Supporting Information

A Formal Synthesis of (-)-Erinacine B Enabled by

Asymmetric Organocatalysis

Jiahang Yan,^{b†} Dongyang Xu,^{a†} Zhiqiang Zhou,^{a†} Long He,^a Jin-Ming Gao,^{*, a} Hongbo Wei^{*, a} and Weiqing Xie^{*,a, b}

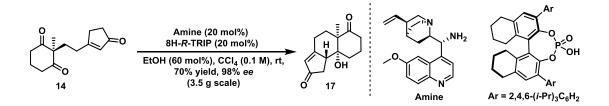
¹ Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest
A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
² Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, College of Plant Protection, Northwest A&F
University, Yangling, Shaanxi 712100, Shaanxi, China.
* Corresponding authors
*Email: jinminggao@nwafu.edu.cn
*Email: weihb@nwafu.edu.cn

*Email: xiewq@nwafu.edu.cn

Table of Contents

1. General Information	1
2. Experimental Procedures and Spectroscopic Data of Compounds	2
3 Reference	13
4. HPLC Charts for 10	14
5. ¹ H & ¹³ C NMR Spectra of Compounds	17

1. General Information

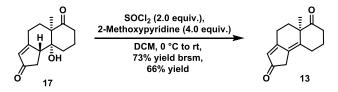

Unless otherwise noted, reagents were obtained from commercial sources and used without further purification. Non-aqueous reaction was conducted under an inert atmosphere of argon in flame-dried glassware. Anhydrous solvent was treated as follow: tetrahydrofuran and diethyl ether were distilled from sodium under argon atmosphere, dichloromethane and toluene was distilled from calcium hydride under argon atmosphere. Anhydrous chloroform, methanol, ethanol and ethyl acetate were commercially available (Adamas, SafeDry, with molecular sieves).

Thin layer chromatography was conducted on Merck 60 F254 pre-coated silica gel plates. Column chromatography was carried out by normal silica gel (40-60 μ m, 200-400 mesh, Silicycle P60). NMR data including ¹H NMR and ¹³C NMR spectra were recorded on Bruker AVANCE III 500MHz. The chemical shifts (δ) for ¹H and ¹³C are given in ppm relative to residual signals of the solvents (CHCl₃ @ 7.26 ppm ¹H NMR, 77.16 ppm ¹³C NMR). Coupling constants are given in Hz.

Low mass spectra were measured on a Shimadzu LCMS-2010EV mass spectrometer (ESI). High resolution mass spectra were obtained from IonSpec 4.7 Tesla FTMS mass spectrometer (MALDI), Bruker APEXIII 7.0 TESLA FTMS (ESI).

Optical rotations were measured on an Anton Paar MCP 300 polarimeter and are reported as follows: $[\alpha]_{D}^{t}$ (*c* = g/100 mL in solvent).

2. Experimental Procedures and Spectroscopic Data of Compounds

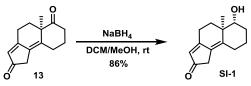


A 250 mL flask was charged with the **Amine** (20 mol%), **8H-***R***-TRIP** (20 mol%), ethanol (60 mol%), and triketone **14**^[1] (15 mmol) dissolved in CCl₄ (150 mL). After that, the reaction mixture was stirred at room temperature until all triketone **14** was consumed as judged by TLC (about 20 days). The solvent was removed under vacuum. The residue was purified by flash column chromatography (ethyl acetate/petroleum ether = 1/3 to 2/1, v/v) to afford the product (2.46 g, 70% yield) as a brown oil. $R_f = 0.32$ (ethyl acetate/petroleum ether = 2/1, v/v). $[\alpha]_p^{20} = +76.74$ (c = 0.20 in CHCl₃).

¹**H NMR (500 MHz, CDCl₃)** δ 5.90 (s, 1H), 2.80 (d, *J* = 6.3 Hz, 1H), 2.73–2.65 (m, 1H), 2.66–2.59 (m, 2H), 2.45–2.39 (m, 1H), 2.36–2.24 (m, 3H), 2.21–2.10 (m, 1H), 2.03–1.93 (m, 1H), 1.79–1.65 (m, 3H), 1.60–1.48 (m, 1H), 1.26 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 213.1, 208.7, 181.3, 129.1, 78.2, 54.8, 46.4, 36.1, 35.9, 31.2, 29.6, 27.4, 22.6, 19.5.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₄H₁₉O₃ 235.1329; Found 235.1325.

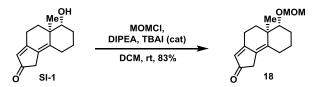


To a solution of tertiary alcohol **17** (843 mg, 3.6 mmol, 1.0 equiv.) in dichloromethane 72 mL at 0 °C 2-Methoxypyridine (1.5 mL, 4.0 equiv.) and thionyl chloride (0.52 mL, 2.0 equiv) was added and the reaction mixture was stirred at 0 °C for 10 min, then warm up to room temperature and additional stirred for 30 min. The reaction was quenched with water, and extracted with dichloromethane (3 ×20 mL) and the combined organic fractions were washed with brine (50 mL), dried (Na₂SO₄) and concentrated in *vacuo*. The residue was subjected to flash column chromatography (ethyl acetate/dichloromethane = 1/10, v/v) to afford the corresponding unsaturated ketone **13** (512 mg, 66% yield) as a yellow oil. $R_f = 0.67$ (ethyl acetate/dichloromethane = 1/4, v/v). $[\alpha]_D^{20} = -161.18$ (c = 0.15 in CHCl₃).

¹**H NMR (500 MHz, CDCl₃)** δ 5.88 (s, 1H), 2.86 (s, 2H), 2.80 (dt, J = 17.5, 4.0 Hz, 1H), 2.72–2.63 (m, 1H), 2.63–2.54 (m, 1H), 2.50 (dd, J = 8.5, 4.5 Hz, 2H), 2.41 (dt, J = 15.0, 4.5 Hz, 1H), 2.15–2.04 (m, 1H), 2.02–1.94 (m, 1H), 1.84 (td, J = 14.0, 5.0 Hz, 1H), 1.73–1.60 (m, 1H), 1.34 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 212.7, 204.7, 169.9, 141.1, 131.5, 127.8, 50.2, 38.1, 37.9, 29.4, 27.4, 23.7, 23.1, 22.2.

HRMS (ESI) m/z: $[M + H]^+ C_{14}H_{21}O_3 217.1223$; Found 217.1220.



To a solution of ketone **13** (6.2 g, 29 mmol, 1.0 equiv.) in dichloromethane/methanol (1:1 v/v, 200 mL) at 0 °C was added NaBH₄ (1.3 g, 34.4 mmol, 1.2 equiv) slowly. The reaction mixture was stirred at 0 °C for 10 min, then warm up to room temperature and additional stirred for 30 min. The solvent was removed under vacuum and water (50 mL) was added, extracted with dichloromethane (3×20 mL) and the combined organic fractions were washed with brine (50 mL), dried (Na₂SO₄) and concentrated in *vacuo*. The residue was subjected to flash column chromatography (ethyl acetate/dichloromethane = 1/10, v/v) to afford the corresponding secondary alcohol **SI-1** (5.39 g, 86% yield) as a yellow oil R_f = 0.51 (ethyl acetate/petroleum ether = 2/1, v/v). $[\alpha]_p^{20} = -158.19$ (c = 0.10 in CHCl₃).

¹**H NMR (500 MHz, CDCl₃)** δ 5.86 (s, 1H), 3.34 (dt, *J* = 11.5, 4.5 Hz, 1H), 2.83 (d, *J* = 5.5 Hz, 2H), 2.76 (dt, *J* = 17.5, 3.5 Hz, 1H), 2.61–2.48 (m, 1H), 2.29–2.20 (m, 2H), 2.14–2.04 (m, 2H), 1.87–1.76 (m, 2H), 1.72–1.60 (m, 1H), 1.55 (td, *J* = 13.5, 4.5 Hz, 1H), 1.40–1.27 (m, 1H), 1.09 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 205.7, 171.5, 143.9, 130.8, 127.1, 78.8, 41.2, 38.2, 34.0, 30.3, 27.4, 23.3, 22.6, 15.5.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{14}H_{19}O_2$; 219.1380; Found 219.1381.

To a solution of Alcohol **SI-1** (1.22 g, 5.6 mmol, 1.0 equiv.) in dichloromethane 60 mL at 0 °C were added DIPEA (9.3 mL, 56 mmol, 10 equiv), TBAI (103 mg, 5 mol%) and MOMCl (2.1 mL, 28 mmol, 5 equiv). The reaction mixture was stirred at 0 °C for 10 min, then stirred at room temperature until all start material was consumed as judged by TLC. The reaction was quenched with 1 N HCl (aq), and extracted with dichloromethane (3×20 mL) and the combined organic fractions were washed with brine (50 mL), dried (Na₂SO₄) and concentrated in vacuo. The residue was subjected to flash column chromatography (ethyl acetate/petroleum ether = 1/10, v/v) to afford the corresponding unsaturated ketone **18** (1.22 g, 83% yield) as a yellow oil. $R_f = 0.67$ (ethyl acetate/petroleum ether = 1/1, v/v). $[\alpha]_p^{20}$ = -120.16 (*c* = 0.19 in CHCl₃).

¹**H NMR (500 MHz, CDCl₃)** δ 5.85 (s, 1H), 4.71 (d, J = 6.9 Hz, 1H), 4.57 (d, J = 6.9 Hz, 1H), 3.35 (s, 3H), 3.20 (dd, J = 11.7, 4.2 Hz, 1H), 2.82 (d, J = 5.8 Hz, 2H), 2.77–2.69 (m, 1H), 2.60–2.49 (m, 1H), 2.28–2.20 (m, 1H), 2.14–2.03 (m, 2H), 1.95–1.88 (m, 1H), 1.88–1.79 (m, 1H), 1.66–1.47 (m, 2H), 1.35–1.19 (m, 1H), 1.10 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 205.3, 171.1, 143.6, 130.6, 127.1, 95.7, 84.4, 55.7, 40.8, 38.2, 34.1, 27.4, 27.1, 23.1, 22.5, 16.5.

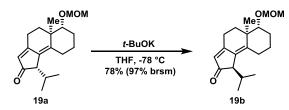
HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{16}H_{23}O_3$ 263.1642; Found 263.1639.

A solution of *n*-BuLi (2.5 M in hexane, 1.85 mL, 5.0 mmol, 2.0 equiv) was added dropwise to a solution of *i*-Pr₂NH (0.72 mL, 5.125 mmol, 2.05 equiv) in dry THF (10 mL) at 0 °C under argon atmosphere. The LDA solution was stirred for 0.5 h at this temperature, then cooled to -78 °C. After that a solution of ketone **18** (656 mg, 2.5 mmol, 1.0 equiv) in THF (10 mL) was added dropwise within 10 min. The reaction mixture was stirred for 1 h at -78 °C before 2-Iodopropane (1.25 mL, 12.5 mmol, 5.0 equiv) and HMPA (2 mL) in dry THF (3 mL) were introduced at this temperature. The mixture was stirred for 1 hour at -78 °C, then the mixture was allowed to stirred at room temperature overnight. The mixture was treated with saturated NH₄Cl solution (20 mL) and extracted with ethyl acetate (3 × 20 mL). The combined organic extracts were washed with saturated brine, dried over Na₂SO₄, filtered, and concentrated, and the residue purified by flash chromatography (ethyl acetate/petroleum ether = 1/50 to 1/10, v/v) to afford the corresponding **19a** (310 mg, 41% yield) and **19b** (295 mg, 39% yield).

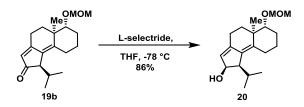
19a, $R_f = 0.68$ (ethyl acetate/petroleum ether = 1/3, v/v), $[\alpha]_D^{20} = -56.32$ (*c* = 0.20 in CHCl₃).

¹**H NMR (500 MHz, CDCl₃)** δ 5.76 (s, 1H), 4.73 (d, J = 6.8 Hz, 1H), 4.59 (d, J = 6.8 Hz, 1H), 3.37 (s, 3H), 3.26 (dd, J = 11.7, 4.2 Hz, 1H), 2.78 (d, J = 3.3 Hz, 1H), 2.69 (dt, J = 16.8, 4.2 Hz, 1H), 2.64 – 2.53 (m, 1H), 2.39 – 2.31 (m, 1H), 2.19 – 2.02 (m, 3H), 1.98 – 1.89 (m, 1H), 1.89 – 1.82 (m, 1H), 1.67 – 1.55 (m, 2H), 1.34 – 1.20 (m, 1H), 1.15 (s, 3H), 1.14 (d, J = 6.9 Hz, 3H), 0.66 (d, J = 6.9 Hz, 3H).

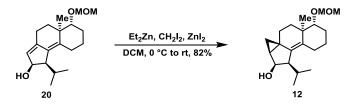
¹³C NMR (125 MHz, CDCl₃) δ 208.2, 170.9, 142.7, 135.2, 126.8, 95.8, 84.0, 55.8, 53.2, 40.9, 34.5, 30.5, 27.3, 27.2, 23.5, 22.6, 20.3, 17.8, 17.2.


HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{19}H_{29}O_3$ 305.2111; Found 305.2107.

19b, $R_f = 0.71$ (ethyl acetate/petroleum ether = 1/3, v/v), $[\alpha]_D^{20} = -171.34$ (*c* = 0.14 in CHCl₃).

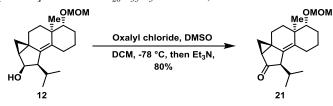

¹**H NMR (500 MHz, CDCl₃)** δ 5.76 (s, 1H), 4.73 (d, J = 6.8 Hz, 1H), 4.59 (d, J = 6.8 Hz, 1H), 3.37 (s, 3H), 3.26 (dd, J = 11.7, 4.2 Hz, 1H), 2.78 (d, J = 3.3 Hz, 1H), 2.69 (dt, J = 16.8, 4.2 Hz, 1H), 2.59 (td, J = 15.4, 4.6 Hz, 1H), 2.39 – 2.31 (m, 1H), 2.19 – 2.02 (m, 3H), 1.98 – 1.89 (m, 1H), 1.89 – 1.82 (m, 1H), 1.67 – 1.55 (m, 2H), 1.34 – 1.20 (m, 1H), 1.15 (s, 3H), 1.14 (d, J = 6.9 Hz, 3H), 0.66 (d, J = 6.9 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 208.2, 170.9, 142.7, 135.2, 126.8, 95.8, 84.0, 55.8, 53.2, 40.9, 34.5, 30.5, 27.3, 27.2, 23.5, 22.6, 20.3, 17.8, 17.2.


HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{19}H_{29}O_3$ 305.2111; Found 305.2110.

To a suspension of *t*-BuOK (112 mg, 0.5 mmol, 5 equiv) in dry THF (1 mL) at -78 °C was added ketone **19a** (61 mg, 0.2 mmol, 1.0 equiv) in THF (0.5 mL), the reaction mixture stirred at same temperature for 5 h before quenched with 1 N HCl (aq) at -78 °C. Then the mixture was allowed to warm up to room temperature and extracted with ethyl acetate (3×5 mL). The combined organic extracts were washed with saturated brine, dried over Na₂SO₄, filtered, and concentrated, and the residue purified by flash chromatography (ethyl acetate/petroleum ether = 1/20, v/v) to afford the corresponding **19b** (47 mg, 78% yield) and **19a** (12 mg).

To a solution of ketone **19b** (3.27 g, 10.7 mmol, 1.0 equiv) in dry THF (100 mL) at -78 °C was added L-selectride (1.0 M in THF, 16 mL, 1.5 equiv) slowly under argon atmosphere. The reaction mixture was stirred at same temperature until all start material was consumed as judged by TLC, then quenched with 10 mL H₂O and 20 mL MeOH before warm up to 0 °C, and 10 mL 30% H₂O₂ was added slowly, the mixture stirred for 10 min and 10 mL 2 M NaOH aqueous solution was added and stirred additional 10 min. Finally, the solvent was removed under vacuum and water (30 mL) was added. The mixture extracted with ethyl acetate (3 × 40 mL). The combined organic extracts were washed with saturated brine, dried over Na₂SO₄, filtered, and concentrated, and the residue purified by flash chromatography (ethyl acetate/petroleum ether = 1/30 to 1/10, v/v) to afford the corresponding allyl alcohol **20** (2.82 g, 86% yield) as a yellow oil. R_f = 0.54 (ethyl acetate/petroleum ether = 1/5, v/v) This compound was not fully characterized due to its instability while recording NMR spectrum.



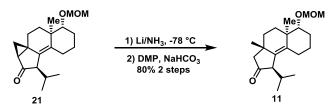
To a solution of allyl alcohol **20** (2.82 g, 9.2 mmol, 1.0 equiv) and ZnI₂ (734 mg, 2.3 mmol, 0.25 equiv) in dry DCM (300 mL) at 0 °C was added Et₂Zn (1.0 M in hexane, 23 mL, 2.5 equiv) dropwise, and stirred at same temperature for 15 min. Then a solution of CH₂I₂ (1.85 mL, 23 mmol, 2.5 equiv) in dry DCM (20 mL) was added slowly, and stirred for additional 10 min. The mixture stirred at room temperature until all start material was consumed as judged by TLC. The mixture was treated with saturated NH₄Cl solution (30 mL) and extracted with DCM (3 × 40 mL). The combined organic extracts were washed with saturated brine, dried over Na₂SO₄, filtered, and concentrated, and the residue purified by flash chromatography (ethyl acetate/petroleum ether = 1/20, v/v) to afford the corresponding **12** (2.42 g, 82% yield) as a yellow oil. R_f = 0.55 (ethyl acetate/petroleum ether = 1/5, v/v). $[\alpha]_p^{20} = -131.87$ (c = 0.12 in CHCl₃).

¹**H NMR (500 MHz, CDCl₃)** δ 4.72 (d, J = 6.7 Hz, 1H), 4.62 (d, J = 6.8 Hz, 1H), 4.59 (s, 1H), 3.39 (s, 3H), 3.17 (dd, J = 11.6, 3.2 Hz, 1H), 2.39 (t, J = 8.5 Hz, 1H), 2.13 (d, J = 13.8 Hz, 1H), 2.01 – 1.80 (m, 4H), 1.75 (d, J = 12.9 Hz, 1H), 1.71 – 1.65 (m, 1H), 1.62 – 1.46 (m, 4H), 1.32 – 1.11 (m, 2H), 1.04 (s, 3H), 0.99 (d, J = 6.2 Hz, 3H), 0.91 (s, 1H), 0.77 (d, J = 7.0 Hz, 3H), 0.46 – 0.40 (m, 1H).

¹³C NMR (125 MHz, CDCl₃) δ 137.4, 134.9, 95.9, 86.0, 74.1, 55.7, 47.4, 41.2, 36.2, 30.9, 30.7, 27.6, 26.8, 26.5, 26.4, 26.3, 23.8, 20.6, 17.7, 16.8.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{20}H_{33}O_3$ 321.2424; Found 321.2428.

To a solution of (ClCO)₂ (0.53 mL, 6.6 mmol, 1.1 equiv) in DCM (40 mL) was added DMSO

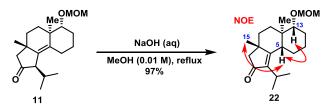

(0.92 mL, 13 mmol, 2.2 equiv) slowly at -78 °C under argon atmosphere. After stirring for 0.5 h, a solution of the alcohol **12** (1.92 g, 6.0 mmol, 1.0 equiv) in DCM (20 mL) was added dropwise into the mixture. After stirring for another 2 h at -78 °C, Et_3N (2.5 mL, 18 mmol, 3.0 equiv) was added and the

mixture was slowly warmed to rt. The mixture was quenched with satd. NH₄Cl (20 mL) solution after stirring for another 1h stirring. The mixture was extracted with DCM (3 × 40 mL), and the combined organic layer was washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuo to give a residue, which was purified by flash chromatography (ethyl acetate/petroleum ether = 1/15, v/v) to afford the corresponding ketone **21** (1.51 g, 80% yield) as a yellow oil. $R_f = 0.63$ (ethyl acetate/petroleum ether = 1/5, v/v). $[\alpha]_{D}^{20} = -236.79$ (*c* = 0.12 in CHCl₃).

¹**H NMR (500 MHz, CDCl₃)** δ 4.72 (d, J = 6.7 Hz, 1H), 4.60 (d, J = 6.7 Hz, 1H), 3.37 (s, 3H), 3.21 (dd, J = 11.4, 3.9 Hz, 1H), 2.41 (d, J = 9.1 Hz, 1H), 2.11 – 1.98 (m, 3H), 1.96 – 1.81 (m, 3H), 1.76 (d, J = 12.1 Hz, 1H), 1.68 – 1.50 (m, 3H), 1.32 – 1.16 (m, 2H), 1.13 – 1.08 (m, 1H), 1.07 (s, 3H), 1.00 (d, J = 6.4 Hz, 3H), 0.92 (d, J = 6.8 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 212.7, 136.5, 132.0, 95.7, 85.5, 55.7, 55.3, 41.5, 37.4, 36.3, 36.2, 32.4, 27.4, 26.2, 26.0, 23.8, 23.4, 22.2, 22.0, 17.8.

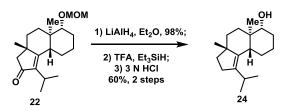
HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₀H₃₁O₃ 319.2268; Found 319.2268.


To a solution of ketone **21** (159 mg, 0.5 mmol, 1.0 equiv) in dry THF (5 mL) at -78 °C was added dry *t*-BuOH (0.25 mL) under argon atmosphere, Then, liquid ammonia (10 mL) was added, to this solution was added Lithium (35 mg, 5.0 mmol) in small pieces. After stirring for 30 min at -78 °C, the resulting mixture was quenched with saturated NH₄Cl solution. The mixture extracted with ethyl acetate (3 \times 15 mL). The combined organic extracts were washed with saturated brine, dried over Na₂SO₄, filtered, and concentrated, and the residue was used directly without further purification.

To a solution of crude alcohol in DCM (5 mL) was added NaHCO₃ (252 mg, 3.0 mmol, 6.0 equiv) and Dess-Martin Periodinane (318 mg, 0.75 mmol, 1.5 equiv). The mixture stirred at room temperature until all start material was consumed as judged by TLC. Then the mixture was treated with water (10 mL) and extracted with DCM (3 × 10 mL). The combined organic extracts were washed with saturated brine, dried over Na₂SO₄, filtered, and concentrated, and the residue purified by flash chromatography (ethyl acetate/petroleum ether = 1/20, v/v) to afford the corresponding **11** (133 mg, 80% yield) as a yellow oil. $R_f = 0.71$ (ethyl acetate/petroleum ether = 1/5, v/v). $[\alpha]_D^{20} = +5.30$ (c = 0.10 in CHCl₃).

¹**H NMR (500 MHz, CDCl₃)** δ 4.73 (d, J = 6.2 Hz, 1H), 4.62 (d, J = 6.2 Hz, 1H), 3.39 (s, 3H), 3.19 (d, J = 11.5 Hz, 1H), 2.57 (d, J = 9.6 Hz, 1H), 2.39 – 2.32 (m, 1H), 2.09 (d, J = 16.9 Hz, 2H), 1.98 – 1.75 (m, 5H), 1.73 – 1.65 (m, 1H), 1.65 – 1.53 (m, 2H), 1.53 – 1.44 (m, 1H), 1.29 – 1.18 (m, 1H), 1.18 – 1.14 (m, 6H), 1.05 (s, 3H), 0.91 (d, J = 6.5 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 219.0, 137.9, 137.6, 95.8, 85.9, 57.7, 56.2, 55.7, 41.4, 39.4, 34.3, 33.3, 31.8, 27.7, 27.5, 26.5, 23.7, 22.3, 21.2, 18.4.


HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₀H₃₃O₃ 321.2424; Found 321.2420.

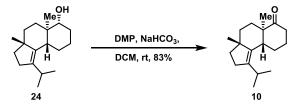
To a solution of compound ketone **11** (32 mg, 0.1 mmol, 1.0 equiv) in MeOH (10 mL) was added aqueous NaOH (1.0 M, 2.0 mL, 20 equiv) solution, and the mixture was heated under reflux. After 2 h, the solvent was removed under vacuum and water (10 mL) was added. The mixture extracted with ethyl acetate (3 × 10 mL). The combined organic extracts were washed with saturated brine, dried over Na₂SO₄, filtered, and concentrated, and the residue purified by flash chromatography (ethyl acetate/petroleum ether = 1/30 to 1/10, v/v) to afford the corresponding ketone **22** (31 mg, 97% yield) as a yellow oil. $R_f = 0.51$ (ethyl acetate/petroleum ether = 1/8, v/v). $[\alpha]_D^{20} = -66.13$ (*c* = 0.16 in CHCl₃). ¹H NMR (**500 MHz, CDCl₃**) δ 4.72 (d, *J* = 6.9 Hz, 1H), 4.58 (d, *J* = 6.9 Hz, 1H), 3.37 (s, 3H), 3.30 (dd, *J* = 11.6, 4.1 Hz, 1H), 3.12 – 3.00 (m, 1H), 2.45 (dd, *J* = 12.3, 3.0 Hz, 1H), 2.21 – 2.05 (m, 2H), 1.91 – 1.82 (m, 4H), 1.80 – 1.70 (m, 2H), 1.55 – 1.40 (m, 3H), 1.30 – 1.23 (m, 1H), 1.21 (s, 3H), 1.18 (d, *J* = 7.0 Hz, 3H), 1.16 (d, *J* = 7.0 Hz, 3H), 0.82 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 208.7, 175.4, 143.9, 95.7, 85.0, 55.8, 52.4, 46.5, 43.5, 41.8, 37.0, 34.4, 27.3, 25.7, 25.0, 25.0, 24.6, 20.5, 20.4, 11.9.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₀H₃₃O₃ 321.2424; Found 321.2417.

To a suspension of LiAlH₄ (235 mg, 6.2 mmol, 3.0 equiv) in dry Et₂O (15 mL) at 0 $^{\circ}$ C was added ketone **22** (661 mg, 2.06 mmol, 1.0 equiv) in Et₂O (5 mL) dropwise under argon atmosphere, and stirred at this temperature for 30 min. then 0.3 mL H₂O was added and followed by 0.6 mL (3 M) NaOH aqueous solution and stirred for 15 min. the mixture was filtered under vacuum through a pad of Celite and washed three times with DCM. The filtrate was concentrated and the residue was purified by flash chromatography (ethyl acetate/petroleum ether = 1/30 to 1/15, v/v) to afford the corresponding allyl alcohol (651 mg, 98% yield) as a yellow oil.

To a solution of all above allyl alcohol (651 mg, 2.02 mmol) in dry DCM (20 mL) was added Et_3SiH (3.3 mL, 20.2 mmol, 10 equiv), and the mixture was cooled to -40 °C, after 5 min, TFA (0.9 mL, 10.3 mmol, 5 equiv) was added slowly to reaction mixture. Then stirred at same temperature for 15 min, the solvent was removed under vacuum and the residue was used directly without further purification.


To a solution of all above cyclopentadiene in THF (10 mL) was added 3 N HCl (14 mL) aqueous solution, and the mixture was heated under 50 °C. After 2 h, the solvent was removed under vacuum and water (10 mL) was added. The mixture extracted with ethyl acetate (3 × 15 mL). The combined organic extracts were washed with saturated brine, dried over Na₂SO₄, filtered, and concentrated, and the residue purified by flash chromatography (ethyl acetate/petroleum ether = 1/20, v/v) to afford the corresponding alcohol **24** (318 mg, 60% yield for 2 steps) as colorless oil. $R_f = 0.51$ (ethyl acetate/petroleum ether = 1/5, v/v). $[\alpha]_D^{20} = -4.88$ (c = 0.12 in CHCl₃).

¹**H NMR (500 MHz, CDCl₃)** δ 3.32 (dd, J = 11.5, 4.3 Hz, 1H), 3.08 – 2.99 (m, 1H), 2.29 – 2.21 (m,

2H), 2.07 – 1.99 (m, 1H), 1.82 – 1.73 (m, 3H), 1.73 – 1.67 (m, 1H), 1.65 – 1.59 (m, 1H), 1.55 – 1.34 (m, 6H), 1.33 – 1.20 (m, 1H), 1.01 (s, 3H), 0.98 (d, *J* = 6.8 Hz, 3H), 0.91 (d, *J* = 6.8 Hz, 3H), 0.78 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 140.0, 136.8, 80.0, 48.8, 45.0, 42.0, 39.4, 37.4, 35.2, 30.4, 28.7, 26.5, 26.1, 25.0, 23.9, 22.4, 21.6, 10.9.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{18}H_{31}O_3$ 263.2369; Found 263.2377.

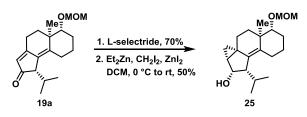
To a solution of alcohol **24** (318 mg, 1.2 mmol) in DCM (10 mL) was added NaHCO₃ (605 mg, 6.0 mmol, 6.0 equiv) and Dess-Martin Periodinane (763 mg, 1.8 mmol, 1.5 equiv). The mixture stirred at room temperature until all start material was consumed as judged by TLC. Then the mixture was treated with water (10 mL) and extracted with DCM (3 × 10 mL). The combined organic extracts were washed with saturated brine, dried over Na₂SO₄, filtered, and concentrated, and the residue purified by flash chromatography (ethyl acetate/petroleum ether = 1/20, v/v) to afford the corresponding **10** (259 mg, 83% yield) as a yellow oil. $R_f = 0.74$ (ethyl acetate/petroleum ether = 1/8, v/v). $[\alpha]_D^{20} = -2.67$ (c = 0.10 in CHCl₃).

The analytic data (¹H and ¹³C NMR spectra) of synthetic **10** were in good accordance with literature reports^[2].

Enantiomeric excess was found to be 97% by chiral HPLC (ChiralPak AD-H column, hexane/*i*-PrOH = 99:1, 214 nm, 0.7 mL/min, $t_{major} = 6.86 \text{ min}$, $t_{minor} = 6.14 \text{ min}$).

¹**H NMR (500 MHz, CDCl₃)** δ 3.14 – 3.03 (m, 1H), 2.64 (td, *J* = 14.3, 6.2 Hz, 1H), 2.49 – 2.41 (m, 1H), 2.32 – 2.21 (m, 3H), 2.17 – 1.97 (m, 3H), 1.78 (td, *J* = 14.3, 4.3 Hz, 1H), 1.67 – 1.39 (m, 6H), 1.06 (s, 3H), 1.03 (d, *J* = 6.8 Hz, 3H), 0.99 (s, 3H), 0.95 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 216.3, 141.8, 135.5, 51.0, 48.7, 46.9, 39.2, 37.9, 36.8, 30.2, 29.0, 26.9, 26.6, 25.9, 23.9, 22.4, 21.7, 17.2.

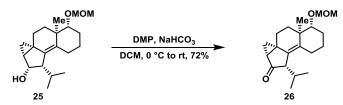

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{18}H_{29}O$ 261.2213; Found 261.2210.

¹ H NMR (lit. ²) δH [ppm, mult, <i>J</i> (Hz)] 400 MHz	¹ H NMR (Our synthetic) δH [ppm, mult, <i>J</i> (Hz)] 500 MHz	Err (lit. ^[2] –Our synthetic) ΔδΗ (ppm)
3.09 1H, sept, 6.8	3.09, 1H, m	0
2.64 1H, ddd, 7.2, 7.2, 6.1	2.64, 1H, td, 14.3, 6.2	0
2.45 1H, m	2.45, 1H, m	0
2.28 3H, m	2.27, 3H, m	0.01
2.08 3H, m	2.08, 3H, m	0
1.78 1H, ddd, 7.2, 7.2, 4.4	1.78, 1H, td, 14.3, 4.3	0
1.54 6H, m	1.55, 6H, m	-0.01
1.06 3H, s	1.06, 3H, s	0
1.03 3H, d, 6.8	1.03, 3H, d, 6.8	0
0.99 3H, s	0.99, 3H, s	0
0.96 3H, d, 6.8	0.95, 3H, d, 6.8	0.01

Table S1. Comparison of the ¹H NMR spectroscopic data (CDCl₃) of compound 10

Table S2. Comparison of the ¹³C NMR spectroscopic data (CDCl₃) of compound 10

¹³ C NMR (lit. ²) δC [ppm]	¹³ C NMR (Our synthetic) δC [ppm]	Err (lit. ² –Our synthetic)
100 MHz	125 MHz	$\Delta\delta C (ppm)$
216.1	216.3	-0.2
141.5	141.8	-0.3
135.2	135.5	-0.3
50.9	51.0	-0.1
48.5	48.7	-0.2
46.7	46.9	-0.2
39.0	39.2	-0.2
37.8	37.9	-0.1
36.7	36.8	-0.1
30.1	30.2	-0.1
28.9	29.0	-0.1
26.8	26.9	-0.1
26.6	26.6	0
25.9	25.9	0
23.8	23.9	-0.1
22.4	22.4	0
21.6	21.7	-0.1
17.1	17.2	-0.1

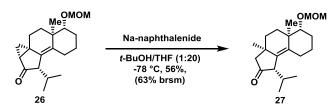

To a solution of ketone **19a** (375 mg, 1.23 mmol, 1.0 equiv) in dry THF (10 mL) at -78 °C was added L-selectride (1.0 M in THF, 1.85 mL, 1.85 mmol, 1.5 equiv) slowly under argon atmosphere. The reaction mixture was stirred at same temperature until all start material was consumed as judged by TLC, then quenched with 1 mL H₂O and 2 mL MeOH before warm up to 0 °C, and 1 mL 30% H₂O₂ was added slowly, the mixture stirred for 10 min and 1 mL 2 M NaOH aqueous solution was added and stirred additional 10 min. Finally, the solvent was removed under vacuum and water (10 mL) was added. The mixture extracted with ethyl acetate (3 × 15 mL). The combined organic extracts were washed with saturated brine, dried over Na₂SO₄, filtered, and concentrated, and the residue purified by flash chromatography (ethyl acetate/petroleum ether = 1/30 to 1/10, v/v) to afford the corresponding allyl alcohol (264 mg, 70 % yield) as a yellow oil. R_f = 0.53 (ethyl acetate/petroleum ether = 1/5, v/v).

To a solution of allyl alcohol (233 mg, 0.76 mmol, 1.0 equiv) and ZnI₂ (61 mg, 0.19 mmol, 0.25 equiv) in dry DCM (8 mL) at 0 °C was added Et₂Zn (1.0 M in hexane, 1.9 mL, 2.5 equiv) dropwise, and stirred at same temperature for 15 min. Then a solution of CH₂I₂ (0.15 mL, 1.9 mmol, 2.5 equiv) in dry DCM (2 mL) was added slowly, and stirred for additional 10 min. The mixture stirred at room temperature until all start material was consumed as judged by TLC. The mixture was treated with saturated NH₄Cl solution (10 mL) and extracted with DCM (3 × 20 mL). The combined organic extracts were washed with saturated brine, dried over Na₂SO₄, filtered, and concentrated, and the residue purified by flash chromatography (ethyl acetate/petroleum ether = 1/20, v/v) to afford the corresponding **25** (122 mg, 50% yield) as a yellow oil. R_f = 0.52 (ethyl acetate/petroleum ether = 1/5, v/v). $[\alpha]_{\rm p}^{20} = +8.45$ (c = 0.16 in CHCl₃).

¹**H NMR (500 MHz, CDCl₃)** δ 4.70 (d, *J* = 6.7 Hz, 1H), 4.65 – 4.58 (m, 1H), 4.56 (d, *J* = 6.7 Hz, 1H), 3.49 (dd, *J* = 11.1, 4.1 Hz, 1H), 3.36 (s, 3H), 2.46 (t, *J* = 8.7 Hz, 1H), 2.18 – 2.09 (m, 2H), 1.99 – 1.82 (m, 3H), 1.76 – 1.54 (m, 5H), 1.39 (t, *J* = 13.8 Hz, 1H), 1.14 – 1.09 (m, 1H), 1.09 (d, *J* = 6.0 Hz, 5H), 0.99 (d, *J* = 6.2 Hz, 3H), 0.87 (s, 1H), 0.73 (d, *J* = 7.0 Hz, 3H), 0.48 (d, *J* = 5.1 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃) δ 137.6, 136.4, 96.0, 78.9, 74.1, 55.6, 47.2, 41.2, 32.4, 31.3, 31.1, 27.9, 27.8, 27.4, 26.1, 26.1, 25.3, 21.7, 19.8, 16.1.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₀H₃₃O₃ 321.2424; Found 321.2421.



To a solution of cyclopropane **25** (156 mg, 0.49 mmol, 1.0 equiv) in dry DCM (5 mL) at 0 °C was added NaHCO₃ (202 mg, 2.4 mmol, 5.0 equiv) and Dess-Martin Periodinane (309 mg, 0.73 mmol, 1.5 equiv). The mixture stirred at same temperature until all start material was consumed as judged by TLC. Then the mixture was treated with water (10 mL) and extracted with DCM (3 × 10 mL). The combined organic extracts were washed with saturated brine, dried over Na₂SO₄, filtered, and concentrated, and the residue purified by flash chromatography (ethyl acetate/petroleum ether = 1/15, v/v) to afford the corresponding **26** (113 mg, 72% yield) as a yellow oil. $R_f = 0.61$ (ethyl acetate/petroleum ether = 1/5, v/v). $[\alpha]_p^{20} = +90.95$ (c = 0.13 in CHCl₃).

¹**H NMR (500 MHz, CDCl₃)** δ 4.71 (d, J = 6.5 Hz, 1H), 4.57 (d, J = 6.4 Hz, 1H), 3.53 – 3.46 (m, 1H), 3.37 (s, 3H), 2.48 (d, J = 9.4 Hz, 1H), 2.28 (d, J = 13.7 Hz, 1H), 2.14 – 1.98 (m, 3H), 1.94 (d, J = 9.5 Hz, 2H), 1.74 (d, J = 12.8 Hz, 1H), 1.71 – 1.57 (m, 3H), 1.47 (t, J = 14.0 Hz, 1H), 1.23 – 1.13 (m, 3H), 1.13 (s, 3H), 1.01 (d, J = 6.1 Hz, 3H), 0.90 (d, J = 6.5 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 213.2, 137.9, 132.4, 96.1, 78.8, 55.7, 55.1, 41.6, 37.8, 36.3, 33.1, 32.4, 27.7, 27.2, 26.0, 24.8, 23.0, 21.9, 21.9, 21.7. HPMS (FSI) m/z: [M + H]⁺ Calad for C = H = O = 310 2268: Found 310 2270

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{20}H_{31}O_3$ 319.2268; Found 319.2270.

To a solution of ketone **26** (113 mg, 0.35 mmol, 1.0 equiv) in dry THF (8 mL) at -78 °C was added dry *t*-BuOH (0.4 mL) under argon atmosphere, Then, a solution of sodium naphthalenide (0.65 M in THF, 1.1 mL, 0.7 mmol, 2.0 equiv) was added dropwise, and the resulting mixture was stirred for 2 h before quenched with saturated NH₄Cl solution. The mixture extracted with ethyl acetate (3 × 15 mL). The combined organic extracts were washed with saturated brine, dried over Na₂SO₄, filtered, and concentrated, and the residue purified by flash chromatography (ethyl acetate/petroleum ether = 1/30 to 1/15, v/v) to afford the corresponding ketone **27** (63 mg, 56% yield) as a yellow oil. $R_f = 0.67$ (ethyl acetate/petroleum ether = 1/5, v/v). $[\alpha]_p^{20} = -94.25$ (c = 0.16 in CHCl₃).

¹**H NMR (500 MHz, CDCl₃)** δ 4.71 (d, *J* = 6.8 Hz, 1H), 4.57 (d, *J* = 6.8 Hz, 1H), 3.37 (s, 3H), 3.34 (d, *J* = 4.7 Hz, 1H), 2.62 (d, *J* = 9.6 Hz, 1H), 2.40 – 2.27 (m, 1H), 2.15 – 2.05 (m, 3H), 2.03 – 1.93 (m, 1H), 1.96 – 1.89 (m, 1H), 1.84 (dt, *J* = 9.4, 6.7 Hz, 1H), 1.71 (d, *J* = 15.7 Hz, 1H), 1.61 (dd, *J* = 12.6, 8.5 Hz, 2H), 1.51 – 1.38 (m, 2H), 1.17 (s, 3H), 1.15 (d, *J* = 6.5 Hz, 3H), 1.11 (s, 3H), 1.09 – 1.03 (m, 1H), 0.88 (d, *J* = 6.9 Hz, 3H).

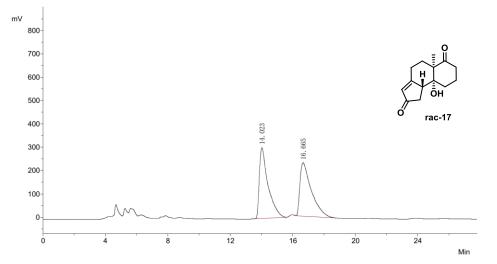
¹³C NMR (125 MHz, CDCl₃) δ 219.3, 139.2, 138.1, 96.2, 79.3, 56.9, 56.2, 55.7, 41.1, 39.3, 34.5, 32.5, 29.1, 27.9, 27.5, 27.0, 24.7, 22.3, 22.1, 20.8.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₀H₃₃O₃ 321.2424; Found 321.2427.

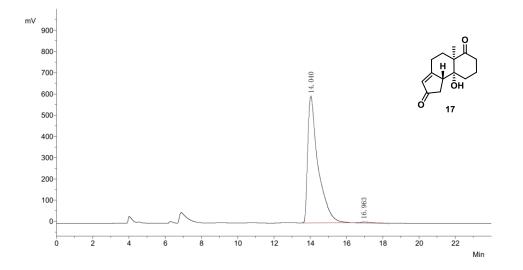
To a solution of compound ketone **27** (63 mg, 0.2 mmol, 1.0 equiv) in MeOH (20 mL) was added aqueous NaOH (1.0 M, 4.0 mL, 20 equiv) solution, and the mixture was heated under reflux. After 2 h, the solvent was removed under vacuum and water (10 mL) was added. The mixture extracted with ethyl acetate (3 × 15 mL). The combined organic extracts were washed with saturated brine, dried over Na₂SO₄, filtered, and concentrated, and the residue purified by flash chromatography (ethyl acetate/petroleum ether = 1/30 to 1/10, v/v) to afford the corresponding allyl alcohol **28** (44 mg, 70% yield) as a yellow oil. $R_f = 0.55$ (ethyl acetate/petroleum ether = 1/8, v/v). $[\alpha]_D^{20} = -39.05$ (c = 0.14 in CHCl₃).

The configuration of ketone **28** was established by *NOE* experiments (from the observed C5–C14 and C5–C15 proton correlations).

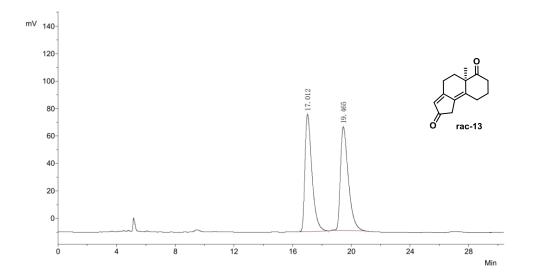
¹**H NMR (500 MHz, CDCl₃)** δ 4.68 (d, *J* = 7.0 Hz, 1H), 4.50 (d, *J* = 7.0 Hz, 1H), 3.50 (dd, *J* = 11.1, 4.6 Hz, 1H), 3.33 (s, 3H), 2.98 – 2.86 (m, 1H), 2.67 (s, 1H), 2.19 – 2.08 (m, 2H), 2.07 – 1.97 (m, 2H), 1.94 – 1.83 (m, 2H), 1.71 – 1.63 (m, 1H), 1.63 – 1.54 (m, 2H), 1.52 – 1.39 (m, 2H), 1.24 (d, *J* = 6.9 Hz, 3H), 1.16 (s, 3H), 1.13 (d, *J* = 7.0 Hz, 3H), 1.11 (s, 3H).

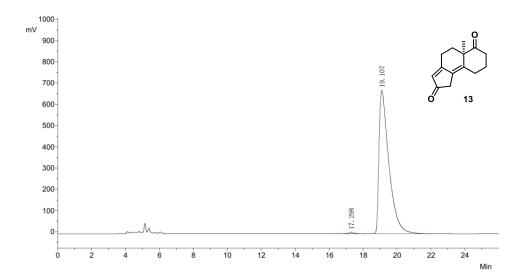

¹³C NMR (125 MHz, CDCl₃) δ 209.1, 173.8, 142.4, 95.2, 74.3, 55.7, 52.8, 45.3, 42.4, 42.4, 33.6, 30.4,
27.6, 27.1, 25.9, 22.5, 22.4, 21.8, 20.9, 19.4.
HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₃₃O₃ 321.2424; Found 321.2427.

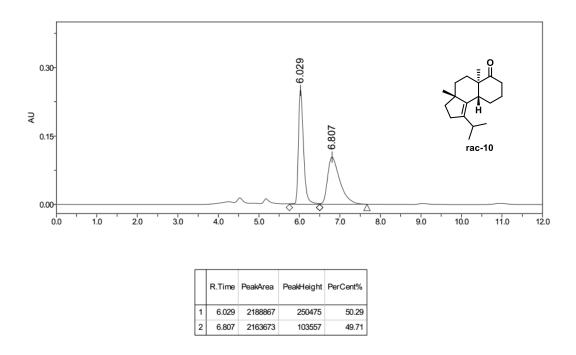
3 Reference

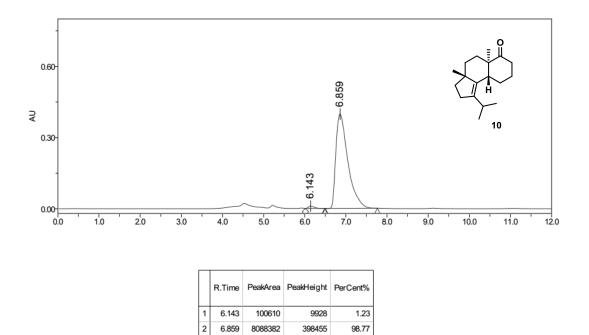

[1] Zhou Z., Xu D., Jiang W., Chen J., Zhen Y., Huo J., Yan J., Gao J., & Xie W. Org. Lett. **2022**, 24(49), 9017-9022.

[2] Watanabe H., Takano M., Umino A., Ito T., Ishikawa H., & Nakada M. Org. Lett. 2007, 9(2), 359-362.

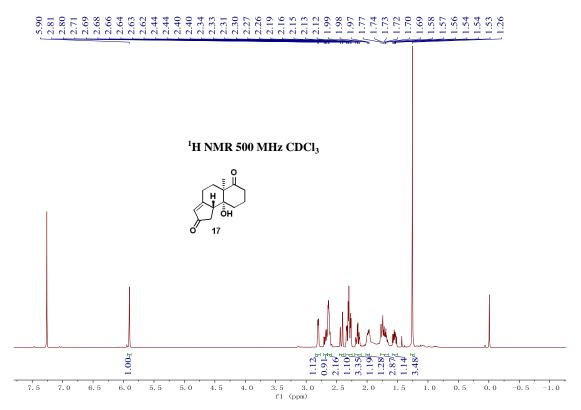

4. HPLC Charts

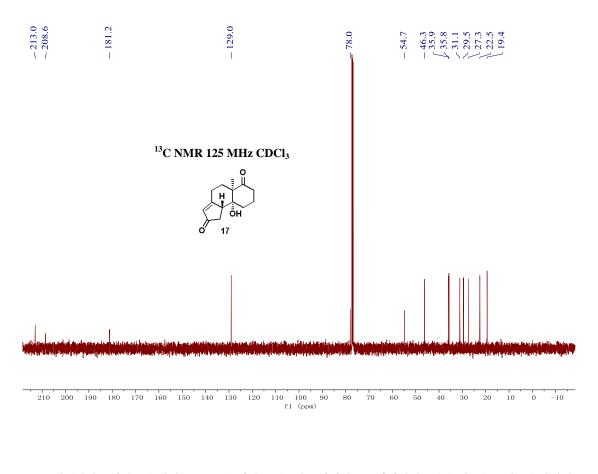

No.	R.Time	PeakHeight	PeakArea	PerCent	Conc	
1	14. 023	302597.6	11754217.8	50. 3517	50. 3517	
2	16. 665	227805.4	11590007. 1	49.6483	49. 6483	
Total		530403. 0	23344224. 9	100.0000	100. 0000	

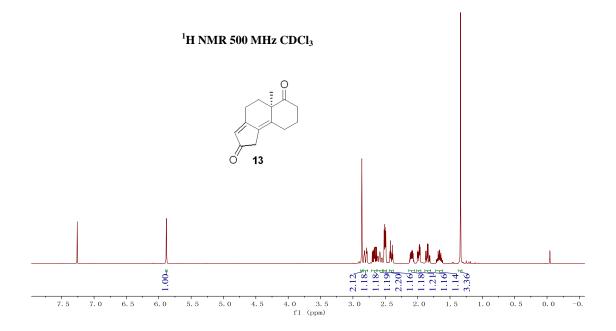

No.	R.Time	PeakHeight	PeakArea	PerCent	Conc	
1	14. 040	596814.2	23719501.2	99. 2904	99. 2904	
2	16. 963	4289.5	169515.0	0. 7096	0. 7096	
Total		601103. 7	23889016. 2	100. 0000	100. 0000	



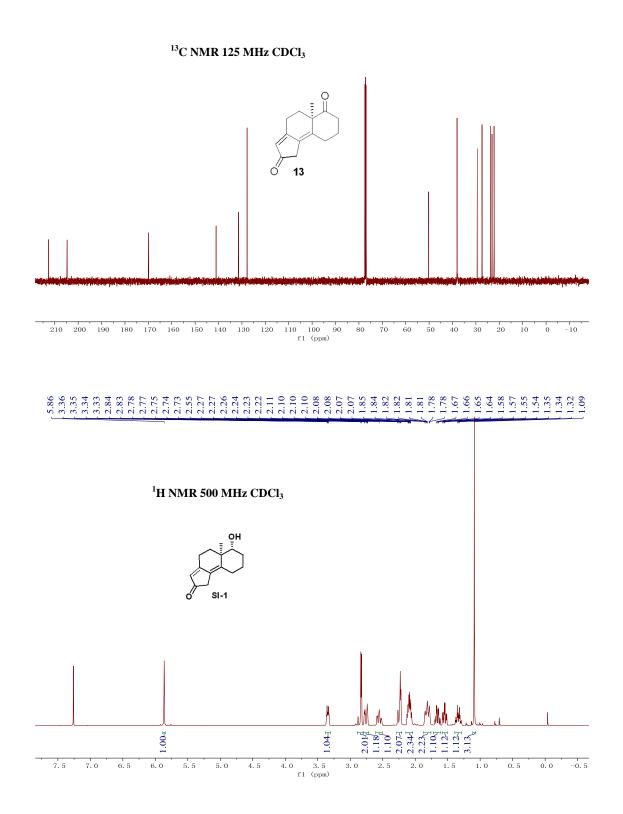
No.	R.Time	PeakHeight	PeakArea	PerCent	Conc	
1	17. 012	85424. 8	2826704.8	49.9728	49. 9728	
2	19. 465	75452. 1	2829786. 7	50. 0272	50. 0272	
Total		160876. 9	5656491.5	100.0000	100. 0000	

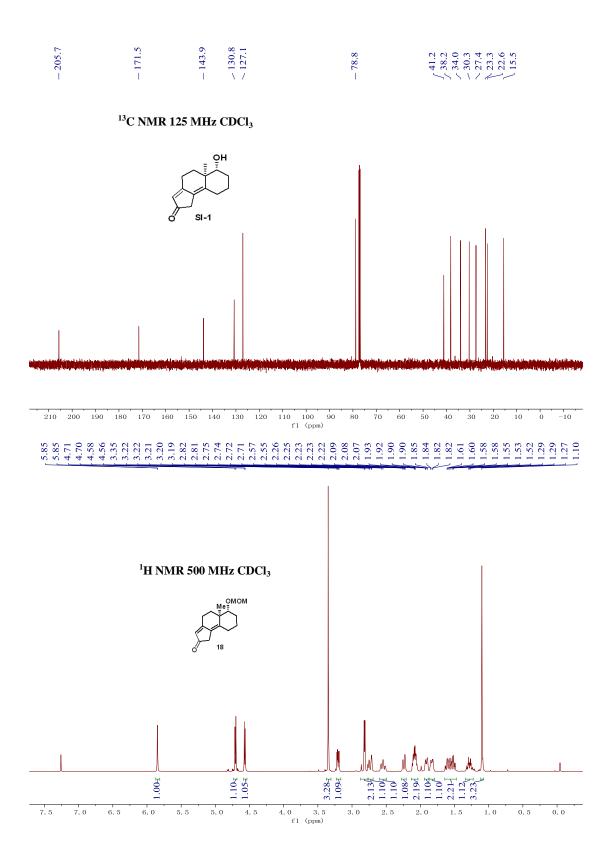



No.	R.Time	PeakHeight	PeakArea	PerCent	Conc	
1	17. 298	3555.9	107425.6	0. 3927	0. 3927	
2	19. 107	673900.8	27248529.7	99.6073	99. 6073	
Total		677456. 7	27355955.3	100.0000	100. 0000	

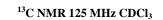


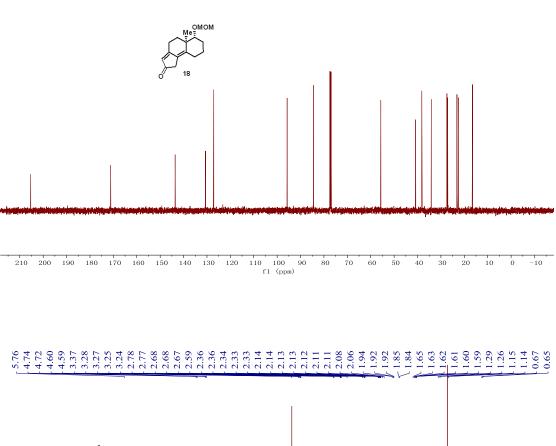

5. ¹H & ¹³C NMR Spectra of Compounds

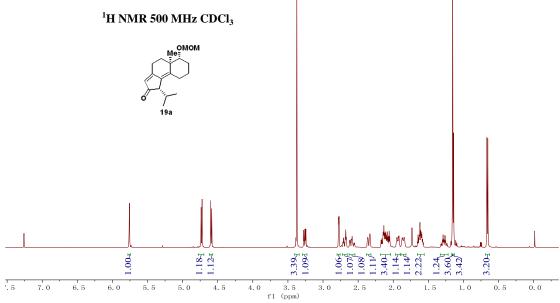


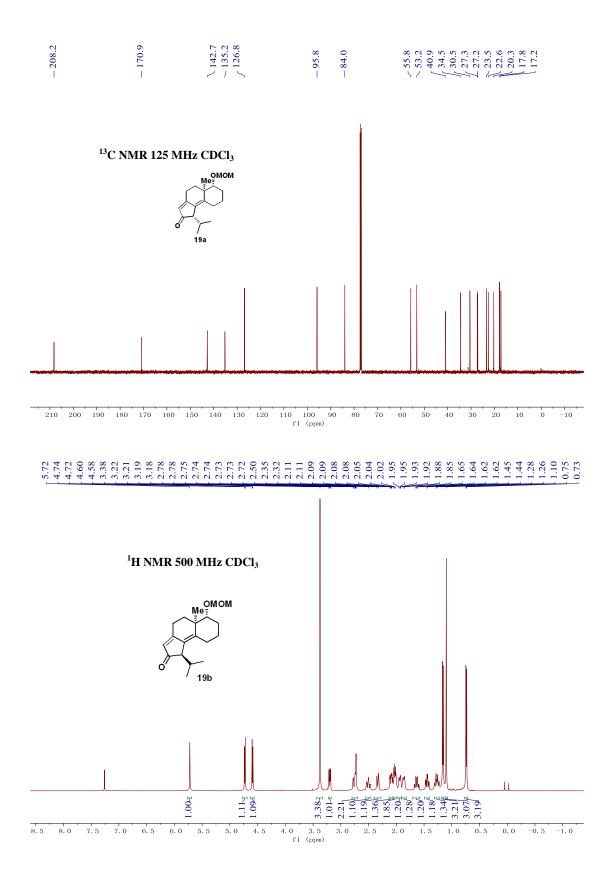


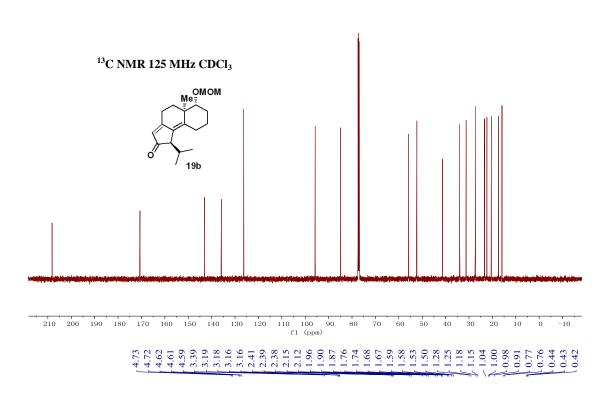
5.5.885.5.885.5.885.5.885.5.885.5.885.5.885.5.885.5.885.5.885.5.885.5.885.5.795.2.795.2.795.2.595.2.595.5515.2.565.5525.52005.52005.52005.52005.52005.520

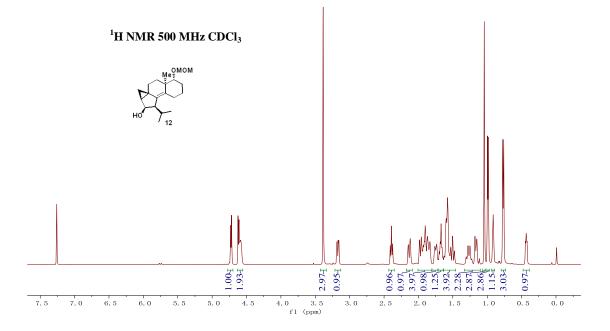


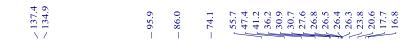


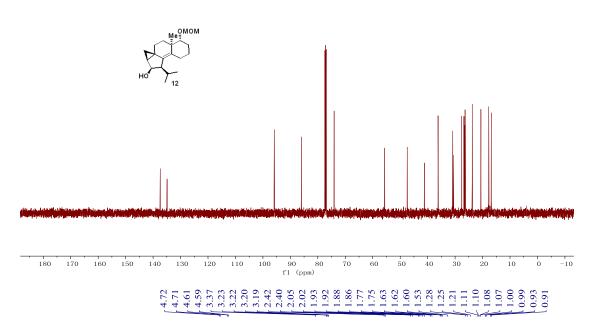


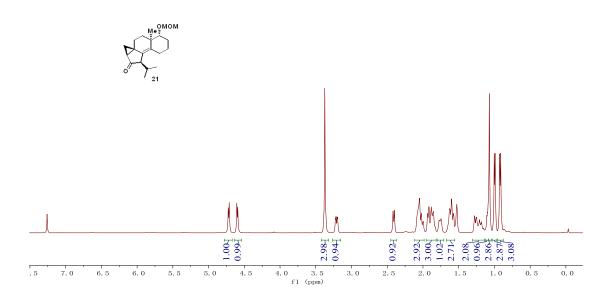

S-20



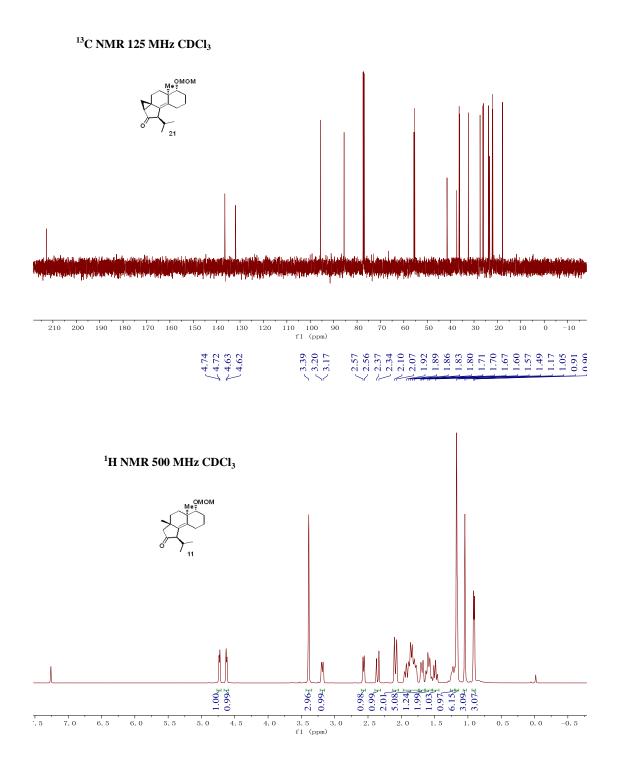




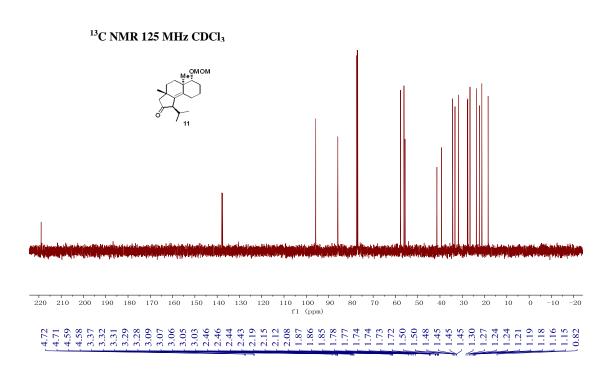




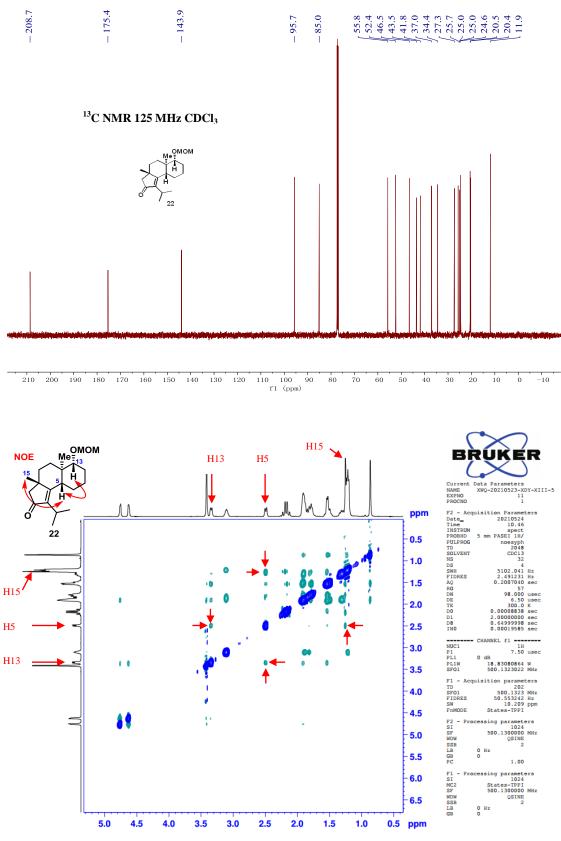
¹³C NMR 125 MHz CDCl₃

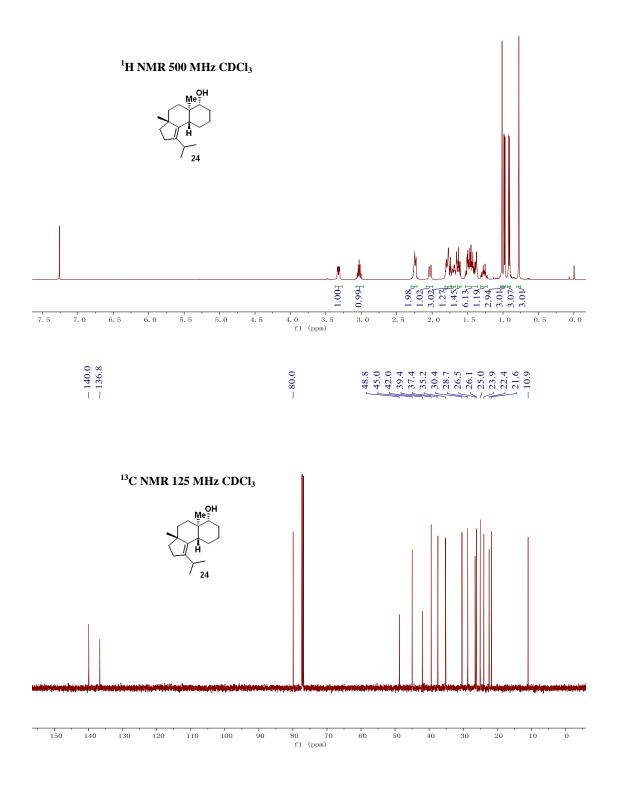


¹H NMR 500 MHz CDCl₃

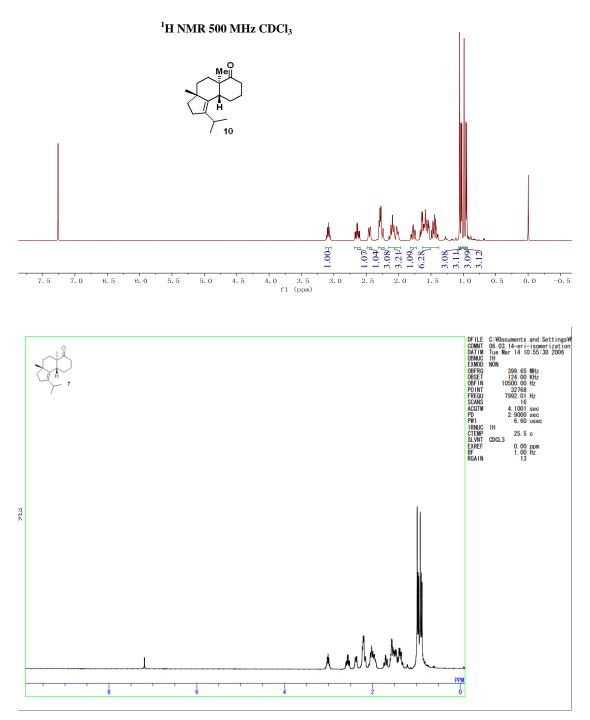


-212.7

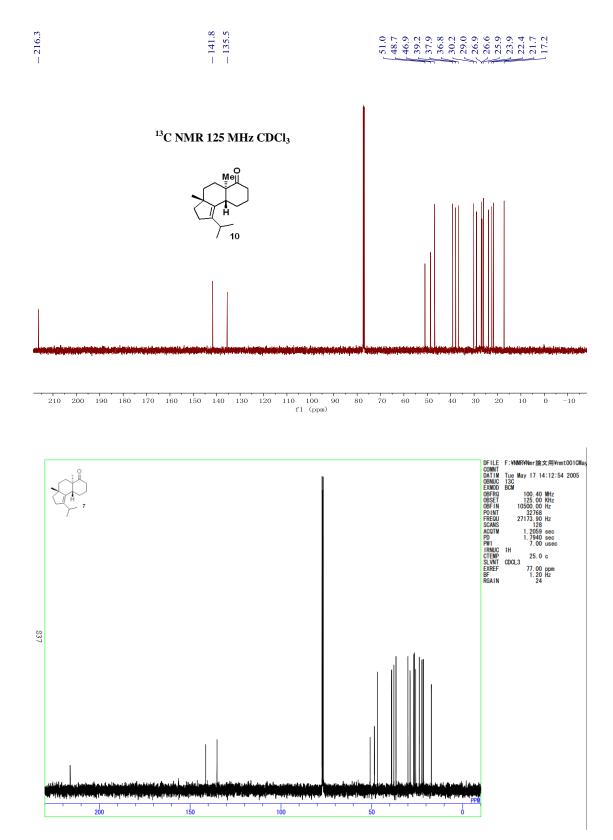



-219.0

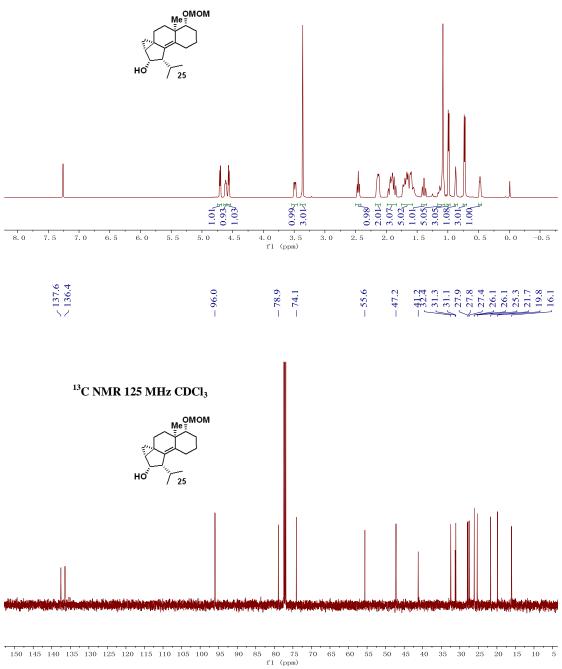
¹H NMR 500 MHz CDCl₃ 1.00₁ 0.99₅ 2.94 1.00 0.95 4 0.954 2.93¹ 2.92 2.98 2.984 1.95 3.82 2.38 2.90 4.0 3.5 f1 (ppm) 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0

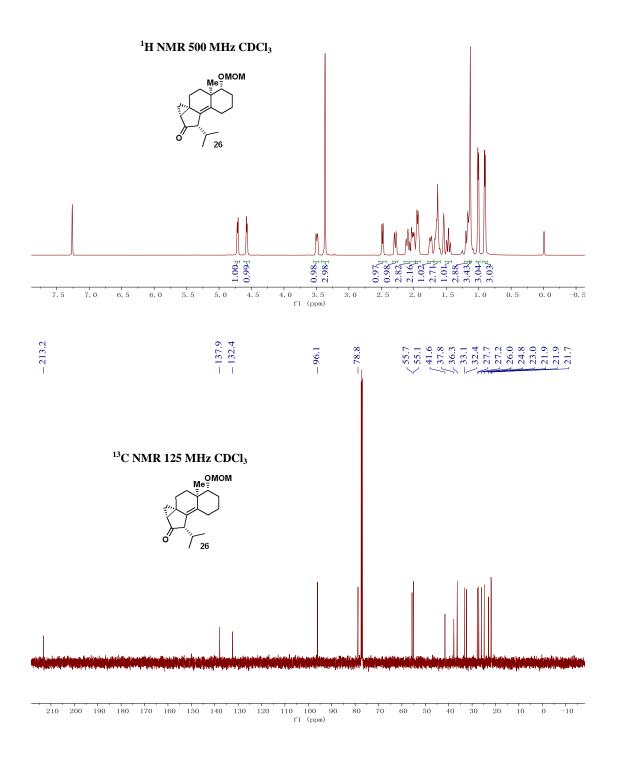


NOE of Compound 22 in CDCl₃ (500 MHz)

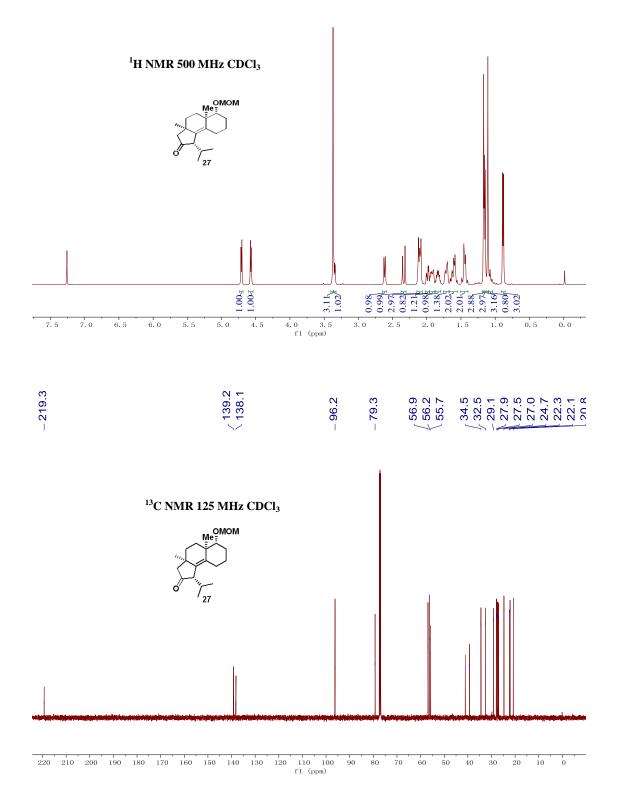

$\begin{array}{c} 3.33\\$

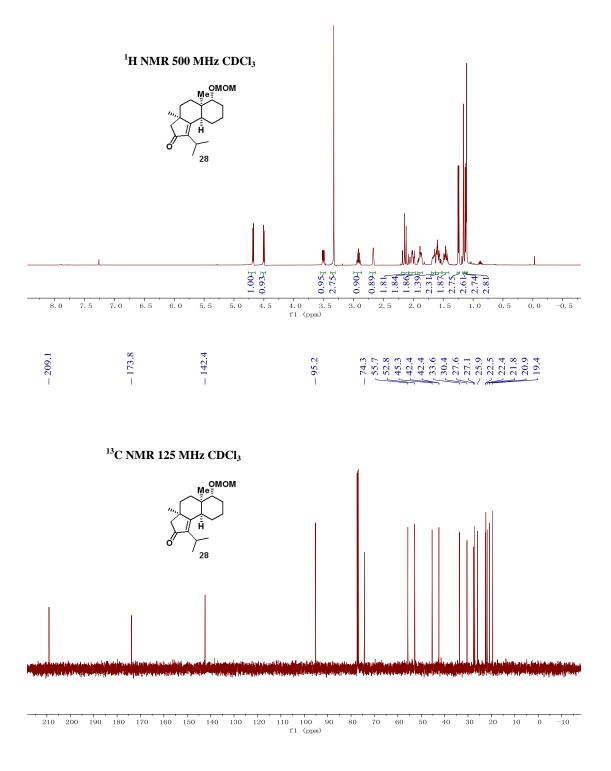
$\begin{array}{c} 3.10\\ 2.263\\ 2.263\\ 2.263\\ 2.263\\ 2.263\\ 2.263\\ 2.263\\ 2.263\\ 2.263\\ 2.263\\ 2.263\\ 2.223\\ 2.223\\ 2.223\\ 2.223\\ 2.223\\ 2.223\\ 2.223\\ 1.164\\ 1.17\\ 1.11\\ 1.17\\ 1.11\\ 1.17\\ 1.11\\ 1.17\\ 1.11\\ 1.12\\ 1.11\\ 1.12\\ 1.11\\ 1.12\\ 1.11\\ 1.12\\ 1.11\\ 1.12\\ 1.11\\ 1.12\\ 1.11\\ 1.12\\ 1.11\\ 1.12\\ 1.11\\ 1.12\\ 1.11\\ 1.12\\ 1.11\\ 1.12\\ 1.11\\ 1.12$

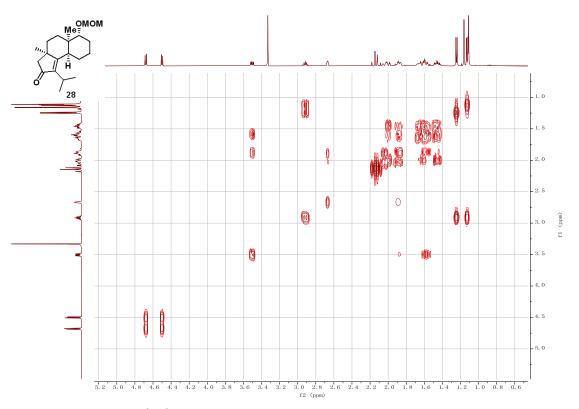

¹H NMR spectra of compound 10 reported by Nakada

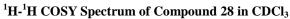

¹³C NMR spectra of compound 10 reported by Nakada

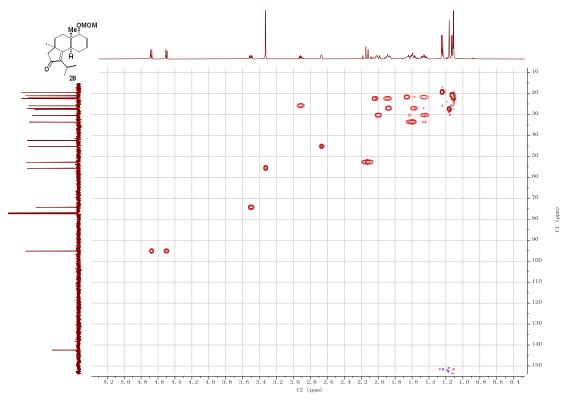
2.15 2.15 2.15 2.15 2.15 2.14 1.93 1.193 1.193 1.165 1 4.71 4.70 4.63 4.66 4.66 4.57 4.56 4.56 4.56 3.50 3.50 3.50 3.350 3.36 3.37 3.36


¹H NMR 500 MHz CDCl₃

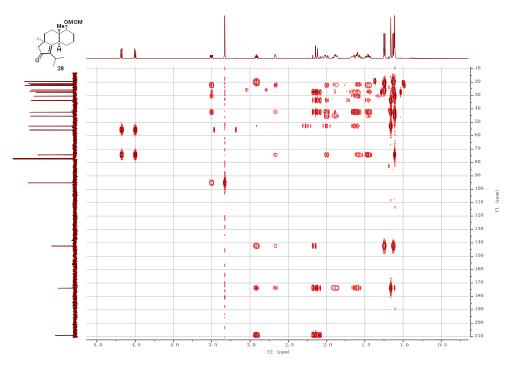

$\begin{array}{c} 4.72 \\ 4.71 \\ 4.58 \\ 7.58 \\ 3.51 \\ 3.51 \\ 3.51 \\ 3.51 \\ 3.51 \\ 2.30 \\ 2.20 \\ 2.20 \\ 2.20 \\ 2.20 \\ 2.20 \\ 2.20 \\ 2.20 \\ 2.20 \\ 2.20 \\ 2.20 \\ 1.20 \\ 1.12 \\ 1.$

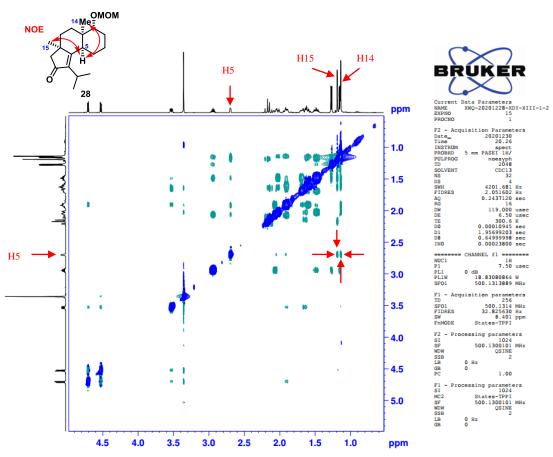



4.72 4.76 4.76 4.76 4.458 4.458 3.33 4.456 3.33 4.456 2.63 3.33 4.456 2.63 3.33 4.456 2.63 3.33 4.456 2.261 1.95 2.211 2.221 1.95 2.211 9.45 1.95 2.211 9.45 1.95 2.211 9.45 1.95 2.211 9.45 1.95 2.211 9.45 1.95 2.211 9.45 1.95 2.211 9.45 1.95 2.201 1.155 2.201 2.201 1.155 2.201 2.



$\begin{array}{c} 4.69\\ 4.67\\ 4.67\\ 4.451\\ 1.45$





 $^1\mathrm{H-^{13}C}$ HSQC (500 MHz & 125 MHz) Spectrum of Compound 28 in CDCl_3

 $^1\mathrm{H-^{13}C}$ HMBC (500 MHz & 125 MHz) Spectrum of Compound 28 in CDCl_3

 $^1\mathrm{H-}^1\mathrm{H}$ NOESY Spectrum (500 MHz) of Compound 28 in CDCl₃