Pillar[5]arene based water-soluble [3]pseudorotaxane with enhanced fluorescence emission for cell imaging and both type I & II photodynamic cancer therapy

Yue Zhang,¹ Yang Wang,^{1,*} Tingting Chen,¹ Ying Han,^{2,*} Chaoguo Yan,² Yan Cai,¹ Bing Lu,¹ Longtao Ma,^{1,2, *}, Yue Ding,¹ and Yong Yao^{1,*}

¹School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P.R. China.

²School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225001, P.R. China.

E-mail: ywang85@ntu.edu.cn; hanying@yzu.edu.cn; MZ120200718@yzu.edu.cn; yaoyong1986@ntu.edu.cn.

1	Materials and methods	S2
2	Synthesis of <i>para</i> -modified porphyrin (pPor)	S4
3	Synthesis of WP5	S7
4	Host-guest interaction between WP5 and <i>p</i> Por	S8
5	ROS generation ability	S10
6	Cell imaging	S10

Supporting Information

1. Materials and methods

Materials

All reagents were commercially available and used as supplied without further purification. Solvents were either employed as purchased or dried according to procedures described in the literature.

Measurements

NMR spectroscopy. ¹H and ¹³C NMR spectra were recorded on a Brucker AV400 spectrometer.

Fluorescence spectroscopy. Steady-state fluorescence spectra were recorded in a conventional quartz cell (light path 10 mm) on a Varian Cary Eclipse equipped with a Varian Cary single-cell peltier accessory to control temperature. For [3]WP5PR, $\lambda_{ex} = 380$ nm and $\lambda_{em} = 465$ nm.

UV/Vis spectroscopy. UV/Vis spectra and the optical transmittance were recorded in a quartz cell (light path 10 mm) on a Shimadzu UV-3600 spectrophotometer equipped with a PTC-348WI temperature controller.

ESI-MS spectroscopy. Electrospray ionization mass spectra (ESI-MS) were measured by Agilent 6520 Q-TOF-MS.

Cytotoxicity experiments. HeLa cells were incubated in Dulbecco's modified Eagle's medium (DMEM). The medium was supplemented with 10% fetal bovine serum and 1% Penicillin-Streptomycin. Cells were seeded in 96-well plates (5×10^4 cell mL⁻¹, 0.1 mL per well) for 4 h at 37°C in 5% CO₂. Then the cells were incubated with different groups for 4 h. The relative cellular viability was determined by the MTT assay.

Confocal laser scanning microscopy. Cells were seeded in 6-well plates $(5 \times 10^4 \text{ cell} \text{ mL}^{-1}, 2 \text{ mL per well})$ for 24 h at 37°C in 5% CO₂. The cells were incubated with the corresponding solution for 4 h. Then the medium was removed, and the cells were washed with phosphate buffer solution for three time. Finally, the cells were subjected

to observation by a confocal laser scanning microscope. The mean fluorescence intensity was analysis by image J.

TEM microscopy. High-resolution Transmission electron microscopy (TEM) images were acquired using a Tecnai 20 high-resolution transmission electron microscope operating at an accelerating voltage of 200 keV. The sample for high-resolution TEM measurements was prepared by dropping the solution onto a copper grid. The grid was then air-dried.

DLS spectroscopy. Solution samples were examined on a laser light scattering spectrometer (BI-200SM) equipped with a digital correlator (TurboCorr) at 636 nm at a scattering angle of 90°. The hydrodynamic diameter (Dh) was determined by DLS experiments at 25°C.

ROS detection. HeLa cells were seeded into 12 mm sterile coverslips in a 6-well plate and maintained for 12 h. The cells were incubated with WP5, pPor, and [3]WP5PR for 4h, then irradiated with 660 nm (1 mM/cm²) laser for 10 min. Afterward, DCFH-DA/SOSG/APF was added to incubate together with cells and imaged, respectively.

Live-Dead Cell Staining. The same density of HeLa cells $(3 \times 10^5 \text{ cell mL}^{-1})$ were distributed into three confocal dishes (35 mm) for 12 h. Then the 2-plate cells were cultured with new DMEM containing [3]WP5PR NPs (70 μ M). After 5 h, the cells were subjected to dark or laser irradiation (660 nm, 1.0 mW/cm², 10 min). After 48 h, the cells were stained with a calcein AM/propidium iodide mixture for 30 min and washed twice using PBS. The fluorescence images were eventually acquired via a confocal laser scanning microscope.

Flow cytometric analysis. Flow cytometric analysis was performed to detect the cell death. HeLa cells were seeded in a 6-well plate and maintained for 24 h. Then the cells were incubated with PBS, WP5, pPor, [3]WP5PR and the irradiated with 660 nm laser for 10 min, respectively, for 4 h at 37 °C. After that, the cells were washed several times with PBS and analyzed by flow cytometry.

2. Synthesis of *para*-modified porphyrin (*p*Por)

Scheme S1. Synthetic route to *p***Por**.

In order to synthesize pPor, porphyrin A was prepared according to previous report firstly.^{S1}

Under N₂ atmosphere, 0.4 mmol (0.246g) porphyrin **A** was added into a 50 mL round-bottled flask, dissolved in 25 mL DMF solution, and refluxed at 115°C. Then 1.2 mmol (0.212g) 6-bromocapronitrile was added into the reaction solution for 24 hours. At the end of the reaction, the solid was precipitated in methanol solution, and finally the product *p***Por** was obtained through filtration as a purple solid.

*p***Por**: yield, 60%, m.p.262-264°C; ¹H NMR (400 MHz, CD₃OD) δ 9.43 (d, *J* = 6.5 Hz, 6H, ArH), 8.92 (d, *J* = 6.6 Hz, 8H, CH), 8.14 (d, *J* = 6.7 Hz, 4H, ArH), 7.84 (t, *J* = 7.5 Hz, 3H, ArH), 7.77 (t, *J* = 7.3 Hz, 5H, ArH), 5.02 (d, *J* = 7.6 Hz, 4H, CH₂), 2.64 (d, *J* = 7.0 Hz, 4H, CH₂), 2.42 (t, *J* = 7.6 Hz, 4H, CH₂), 1.94 – 1.90 (m, 4H, CH₂), 1.83 (m, 4H, CH₂); ¹³C NMR (100 MHz, CD₃OD) δ 143.0, 134.2, 133.0, 126.7, 48.26, 48.08, 48.04, 47.89, 47.83, 47.63, 47.62, 47.40, 47.37, 47.19, 47.13, 46.98; MS (m/z): HRMS (ESI) Calcd. for C₅₄H₄₈N₈([M -2Br]²⁺): 404.1995, found: 404.1993.

Figure S1. ¹HNMR (400 MHz, 298K, CD₃OD) spectrum of *p*Por.

S5

Figure S3. HR-MS (ESI) of *p*Por. Calcd. for C₅₄H₄₈N₈([M -2Br]²⁺): 404.1995, found: 404.1993.

3. Synthesis of WP5^{S2}

WP5 was prepared according to previous report,^{S2} and the ¹H NMR was showed in Figure S4.

P5-ether WP5

Scheme S2. Synthesis of water soluble pillar[5]arene (WP5).

Figure S4. ¹H NMR (400 MHz, 298K, D₂O) spectrum of WP5.

4. Host-guest interaction between WP5 and *p*Por

To determine the stoichiometry and association constant between WP5 and *p*Por, Fluorescence titrations were done with solutions which had a constant concentration of *p*Por (10 μ M) and varying concentrations of WP5. By a Stern-Volmer curves, the association constant between the *p*Por and WP5 was calculated. By a mole ratio plot, a 2:1 stoichiometry was obtained; WP5 was shown to form a 2:1 complex with *p*Por.

Subsequently, the formation of [3]WP5PR was investigated by 2D Nuclear Overhauser Effect Spectroscopy (NOESY). As shown in Fig. S5 (30.0 mM WP5 and 15.0 mM *p*Por in D₂O/CD₃OD), correlations were observed between protons H_{α -py} of *p*Por and protons H_{bridge} on WP5, suggesting that pyridinium groups were threaded into the cavity of WP5. Therefore, it was confirmed that when *p*Por encountered WP5, the alkyl chain of *p*Por penetrated through the cavity of WP5. The formation of [3]WP5PR was mainly driven by multiple electrostatic interactions between the carboxylate anions on WP5 and the cationic pyridiniums on *p*Por, hydrophobic interactions, and π - π stacking interactions.

Figure S5. Partial 2D NOESY spectrum of WP5 and *p*Por in CD₃OD + D_2O at 298K.

Figure S6. Fluorescence spectra of **pPor** in the presence of **WP5** ($\lambda_{ex} = 380$ nm). The inset was the Stern-Volmer curves for the (**WP5**)₂ \supset **pPor** interaction ($K = (1.21 \pm 0.049) \times 10^4$ M⁻¹, R² = 0.9902). C(**pPor**) = 10 µM. **WP5** concentrations were 0, 4, 6, 8, 10, 12, 14, 16, 18 µM, respectively.

As shown in Fig. S6, the fluorescence of *p***Por** was enhanced with the gradual addition of **WP5** and the association constant (*K*) was calculated to be $(1.21 \pm 0.049) \times 10^4$ M⁻¹.

Figure S7. (a) UV titration of *p***Por** in methanol solution with increasing **WP5** concentration. (b) Plot the work of the $(WP5)_2 \supset pPor$ complex by plotting the UV absorbance at 424 nm. Working diagram of composite $(WP5)_2 \supset pPor$ showing a stoichiometric ratio of 2:1 between **WP5** and *p***Por**.

The mole ratio plot based on the UV titration experiments indicated that **WP5** and *p***Por** had a 2 : 1 stoichiometry in [3]WP5PR (Fig. S7, ESI^{\dagger}). Therefore, according to the above experiments, we can confirm that [3]WP5PR is automatically formed when *p***Por** and **WP5** were mixed in water.

5. ROS generation ability

Figure S8. Time-dependent UV-vis spectra of (a) DPBF and (b) with *p*Por (c) with [3]WP5PR after irradiation with 660 nm light (1 mW cm⁻²) in aqueous solution.

6. Cell imaging

Figure S9. CLSM images of HeLa cells incubated [3]WP5PR for 0h, 1h, 2h and 4h.

Figure S10. DLS studies of [3]WP5PR-based nanoparticles under different conditions.

Figure S11. Time-dependent UV-vis spectra of (a) MB with DPBF after irradiation, (b) [3]WP5PR with with DPBF after irradiation.

 $\Phi_{\text{NPs}} = \Phi_{\text{mb}} * (K_{\text{NPs}}/K_{\text{mb}}) * (A_{\text{mb}}/A_{\text{NPs}})$, A is the absorbance at 660nm. So, $\Phi_{\text{NPs}} = 0.751 \Phi_{\text{mb}}$.

Figure S12. Temperature increasement of pure water and [3]WP5PR solution (0.01 mM) with 660 nm laser irradiation (1 mW/cm^2) .

Figure S13. Flow cytometry experiments of (a) [3]WP5PR, (b) pPor + Laser, and (c) [3]WP5PR + Laser. $[C] = 70 \mu M$.

References

S1. Yang Wang, Chenwei Wang, Renhua Long, Yufeng Cao, Dongli Fan, Moupan Cen, Leyu Cao, Yanmei Chen, Yong Yao, *Chem. Commun.*, **2019**, *55*, 5167-5170

S2. Tomoki Ogoshi, Masayoshi Hashizume, Tada-aki Yamagishi and Yoshiaki Nakamoto, *Chem. Commun.*, **2010**, *46*, 3708-3710.