous chloroform and Grubbs' catalysts were purchased from M/s Sigma Aldrich Co. and used as provided. K₂CO₃ was dried by heating at 110 °C in a hot air oven for 12 h and left to cool under a nitrogen atmosphere.

Important: In general, compounds 5 and 8 were highly decomposing nature. Quick purification and characterization are mandatory for substrates 5 and 8.

2. General procedure for the synthesis of compounds 5

An oven-dried flask under an inert atmosphere was charged with the appropriate aldehyde **4** (1.0 equiv) and anhydrous powdered K_2CO_3 (1.2 equiv) in dry dimethylformamide (25 mL) and stirred at 0 °C for 10 min, the appropriate alkyl/aryl halide (1.2 equiv) and tetrabutylammonium iodide (TBAI) (0.1 equiv) were added to the above reaction mixture. The reaction mixture was stirred at room temperature overnight. Water (100 mL) was added

to the reaction and extracted with dichloromethane (3 x 25 mL). The entire organic layers were combined and washed with water (100 mL). Finally, the organic layer was dried over Na₂SO₄, evaporated, and purified by column chromatography using silica gel (100-200 mesh; *n*-hexanes:EtOAc = 4:1) to afford the respective *N*-alkylated products **5**.

1-Methyl-2-[(prop-2-en-1-yl)sulfanyl]-1H-indole-3-carbaldehyde (5a)

Yellowish oil (87%); **IR** (neat): v_{max} 2825, 1670, 915, 866, 798, 751, 707, 689, 652, 610 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 10.23 (s, 1H), 8.34 (d, J = 7.6 Hz, 1H), 7.32-7.29 (m, 3H), 5.84-5.73 (m, 1H), 4.98-4.83 (m, 2H), 3.85 (s, 3H), 3.40 (d, J = 7.2 Hz, 2H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 187.3, 141.7, 138.0, 132.3, 125.0, 124.6, 123.2, 121.8, 120.8, 119.2, 110.0, 40.8, 30.5 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for [C₁₃H₁₃NOS+H]⁺ 232.0796; Found: 232.0802.

1-Ethyl-2-[(prop-2-en-1-yl)sulfanyl]-1*H*-indole-3-carbaldehyde (5b)

Yellowish oil (83%); **IR** (neat): v_{max} 2906, 1672, 985, 906, 778, 747, 697, 677, 652, 619 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 10.27 (s, 1H), 8.38-8.36 (m, 1H), 7.41-7.29 (m, 3H), 5.86-5.80 (m, 1H), 5.04-4.89 (m, 2H), 4.46 (q, *J* = 7.2 Hz, 2H), 3.48-3.46 (m, 2H), 1.44 (t, *J* = 7.2 Hz, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 187.4, 140.8, 136.8, 132.3, 125.5, 124.5, 123.1, 122.0, 120.8, 119.4, 110.1, 41.4, 38.9, 15.3 ppm; **HRMS** (ESI) *m/z*: [M+H]⁺ Calcd for [C₁₄H₁₅NOS+H]⁺ 246.0953; Found: 246.0957.

1-Benzyl-2-[(prop-2-en-1-yl)sulfanyl]-1*H*-indole-3-carbaldehyde (5c)

Yellowish oil (78%); **IR** (neat): v_{max} 2921, 1671, 975, 968, 788, 756, 709, 675, 655 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 10.21 (s, 1H), 8.34-8.31 (m, 1H), 7.25-7.17 (m, 6H), 6.99-6.97 (m, 2H), 5.70-5.60 (m, 1H), 5.56 (s, 2H), 4.90 (d, J = 10.0 Hz, 1H), 4.70 (dd, $J_I = 16.8$ Hz, $J_2 = 1.2$ Hz, 1H), 3.15 (d, J = 7.6 Hz, 2H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 187.7, 141.5, 137.8, 136.5, 132.2, 129.0, 127.9, 126.3, 125.3, 124.9, 123.3, 122.0, 121.5, 119.6, 110.8, 47.3, 40.9 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for [C₁₉H₁₇NOS+H]⁺ 308.1109; Found: 308.1114.

1-(Prop-2-en-1-yl)-2-[(prop-2-en-1-yl)sulfanyl]-1*H*-indole-3-carbaldehyde (5d)

Yellowish oil (81%); **IR** (neat): v_{max} 1656, 1454, 1381, 1333, 1199, 990, 921, 746 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 10.18 (s, 1H), 8.30-8.28 (m, 1H), 7.25-7.18 (m, 3H), 5.94-5.85 (m, 1H), 5.77-5.67 (m, 1H), 5.15-5.13 (m, 1H), 4.96-4.75 (m, 5H), 3.35 (d, *J* = 7.6 Hz, 2H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 187.7, 141.3, 137.5, 132.4, 132.3, 125.2, 124.7, 123.3, 122.0, 121.2, 119.5, 117.5, 110.7, 46.1, 40.9 ppm; **HRMS** (ESI) *m/z*: [M+H]⁺ Calcd for [C₁₅H₁₅NOS+H]⁺ 258.0953; Found: 258.0944.

¹⁻Benzyl-6-chloro-2-[(prop-2-en-1-yl)sulfanyl]-1*H*-indole-3-carbaldehyde (5e)

Yellowish amorphous solid (76%); **IR** (neat): v_{max} 1723, 1653, 1606, 1452, 1378, 1334, 1071, 859, 807, 699 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 10.25 (s, 1H), 8.32-8.30 (m, 1H), 7.32-7.26 (m, 5H), 7.06-7.04 (m, 2H), 5.78-5.67 (m, 1H), 5.59 (s, 2H), 4.99 (d, J = 10.0 Hz, 1H), 4.78 (dd, $J_1 = 16.8$ Hz, $J_2 = 1.2$ Hz, 1H), 3.22 (d, J = 7.6 Hz, 2H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 187.5, 142.1, 138.2, 136.0, 132.0, 131.0, 129.1, 128.1, 126.2, 124.1, 123.7, 123.0, 121.6, 119.8, 110.7, 47.3, 40.8 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for [C₁₉H₁₆ClNOS+H]⁺ 342.0719; Found: 342.0713.

Yellowish amorphous solid (79%); **IR** (neat): v_{max} 2923, 1725, 1658, 1606, 1442, 1384, 1338, 1264, 1189, 804, 731, 701 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 10.14 (s, 1H), 8.48 (s, 1H), 7.28-7.17 (m, 4H), 7.04-7.02 (m, 1H), 6.95-6.94 (m, 2H), 5.69-5.56 (m, 1H), 5.52 (s, 2H), 4.90 (d, *J* = 10.0 Hz, 1H), 4.71-4.67 (m, 1H), 3.15 (d, *J* = 7.2 Hz, 2H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 187.4, 142.3, 136.4, 136.0, 132.0, 129.1, 128.1, 127.9, 126.6, 126.2, 124.6, 120.9, 119.8, 117.1, 112.2, 47.4, 40.8 ppm; **HRMS** (ESI) *m/z*: [M+H]⁺ Calcd for [C₁₉H₁₆BrNOS+H]⁺ 386.0214; Found: 386.0221.

2-{[(2E)-But-2-en-1-yl]sulfanyl}-1-ethyl-1*H*-indole-3-carbaldehyde (5g)

Yellowish oil (73%); **IR** (neat): v_{max} 2926, 1676, 977, 915, 865, 777, 731, 689, 625 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 10.14 (s, 1H), 8.32-8.30 (m, 1H), 7.34-7.22 (m, 3H), 5.43-5.37 (m, 1H), 5.26-5.18 (m, 1H), 4.42-4.36 (m, 2H), 3.34 (d, *J* = 7.6 Hz, 2H), 1.50 (dd, *J*₁ = 6.4 Hz, *J*₂ = 0.8 Hz, 3H), 1.36 (t, *J* = 7.2 Hz, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 187.4, 141.4, 136.8, 131.1, 125.4, 125.1, 124.4, 123.0, 122.0, 120.8, 110.1, 41.0, 38.8, 17.7, 15.3 ppm; **HRMS** (ESI) *m*/*z*: [M+H]⁺ Calcd for [C₁₅H₁₇NOS+H]⁺ 260.1109; Found: 260.1106.

2-[(But-3-en-1-yl)sulfanyl]-1-ethyl-1*H*-indole-3-carbaldehyde (5h)

Yellowish oil (78%); **IR** (neat): v_{max} 3060, 2672, 1338, 1104, 998, 966, 916, 790, 731, 654, 611 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 10.32 (s, 1H), 8.37 (d, *J* = 7.2 Hz, 1H), 7.40-7.26 (m, 3H), 5.81-5.71 (m, 1H), 5.09-5.05 (m, 2H), 4.44 (q, *J* = 7.2 Hz, 2H), 2.94-2.90 (m, 2H),

2.36-2.33 (m, 2H), 1.43 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 187.1, 141.8, 136.9, 135.3, 125.5, 124.5, 123.2, 122.0, 120.6, 117.2, 110.2, 38.9, 37.6, 33.7, 15.3 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for [C₁₅H₁₇NOS+H]⁺ 260.1109; Found: 260.1114.

3. NMR Studies for the transformation of products 5 to 8

The reaction pathway for the formation of alcohols **8** *via* intermediate **7** was monitored using NMR spectral studies. In figures S1-S3, spectrum A represented the NMR spectrum for aldehyde **5e**. Spectrum B was recorded at a reaction time of 2 h. It indicates that the aldehyde's starting material completely converted and formed as a mixture of intermediate **7** and product **8e**. It was identified using the mixture of peaks from intermediate **7** and peaks from respective alcohol **8e**. Spectrum C was recorded at a reaction time of 4 h indicating the interconversion of intermediate **7** [minor] to respective alcohol **8e** [major]. Spectrum D was recorded after 5 h, which indicated the complete conversion of intermediate **7** into corresponding alcohol **8e**.

Figure S1: ¹H NMR studies for the formation of alcohol 8 via intermediate 7

Figure S2: ¹³C NMR studies for the formation of alcohol 8 via intermediate 7

Nov10-2018-SMRNA 30 1 C:\Bruker\TopSpin3.6.4\data

Figure S3: DEPT-135 NMR studies for the formation of alcohol 8 via intermediate 7

4. General procedure for the synthesis of alcohols 8/9

To the stirred solution of aldehyde **5** (1 equiv) in MeOH (5 mL) was added NaBH₄ (1.1 equiv) slowly at 0 °C under a nitrogen atmosphere. The reaction mixture was allowed to stir for 5 h at 0 °C to room temperature and after completion of the reaction, the solvent is evaporated under reduced pressure. To the residue, the water was added, then adjusts the *p*H to 3 using dil. HCl and extracted with DCM (3 x 50 mL). The combined organic layers were dried over Na₂SO₄, and concentrated. The crude residue was purified by column chromatography using silica gel (100-200 mesh; *n*-hexanes:EtOAc = 7:3) to furnish the corresponding alcohols **8/9**.

3-(Hydroxymethyl)-1-methyl-3-(prop-2-en-1-yl)-1,3-dihydro-2H-indole-2-thione (8a)

Pale yellowish oil (66%); **IR** (neat): v_{max} 3061, 2926, 1676, 995, 966, 906, 798, 751, 707, 685, 652, 620 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.25 (m, 2H), 7.19-7.12 (m, 1H), 6.98 (d, *J* = 8.0 Hz, 1H), 5.26-5.18 (m, 1H), 4.92-4.78 (m, 2H), 3.87-3.85 (m, 1H), 3.69-3.66 (m, 1H), 3.56 (s, 3H), 3.08 (br s, 1H), 2.73 (d, *J* = 7.2 Hz, 2H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 205.9, 144.3, 133.3, 130.8, 127.5, 123.3, 122.5, 118.1, 108.6, 66.9, 63.0, 39.6, 30.2 ppm; **HRMS** (ESI) *m/z*: [M+H]⁺ Calcd for [C₁₃H₁₅NOS+H]⁺ 234.0953; Found: 234.0957. **1-Ethyl-3-(hydroxymethyl)-3-(prop-2-en-1-yl)-1,3-dihydro-2***H***-indole-2-thione (8b)**

Pale yellowish oil (62%); **IR** (neat): v_{max} 3068, 2921, 1681, 989, 954, 780, 756, 707, 688, 655, 624 cm⁻¹; **¹H NMR** (400 MHz, CDCl₃) δ 7.38-7.32 (m, 2H), 7.22-7.18 (m, 1H), 7.04 (d, J = 7.6 Hz, 1H), 5.32-5.21 (m, 1H), 4.98-4.84 (m, 2H), 4.39-4.30 (m, 1H), 4.21-4.12 (m, 1H), 3.95-3.90 (m, 1H), 3.76-3.72 (m, 1H), 3.19-3.16 (m, 1H), 2.87-2.75 (m, 2H), 1.31 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 206.0, 144.4, 134.7, 131.7, 128.5, 124.2, 123.7, 119.1, 109.7, 68.0, 63.9, 40.7, 39.3, 11.4 ppm; **HRMS** (ESI) *m/z*: [M+H]⁺ Calcd for [C₁₄H₁₇NOS+H]⁺ 248.1109; Found: 248.1116.

Pale yellowish oil (56%); **IR** (neat): v_{max} 3055, 2920, 1686, 1005, 959, 916, 783, 751, 707, 683, 652, 615 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.14 (m, 8H), 6.89 (d, J = 7.6 Hz, 1H), 5.57-5.53 (m, 1H), 5.37-5.27 (m, 2H), 5.03-4.98 (m, 1H), 4.90-4.86 (m, 1H), 3.99-3.94 (m, 1H), 3.82-3.79 (m, 1H), 3.16-3.14 (m, 1H), 2.91-2.79 (m, 2H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 207.7, 144.8, 134.5, 134.4, 131.9, 128.9, 128.5, 127.8, 127.2, 124.4, 123.6, 119.4, 110.7, 68.6, 64.4, 48.0, 40.8 ppm; HRMS (ESI) *m/z*: [M+H]⁺ Calcd for [C₁₉H₁₉NOS+H]⁺ 310.1266; Found: 310.1270.

3-(Hydroxymethyl)-1,3-di(prop-2-en-1-yl)-1,3-dihydro-2*H*-indole-2-thione (8d)

Yellowish oil (65%); **IR** (neat): v_{max} 3419, 3056, 2918, 1720, 1643, 1610, 1459, 1387, 1223, 1023, 920, 802, 734, 623 cm⁻¹; **¹H NMR** (400 MHz, CDCl₃) δ 7.28-7.24 (m, 2H), 7.16-7.12 (m, 1H), 6.95-6.93 (m, 1H), 5.83-5.72 (m, 1H), 5.28-5.09 (m, 3H), 4.93-4.86 (m, 2H), 4.82-4.77 (m, 1H), 4.73-4.69 (m, 1H), 3.91-3.86 (m, 1H), 3.72-3.69 (m, 1H), 3.01-2.99 (m, 1H), 2.82-2.70 (m, 2H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 207.0, 144.7, 134.3, 131.8, 129.4, 128.5, 124.3, 123.5, 119.3, 118.2, 110.4, 68.3, 64.2, 46.6, 40.7 ppm; **HRMS** (ESI) *m/z*: [M+H]⁺ Calcd for [C₁₅H₁₇NOS+H]⁺ 260.1109; Found: 260.1101.

1-Benzyl-6-chloro-3-(hydroxymethyl)-3-(prop-2-en-1-yl)-1,3-dihydro-2*H*-indole-2-thione (8e)

Yellowish oil (63%); **IR** (neat): v_{max} 3418, 2922, 2858, 1606, 1487, 1431, 1381, 1220, 1069, 1023, 854, 734, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.24 (m, 6H), 7.16-7.14 (m, 1H), 6.89-6.88 (m, 1H), 5.54-5.50 (m, 1H), 5.36-5.26 (m, 2H), 5.04-4.99 (m, 1H), 4.93-4.91 (m, 1H), 4.00-3.95 (m, 1H), 3.85-3.81 (m, 1H), 2.88-2.77 (m, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 208.5, 145.9, 134.3, 134.0, 132.8, 131.5, 129.0, 128.0, 127.1, 124.3, 124.2, 119.7, 111.1, 68.6, 64.3, 48.1, 40.9 ppm; **HRMS** (ESI) *m/z*: [M+H]⁺ Calcd for [C₁₉H₁₈CINOS+H]⁺ 344.0876; Found: 344.0869.

1-Benzyl-5-bromo-3-(hydroxymethyl)-3-(prop-2-en-1-yl)-1,3-dihydro-2*H*-indole-2-thione (8f)

Yellowish oil (68%); **IR** (neat): v_{max} 3432, 2923, 2857, 1722, 1607, 1431, 1385, 1336, 1216, 1062, 995, 922, 809, 736, 700 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 7.47-7.46 (m, 1H), 7.37-7.35 (m, 1H), 7.30-7.26 (m, 5H), 6.75 (d, J = 8.4 Hz, 1H), 5.56-5.52 (m, 1H), 5.36-5.26 (m, 2H), 5.07-5.02 (m, 1H), 4.95-4.92 (m, 1H), 4.01-3.96 (m, 1H), 3.86-3.83 (m, 1H), 2.89-2.77 (m, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 207.4, 143.9, 136.6, 134.1, 131.5, 131.4, 128.9, 128.0, 127.1, 126.9, 119.8, 117.8, 111.8, 68.6, 64.7, 48.1, 40.8 ppm; **HRMS** (ESI) *m/z*: [M+H]⁺ Calcd for [C₁₉H₁₈BrNOS+H]⁺ 388.0371; Found: 388.0381.

3-(But-3-en-2-yl)-1-ethyl-3-(hydroxymethyl)-1,3-dihydro-2*H*-indole-2-thione (8g)

Pale yellowish oil (58%); dr = >95:5; **IR** (neat): v_{max} 3056, 2914, 1663, 984, 963, 906, 785, 746, 717, 685, 652, 623 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.32 (m, 2H), 7.21-7.16 (m, 1H), 7.08-7.03 (m, 1H), 6.14-6.05 (m, 1H), 5.30-5.26 (m, 2H), 4.46-4.36 (m, 1H), 4.21-4.02 (m, 2H), 3.69-3.65 (m, 1H), 3.40 (dd, J_I = 9.6 Hz, J_2 = 3.6 Hz, 1H), 3.28 (quint, J = 7.2 Hz, 1H), 1.34 (t, J = 7.2 Hz, 3H), 0.48 (d, J = 6.8 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 206.9, 144.7, 138.1, 133.0, 128.6, 124.5, 124.0, 117.7, 109.6, 66.8, 66.6, 43.0, 39.4, 13.7,

11.3 ppm; **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $[C_{15}H_{19}NOS+H]^+$ 262.1266; Found: 262.1263.

{2-[(But-3-en-1-yl)sulfanyl]-1-ethyl-1*H*-indol-3-yl}methanol (9)

Pale yellowish oil (63%); **IR** (neat): v_{max} 3053, 2929, 1681, 994, 972, 914, 786, 729, 654, 628 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 7.75 (d, J = 8.0 Hz, 1H), 7.36-7.34 (m, 1H), 7.29-7.27 (m, 1H), 7.18-7.14 (m, 1H), 5.84-5.74 (m, 1H), 5.10-5.01 (m, 4H), 4.39 (q, J = 7.2 Hz, 2H), 2.79 (t, J = 7.2 Hz, 2H), 2.33-2.28 (m, 2H), 1.37 (t, J = 7.2 Hz, 3H) ppm; ¹³C **NMR** (101 MHz, CDCl₃) δ 136.7, 136.0, 128.6, 126.7, 123.1, 121.3, 119.9, 119.3, 116.5, 109.9, 56.9, 38.5, 36.8, 33.7, 15.5 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for [C₁₅H₁₉NOS+H]⁺ 262.1266; Found: 262.1263.

5. Experimental procedure for products 10-12

Procedure for product 10: A solution of aldehyde 5c (0.33 mmol), trimethyl orthoformate (0.99 mmol) and *p*-toluenesulfonic acid monohydrate (3 mg, 0.017 mmol) in methanol (20 mL) was stirred at room temperature. After 8 h, the solution was diluted with ethyl acetate and the organic solvent was removed under vacuum. The resulting mixture was workup with ethyl acetate (3 x 20 mL) and washed with saturated aqueous NaHCO₃. The combined organics were dried over Na₂SO₄ and concentrated *in vacuo*. The resulting mixture was purified by column chromatography using silica gel (100-200 mesh; *n*-hexanes:EtOAc = 9:1) to provide product 10.

Procedure for product **11**: *n*-BuLi (1.6M in hexane, 0.3 mL, 0.49 mmol) was added dropwise to a stirred solution of methyltriphenylphosphonium bromide (0.49 mmol) in dry THF (20 mL) at -30 °C (immersion cooler). The mixture was stirred at -30 °C for 10 min then at room temperature for 2 h. The mixture was cooled again to -30 °C (immersion cooler) and was treated slowly with a solution of the aldehyde **5c** (0.325 mmol) in dry THF (5 mL). The reaction mixture was allowed to warm to room temperature and stir 6 h. The mixture was quenched with saturated aqueous NaHCO₃ (20 mL) and extracted with EtOAc (3 x 20 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The crude mixture was purified by column chromatography using silica gel (100-200 mesh; *n*-hexanes:EtOAc = 9:1) to provide product **11**. *Procedure for product* **12**: In a 50 mL RB flask equipped with a magnetic stirrer placed 0.4 mmol of aldehyde **5b** and 0.44 mmol of 1,2-ethanedithiol in 20 mL of dichloromethane. To the stirred solution are added 2 drops of boron trifluoride etherate. The mixture is stirred at room temperature for 4 h. Then the mixture was quenched with water and workup with dichloromethane (3 x 20 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The crude mixture was purified by column chromatography using silica gel (100-200 mesh; *n*-hexanes:EtOAc = 9:1) to furnish the corresponding product **12**.

1-Benzyl-3-(dimethoxymethyl)-3-(prop-2-en-1-yl)-1,3-dihydro-2H-indole-2-thione (10)

Colorless oil (62%); **IR** (neat): v_{max} 3040, 2926, 1071, 1006, 869, 755, 723, 692, 635, 621, 596, 552 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.55-7.53 (m, 1H), 7.28-7.12 (m, 7H), 6.81 (d, J = 7.6 Hz, 1H), 5.46 (ABq, $\Delta\delta_{AB} = 0.32$, $J_{AB} = 15.6$ Hz, 2H), 5.18-5.08 (m, 1H), 4.97-4.92 (m, 1H), 4.81-4.77 (m, 2H), 3.65 (s, 3H), 3.38 (s, 3H), 3.02-2.89 (m, 2H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 205.1, 145.3, 134.7, 133.2, 131.8, 128.6, 128.2, 127.5, 127.0, 125.5, 124.0, 118.9, 112.4, 109.9, 67.9, 59.6, 58.9, 47.8, 41.1 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for [C₂₁H₂₃NO₂S+H]⁺ 354.1528; Found: 354.1530.

1-Benzyl-3-ethenyl-3-(prop-2-en-1-yl)-1,3-dihydro-2*H*-indole-2-thione (11)

Colorless oil (56%); **IR** (neat): v_{max} 3042, 2923, 1078, 1026, 869, 723, 692, 642, 621, 595, 555 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 7.25-7.07 (m, 8H), 6.83 (d, J = 7.6 Hz, 1H), 6.13-6.06 (m, 1H), 5.50-5.44 (m, 1H), 5.31-5.24 (m, 2H), 5.09 (d, J = 10.4 Hz, 1H), 4.94-4.81 (m, 2H), 4.84-4.81 (m, 1H), 2.82 (d, J = 7.2 Hz, 2H) ppm; ¹³C **NMR** (101 MHz, CDCl₃) δ 207.5, 144.5, 140.3, 134.8, 134.4, 132.3, 128.8, 128.2, 127.7, 127.2, 125.2, 123.9, 119.3, 115.1,

110.6, 65.5, 48.1, 44.7 ppm; **HRMS** (ESI) *m*/*z*: [M+H]⁺ Calcd for [C₂₀H₁₉NS+H]⁺ 306.1316; Found: 306.1302.

3-(1,3-Dithiolan-2-yl)-1-ethyl-3-(prop-2-en-1-yl)-1,3-dihydro-2H-indole-2-thione (12)

Yellowish oil (48%); **IR** (neat): v_{max} 3047, 2916, 1071, 1026, 955, 869, 755, 722, 692, 646, 627, 596, 552 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 7.6 Hz, 1H), 7.33-7.29 (m, 1H), 7.09-7.06 (m, 1H), 6.96 (d, J = 8.0 Hz, 1H), 5.17 (s, 1H), 4.99-4.89 (m, 1H), 4.84-4.80 (m, 1H), 4.64 (dd, $J_1 = 10.0$ Hz, $J_2 = 2.0$ Hz, 1H), 4.33-4.20 (m, 1H), 4.19-4.10 (m, 1H), 3.09-3.05 (m, 2H), 2.91-2.86 (m, 1H), 2.82-2.75 (m, 2H), 2.36-2.30 (m, 1H), 1.25 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 204.9, 145.7, 133.4, 131.7, 128.7, 125.6, 123.3, 118.8, 109.2, 67.3, 63.0, 44.5, 40.1, 39.5, 37.4, 11.3 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for [C₁₆H₁₉NS₃+H]⁺ 322.0758; Found: 322.0760.

6. General procedure for the synthesis of diolefins 13/14

An oven-dried flask under an inert atmosphere was charged with the appropriate alcohol **8** (1.0 equiv) and anhydrous powdered K₂CO₃ (1.2 equiv) in dry dimethylformamide (25 mL) and stirred at 0 °C for 10 min. Alkyl/alkenyl/alkynyl halide (1.2 equiv) and tetrabutylammonium iodide (TBAI, 0.1 equiv) was added to the above reaction mixture. The reaction mixture was stirred at room temperature for overnight. Water (50 mL) was added to the reaction mixture and extracted with dichloromethane (3 x 25 mL). The entire organic layers were combined and washed with water (50 mL). Finally, the organic layer was dried over Na₂SO₄, evaporated, and purified by column chromatography using silica gel (100-200 mesh; *n*-hexanes:EtOAc = 9:1) to afford the respective diolefin product **13/14a-g**.

Procedure for products 14*h*,*i*: An oven-dried flask, alcohol 8b (1.0 equiv.) and appropriate carboxylic acid (1.2 equiv) in dichloromethane were charged under inert atmosphere. *N*,*N'*-Dicyclohexylcarbodiimide (DCC) (1.2 equiv) and a catalytic amount of 4-dimethylaminopyridine (DMAP) were added to the above reaction mixture at 0 °C. The reaction mixture was stirred at 0 °C for 8 h. Progress of the reaction was monitored using TLC. Finally, the solid obtained in the reaction was filtered. The filtrate was concentrated and purified by column chromatography using silica gel (100-200 mesh; *n*-hexanes:EtOAc = 7:3) to furnish the corresponding esterification products **14h**,*i*.

Colorless oil (87%); **IR** (neat): v_{max} 3043, 2932, 1623, 975, 781, 741, 737, 611 cm⁻¹; **¹H NMR** (400 MHz, CDCl₃) δ 7.34-7.29 (m, 2H), 7.20-7.18 (m, 1H), 7.01-6.99 (m, 1H), 5.27-5.19 (m, 2H), 4.94-4.79 (m, 4H), 3.61 (s, 3H), 2.73-2.71 (m, 4H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 207.9, 145.3, 135.9, 132.3, 128.0, 123.9, 123.7, 118.7, 109.2, 63.0, 44.7, 31.3 ppm; **HRMS** (ESI) *m/z*: [M+H]⁺ Calcd for [C₁₅H₁₇NS+H]⁺ 244.1160; Found: 244.1171. **1-Ethyl-3,3-di(prop-2-en-1-yl)-1,3-dihydro-2***H***-indole-2-thione (13b)**

Colorless oil (82%); **IR** (neat): v_{max} 3070, 2925, 1674, 991, 961, 902, 792, 750, 706, 610 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 7.26-7.22 (m, 2H), 7.12-7.08 (m, 1H), 6.92 (d, *J* = 7.6 Hz, 1H), 5.18-5.07 (m, 2H), 4.86-4.81 (m, 2H), 4.73-4.70 (m, 2H), 4.17 (q, *J* = 7.2 Hz, 2H), 2.69-2.59 (m, 4H), 1.20 (t, *J* = 7.2 Hz, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 206.9, 144.3, 136.2, 132.2, 127.9, 123.8, 123.7, 118.7, 109.2, 62.7, 44.7, 39.3, 11.5 ppm; **HRMS** (ESI) *m/z*: [M+H]⁺ Calcd for [C₁₆H₁₉NS+H]⁺ 258.1316; Found: 258.1323.

1-Benzyl-3,3-di(prop-2-en-1-yl)-1,3-dihydro-2*H*-indole-2-thione (13c)

Colorless oil (79%); **IR** (neat): v_{max} 3051, 2916, 1656, 985, 956, 916, 788, 717, 675, 642, 630 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 7.31-7.12 (m, 8H), 6.86 (d, J = 7.6 Hz, 1H), 5.45 (s, 2H), 5.31-5.20 (m, 2H), 4.98-4.94 (m, 2H), 4.86-4.83 (m, 2H), 2.79-2.76 (m, 4H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 208.8, 144.7, 135.9, 134.9, 132.4, 128.7, 127.9, 127.7, 127.4,

123.9, 123.7, 119.0, 110.2, 63.1, 48.2, 45.1 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for [C₂₁H₂₁NS+H]⁺ 320.1473; Found: 320.1477.

1,3,3-Tri(prop-2-en-1-yl)-1,3-dihydro-2*H*-indole-2-thione (13d)

Colorless oil (85%); **IR** (neat): v_{max} 2921, 2853, 1709, 1609, 1462, 1433, 1383, 1043, 919, 799, 747 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 7.24-7.19 (m, 2H), 7.13-7.09 (m, 1H), 6.89 (d, J = 7.6 Hz, 1H), 5.80-5.71 (m, 1H), 5.21-5.09 (m, 4H), 4.88-4.84 (m, 2H), 4.79-4.73 (m, 4H), 2.68-2.65 (m, 4H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 207.9, 144.5, 135.8, 132.3, 129.8, 127.9, 123.9, 123.7, 118.9, 117.9, 110.0, 63.1, 46.8, 44.9 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for [C₁₇H₁₉NS+H]⁺ 270.1316; Found: 270.1313.

1-Benzyl-6-chloro-3,3-di(prop-2-en-1-yl)-1,3-dihydro-2*H*-indole-2-thione (13e)

Colorless oil (79%); **IR** (neat): v_{max} 3073, 2922, 2855, 1640, 1605, 1429, 1375, 1346, 1221, 1073, 988, 921, 853, 813, 734, 698 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 7.32-7.26 (m, 5H), 7.21-7.20 (m, 1H), 7.13-7.10 (m, 1H), 6.84 (d, J = 1.6 Hz, 1H), 5.41 (s, 2H), 5.30-5.19 (m, 2H), 4.99-4.94 (m, 2H), 4.88-4.85 (m, 2H), 2.81-2.70 (m, 4H) ppm; ¹³C **NMR** (101 MHz, CDCl₃) δ 209.5, 145.8, 134.3, 134.2, 133.7, 132.0, 128.8, 127.9, 127.3, 124.4, 123.8, 119.4, 110.7, 63.0, 48.2, 45.1 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for [C₂₁H₂₀ClNS+H]⁺ 354.1083; Found: 354.1076.

1-Benzyl-5-bromo-3,3-di(prop-2-en-1-yl)-1,3-dihydro-2H-indole-2-thione (13f)

Colorless oil (85%); **IR** (neat): v_{max} 3073, 2924, 2853, 1640, 1607, 1429, 1382, 1331, 1223, 1191, 990, 921, 806, 735, 699 cm⁻¹; **¹H NMR** (400 MHz, CDCl₃) δ 7.34 (s, 1H), 7.24-7.20 (m, 6H), 6.63 (d, J = 8.4 Hz, 1H), 5.34 (s, 2H), 5.23-5.12 (m, 2H), 4.94-4.90 (m, 2H), 4.82-4.80 (m, 2H), 2.74-2.62 (m, 4H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 208.4, 143.7, 138.1, 134.4, 131.9, 130.9, 128.8, 127.9, 127.3, 126.8, 119.6, 117.4, 111.5, 63.4, 48.3, 45.0 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for [C₂₁H₂₀BrNS+H]⁺ 398.0578; Found: 398.0569.

```
3-(But-3-en-2-yl)-1-ethyl-3-(prop-2-en-1-yl)-1,3-dihydro-2H-indole-2-thione (13g)
```


Colorless oil (77%); dr = 86:14; **IR** (neat): v_{max} 2962, 1767, 995, 976, 960, 789, 715, 658, 625, 602 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 7.35-7.30 (m, 2H), 7.18-7.14 (m, 1H), 7.02 (d, J = 8.0 Hz, 1H), 6.03-5.96 (m, 1H), 5.24-5.20 (m, 2H), 5.00-4.96 (m, 1H), 4.85-4.80 (m, 1H), 4.68-4.65 (m, 1H), 4.31-4.24 (m, 2H), 2.89-2.80 (m, 1H), 2.78-2.76 (m, 2H), 1.30 (t, J = 7.2 Hz, 3H), 0.49 (d, J = 6.8 Hz, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 207.4, 144.8, 138.7, 134.7, 132.6, 127.9, 124.6, 123.5, 118.2, 117.5, 109.1, 65.8, 47.9, 43.6, 39.4, 14.7, 11.4 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for [C₁₇H₂₁NS+H]⁺ 272.1473; Found: 272.1469.

¹⁻Benzyl-3-propadienyl-3-(prop-2-en-1-yl)-1,3-dihydro-2*H*-indole-2-thione (13h)

Colourless oil (73%); **IR** (neat): v_{max} 3067, 2921, 1670, 964, 891, 716, 692, 641, 620, 596, 557 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.26 (m, 5H), 7.25-7.23 (m, 1H), 7.21-7.19 (m, 1H), 7.16-7.12 (m, 1H), 6.88 (d, *J* = 8.0 Hz, 1H), 5.60-5.56 (m, 2H), 5.35-5.29 (m, 2H), 5.01-4.96 (m, 1H), 4.93-4.87 (m, 2H), 4.76-4.71 (m, 1H), 2.89-2.86 (m, 2H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 207.8, 207.2, 144.1, 135.0, 134.7, 132.2, 128.8, 128.2, 127.7, 127.3, 125.0, 123.8, 119.4, 110.3, 95.3, 78.9, 61.8, 48.3, 45.3 ppm; HRMS (ESI) *m/z*: [M+H]⁺ Calcd for [C₂₁H₁₉NS+H]⁺ 318.1316; Found: 318.1317.

Colorless oil (78%); **IR** (neat): v_{max} 3016, 2962, 1667, 959, 906, 789, 751, 707, 658, 623 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (dd, $J_1 = 8.0$ Hz, $J_2 = 0.8$ Hz, 1H), 7.31 (d, J = 8.0 Hz, 1H), 7.24-7.20 (m, 1H), 7.09-7.05 (m, 1H), 6.03-5.99 (m, 1H), 5.27-5.23 (m, 1H), 5.13-5.00 (m, 2H), 4.37 (q, J = 7.2 Hz, 2H), 3.71-3.69 (m, 2H), 3.30 (d, J = 8.0 Hz, 2H), 1.66 (s, 3H), 1.40 (s, 3H), 1.35 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 137.8, 136.63, 136.56, 127.4, 127.2, 122.5, 120.2, 119.7, 119.4, 118.9, 114.7, 109.7, 38.3, 35.7, 30.3, 25.7, 17.4, 15.5 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for [C₁₈H₂₃NS+H]⁺ 286.1629; Found: 286.1637.

3-(But-3-en-2-yl)-2-{[(2*E***)-but-2-en-1-yl]sulfanyl}-1-ethyl-1***H***-indole (14b)**

Colorless oil (68%); **IR** (neat): v_{max} 3058, 2920, 1676, 995, 969, 906, 798, 751, 707, 685, 655, 615 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 8.0 Hz, 1H), 7.31 (d, J = 8.0 Hz, 1H), 7.24-7.18 (m, 1H), 7.05-7.01 (m, 1H), 6.29-6.19 (m, 1H), 5.54-5.35 (m, 2H), 5.14-5.02 (m, 2H), 4.41-4.33 (m, 2H), 4.19-4.13 (m, 1H), 3.35-3.24 (m, 2H), 1.60-1.58 (m, 2H), 1.54-1.51 (m, 3H), 1.45-1.43 (m, 1H), 1.38-1.33 (m, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 143.0, 137.0, 129.1, 128.0, 126.5, 125.8, 125.4, 122.3, 120.9, 118.6, 112.7, 109.8, 40.1, 38.4, 35.9, 20.1, 17.8, 15.5 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for [C₁₈H₂₃NS+H]⁺ 286.1629; Found: 286.1623.

2-[(But-3-en-1-yl)sulfanyl]-1-ethyl-3-(prop-2-en-1-yl)-1*H*-indole (14c)

Colorless oil (76%); **IR** (neat): v_{max} 3050, 2916, 1676, 995, 778, 751, 707, 685, 657, 632 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 7.59 (d, J = 7.6 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.25-7.21 (m, 1H), 7.10-7.06 (m, 1H), 6.07-5.97 (m, 1H), 5.83-5.77 (m, 1H), 5.11-5.00 (m, 4H), 4.37 (q, J = 7.2 Hz, 2H), 3.72-3.69 (m, 2H), 2.73-2.70 (m, 2H), 2.30-2.25 (m, 2H), 1.35 (t, J = 7.2 Hz, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 137.6, 136.7, 136.3, 127.3, 127.2, 122.6, 119.9, 119.7, 119.1, 116.3, 114.8, 109.7, 38.5, 36.5, 33.8, 30.3, 15.6 ppm; **HRMS** (ESI) *m/z*: [M+H]⁺ Calcd for [C₁₇H₂₁NS+H]⁺ 272.1473; Found: 272.1478.

1-Ethyl-2-[(pent-4-en-1-yl)sulfanyl]-3-(prop-2-en-1-yl)-1*H*-indole (14d)

Colorless oil (68%); **IR** (neat): v_{max} 3060, 2925, 1675, 994, 965, 905, 797, 750, 706, 684, 651, 619 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 8.0 Hz, 1H), 7.31 (d, J = 8.4 Hz, 1H), 7.24-7.20 (m, 1H), 7.09-7.05 (m, 1H), 6.06-5.97 (m, 1H), 5.77-5.67 (m, 1H), 5.11-4.94 (m, 4H), 4.37 (q, J = 7.2 Hz, 2H), 3.70 (d, J = 5.6 Hz, 2H), 2.68-2.64 (m, 2H), 2.16-2.10 (m, 2H), 1.63 (quint, J = 7.6 Hz, 2H), 1.35 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 137.6, 137.5, 136.7, 127.4, 127.3, 122.6, 119.8, 119.7, 119.0, 115.4, 114.8, 109.7, 38.4, 36.7, 32.7, 30.3, 28.8, 15.5 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for [C₁₈H₂₃NS+H]⁺ 286.1629; Found: 286.1634.

1-Benzyl-2-(ethylsulfanyl)-3-(prop-2-en-1-yl)-1*H*-indole (14e)

Colorless oil (83%); **IR** (neat): v_{max} 3077, 2930, 1679, 1036, 973, 901, 733, 725, 701, 651, 641, 606 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 7.6 Hz, 1H), 7.18-7.07 (m, 5H), 7.06-6.99 (m, 1H), 6.94-6.92 (m, 2H), 6.02-5.92 (m, 1H), 5.49 (s, 2H), 5.06-4.94 (m, 2H), 3.67 (dt, $J_1 = 6.0$ Hz, $J_2 = 1.6$ Hz, 2H), 2.41 (q, J = 7.2 Hz, 2H), 1.02 (t, J = 7.6 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 138.4, 137.62, 137.56, 128.7, 128.1, 127.3, 127.2, 126.2, 123.0, 120.7, 119.7, 119.4, 114.9, 110.4, 47.0, 31.2, 30.4, 14.7 ppm; HRMS (ESI) *m/z*: [M+H]⁺ Calcd for [C₂₀H₂₁NS+H]⁺ 308.1473; Found: 308.1476.

Colourless oil (76%); **IR** (neat): v_{max} 3077, 2930, 1730, 1679, 1036, 943, 901, 733, 715, 701, 651, 641, 606 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 8.0 Hz, 1H), 7.32 (d, J = 8.4 Hz, 1H), 7.26-7.22 (m, 1H), 7.10-7.06 (m, 1H), 6.06-5.96 (m, 1H), 5.10-5.00 (m, 2H), 4.39 (q, J = 7.2 Hz, 2H), 4.09 (q, J = 7.2 Hz, 2H), 3.72-3.69 (m, 2H), 3.40 (s, 2H), 1.35 (t, J = 7.2 Hz, 3H), 1.16 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 169.4, 137.4, 136.9, 127.1, 125.5, 123.1, 120.9, 120.0, 119.2, 114.9, 109.9, 61.5, 39.3, 38.5, 30.1, 15.6, 14.0 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for [C₁₇H₂₁NO₂S+H]⁺ 304.1371; Found: 304.1372.

1-Ethyl-3-(prop-2-en-1-yl)-1H-indole-2-thiol (14g)

Brownish liquid (72%); **IR** (neat): v_{max} 3078, 2931, 1036, 974, 901, 735, 702, 651, 631, 616, 567 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 7.52 (d, J = 8.0 Hz, 1H), 7.32-7.26 (m, 2H), 7.09-7.05 (m, 1H), 5.65-5.55 (m, 1H), 4.81 (d, J = 17.2 Hz, 1H), 4.72 (d, J = 9.6 Hz, 1H), 4.20-4.14 (m, 2H), 3.08 (d, J = 5.6 Hz, 2H), 1.33 (t, J = 7.2 Hz, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 137.5, 137.0, 126.8, 126.4, 124.0, 123.4, 120.4, 119.3, 114.6, 109.9, 38.3, 29.4, 15.2 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for [C₁₃H₁₅NS+H]⁺ 218.1003; Found: 218.1005.

[1-Ethyl-3-(prop-2-en-1-yl)-2-sulfanylidene-2,3-dihydro-1*H*-indol-3-yl]methyl phenylacetate (14h)

Colourless liquid (84%); **IR** (neat): v_{max} 1737, 1608, 1458, 1394, 1253, 1131, 754, 706 cm⁻¹; **¹H NMR** (400 MHz, CDCl₃) δ 7.32 (td, J_1 = 7.6 Hz, J_2 = 1.2 Hz, 1H), 7.22-7.19 (m, 3H), 7.14-7.06 (m, 2H), 6.96-6.93 (m, 3H), 5.17-5.09 (m, 1H), 4.93-4.89 (m, 1H), 4.82-4.79 (m, 1H), 4.71 (d, J = 10.4 Hz, 1H), 4.27-4.20 (m, 2H), 4.17-4.10 (m, 1H), 3.39 (ABq, $\Delta \delta_{AB} = 0.03$, $J_{AB} = 15.2$ Hz, 2H), 2.66 (d, J = 7.2 Hz, 2H), 1.25 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 204.1, 170.6, 144.4, 133.9, 133.6, 130.8, 129.1, 128.5, 128.4, 126.9, 124.2, 123.9, 119.4, 109.3, 69.6, 62.1, 41.2, 41.1, 39.4, 11.3 ppm; HRMS (ESI) m/z: [M+H]⁺ Calcd for [C₂₂H₂₃NO₂S+H]⁺ 366.1528; Found: 366.1520.

[1-Ethyl-3-(prop-2-en-1-yl)-2-sulfanylidene-2,3-dihydro-1*H*-indol-3-yl]methyl furan-2-carboxylate (14i)

Colourless liquid (78%); **IR** (neat): v_{max} 1743, 1602, 1551, 1472, 1259, 1125, 1022, 860, 835, 775, 593, 555 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 0.8 Hz, 1H), 7.44 (d, J = 7.6 Hz, 1H), 7.36-7.32 (m, 1H), 7.19-7.15 (m, 1H), 7.03 (d, J = 7.6 Hz, 1H), 6.89 (d, J = 3.6 Hz, 1H), 6.43-6.41 (m, 1H), 5.25-5.16 (m, 1H), 4.97 (d, J = 17.2 Hz, 1H), 4.86-4.82 (m, 2H), 4.45 (d, J = 10.4 Hz, 1H), 4.34-4.20 (m, 2H), 2.88-2.75 (m, 2H), 1.32 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 203.8, 157.9, 146.5, 144.5, 144.1, 134.0, 130.9, 128.6, 124.4, 124.1, 119.5, 117.9, 111.7, 109.3, 69.8, 62.1, 41.1, 39.4, 11.4 ppm; HRMS (ESI) *m/z*: [M+H]⁺ Calcd for [C₁₉H₁₉NO₃S+H]⁺ 342.1164; Found: 342.1162.

7. Optimization table for ring-closing metathesis reaction of di-olefin 13a^[a]

Entry	Ru-Complexes	Solvent	Temperature ^[b] [°C]	Yield of 16a (%) ^[c]
4	G-II	CH ₂ Cl ₂	40	29
5	G-III	CH_2Cl_2	rt	trace
6	G-III	CH_2Cl_2	40	25
7	HG-I	CH_2Cl_2	rt	n.r
8	HG-I	CH_2Cl_2	40	trace
9	HG-II	CH_2Cl_2	rt	trace
10	HG-II	CH_2Cl_2	40	26
11	G-II	THF	65	52
12	G-II	CH ₃ CN	80	60
13	G-II	PhCH ₃	110	78
14	$\operatorname{G-II}^{[d]}$	PhCH ₃	110	79
15	$\operatorname{G-II}^{[e]}$	PhCH ₃	110	73
16	G-II	PhCH ₃ ^[f]	110	28

^[a]Reaction conditions unless noted: **13a** (0.35 mmol) and Ru-complexes (10 mol %) in 5 mL of dry solvent for 14 h under N₂ atmosphere. ^[b]Unless rt was carried out in oil bath using glass reflux condenser. ^[c]Isolated Yield. ^[d]G-II (15 mol %). ^[e]G-II (5 mol %). ^[f]Commercial toluene. rt = room temperature. n.r = no reaction.

8. General procedure for the ring-closing metathesis reaction for products 16/17

In an oven-dried flask, di-olefin **13** or **14** (0.35 mmol) in dry toluene (5 mL) with magnetic stir bar were charged under a nitrogen atmosphere. Then, 10 mol% of Grubbs' second-generation catalyst (G-II) in dry toluene (5 mL) was slowly added (30 min) at 110 °C (oil bath) and allowed to stir the above mixture for 14 h. The completion of starting material was monitored using TLC. Then, the reaction mixture was cooled to room temperature, concentrated under reduced pressure and purified by flash chromatography using silica gel (230-400 mesh; *n*-hexanes:EtOAc = 9:1) to afford the respective compound **16/17**.

1'-Methylspiro[cyclopent-3-ene-1,3'-indole]-2'(1'H)-thione (16a)

White crystalline solid (78%); mp 138-140 °C; **IR** (neat): v_{max} 3048, 2921, 1671, 1026, 964, 946, 899, 713, 692, 645, 621, 596, 557 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.31 (m, 1H), 7.30-7.26 (m, 1H), 7.18-7.13 (m, 1H), 7.03-7.01 (m, 1H), 5.84 (s, 2H), 3.67 (s, 3H), 3.15-3.11 (m, 2H), 2.68-2.63 (m, 2H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 211.9, 143.5, 142.3, 128.7, 127.8, 124.7, 121.9, 109.3, 63.4, 49.5, 31.7 ppm; **HRMS** (ESI) *m/z*: [M+H]⁺ Calcd for [C₁₃H₁₃NS+H]⁺ 216.0847; Found: 216.0839.

Colorless oil (75%); **IR** (neat): v_{max} 3048, 2921, 1671, 1026, 964, 946, 896, 716, 692, 645, 621, 595, 556 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 6.8 Hz, 1H), 7.33-7.29 (m, 1H), 7.16-7.12 (m, 1H), 7.02 (d, J = 8.0 Hz, 1H), 5.84 (s, 2H), 4.28 (q, J = 7.2 Hz, 2H), 3.12 (d, J = 14.8 Hz, 2H), 2.64 (d, J = 14.8 Hz, 2H), 1.35 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 211.0, 142.6, 142.5, 128.7, 127.7, 124.5, 122.1, 109.4, 63.4, 49.5, 39.7, 11.4 ppm; **HRMS** (ESI) *m*/*z*: [M+H]⁺ Calcd for [C₁₄H₁₅NS+H]⁺ 230.1004; Found: 230.1020. **1'-Benzylspiro[cyclopent-3-ene-1,3'-indole]-2'(1'H)-thione (16c)**

Colorless oil (71%); **IR** (neat): v_{max} 3049, 2921, 1671, 1126, 964, 956, 899, 713, 692, 645, 611, 595, 567 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 7.32-7.30 (d, J = 7.2 Hz, 1H), 7.27-7.24 (m, 2H), 7.22-7.17 (m, 3H), 7.14-7.10 (m, 1H), 7.06-7.02 (m, 1H), 6.82 (d, J = 7.6 Hz, 1H), 5.80 (s, 2H), 5.42 (s, 2H), 3.14 (d, J = 14.4 Hz, 2H), 2.64 (d, J = 14.8 Hz, 2H) ppm; ¹³C **NMR** (101 MHz, CDCl₃) δ 212.9, 142.8, 142.2, 134.9, 128.9, 128.7, 127.8, 127.7, 127.2, 124.6, 121.9, 110.2, 63.6, 49.8, 48.4 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for [C₁₉H₁₇NS+H]⁺ 292.1160; Found: 292.1166.

1'-(Prop-2-en-1-yl)spiro[cyclopent-3-ene-1,3'-indole]-2'(1'H)-thione (16d)

Colorless oil (64%); **IR** (neat): v_{max} 3070, 2925, 2854, 1613, 1465, 1386, 1224, 800, 752, 681 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 7.38 (d, J = 7.2 Hz, 1H), 7.31-7.29 (m, 1H), 7.16-7.12 (m, 1H), 6.99 (d, J = 8.0 Hz, 1H), 5.95-5.87 (m, 1H), 5.85 (s, 2H), 5.27-5.18 (m, 2H), 4.89 (d, J = 5.2 Hz, 2H), 3.15 (d, J = 14.4 Hz, 2H), 2.67 (d, J = 14.4 Hz, 2H) ppm; ¹³**C NMR** (101

MHz, CDCl₃) δ 212.0, 142.7, 142.2, 129.8, 128.7, 127.7, 124.6, 122.0, 118.2, 110.0, 63.4, 49.7, 47.1 ppm; **HRMS** (ESI) *m*/*z*: [M+H]⁺ Calcd for [C₁₅H₁₅NS+H]⁺ 242.1003; Found: 242.0998.

1'-Benzyl-6'-chlorospiro[cyclopent-3-ene-1,3'-indole]-2'(1'H)-thione (16e)

Colorless oil (76%); **IR** (neat): v_{max} 3059, 2923, 2850, 1722, 1606, 1431, 1375, 1266, 1214, 1073, 1026, 848, 806, 733, 694 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 7.29-7.19 (m, 6H), 7.02-6.99 (m, 1H), 6.80 (s, 1H), 5.78 (s, 2H), 5.38 (s, 2H), 3.12 (d, *J* = 14.8 Hz, 2H), 2.60 (d, *J* = 14.4 Hz, 2H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 212.5, 142.9, 139.4, 133.3, 132.4, 128.0, 127.6, 126.9, 126.0, 123.4, 121.6, 109.6, 62.3, 48.9, 47.3 ppm; **HRMS** (ESI) *m/z*: [M+H]⁺ Calcd for [C₁₉H₁₆CINS+H]⁺ 326.0770; Found: 326.0762.

1'-Benzyl-5'-bromospiro[cyclopent-3-ene-1,3'-indole]-2'(1'H)-thione (16f)

White crystalline solid (90%); mp 156-158 °C; **IR** (neat): v_{max} 3062, 2924, 2846, 1719, 1608, 1428, 1382, 1267, 1216, 809, 731, 688 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 2.0 Hz, 1H), 7.34-7.25 (m, 6H), 6.74 (d, J = 8.4 Hz, 1H), 5.86 (s, 2H), 5.46 (s, 2H), 3.20 (d, J = 14.8 Hz, 2H), 2.70 (d, J = 14.4 Hz, 2H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 212.4, 144.1, 141.8, 134.5, 130.7, 129.0, 128.7, 127.9, 127.1, 125.2, 117.9, 111.5, 63.7, 49.8, 48.4 ppm; **HRMS** (ESI) *m*/*z*: [M+H]⁺ Calcd for [C₁₉H₁₆NSBr+H]⁺ 370.0265; Found: 370.0260. **1'-Ethyl-2-methylspiro**[cyclopent-3-ene-1,3'-indole]-2'(1'*H*)-thione (16g)

Colorless oil (63%); dr = 90:10; **IR** (neat): v_{max} 3042, 2821, 1671, 1035, 964, 946, 899, 713, 645, 625, 596, 554 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 7.2 Hz, 1H), 7.33-7.29 (m, 1H), 7.16-7.09 (m, 1H), 7.03 (d, *J* = 8.0 Hz, 1H), 5.85-5.82 (m, 1H), 5.68-5.66 (m, 1H), 4.38-4.31 (m, 1H), 4.28-4.21 (m, 1H), 3.63-3.61 (m, 1H), 3.27-3.22 (m, 1H), 2.59 (d, *J* = 16.4 Hz, 1H), 1.35 (t, *J* = 7.2 Hz, 3H), 0.61 (d, *J* = 7.6 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 209.6, 143.1, 138.4, 135.1, 127.8, 127.6, 123.8, 123.6, 109.4, 69.4, 54.4, 48.5, 39.8, 14.6, 11.5 ppm; HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for [C₁₅H₁₇NS+H]⁺ 244.1160; Found: 244.1153. **10-Ethyl-5,10-dihydro-2***H***-thiepino[2,3-***b***]indole (17a)**

Colorless oil (68%); **IR** (neat): v_{max} 3041, 2921, 1671, 1326, 965, 946, 899, 755, 692, 645, 621, 596, 552 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 7.2 Hz, 1H), 7.24-7.22 (m, 1H), 7.15-7.05 (m, 2H), 6.05-6.03 (m, 2H), 4.13 (q, J = 7.2 Hz, 2H), 3.69-3.68 (m, 2H), 3.62-3.61 (m, 2H), 1.31 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 135.2, 130.5, 130.1, 128.2, 126.7, 120.7, 118.9, 116.8, 108.3, 107.8, 38.1, 28.0, 22.5, 15.2 ppm; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for [C₁₄H₁₅NS+H]⁺ 230.1003; Found: 230.1004.

10-Ethyl-5-methyl-5,10-dihydro-2*H*-thiepino[2,3-*b*]indole (17b)

Colorless oil (62%); **IR** (neat): v_{max} 3043, 2931, 1671, 1326, 965, 899, 755, 692, 635, 621, 596, 532 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 8.0 Hz, 1H), 7.25 (d, J = 2.4 Hz, 1H), 7.18-7.14 (m, 1H), 7.10-7.06 (m, 1H), 5.98-5.90 (m, 2H), 4.21 (q, J = 7.2 Hz, 2H), 4.05-3.95 (m, 1H), 3.48-3.34 (m, 2H), 1.53 (d, J = 7.2 Hz, 3H), 1.32 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 135.6, 135.3, 129.6, 127.7, 126.1, 121.2, 119.0, 117.6, 117.3, 108.8, 38.2, 31.4, 29.4, 23.1, 15.5 ppm; HRMS (ESI) m/z: [M+Na]⁺ Calcd for [C₁₅H₁₇NS+Na]⁺ 266.0979; Found: 266.0977.

9. Single crystal X-ray analysis of compound 16f

ORTEP view of compound **16f** with thermal ellipsoids shown at 50% probability level. [There are two molecules in the asymmetric unit, but only one is shown]

Table S1. Summa	ary of X-ray	crystallographic	data for com	pound 16f
-----------------	--------------	------------------	--------------	-----------

	1
CCDC	2254000
Empirical formula	C ₁₉ H ₁₆ BrNS
Formula weight	369.0187
Temperature/K	303.(2)
Crystal system	Triclinic
Space group	<i>P</i> -1
a (Å)	9.382(2)
b (Å)	10.472(2)
c (Å)	17.945(4)
α (°)	88.563(6)
β (°)	78.673(6)
γ (°)	72.965(6)
Volume (Å ³)	1651.9(6)
Z	2
ρ_{calc} (g cm ⁻³)	1.489
μ (mm ⁻¹)	2.610
F(000)	752
Crystal size (mm ³)	$0.163 \text{ (max)} \times 0.093 \text{ (mid)} \times 0.085 \text{ (min)}$
Radiation	MoK α ($\lambda = 0.71073$ Å)
Theta range for data collection (°)	2.31 to 32.54
Index ranges	$-14 \le h \le 14, -15 \le k \le 15, -26 \le l \le 26$
Reflections collected / unique	$65104 / 11747 \ [R_{int} = 0.1559]$
Completeness to theta $= 32.54$	98.0 %
Data/restraints/parameters	11747/0/397
Goodness-of-fit on F ²	0.931
Final R indexes [I>2σ (I)]	$R_1=0.0637,wR_2=0.1534$
Final R indexes [all data]	$R_1 = 0.2098, wR_2 = 0.2212$
Largest diff. peak and hole (e Å-3)	0.544 and -0.592

The single crystal of the product **16f** was obtained by slow evaporation of the solvent when the compound was dissolved in *n*-hexanes/few drops of ethyl acetate mixture. The crystal data of product **16f** has already been deposited at Cambridge Crystallographic Data Centre.

(i) C-Br---*π*

C28–Br2---(centroid C7-C12)

Bond length Br2–(C7-C12) = 3.752 Å Bond angle C28–Br2---(C7-C12) = 164.79 °

(ii) C-H---Br

C35-H35---Br2

Bond length H35–Br2 = 3.033 Å Bond angle C35–H35---Br2 = 139.28 °

Figure S4. Intermolecular interactions present in compound 16f

10. Proposed cascade pathway for the formation of diolefins 13/14

Scheme S1. Proposed cascade pathway for the formation of diolefins 13/14

11. ¹H, ¹³C & selected DEPT-135 NMR copies of compounds 5, 8-14, 16,17

¹H NMR for compound **5a** (400 MHz, CDCl₃)

¹³C NMR for compound **5a** (101 MHz, CDCl₃)

¹H NMR for compound **5b** (400 MHz, CDCl₃)

¹³C NMR for compound **5b** (101 MHz, CDCl₃)

¹H NMR for compound **5c** (400 MHz, CDCl₃)

¹³C NMR for compound **5c** (101 MHz, CDCl₃)

¹H NMR for compound **5d** (400 MHz, CDCl₃)

¹³C NMR for compound **5d** (101 MHz, CDCl₃)

DEPT-135 NMR for compound 5d (101 MHz, CDCl₃)

¹H NMR for compound **5e** (400 MHz, CDCl₃)

¹³C NMR for compound **5e** (101 MHz, CDCl₃)

DEPT-135 NMR for compound **5e** (101 MHz, CDCl₃)

¹H NMR for compound **5f** (400 MHz, CDCl₃)

¹³C NMR for compound **5f** (101 MHz, CDCl₃)

187.37 |32.02 |29.07 |28.06 |27.90 47.42 40.81 പ്പ Ň 5 5f 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

DEPT-135 NMR for compound **5f** (101 MHz, CDCl₃)

¹H NMR for compound **5g** (400 MHz, CDCl₃)

¹³C NMR for compound **5g** (101 MHz, CDCl₃)

¹H NMR for compound **5h** (400 MHz, CDCl₃)

¹³C NMR for compound **5h** (101 MHz, CDCl₃)

¹H NMR for compound **8a** (400 MHz, CDCl₃)

¹³C NMR for compound **8a** (101 MHz, CDCl₃)

¹H NMR for compound **8b** (400 MHz, CDCl₃)

¹³C NMR for compound **8b** (101 MHz, CDCl₃)

¹H NMR for compound **8c** (400 MHz, CDCl₃)

¹³C NMR for compound **8c** (101 MHz, CDCl₃)

¹H NMR for compound **8d** (400 MHz, CDCl₃)

¹³C NMR for compound **8d** (101 MHz, CDCl₃)

DEPT-135 NMR for compound 8d (101 MHz, CDCl₃)

¹H NMR for compound **8e** (400 MHz, CDCl₃)

¹H NMR for compound **8e** (400 MHz, CDCl₃)

¹³C NMR for compound **8e** (101 MHz, CDCl₃)

DEPT-135 NMR for compound 8e (101 MHz, CDCl₃)

¹H NMR for compound **8f** (400 MHz, CDCl₃)

¹H NMR for compound **8f** (400 MHz, CDCl₃)

¹³C NMR for compound **8f** (101 MHz, CDCl₃)

DEPT-135 NMR for compound 8f (101 MHz, CDCl₃)

¹H NMR for compound **8g** (400 MHz, CDCl₃)

¹³C NMR for compound **8g** (101 MHz, CDCl₃)

¹H NMR for compound **9** (400 MHz, CDCl₃)

¹³C NMR for compound **9** (101 MHz, CDCl₃)

DEPT-135 NMR for compound 10 (101 MHz, CDCl₃)

¹H NMR for compound **10** (400 MHz, CDCl₃)

¹³C NMR for compound **10** (101 MHz, CDCl₃)

DEPT-135 NMR for compound 10 (101 MHz, CDCl₃)

¹H NMR for compound **11** (400 MHz, CDCl₃)

¹³C NMR for compound **11** (101 MHz, CDCl₃)

DEPT-135 NMR for compound 15f (101 MHz, CDCl₃)

¹H NMR for compound **12** (400 MHz, CDCl₃)

¹³C NMR for compound **12** (101 MHz, CDCl₃)

DEPT-135 NMR for compound 12 (101 MHz, CDCl₃)

¹H NMR for compound **13a** (400 MHz, CDCl₃)

¹³C NMR for compound **13a** (101 MHz, CDCl₃)

DEPT-135 NMR for compound 13a (101 MHz, CDCl₃)

¹H NMR for compound **13b** (400 MHz, CDCl₃)

¹³C NMR for compound **13b** (101 MHz, CDCl₃)

DEPT-135 NMR for compound 13b (101 MHz, CDCl₃)

¹H NMR for compound **13c** (400 MHz, CDCl₃)

¹³C NMR for compound **13c** (101 MHz, CDCl₃)

DEPT-135 NMR for compound 13c (101 MHz, CDCl₃)

¹H NMR for compound **13d** (400 MHz, CDCl₃)

¹³C NMR for compound **13d** (101 MHz, CDCl₃)

DEPT-135 NMR for compound 13d (101 MHz, CDCl₃)

¹H NMR for compound **13e** (400 MHz, CDCl₃)

¹³C NMR for compound **13e** (101 MHz, CDCl₃)

DEPT-135 NMR for compound 13e (101 MHz, CDCl₃)

¹H NMR for compound **13f** (400 MHz, CDCl₃)

¹³C NMR for compound **13f** (101 MHz, CDCl₃)

DEPT-135 NMR for compound 13f (101 MHz, CDCl₃)

¹H NMR for compound **13g** (400 MHz, CDCl₃)

¹³C NMR for compound **13g** (101 MHz, CDCl₃)

DEPT-135 NMR for compound 13g (101 MHz, CDCl₃)

¹H NMR for compound **13h** (400 MHz, CDCl₃)

¹³C NMR for compound **13h** (101 MHz, CDCl₃)

DEPT-135 NMR for compound 13h (101 MHz, CDCl₃)

¹H NMR for compound **14a** (400 MHz, CDCl₃)

¹³C NMR for compound **14a** (101 MHz, CDCl₃)

DEPT-135 NMR for compound 14a (101 MHz, CDCl₃)

¹H NMR for compound **14b** (400 MHz, CDCl₃)

¹³C NMR for compound **14b** (101 MHz, CDCl₃)

¹H NMR for compound **14c** (400 MHz, CDCl₃)

¹³C NMR for compound **14c** (101 MHz, CDCl₃)

¹H NMR for compound **14d** (400 MHz, CDCl₃)

¹³C NMR for compound **14d** (101 MHz, CDCl₃)

¹H NMR for compound **14e** (400 MHz, CDCl₃)

¹³C NMR for compound **14e** (101 MHz, CDCl₃)

DEPT-135 NMR for compound 14e (101 MHz, CDCl₃)

¹H NMR for compound **14f** (400 MHz, CDCl₃)

¹³C NMR for compound **14f** (101 MHz, CDCl₃)

DEPT-135 NMR for compound 14f (101 MHz, CDCl₃)

¹H NMR for compound **14g** (400 MHz, CDCl₃)

DEPT-135 NMR for compound 14g (101 MHz, CDCl₃)

¹H NMR for compound **14h** (400 MHz, CDCl₃)

DEPT-135 NMR for compound 14h (101 MHz, CDCl₃)

¹H NMR for compound **14i** (400 MHz, CDCl₃)

¹³C NMR for compound **14i** (101 MHz, CDCl₃)

DEPT-135 NMR for compound 14i (101 MHz, CDCl₃)

¹H NMR for compound **16a** (400 MHz, CDCl₃)

¹³C NMR for compound **16a** (101 MHz, CDCl₃)

DEPT-135 NMR for compound 16a (101 MHz, CDCl₃)

¹H NMR for compound **16b** (400 MHz, CDCl₃)

¹³C NMR for compound **16b** (101 MHz, CDCl₃)

DEPT-135 NMR for compound 16b (101 MHz, CDCl₃)

¹H NMR for compound **16c** (400 MHz, CDCl₃)

¹³C NMR for compound **16c** (101 MHz, CDCl₃)

¹H NMR for compound **16d** (400 MHz, CDCl₃)

¹³C NMR for compound **16d** (101 MHz, CDCl₃)

¹H NMR for compound **16e** (400 MHz, CDCl₃)

¹³C NMR for compound **16e** (101 MHz, CDCl₃)

¹H NMR for compound **16f** (400 MHz, CDCl₃)

¹³C NMR for compound **16f** (101 MHz, CDCl₃)

DEPT-135 NMR for compound 16f (101 MHz, CDCl₃)

¹H NMR for compound **16g** (400 MHz, CDCl₃)

¹³C NMR for compound **16g** (101 MHz, CDCl₃)

DEPT-135 NMR for compound 16g (101 MHz, CDCl₃)

¹H NMR for compound **17a** (400 MHz, CDCl₃)

¹³C NMR for compound **17a** (101 MHz, CDCl₃)

DEPT-135 NMR for compound 17a (101 MHz, CDCl₃)

¹H NMR for compound **17b** (400 MHz, CDCl₃)

DEPT-135 NMR for compound 17b (101 MHz, CDCl₃)

