Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2023

Electronic Supplemental information

for

Statically and Dynamically Flexible Hydrogen-bonded Frameworks Based on 4,5,9,10-Tetrakis(4-carboxyphenyl)pyrene

Taito Hashimoto, Ryusei Oketani, Aasato Inoue, Kohei Okubo, Kouki Oka, Norimitsu Tohnai,

Kazuhide Kamiya, Shuji Nakanishi and Ichiro Hisaki*

Contents

- 1. General
- 2. Experimental data
 - Table S1
 Crystal data for CP-Py-1(DCB), CP-Py-1(TCB), CP-Py-1(DMAni), CP-Py-2(DCB),

CP-Py-2(TCB), CP-Py-2(DMAni), CP-Py-3 and CP-Py-1(MeNaph)

- Fig. S1 PXRD pattern of CP-Py-2(DCB) after added DCB.
- Fig. S2 TG-DTA curves of CP-Py-1(DCB).
- Fig. S3 Morphology of a single crystal and the corresponding molecular arrangements of CP-Py-1(DCB).
- Fig. S4 Visualized void surface of CP-Py-3
- **Fig. S5** CO₂ (green circle) and N₂ (black triangle) sorption isotherms of **CP-Py-3** recorded at 195 K and 77 k, respectively.
- Fig. S6 BET plot of CP-Py-3 based on CO₂ adsorption isotherm.
- Fig. S7 Anomalous absorption behavior of CP-Py-3 in CO₂ adsorption experiments.
- Fig. S8 TG-DTA curves of CP-Py-1(TCB).
- Fig. S9 ¹H NMR spectrum of CP-Py-1(TCB) dissolved in DMSO- d_6 .
- Fig. S10 TG-DTA curves of CP-Py-1(DMAni).
- Fig. S11 ¹H NMR spectrum of CP-Py-1(DMAni) dissolved in DMSO-*d*₆.
- Fig. S12 PXRD pattern changes from CP-Py-1(TCB) to CP-Py-2(TCB).
- Fig. S13 PXRD pattern changes from CP-Py-1(DMAni) to CP-Py-2(DMAni).
- Fig. S14 PXRD pattern of CP-Py-2(TCB) after added TCB.
- Fig. S15 PXRD pattern of CP-Py-2(DMAni) after added DMAni.
- Fig. S16 Structural similarity of CP-Py-1(TCB) and CP-Py-1(DMAni).
- Fig. S17 Definition of the structural parameters: $\omega_{\text{(torsion)}}$, $\omega_{\text{(twist)}}$, and $\omega_{\text{(bent)}}$.
- Fig. S18 Selected side views of the H-bonded dimer moieties of CP-Py-1(DCB), CP-Py-2(DCB),
 - CP-Py-1(TCB), CP-Py-2(TCB), CP-Py-1(DMAni) and CP-Py-2(DMAni).
- 3. References

1. General

All reagents and solvents were used as received from commercial suppliers. ¹H and ¹³C NMR spectra were measured on a Bruker AV400M (400 MHz) spectrometer. Residual proton and carbon of deuterated solvents were used as internal standards for the measurements: δ = 7.26 ppm (CDCl₃) and δ = 2.50 ppm (DMSO-*d*₆) for ¹H NMR, δ = 77.16 ppm (CDCl₃) and δ = 39.52 ppm (DMSO-*d*₆) for ¹³C NMR. HR-MS analyses were conducted on a JEOL JMS-700 instrument. Thermo gravimetric (TG) analyses were performed on Rigaku Thermo plus EVO2 (TG-DTA8122) under an N₂ purge (300 mL/min) at a heating rate of 5 °C min⁻¹. Crystal structures were drawn using Mercury^{S1} software. Powder X-ray diffraction (PXRD) data were collected on PANalytical XPert PRO X'Celerator (45 kV, 40 mA) using Cu-Kα radiation at room temperature with a scan rate of 1.2°min⁻¹ or on Rigaku MiniFlex 600 (40 kV, 15 mA) using Cu-Kα radiation at room temperature with a scan rate of 4°min⁻¹.

Single crystal X-ray or electron diffraction measurement and analysis. CP-Py-1(DCB), CP-Py-1(TCB), CP-Py-2(DCB), CP-Py-2(TCB) and CP-Py-1(MeNaph) were collected at 113 K with a two-dimensional X-ray detector (PILATUS 200K/R) equipped on a Rigaku XtaLAB P200 diffractometer by using Mo-K α radiation monochromated with multilayer mirror ($\lambda = 0.71073$ Å). Diffraction data of CP-Py-1(DMAni), CP-Py-2(DMAni) and CP-Py-3 was collected with a twodimensional X-ray detector (Pilatus 100K) at SPring-8 (BL40XU) by using synchrotron radiation ($\lambda = 0.81106$ Å). Diffraction Data collection, cell refinement, and data reduction were carried out with CrysAlis PRO.^{S2} SHELXT^{S3} was used for the structure solution of the crystals. These calculations were performed with the observed reflections [$I > 2\sigma(I)$] with the program OLEX-2 crystallographic software.^{S4} Structural refinement was performed by SHELXL.^{S5} All nonhydrogen atoms were refined with anisotropic displacement parameters, and hydrogen atoms were placed in idealized positions and refined as rigid atoms with the relative isotropic displacement parameters. For structural analysis of CP-Py-1(TCB), CP-Py-1(DMAni) and CP-Py-3, SQUEEZE function equipped in the PLATON program was used to treat severely disordered solvent molecules in voids.^{S6}

Gas sorption experiments. The activated bulk sample of **CP-Py-3** was used for gas sorption measurements, which were performed on BELSORP-max (BEL, Japan) or Micromeritics 3Flex. The adsorption isotherms of N_2 , CO₂ were corrected at 77K and 195 K, respectively. Brunauer–Emmett–Teller (BET) specific surface area: $S_{A(BET)}$ was based on CO₂ absorption isotherms.

2. Experimental data

Table S1.	Crystal data f	for CP-Py-1(DCB),	CP-Py-1(TCE	B), CP-Py-1(DN	MAni), CP-Py-	2 (DCB),
CP-Py-2(TCB), CP-Py	-2(DMAni), CP-Py	-3 and CP-Py-	-1(MeNaph)		

	CP-Py-1(DCB)	CP-Py-2(DCB)	CP-Py-3
Formular	$C_{44}H_{26}O_8 \cdot 4(C_6H_4Cl_2)$	C44H26O8·2(C6H4Cl2)	C44H26O8
Fw	1270.61	976.63	682.65
Crystal system	monoclinic	monoclinic	triclinic
Space group	P21/c	P21/c	<i>P-</i> 1
<i>a</i> / Å	7.3723(2)	7.5511(4)	7.5864(17)
b/Å	15.6634(4)	11.4435(8)	9.404(3)
<i>c</i> / Å	25.1288(6)	26.3091(16)	13.016(3)
α / °	90	90	78.06 (2)
β/°	94.144(2)	92.902(5)	86.453 (17)
γ/°	90	90	67.84 (2)
V / Å ³	2894.17(13)	2270.5(2)	841.3 (4)
<i>d</i> / g⋅cm⁻³	1.458	1.429	1.348
Т/К	113	113	100
Crystal size / mm	0.49 × 0.15 × 0.058	0.13 × 0.07 × 0.03	0.10 × 0.08 × 0.02
No. of measured reflections	35154	21812	8327
No. of independent reflections	7651	5753	3644
$R_1 (l > 2\sigma(l))$	0.0568	0.0720	0.2112
wR₂(all)	0.1237	0.1916	0.597
GOF	1.022	1.036	2.114
CCDC Nos.	2206159	2255738	2255739
Ref.	Ref. S7	This work	This work

Table S1. Continued.				
	CP-Py-1(TCB)	CP-Py-2 (TCB)		
Formular	$C_{44}H_{26}O_8$	C ₄₄ H ₂₆ O ₈ ·2(C ₆ H ₃ Cl ₃)		
Fw	682.65	1045.51		
Crystal system	monoclinic	monoclinic		
Space group	P21/c	C2/m		
a / Å	6.7428(3)	27.5399(14)		
b/Å	15.8023(9)	11.8206(8)		
c / Å	27.6306(12)	7.2355(4)		
α / °	90	90		
β / °	93.044(4)	92.898(5)		
γ/°	90	90		
V / Å ³	2939.9(2)	2352.4(2)		
d / g⋅cm⁻³	0.771	1.476		
T/K	113	113		
Crystal size / mm	0.29 × 0.16 × 0.07	0.18 × 0.10 × 0.04		
No. of measured reflections	30394	17520		
No. of independent reflections	7603	3735		
$R_1 (I > 2\sigma(I))$	0.0957	0.0609		
<i>wR</i> ₂ (all)	0.3294	0.1434		
GOF	1.044	1.047		
CCDC Nos.	2255740	2255741		
Ref.	This work	This work		

Table S1. Continued.

	CP-Py-1(DMAni)	CP-Py-2(DMAni)	CP-Py-1(MeNaph)
Formular	$C_{44}H_{26}O_8$	$C_{44}H_{26}O_8\cdot 3(C_8H_{11}N)$	$C_{44}H_{26}O_8\cdot 3(C_{11}H_{10})$
Fw	682.65	1046.18	1109.21
Crystal system	monoclinic	monoclinic	monoclinic
Space group	C2/m	P21/c	P21/c
<i>a</i> / Å	23.4820(13)	7.4693 (4)	7.6554(13)
b/Å	17.2143(10)	14.233 (2)	15.342(3)
<i>c</i> / Å	7.5294(3)	24.1720 (16)	24.524(5)
α / °	90	90	90
β/°	94.013(5)	94.080 (6)	94.763(18)
γ/°	90	90	90
V/Å ³	3036.1(3)	2563.2 (4)	2870.4(10)
d / g⋅cm⁻³	0.747	1.356	1.283
Т / К	100	100	113
Crystal size / mm	0.20 × 0.09 × 0.04	0.12 × 0.09 × 0.03	0.08 × 0.07 × 0.01
No. of measured reflections	18358	32342	43799
No. of independent reflections	3692	6267	7579
$R_1 (I > 2\sigma(I))$	0.0911	0.1210	0.1408
wR₂(all)	0.3094	0.4120	0.3606
GOF	1.232	1.255	1.020
CCDC Nos.	2255742	2255743	2262072
Ref.	This work	This work	This work

Table S1. Continued.

Fig. S1 PXRD pattern of CP-Py-2(DCB) after added DCB.

Fig. S2 TGA-DTA curves of CP-Py-1(DCB).

Fig. S3 Morphology of a single crystal and the corresponding molecular arrangements of **CP-Py-1**(DCB).

Fig. S4 Visualized void surface of **CP-Py-3**. Projection from the *a* axis (top) and the *b* axis (bottom). The surface was generated by Mercury software with probe radius of 1.2 Å and grid spacing of 0.2 Å.

Fig. S5 CO_2 (green circle) and N_2 (black triangle) sorption isotherms of **CP-Py-3** recorded at 195 K and 77 k, respectively. Solid and open symbols correspond to adsorption and desorption processes, respectively.

Fig. S6 BET plot of CP-Py-3 based on CO₂ adsorption isotherm.

Fig. S7 Anomalous absorption behavior of CP-Py-3 in CO₂ adsorption experiments.

Fig. S9 ¹H NMR (400 MHz) spectrum of CP-Py-1(TCB) dissolved in DMSO-*d*₆.

Fig. S11 ¹H NMR (400 MHz) spectrum of CP-Py-1(DMAni) dissolved in DMSO-*d*₆.

Fig. S12. PXRD pattern changes from CP-Py-1(TCB) to CP-Py-2(TCB).

Fig. S13. PXRD pattern changes from CP-Py-1(DMAni) to CP-Py-2(DMAni).

Fig. S14 PXRD pattern of CP-Py-2(TCB) after added TCB.

Fig. S15 PXRD pattern of CP-Py-2(DMAni) after added DMAni.

Fig. S16 Structural similarity of **CP-Py-1**(TCB) (cyan) and **CP-Py-1**(DMAni) (red). The framework shown in top corresponds to one layer allowed in the side view at the bottom.

Fig. S17 Definition of the structural parameters: $\omega_{\text{(torsion)}}$, $\omega_{\text{(twist)}}$, and $\omega_{\text{(bent)}}$, which characterize versatile shapes of the framework.

Fig. S18 Selected side views of the H-bonded dimer moieties of **CP-Py-1**(DCB), **CP-Py-2**(DCB), **CP-Py-1**(TCB), **CP-Py-2**(TCB), **CP-Py-1**(DMAni), and **CP-Py-2**(DMAni).

3. References

- S1. C. F. MacRae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler and P. A. Wood, *J. Appl. Crystallogr.*, 2020, 53, 226.
- S2. Rigaku Oxford Diffraction (2015), Software CrysAlisPro 1.171.38.41o. Rigaku Corporation, Tokyo, Japan.
- S3. G. M. Sheldrick, Acta Crystallogr. Sect. A, 2015, 71, 3.
- S4. (a) Rigaku (2018). CrystalStructure. Version 4.3. Rigaku Corporation, Tokyo, Japan. (b) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, H. J. Appl. Cryst., 2009, 42, 339. (c) L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard and H. Puschmann, Acta Crystallogr. Sect. A, 2015, 71, 59.
- S5. G. M. Sheldrick, Acta Crystallogr. Sect. C, 2015, 71, 3.
- S6. (a) P. v. d. Sluis and A. L. Spek, Acta Crystallogr. Sect. A, 1990, 46, 194. (b) A. L. Spek, Acta Crystallogr. Sect. D, 2009, 65, 148.
- S7. T. Hashimoto, R. Oketani, M. Nobuoka, S. Seki and I. Hisaki, *Angew. Chem. Int. Ed.*, 2023, 62, e202215836.