Supporting Information

Solvent-Switchable Regioselective 1,2- or 1,6-Addition of Quinones with Boronic Acids

Qi Xia, Yaxuan Zhou, Xiaoning Yang, Yanqiu Zhang, Jiayi Wang and Gonghua Song*

Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China

University of Science and Technology, Shanghai, 200237, PR China.

Table of Contents

1.	General information			
2.	Experimental section			
	2.1	Experimental optimization	S4	
	2.2	General procedure for 1,2-addition of quinones with boronic acids	S5	
	2.3	General procedure for 1,6-addition of quinones with boronic acids	S5	
	2.4	General procedure for one-pot construction of 4-phenylphenols	S6	
	2.5	Gram scale-up and transformation of products	S6	
3.	Chara	acterization of Products	S9	
4.	Mechanistic Investigations		S33	
	4.1	Control experiments	S33	
	4.2	Free Radical Capture Experiment	S34	
5.	Refer	ences	S35	
6.	NMR	spectra	S36	

1. General information

All commercially available reagents were used without further purification unless otherwise stated. Melting points were recorded on an EZ-melt MPA120 (Stanford Research Systems, Inc., USA) and are uncorrected. The ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AM-400 spectrometer (400 MHz and 100 MHz, respectively) with CDCl₃ as the solvent and TMS as internal standard. Chemical shifts are given in ppm (δ) referenced to CDCl₃ with 7.25 for ¹H and 77.05 for ¹³C, and to DMSO-*d*₆ with 2.50 for ¹H and 39.47 for ¹³C. Coupling constants J are reported in Hz. Proton coupling patterns were described as singlet (s), doublet (d), triplet (t), quartet (q), and multiple (m). Analytical thin-layer chromatography (TLC) was carried out on precoated plates (silica gel 60 F254), and spots were visualized under ultraviolet light. Gas chromatography-mass spectrometry (GC-MS) was performed on Agilent 7890A/5975C and gas chromatograms (GC) were recorded on Agilent 7890A. High-resolution mass spectra were recorded under electron impact (70 eV) condition using a MicroMass GCT CA 055 instrument. High performance liquid chromatograms (HPLC) were recorded on Agilent 1260 Infinity.

2. Experimental section

2.1 Experimental optimization

	O II	0 			
[B(OH) ₂	catalyst) + 🕥		l
l	s s	olvent, Temperature			ОН
	Ö				
	1a 2a	3aa		4aa	
Entry ^a	Catalyst	Solvent	temp. (°C)	Yield ^b	(%)
2			1 ()	3aa	4aa
1	CuCl	H ₂ O	25	37	0
2	$CuCl_2 \cdot 2H_2O$	H ₂ O	25	8	0
3	CuBr	H ₂ O	25	42	0
4	CuBr ₂	H_2O	25	12	0
5	CuI	H_2O	25	35	0
6	CH ₃ COOCu	H_2O	25	7	0
7	$Cu(CH_3COO)_2 \cdot H_2O$	H_2O	25	< 5	0
8	$CuSO_4$	H_2O	25	< 5	0
9	$Cu(acac)_2$	H_2O	25	< 5	0
10	Cu	H_2O	25	47	0
11	CuO	H ₂ O	25	38	0
12	Cu ₂ O	H_2O	25	86	0
13	Cu(OH) ₂	H_2O	25	80	0
14	$Cu_2(OH)_2CO_3$	H_2O	25	78	0
15	CuFe ₂ O ₄	H_2O	25	0	0
16	Cu_2O	MeOH	25	8	81
17	Cu ₂ O	EtOH	25	< 5	12
18	Cu ₂ O	t-BuOH	25	< 5	< 5
19	Cu ₂ O	<i>i</i> -PrOH	25	< 5	< 5
20	Cu ₂ O	CH ₃ CN	25	0	0
21	Cu ₂ O	DMF	25	0	0
22	Cu ₂ O	DMSO	25	0	0
23	Cu ₂ O	Toluene	25	0	0
24	Cu ₂ O	1,4-Dioxane	25	0	0
25	Cu ₂ O	THF	25	0	0
26	Cu ₂ O	DCM	25	0	0
27	Cu ₂ O	H ₂ O	0	40	0
28	Cu ₂ O	H_2O	40	70	6
29	Cu ₂ O	H_2O	60	63	12
30	Cu ₂ O (2 mol%)	H_2O	25	88 (82)	0
31	Cu ₂ O (1 mol%)	H_2O	25	58	0
32	CuCl	MeOH	25	< 5	20
33	$CuCl_2 \cdot 2H_2O$	MeOH	25	< 5	10

34	CuBr	MeOH	25	< 5	31
35	CuBr ₂	MeOH	25	< 5	18
36	CuI	MeOH	25	< 5	32
37	CH ₃ COOCu	MeOH	25	< 5	20
38	Cu(CH ₃ COO) ₂ ·H ₂ O	MeOH	25	< 5	13
39	$CuSO_4$	MeOH	25	< 5	< 5
40	$Cu(acac)_2$	MeOH	25	< 5	10
41	Cu	MeOH	25	10	65
42	CuO	MeOH	25	6	61
43	Cu(OH) ₂	MeOH	25	6	75
44	$Cu_2(OH)_2CO_3$	MeOH	25	8	70
45	CuFe ₂ O ₄	MeOH	25	0	91 (86)
46	Cu_2O	$H_2O: MeOH = 3:1$	25	70	< 5
47	Cu_2O	$H_2O: MeOH = 1:1$	25	50	< 5
48	Cu ₂ O	$H_2O: MeOH = 1:3$	25	38	7
49	CuFe ₂ O ₄	$H_2O: MeOH = 3:1$	25	0	0
50	CuFe ₂ O ₄	$H_2O: MeOH = 1:1$	25	0	0
51	CuFe ₂ O ₄	$H_2O: MeOH = 1:3$	25	0	0

^a Reaction conditions: 1a (1.0 mmol), 2a (1.2 mmol), catalyst (0.05 mmol), solvent (2.0 mL).
^b Yields were determined by HPLC analysis using biphenyl as internal standard; isolated yield in parenthesis.

2.2 General procedure for 1,2-addition of quinones with boronic acids

A 10 mL sealed tube equipped with a stirring bar was charged with quinones 1 (1.0 mmol), organic boronic acid 2 (1.2 mmol), Cu₂O (2.9 mg, 0.02 mmol, 2.0 mol%) and H₂O (2.0 mL). The tube was tightly capped and stirred at 25 °C for 24-36 h. Upon completion, the mixture was diluted with water (2.0 mL) and then extracted with ethyl acetate (5 ml \times 3). The combined organic layers were dried over MgSO₄, filtered, concentrated under reduced pressure, and purified by silica gel column chromatography using ethyl acetate and dichloromethane as the eluent to obtain the desired product. The products were further characterized by HRMS (EI), ¹H NMR, and ¹³C NMR.

2.3 General procedure for 1,6-addition of quinones with boronic acids

A 10 mL sealed tube equipped with a stirring bar was charged with quinones 1 (1.0 mmol), organic boronic acid 2 (1.2 mmol), $CuFe_2O_4$ (12.0 mg, 0.05 mmol, 5.0 mol%) or Cu_2O (2.9 mg, 0.02 mmol, 2.0 mol%) and MeOH (2.0 mL). The tube was tightly capped and stirred at 25 °C for 24-36 h. Upon completion, the mixture was diluted with 5 mL of ethyl acetate, filtered through a celite pad and washed with 10 mL of ethyl acetate. The filtrate was collected and concentrated. The residue was purified by silica gel column chromatography using ethyl acetate and petroleum ether as the eluent to obtain the desired product. The products were further characterized by HRMS (EI), ¹H NMR, and ¹³C NMR.

2.4 General procedure for one-pot construction of 4-phenylphenols

A 10 mL sealed tube equipped with a stirring bar was charged with quinones 1 (1.0 mmol), organic boronic acid 2 (1.2 mmol), Cu₂O (2.9 mg, 0.02 mmol, 2.0 mol%) and H₂O (2.0 mL). The tube was tightly capped and stirred at 25 °C for 24-36 h. Then B₂pin₂ (1.2 mmol) dissolved in EtOH (0.5 mL) were added, the reaction mixture was stirred at 60 °C for 5 h. Upon completion, the mixture was diluted with water (2.0 mL) and then extracted with ethyl acetate (5 ml \times 3). The combined organic layers were dried over MgSO₄, filtered, concentrated under reduced pressure, and purified by silica gel column chromatography using ethyl acetate and petroleum ether as the eluent to obtain the desired product. The products were further characterized by HRMS (EI), ¹H NMR, and ¹³C NMR.

2.5 Gram scale-up and transformation of products

A 50 mL round-bottomed flask equipped with a stirring bar was charged with 1,4benzoquinone **1a** (1.08 g, 10.0 mmol), phenylboronic acid **1b** (1.47 g, 12.0 mmol), Cu₂O (28.6 mg, 0.2 mmol, 2.0 mol%) and H₂O (20.0 mL). The reaction mixture was stirred at 25 °C for 24 h. Upon completion, the mixture was diluted with water (20.0 mL) and then extracted with ethyl acetate (25 ml \times 3). The combined organic layers were dried over MgSO₄, filtered,

concentrated under reduced pressure, and purified by silica gel column chromatography using CH₂Cl₂/EtOAc (9/1) as the eluent to obtain the desired product **3aa** as yellow solid (1.49 g, 80% yield). The analytical data of the gram-scale reaction of **3aa** were consistent with those of the 1.0 mmol scale experiment.

A 50 mL round-bottomed flask equipped with a stirring bar was charged with 1,4benzoquinone **1a** (1.08 g, 10.0 mmol), phenylboronic acid **1b** (1.47 g, 12.0 mmol), CuFe₂O₄ (119.6 mg, 0.5 mmol, 5.0 mol%) and MeOH (20.0 mL). The reaction mixture was stirred at 25 °C for 24 h. Upon completion, the mixture was diluted with 25 mL of ethyl acetate, filtered through a celite pad and washed with 25 mL of ethyl acetate. The filtrate was collected and concentrated. The residue was purified by silica gel column chromatography using PE/EtOAc (5/1) as the eluent to obtain the desired product **4aa** as white solid (1.58 g, 85% yield). The analytical data of the gram-scale reaction of **4aa** were consistent with those of the 1.0 mmol scale experiment.

To a 10 mL round-bottomed flask was added **3aa** (93.1 mg, 0.5 mmol), phenylboronic acid **1b** (91.4 mg, 0.75 mmol), DIPEA (12.9 mg, 0.1 mmol) and DCM (1.5 mL). The mixture was kept stirring at 40 °C for 2 h. Upon completion, the mixture was cooled to room temperature. To the mixture was added MeOH/H₂O (1/1, 2.0 mL), and then KHF₂ (390.5 mg, 5.0 mmol, 10 eq.) was added and the mixture was stirred at 25 °C for 30 min. The aqueous phase was separated and collected, and the organic phase was evaporated and then re-dissolved in *n*-hexanes. The mixture was then washed MeOH/H₂O (1/1) twice and the aqueous phase was combined. The combined aqueous layers were then evaporated and purified by silica gel column chromatography using DCM/EtOAc (3/1) as the eluent to obtain the diol **7** as white oil (86.8 mg, 85% yield).

To a 10 mL round-bottomed flask was added **4aa** (186.2 mg, 1.0 mmol), 60% NaH (48.0 mg, 1.2 mmol) and DMSO/Toluene (1/1, 1.0 mL). After a solution of chloroethyl

carbamate (227.4 mg, 1.5 mmol, 1.5 equiv.) in Toluene (1.0 mL) was added and the mixture was stirred at reflux temperature for 4 h. Upon completion, the mixture was cooled to room temperature. And then the mixture was diluted with water (2.0 mL) and extracted with ethyl acetate (5 ml \times 3). The combined organic layers were dried over MgSO₄, filtered, concentrated under reduced pressure, and purified by silica gel column chromatography using PE/EtOAc (5/1) as the eluent to obtain fenoxycard as white solid (259.2 mg, 86% yield).¹

To a 10 mL round-bottomed flask was added **4aa** (186.2 mg, 1.0 mmol), propylene oxide (48.0 mg, 5.0 mmol), *n*Bu₄NBr (32.2 mg, 0.1 mmol), NaOH (160.0 mg, 5.0 mmol) and Toluene/H₂O (5/2, 2.0 mL). The reaction mixture was stirred at 25 °C for 2 d. Upon completion, the mixture was diluted with water (2.0 mL) and then extracted with ethyl acetate (5 ml \times 3). The combined organic layers were dried over MgSO₄, filtered, concentrated under reduced pressure, and purified by silica gel column chromatography using PE/EtOAc (5/1) as the eluent to obtain the intermediate **8** as white oil (210.1 mg, 86% yield).¹

To a 10 mL round-bottomed flask was added **8** (122.1 mg, 0.5 mmol), 60% NaH (20.0 mg, 0.5 mmol) and 2-chloropyridin (2.0 mL) at 0 °C. The reaction mixture was stirred at 90 °C for 8 h. Upon completion, the mixture was cooled to room temperature. And then the mixture was diluted with water (2.0 mL) and extracted with ethyl acetate (5 ml \times 3). The combined organic layers were dried over MgSO₄, filtered, concentrated under reduced pressure, and purified by silica gel column chromatography using PE/EtOAc (10/1) as the eluent to obtain pyriproxyfen as white solid (136.6 mg, 85% yield).¹

3. Characterization of Products

1-hydroxy-[1,1'-biphenyl]-4(1H)-one

3aa was synthesized following the general procedure for 1,2-addition. After purification by preparative thin-layer chromatography using CH₂Cl₂/EtOAc (9/1) as the eluent, **3aa** was obtained in 82% yield (152.6 mg) as a yellow solid.

3aa: m.p. 107.8-108.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.1 Hz, 2H), 7.41 – 7.30 (m, 3H), 6.90 (d, *J* = 9.6 Hz, 2H), 6.21 (d, *J* = 9.5 Hz, 2H), 2.90 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 186.23, 151.46 (2C), 138.71, 128.95 (2C), 128.41, 126.65 (2C), 125.32 (2C), 70.99; HRMS (EI-TOF, m/z) calcd for C₁₂H₁₀O₂ [M]⁺ 186.0681, found 186.0679.

1-hydroxy-4'-methyl-[1,1'-biphenyl]-4(1H)-one

3ab was synthesized following the general procedure for 1,2-addition. After purification by preparative thin-layer chromatography using CH₂Cl₂/EtOAc (9/1) as the eluent, **3ab** was obtained in 72% yield (144.2 mg) as a white solid.

3ab: m.p. 114.2-115.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.36 (m, *J* = 8.2 Hz, 2H), 7.18 (m, *J* = 8.1 Hz, 2H), 6.92 – 6.85 (m, 2H), 6.23 – 6.15 (m, 2H), 3.08 (s, 1H), 2.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.16, 151.47 (2C), 138.31, 135.77, 129.64 (2C), 126.54 (2C), 125.24 (2C), 70.89, 21.09. HRMS (EI-TOF, m/z) calcd for C₁₃H₁₂O₂ [M]⁺ 200.0837, found 200.0838.

4'-(tert-butyl)-1-hydroxy-[1,1'-biphenyl]-4(1H)-one

3ac was synthesized following the general procedure for 1,2-addition. After purification by preparative thin-layer chromatography using CH₂Cl₂/EtOAc (8/1) as the eluent, **3ac** was obtained in 60% yield (145.4 mg) as a white solid.

3ac: m.p. 113.9-114.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.40 (s, 4H), 6.94 – 6.87 (m, 2H), 6.25 – 6.19 (m, 2H), 2.52 (s, 1H), 1.31 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 185.94, 151.59, 151.13 (2C), 135.71, 126.69 (2C), 125.92 (2C), 125.02, 70.91, 34.60, 31.27 (3C). HRMS (EI-TOF, m/z) calcd for C₁₆H₁₈O₂ [M]⁺ 242.1307, found 242.1312.

1-hydroxy-4'-methoxy-[1,1'-biphenyl]-4(1H)-one

3ad was synthesized following the general procedure. After purification by preparative thinlayer chromatography using CH₂Cl₂/EtOAc (7/1) as the eluent, **3ad** was obtained in 65% yield (140.6 mg) as a white solid.

3ad: m.p. 119.9-121.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.38 (m, *J* = 8.4 Hz, 2H), 6.89 (m, *J* = 6.3 Hz, 4H), 6.16 (m, *J* = 9.9 Hz, 2H), 3.79 (s, 3H), 3.43 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 186.24, 159.62, 151.70 (2C), 130.66, 126.66 (2C), 126.33 (2C), 114.34 (2C), 70.63, 55.37. HRMS (EI-TOF, m/z) calcd for C₁₃H₁₂O₃ [M]⁺ 216.0786, found 216.0787.

4'-fluoro-1-hydroxy-[1,1'-biphenyl]-4(1H)-one

3ae was synthesized following the general procedure for 1,2-addition. After purification by preparative thin-layer chromatography using CH₂Cl₂/EtOAc (9/1) as the eluent, **3ae** was obtained in 88% yield (179.7 mg) as a white solid.

3ae: m.p. 125.4-126.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.42 (m, 2H), 7.09 – 7.02 (m, 2H), 6.92 – 6.86 (m, 2H), 6.22 – 6.14 (m, 2H), 3.55 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 186.00, 162.65 (d, J_{CF} = 247.6 Hz), 151.26 (2C), 134.45 (J_{CF} , J = 3.1 Hz), 127.25 (d, J_{CF} = 8.3 Hz, 2C), 126.66 (2C), 115.82 (d, J_{CF} = 21.7 Hz, 2C), 70.56. HRMS (EI-TOF, m/z) calcd for C₁₂H₉FO₂ [M]⁺ 204.0587, found 204.0589.

4'-chloro-1-hydroxy-[1,1'-biphenyl]-4(1H)-one

3af was synthesized following the general procedure for 1,2-addition. After purification by preparative thin-layer chromatography using CH₂Cl₂/EtOAc (9/1) as the eluent, **3af** was obtained in 83% yield (183.1 mg) as a white solid.

3af: m.p. 169.8-170.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.39 (m, 2H), 7.39 – 7.31 (m, 2H), 6.90 – 6.82 (m, 2H), 6.29 – 6.19 (m, 2H), 2.67 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 185.44, 150.31 (2C), 137.21, 134.43, 129.09 (2C), 127.13 (2C), 126.81 (2C), 70.67. HRMS (EI-TOF, m/z) calcd for C₁₂H₉³⁵ClO₂ [M]⁺ 220.0291, found 220.0294; calcd for C₁₂H₉³⁷ClO₂ [M]⁺ 222.0262, found 220.0264.

4'-bromo-1-hydroxy-[1,1'-biphenyl]-4(1H)-one

3ag was synthesized following the general procedure for 1,2-addition. After purification by preparative thin-layer chromatography using CH₂Cl₂/EtOAc (9/1) as the eluent, **3ag** was obtained in 82% yield (217.4 mg) as a white solid.

3ag: m.p. 176.3-177.5 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 7.61 – 7.55 (m, 2H), 7.40 – 7.33 (m, 2H), 6.94 – 6.88 (m, 2H), 6.64 (s, 1H), 6.21 – 6.12 (m, 2H); ¹³C NMR (101 MHz, DMSO- d_6) δ 185.32, 152.03 (2C), 139.82, 131.49 (2C), 127.70 (2C), 125.77 (2C), 120.97, 69.75. HRMS (EI-TOF, m/z) calcd for C₁₂H₉⁷⁹BrO₂ [M]⁺ 263.9786, found 263.9791; calcd for C₁₂H₉⁸¹BrO₂ [M]⁺ 265.9765, found 265.9764.

1'-hydroxy-4'-oxo-1',4'-dihydro-[1,1'-biphenyl]-4-carbonitrile

3ah was synthesized following the general procedure for 1,2-addition. After purification by preparative thin-layer chromatography using CH₂Cl₂/EtOAc (8/1) as the eluent, **3ah** was obtained in 86% yield (181.6 mg) as a white solid.

3ah: m.p. 166.8-167.5 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.85 (d, *J* = 8.4 Hz, 2H), 7.61 (d, *J* = 8.4 Hz, 2H), 6.92 (d, *J* = 10.0 Hz, 2H), 6.80 (s, 1H), 6.20 (d, *J* = 10.0 Hz, 2H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 185.17, 151.38 (2C), 145.92, 132.63 (2C), 126.51 (2C), 126.26 (2C), 118.57, 110.57, 69.99. HRMS (EI-TOF, m/z) calcd for C₁₃H₉NO₂ [M]⁺ 211.0633, found 211.0634.

1-hydroxy-4'-(trifluoromethyl)-[1,1'-biphenyl]-4(1H)-one

3ai was synthesized following the general procedure for 1,2-addition. After purification by preparative thin-layer chromatography using CH₂Cl₂/EtOAc (9/1) as the eluent, **3ai** was obtained in 85% yield (216.1 mg) as a white solid.

3ai: m.p. 129.7-130.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (q, *J* = 8.6 Hz, 4H), 6.91 – 6.83 (m, 2H), 6.33 – 6.23 (m, 2H), 2.73 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 185.72, 150.51 (2C), 142.70 (d, *J*_{CF} = 1.1 Hz, 2C), 130.63 (q, *J*_{CF} = 32.4 Hz), 127.20 (2C), 125.88, 125.87 (q, *J*_{CF} = 3.9 Hz, 2C), 123.89 (q, *J*_{CF} = 272.1 Hz), 70.78. HRMS (EI-TOF, m/z) calcd for C₁₃H₉F₃O₂ [M]⁺ 254.0555, found 254.0552.

methyl 1'-hydroxy-4'-oxo-1',4'-dihydro-[1,1'-biphenyl]-4-carboxylate

3aj was synthesized following the general procedure for 1,2-addition. After purification by preparative thin-layer chromatography using CH₂Cl₂/EtOAc (8/1) as the eluent, **3aj** was obtained in 82% yield (200.3 mg) as a white solid.

3aj: m.p. 164.8-165.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 8.4 Hz, 2H), 6.88 (d, *J* = 10.0 Hz, 2H), 6.25 (d, *J* = 10.0 Hz, 2H), 3.92 (s, 3H), 3.23 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 185.62, 166.70, 150.36 (2C), 143.76, 130.18 (2C), 130.10, 127.20 (2C), 125.47 (2C), 70.96, 52.30. HRMS (EI-TOF, m/z) calcd for C₁₄H₁₂O₄ [M]⁺ 244.0736, found 244.0735.

1-hydroxy-3'-methyl-[1,1'-biphenyl]-4(1H)-one

3ak was synthesized following the general procedure for 1,2-addition. After purification by preparative thin-layer chromatography using CH₂Cl₂/EtOAc (8/1) as the eluent, **3ak** was obtained in 73% yield (146.2 mg) as a white solid.

3ak: m.p. 87.6-88.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.25 (m, 3H), 7.16 – 7.10 (m, 1H), 6.93 – 6.86 (m, 2H), 6.23 – 6.17 (m, 2H), 3.16 (s, 1H), 2.35 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 186.15, 151.34 (2C), 138.77, 138.65, 129.17, 128.87, 126.65 (2C), 125.87, 122.34, 70.97, 21.53. HRMS (EI-TOF, m/z) calcd for C₁₃H₁₂O₂ [M]⁺ 200.0837, found 200.0836.

1-hydroxy-3'-methoxy-[1,1'-biphenyl]-4(1H)-one

3al was synthesized following the general procedure for 1,2-addition. After purification by preparative thin-layer chromatography using CH₂Cl₂/EtOAc (7/1) as the eluent, **3al** was obtained in 75% yield (162.2 mg) as a white solid.

3al: m.p. 103.6-104.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.28 (t, *J* = 8.0 Hz, 1H), 7.08 – 7.05 (m, 1H), 7.03 – 6.99 (m, 1H), 6.92 – 6.87 (m, 2H), 6.22 – 6.16 (m, 2H), 3.80 (s, 3H), 3.27 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 186.06, 160.09, 151.08 (2C), 140.43, 129.99, 126.73 (2C), 117.59, 113.75, 111.13, 70.87, 55.36. HRMS (EI-TOF, m/z) calcd for C₁₃H₁₂O₃ [M]⁺ 216.0786, found 216.0785.

3'-chloro-1-hydroxy-[1,1'-biphenyl]-4(1H)-one

3am was synthesized following the general procedure for 1,2-addition. After purification by preparative thin-layer chromatography using CH₂Cl₂/EtOAc (8/1) as the eluent, **3am** was obtained in 80% yield (176.5 mg) as a white solid.

3am: m.p. 79.8-81.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (dd, J = 2.7, 1.4 Hz, 1H), 7.34 – 7.27 (m, 3H), 6.91 – 6.85 (m, 2H), 6.24 – 6.16 (m, 2H), 3.86 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 186.09, 151.03 (2C), 140.85, 134.94, 130.18, 128.56, 126.88 (2C), 125.69, 123.60, 70.59. HRMS (EI-TOF, m/z) calcd for C₁₂H₉³⁵ClO₂ [M]⁺ 220.0291, found 220.0288; calcd for C₁₂H₉³⁷ClO₂ [M]⁺ 222.0262, found 220.0267.

1-hydroxy-3'-nitro-[1,1'-biphenyl]-4(1H)-one

3an was synthesized following the general procedure for 1,2-addition. After purification by preparative thin-layer chromatography using CH₂Cl₂/EtOAc (6/1) as the eluent, **3an** was obtained in 83% yield (191.9 mg) as a white solid.

3an: m.p. 115.6-116.8 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.30 (t, *J* = 1.9 Hz, 1H), 8.22 – 8.16 (m, 1H), 7.82 – 7.77 (m, 1H), 7.69 (t, *J* = 8.0 Hz, 1H), 6.99 – 6.95 (m, 2H), 6.94 (s, 1H), 6.26 – 6.20 (m, 2H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 185.15, 151.37 (2C), 148.04,

142.87, 132.26, 130.31, 126.35 (2C), 122.82, 120.03, 69.67. HRMS (EI-TOF, m/z) calcd for $C_{12}H_9NO_4$ [M]⁺ 231.0532, found 231.0530.

1-hydroxy-2'-methyl-[1,1'-biphenyl]-4(1H)-one

3ao was synthesized following the general procedure for 1,2-addition. After purification by preparative thin-layer chromatography using CH₂Cl₂/EtOAc (8/1) as the eluent, **3ao** was obtained in 60% yield (120.1 mg) as a white solid.

3ao: m.p. 65.7-66.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.77 – 7.71 (m, 1H), 7.29 – 7.24 (m, 2H), 7.13 (dd, *J* = 5.8, 3.2 Hz, 1H), 6.94 – 6.89 (m, 2H), 6.29 – 6.21 (m, 2H), 2.98 (s, 1H), 2.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 185.98, 150.24 (2C), 136.48, 135.71, 132.37, 128.63, 127.50 (2C), 126.70, 125.94, 70.26, 20.54. HRMS (EI-TOF, m/z) calcd for C₁₃H₁₂O₂ [M]⁺ 200.0837, found 200.0839.

2'-chloro-1-hydroxy-[1,1'-biphenyl]-4(1H)-one

3ap was synthesized following the general procedure for 1,2-addition. After purification by preparative thin-layer chromatography using CH₂Cl₂/EtOAc (8/1) as the eluent, **3ap** was obtained in 65% yield (143.4 mg) as a white solid.

3ap: m.p. 99.2-110.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (dd, J = 5.6, 4.2 Hz, 1H), 7.39 – 7.27 (m, 3H), 6.94 – 6.86 (m, 2H), 6.32 (dd, J = 7.1, 5.9 Hz, 2H), 3.11 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 185.79, 148.24 (2C), 136.17, 131.91, 131.33, 129.96, 128.52 (2C), 127.85, 127.54, 69.60. HRMS (EI-TOF, m/z) calcd for C₁₂H₉³⁵ClO₂ [M]⁺ 220.0291, found 220.0292; calcd for C₁₂H₉³⁷ClO₂ [M]⁺ 222.0262, found 220.0265.

1,2'-dihydroxy-[1,1'-biphenyl]-4(1H)-one

3aq was synthesized following the general procedure for 1,2-addition. After purification by preparative thin-layer chromatography using CH₂Cl₂/EtOAc (7/1) as the eluent, **3aq** was obtained in 54% yield (109.2 mg) as a white solid.

3aq: m.p. 98.3-99.7 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.34 (s, 1H), 9.15 (s, 1H), 6.96 – 6.91 (m, 2H), 6.80 – 6.70 (m, 6H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 152.69, 149.67, 148.59,

144.62, 124.02, 119.78, 119.36, 118.51 (2C), 116.98, 115.83 (2C). HRMS (EI-TOF, m/z) calcd for $C_{12}H_{10}O_3$ [M]⁺ 202.0630, found 202.0629.

1-hydroxy-3',5'-dimethoxy-[1,1'-biphenyl]-4(1H)-one

3ar was synthesized following the general procedure for 1,2-addition. After purification by preparative thin-layer chromatography using CH₂Cl₂/EtOAc (6/1) as the eluent, **3ar** was obtained in 68% yield (167.5 mg) as a white solid.

3ar: m.p. 116.8-117.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.92 – 6.87 (m, 2H), 6.63 (d, *J* = 2.2 Hz, 2H), 6.41 (t, *J* = 2.2 Hz, 1H), 6.22 – 6.16 (m, 2H), 3.78 (s, 6H), 3.49 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 186.19, 161.22 (2C), 151.10 (2C), 141.35, 126.67 (2C), 103.47 (2C), 100.19, 70.87, 55.45 (2C). HRMS (EI-TOF, m/z) calcd for C₁₄H₁₄O₄ [M]⁺ 246.0892, found 246.0891.

1-hydroxy-3',4',5'-trimethoxy-[1,1'-biphenyl]-4(1H)-one

3as was synthesized following the general procedure for 1,2-addition. After purification by preparative thin-layer chromatography using CH₂Cl₂/EtOAc (6/1) as the eluent, **3as** was obtained in 63% yield (174.1 mg) as a white solid.

3as: m.p. 138.3-139.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.93 – 6.88 (m, 2H), 6.67 (s, 2H), 6.21 – 6.15 (m, 2H), 3.83 (s, 6H), 3.82 (s, 3H), 3.61 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 186.04, 153.49 (2C), 151.10 (2C), 137.73, 134.55, 126.57 (2C), 102.39 (2C), 70.74, 60.82, 56.16 (2C). HRMS (EI-TOF, m/z) calcd for C₁₅H₁₆O₅ [M]⁺ 276.0998, found 276.0999.

4-(benzo[d][1,3]dioxol-5-yl)-4-hydroxycyclohexa-2,5-dien-1-one

3at was synthesized following the general procedure for 1,2-addition. After purification by preparative thin-layer chromatography using CH₂Cl₂/EtOAc (7/1) as the eluent, **3at** was obtained in 66% yield (151.9 mg) as a white solid.

3at: m.p. 140.6-142.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.97 (d, *J* = 1.7 Hz, 1H), 6.95 (dd, *J* = 8.1, 1.8 Hz, 1H), 6.90 – 6.83 (m, 2H), 6.79 (d, *J* = 8.1 Hz, 1H), 6.24 – 6.16 (m, 2H), 5.97 (s, 2H), 2.54 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 185.61, 150.66 (2C), 148.23, 147.74, 132.60, 126.77 (2C), 118.82, 108.54, 106.03, 101.38, 70.74. HRMS (EI-TOF, m/z) calcd for C₁₃H₁₀O₄ [M]⁺ 230.0579, found 230.0580.

4-hydroxy-4-(naphthalen-2-yl)cyclohexa-2,5-dien-1-one

3au was synthesized following the general procedure for 1,2-addition. After purification by preparative thin-layer chromatography using CH₂Cl₂/EtOAc (9/1) as the eluent, **3au** was obtained in 70% yield (165.4 mg) as a white solid.

3au: m.p. 131.9-132.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 1.3 Hz, 1H), 7.87 – 7.81 (m, 3H), 7.54 – 7.48 (m, 2H), 7.46 (dd, *J* = 8.7, 1.9 Hz, 1H), 6.99 – 6.93 (m, 2H), 6.30 – 6.23 (m, 2H), 2.96 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 185.92, 150.93 (2C), 135.88, 133.39, 133.07, 128.79, 128.20, 127.68, 127.06 (2C), 126.63, 126.58, 124.43, 122.97, 71.21. HRMS (EI-TOF, m/z) calcd for C₁₆H₁₂O₂ [M]⁺ 236.0837, found 236.0834.

1-hydroxy-2,5-dimethyl-[1,1'-biphenyl]-4(1H)-one

3ba was synthesized following the general procedure for 1,2-addition. After purification by preparative thin-layer chromatography using CH₂Cl₂/EtOAc (8/1) as the eluent, **3ba** was obtained in 90% yield (192.8 mg) as a white solid.

3ba: m.p. 118.1-119.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.40 (dt, J = 3.2, 1.8 Hz, 2H), 7.38 – 7.32 (m, 2H), 7.31 – 7.26 (m, 1H), 6.61 (d, J = 1.4 Hz, 1H), 6.09 (d, J = 1.3 Hz, 1H), 3.16 (s, 1H), 1.85 (d, J = 1.4 Hz, 3H), 1.81 (d, J = 1.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 187.53, 161.65, 147.93, 139.35, 132.17, 128.71 (2C), 127.82, 126.17, 125.21 (2C), 73.51, 18.28, 15.18. HRMS (EI-TOF, m/z) calcd for C₁₄H₁₄O₂ [M]⁺ 214.0994, found 214.0993.

1-hydroxy-2-methyl-[1,1'-biphenyl]-4(1H)-one

3ca was synthesized following the general procedure for 1,2-addition. After purification by preparative thin-layer chromatography using CH₂Cl₂/EtOAc (8/1) as the eluent, **3ca** was obtained in 91% yield (182.2 mg) as a white solid.

3ca: m.p. 112.5-113.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 7.2 Hz, 2H), 7.38 (t, *J* = 7.4 Hz, 2H), 7.32 (t, *J* = 7.0 Hz, 1H), 6.86 (d, *J* = 9.7 Hz, 1H), 6.18 – 6.09 (m, 2H), 3.41 (s, 1H), 1.85 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 187.01, 162.20, 152.34, 138.55, 128.80 (2C), 128.04, 126.20, 125.61, 125.23 (2C), 73.23, 18.56. HRMS (EI-TOF, m/z) calcd for C₁₃H₁₂O₂ [M]⁺ 200.0837, found 200.0838.

1-hydroxy-2,6-dimethyl-[1,1'-biphenyl]-4(1H)-one

3da was synthesized following the general procedure for 1,2-addition. After purification by preparative thin-layer chromatography using CH₂Cl₂/EtOAc (8/1) as the eluent, **3da** was obtained in 88% yield (188.6 mg) as a white solid.

3da: m.p. 115.9-116.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 7.3 Hz, 2H), 7.36 (t, *J* = 7.5 Hz, 2H), 7.32 – 7.27 (m, 1H), 6.03 (s, 2H), 3.72 (s, 1H), 1.80 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 187.13, 163.32, 138.93, 128.60 (2C), 127.74, 125.54, 125.07 (2C), 75.35, 18.46 (2C). HRMS (EI-TOF, m/z) calcd for C₁₄H₁₄O₂ [M]⁺ 214.0994, found 214.0997.

1-hydroxy-2,6-dimethoxy-[1,1'-biphenyl]-4(1H)-one

3ea was synthesized following the general procedure for 1,2-addition. After purification by preparative thin-layer chromatography using CH₂Cl₂/EtOAc (7/1) as the eluent, **3ea** was obtained in 82% yield (201.9 mg) as a white solid.

3ea: m.p. 129.4-130.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 6.9 Hz, 2H), 7.39 – 7.29 (m, 3H), 5.52 (s, 2H), 3.66 (s, 6H), 3.60 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 187.74, 171.62, 139.33, 128.51 (2C), 128.32, 125.06 (2C), 100.48, 74.07, 56.54 (2C). HRMS (EI-TOF, m/z) calcd for C₁₄H₁₄O₄ [M]⁺ 246.0892, found 246.0890.

1-hydroxy-2,3-dimethoxy-6-methyl-[1,1'-biphenyl]-4(1H)-one (3ga)

1-hydroxy-2,3-dimethoxy-5-methyl-[1,1'-biphenyl]-4(1H)-one (3ga')

3ga and **3ga'** was synthesized following the general procedure for 1,2-addition. After purification by preparative thin-layer chromatography using CH₂Cl₂/EtOAc (7/1) as the eluent. **3ga** was obtained in 72% yield (187.4 mg) as a white solid. **3ga'** was obtained in 19% yield (49.5 mg) as a white solid.

3ga: m.p. 133.5-134.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.41 (m, 2H), 7.38 – 7.33 (m, 2H), 7.32 – 7.27 (m, 1H), 5.96 (d, *J* = 1.4 Hz, 1H), 3.96 (s, 3H), 3.77 (s, 3H), 3.64 (s, 1H), 1.74 (d, *J* = 1.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 184.54, 161.58, 156.47, 139.78, 135.84, 128.59 (2C), 128.03, 124.87 (2C), 124.51, 76.83, 61.02, 60.86, 17.14. HRMS (EI-TOF, m/z) calcd for C₁₅H₁₆O₄ [M]⁺ 260.1049, found 260.1048.

3ga': m.p. 136.1-136.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.43 (dt, J = 8.4, 2.6 Hz, 2H), 7.38 – 7.33 (m, 2H), 7.33 – 7.28 (m, 1H), 6.37 (d, J = 1.4 Hz, 1H), 4.05 (s, 3H), 3.80 (s, 3H), 3.11 (s, 1H), 1.86 (d, J = 1.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 185.10, 159.85, 141.43, 140.74, 136.38, 131.42, 128.77 (2C), 128.17, 125.08 (2C), 74.36, 60.97, 60.83, 15.32. HRMS (EI-TOF, m/z) calcd for C₁₅H₁₆O₄ [M]⁺ 260.1049, found 260.1048.

4-hydroxy-4-phenylnaphthalen-1(4H)-one

3ha was synthesized following the general procedure for 1,2-addition. After purification by preparative thin-layer chromatography using CH₂Cl₂/EtOAc (7/1) as the eluent, **3ha** was obtained in 48% yield (113.4 mg) as a white solid.

3ha: m.p. 124.5-125.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.10 (dd, J = 7.8, 1.1 Hz, 1H), 7.57 – 7.52 (m, 1H), 7.48 – 7.38 (m, 4H), 7.36 – 7.30 (m, 2H), 7.30 – 7.25 (m, 1H), 6.97 (d, J = 10.1 Hz, 1H), 6.33 (d, J = 10.1 Hz, 1H), 3.05 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 184.94, 151.71, 146.81, 142.07, 133.59, 129.75, 128.62 (2C), 128.52, 128.27, 127.71, 126.29, 126.19, 125.65 (2C), 72.03. HRMS (EI-TOF, m/z) calcd for C₁₆H₁₂O₂ [M]⁺ 236.0837, found 236.0836.

4-phenoxyphenol

4aa was synthesized following the general procedure for 1,6-addition. After purification by preparative thin-layer chromatography using PE/EtOAc (5/1) as the eluent, **4aa** was obtained in 88% yield (163.9 mg) as a white solid. **4aa** was obtained in 79% yield (147.1 mg) using Cu₂O as a catalyst.

4aa: m.p. 83.4-84.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.26 (m, 2H), 7.07 – 7.01 (m, 1H), 6.99 – 6.89 (m, 4H), 6.85 – 6.77 (m, 2H), 4.89 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ

158.43, 151.75, 150.23, 129.66 (2C), 122.54, 121.03 (2C), 117.64 (2C), 116.38 (2C). HRMS (EI-TOF, m/z) calcd for $C_{12}H_{10}O_2$ [M]⁺ 186.0681, found 186.0680.

4-(p-tolyloxy)phenol

4ab was synthesized following the general procedure for 1,6-addition. After purification by preparative thin-layer chromatography using PE/EtOAc (5/1) as the eluent, **4ab** was obtained in 75% yield (150.2 mg) as a white solid.

4ab: m.p. 88.6-89.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.09 (d, J = 8.2 Hz, 2H), 6.91 – 6.82 (m, 4H), 6.80 – 6.75 (m, 2H), 5.20 (s, 1H), 2.30 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.98, 151.45, 150.85, 132.22, 130.18 (2C), 120.54 (2C), 117.90 (2C), 116.36 (2C), 20.64. HRMS (EI-TOF, m/z) calcd for C₁₃H₁₂O₂ [M]⁺ 200.0837, found 200.0838.

4-(4-(tert-butyl)phenoxy)phenol

4ac was synthesized following the general procedure for 1,6-addition. After purification by preparative thin-layer chromatography using PE/EtOAc (4/1) as the eluent, **4ac** was obtained in 70% yield (169.6 mg) as a white solid.

4ac: m.p. 86.6-87.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.28 (m, 2H), 6.94 – 6.85 (m, 4H), 6.82 – 6.76 (m, 2H), 4.24 (s, 1H), 1.30 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 155.96, 151.55, 150.59, 145.44, 126.45 (2C), 120.80 (2C), 117.21 (2C), 116.31 (2C), 34.25, 31.52 (3C). HRMS (EI-TOF, m/z) calcd for C₁₆H₁₈O₂ [M]⁺ 242.1307, found 242.1308.

4-(4-methoxyphenoxy)phenol

4ad was synthesized following the general procedure for 1,6-addition. After purification by preparative thin-layer chromatography using PE/EtOAc (4/1) as the eluent, **4ad** was obtained in 68% yield (147.0 mg) as a white solid. **4ad** was obtained in 61% yield (131.9 mg) using Cu₂O as a catalyst.

4ad: m.p. 94.2-95.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.93 – 6.89 (m, 2H), 6.88 – 6.82 (m, 4H), 6.79 – 6.74 (m, 2H), 5.31 (s, 1H), 3.78 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.28, 151.63, 151.55, 151.27, 119.78 (2C), 119.58 (2C), 116.29 (2C), 114.89 (2C), 55.79. HRMS (EI-TOF, m/z) calcd for C₁₃H₁₂O₃ [M]⁺ 216.0786, found 216.0788.

4-(4-fluorophenoxy)phenol

4ae was synthesized following the general procedure. After purification by preparative thinlayer chromatography using PE/EtOAc (5/1) as the eluent, **4ae** was obtained in 95% yield (194.0 mg) as a white solid.

4ae: m.p. 97.9-98.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.00 – 6.95 (m, 2H), 6.93 – 6.86 (m, 4H), 6.84 – 6.75 (m, 2H), 5.08 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 158.42 (d, J_{CF} = 240.7 Hz), 154.10 (d, J_{CF} = 2.4 Hz), 151.60, 150.79, 120.46 (2C), 119.23 (d, J_{CF} = 8.2 Hz, 2C), 116.47 (2C), 116.17 (d, J_{CF} = 23.3 Hz, 2C). HRMS (EI-TOF, m/z) calcd for C₁₂H₉FO₂ [M]⁺ 204.0587, found 204.0588.

4-(4-chlorophenoxy)phenol

4af was synthesized following the general procedure for 1,6-addition. After purification by preparative thin-layer chromatography using PE/EtOAc (5/1) as the eluent, **4af** was obtained in 92% yield (203.0 mg) as a white solid.

4af: m.p.135-136.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.21 (m, 2H), 6.93 – 6.84 (m, 4H), 6.84 – 6.79 (m, 2H), 4.80 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 157.11, 152.00, 149.92, 129.59 (2C), 127.47, 121.03 (2C), 118.82 (2C), 116.49 (2C). HRMS (EI-TOF, m/z) calcd for C₁₂H₉³⁵ClO₂ [M]⁺ 220.0291, found 220.0296; calcd for C₁₂H₉³⁷ClO₂ [M]⁺ 222.0262, found 220.0264.

4-(4-bromophenoxy)phenol

4ag was synthesized following the general procedure for 1,6-addition. After purification by preparative thin-layer chromatography using PE/EtOAc (5/1) as the eluent, **4ag** was obtained in 93% yield (246.5 mg) as a white solid.

4ag: m.p. 158.6-160.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.35 (m, 2H), 6.93 – 6.88 (m, 2H), 6.85 – 6.78 (m, 4H), 5.10 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 157.70, 152.06, 149.76, 132.54 (2C), 121.10 (2C), 119.24 (2C), 116.50 (2C), 114.83. HRMS (EI-TOF, m/z) calcd for C₁₂H₉⁷⁹BrO₂ [M]⁺ 263.9786, found 263.9797; calcd for C₁₂H₉⁸¹BrO₂ [M]⁺ 265.9765, found 265.9771.

4-(4-hydroxyphenoxy)benzonitrile

4ah was synthesized following the general procedure for 1,6-addition. After purification by preparative thin-layer chromatography using PE/EtOAc (4/1) as the eluent, **4ah** was obtained in 94% yield (198.5 mg) as a white solid.

4ah: m.p. 151.1-152.5 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.54 (s, 1H), 7.79 (d, *J* = 8.1 Hz, 2H), 6.99 (t, *J* = 8.5 Hz, 4H), 6.84 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (101 MHz, DMSO-*d*₆)

δ 162.31, 154.85, 145.89, 134.45 (2C), 121.80 (2C), 118.81, 116.89 (2C), 116.51 (2C), 104.12. HRMS (EI-TOF, m/z) calcd for C₁₃H₉NO₂ [M]⁺ 211.0633, found 211.0634.

4-(4-(trifluoromethyl)phenoxy)phenol

4ai was synthesized following the general procedure for 1,6-addition. After purification by preparative thin-layer chromatography using PE/EtOAc (5/1) as the eluent, **4ai** was obtained in 92% yield (233.9 mg) as a white solid. **4ai** was obtained in 91% yield (231.3 mg) using Cu₂O as a catalyst.

4ai: m.p. 112.2-113.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 8.6 Hz, 2H), 6.96 (dt, *J* = 5.9, 3.9 Hz, 4H), 6.89 – 6.81 (m, 2H), 4.67 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 161.42, 152.55, 148.83, 127.05 (q, *J*_{CF} = 3.7 Hz, 2c), 124.32 (q, *J*_{CF} = 32.9 Hz), 124.27 (q, *J*_{CF} = 271.4 Hz), 121.76 (2C), 116.86 (2C), 116.65 (2C). HRMS (EI-TOF, m/z) calcd for C₁₃H₉F₃O₂ [M]⁺ 254.0555, found 254.0556.

methyl 4-(4-hydroxyphenoxy)benzoate

4aj was synthesized following the general procedure for 1,6-addition. After purification by preparative thin-layer chromatography using PE/EtOAc (5/1) as the eluent, **4aj** was obtained in 83% yield (202.7 mg) as a white solid.

4aj: m.p. 141.3-142.7 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.48 (s, 1H), 7.93 (d, *J* = 8.8 Hz, 2H), 7.00 – 6.92 (m, 4H), 6.83 (d, *J* = 8.8 Hz, 2H), 3.82 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 165.69, 162.64, 154.63, 146.35, 131.41 (2C), 123.08, 121.73 (2C), 116.43 (2C), 116.01 (2C), 51.87. HRMS (EI-TOF, m/z) calcd for C₁₄H₁₂O₄ [M]⁺ 244.0736, found 244.0735.

4-([1,1'-biphenyl]-4-yloxy)phenol

4ak was synthesized following the general procedure for 1,6-addition. After purification by preparative thin-layer chromatography using PE/EtOAc (5/1) as the eluent, **4ak** was obtained in 82% yield (215.1 mg) as a white solid.

4ak: m.p. 173.5-174.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.48 (m, 4H), 7.41 (t, *J* = 7.6 Hz, 2H), 7.31 (t, *J* = 7.3 Hz, 1H), 7.06 – 6.93 (m, 4H), 6.90 – 6.74 (m, 2H), 4.85 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 158.04, 151.84, 150.19, 140.62, 135.62, 128.79 (2C), 128.35 (2C), 126.96, 126.88 (2C), 121.12 (2C), 117.83 (2C), 116.41 (2C). HRMS (EI-TOF, m/z) calcd for C₁₈H₁₄O₂ [M]⁺ 262.0994, found 262.0993.

4-(m-tolyloxy)phenol

4al was synthesized following the general procedure for 1,6-addition. After purification by preparative thin-layer chromatography using PE/EtOAc (5/1) as the eluent, **4al** was obtained in 80% yield (160.2 mg) as a white solid.

4al: m.p. 82.3-83.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.16 (t, *J* = 7.8 Hz, 1H), 6.93 – 6.89 (m, 2H), 6.85 (d, *J* = 7.5 Hz, 1H), 6.82 – 6.72 (m, 4H), 4.81 (s, 1H), 2.29 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.38, 151.65, 150.34, 139.88, 129.41, 123.44, 121.02 (2C), 118.37, 116.40 (2C), 114.71, 21.44. HRMS (EI-TOF, m/z) calcd for C₁₃H₁₂O₂ [M]⁺ 200.0837, found 200.0838.

4-(3-methoxyphenoxy)phenol

4am was synthesized following the general procedure for 1,6-addition. After purification by preparative thin-layer chromatography using PE/EtOAc (4/1) as the eluent, **4am** was obtained in 84% yield (181.6 mg) as a white solid.

4am: m.p. 88.5-89.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.14 (m, 1H), 6.95 – 6.89 (m, 2H), 6.82 – 6.76 (m, 2H), 6.60 (ddd, J = 8.3, 2.2, 0.8 Hz, 1H), 6.56 – 6.47 (m, 2H), 5.41 (s, 1H), 3.75 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.81, 159.74, 151.93, 149.87, 130.14, 121.24 (2C), 116.42 (2C), 109.91, 108.16, 103.79, 55.43. HRMS (EI-TOF, m/z) calcd for C₁₃H₁₂O₃ [M]⁺ 216.0786, found 216.0785.

4-(3-chlorophenoxy)phenol

4an was synthesized following the general procedure for 1,6-addition. After purification by preparative thin-layer chromatography using PE/EtOAc (5/1) as the eluent, **4an** was obtained in 86% yield (189.8 mg) as a white solid.

4an: m.p. 92.9-93.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.18 (t, *J* = 8.1 Hz, 1H), 7.00 (ddd, *J* = 8.0, 1.9, 0.9 Hz, 1H), 6.95 – 6.88 (m, 3H), 6.87 – 6.79 (m, 3H), 5.48 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 159.37, 152.14, 149.42, 135.01, 130.46, 122.63, 121.46 (2C), 117.66, 116.63 (2C), 115.67. HRMS (EI-TOF, m/z) calcd for C₁₂H₉³⁵ClO₂ [M]⁺ 220.0291, found 220.0293; calcd for C₁₂H₉³⁷ClO₂ [M]⁺ 222.0262, found 220.0261.

4-(3-nitrophenoxy)phenol

4ao was synthesized following the general procedure for 1,6-addition. After purification by preparative thin-layer chromatography using PE/EtOAc (3/1) as the eluent, **4ao** was obtained in 89% yield (205.8 mg) as a white solid.

4ao: m.p. 123.9-125.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.88 (ddd, *J* = 8.2, 2.1, 0.9 Hz, 1H), 7.71 (t, *J* = 2.3 Hz, 1H), 7.45 (t, *J* = 8.2 Hz, 1H), 7.27 (ddd, *J* = 8.2, 2.4, 0.8 Hz, 1H), 6.99 – 6.94 (m, 2H), 6.92 – 6.87 (m, 2H), 5.15 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 159.54, 152.86, 149.19, 148.53, 130.27, 123.35, 121.66 (2C), 117.10, 116.88 (2C), 111.70. HRMS (EI-TOF, m/z) calcd for C₁₂H₉NO₄ [M]⁺ 231.0532, found 231.0533.

4-(o-tolyloxy)phenol

4ap was synthesized following the general procedure for 1,6-addition. After purification by preparative thin-layer chromatography using PE/EtOAc (5/1) as the eluent, **4ap** was obtained in 65% yield (130.2 mg) as a white solid.

4aq: m.p. 58.6-59.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.19 (m, 1H), 7.13 – 7.08 (m, 1H), 6.99 (td, *J* = 7.4, 1.1 Hz, 1H), 6.87 – 6.72 (m, 5H), 5.16 (s, 1H), 2.26 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.71, 151.25, 151.02, 131.38, 129.17, 127.04, 123.25, 119.49 (2C), 118.18, 116.34 (2C), 16.25. HRMS (EI-TOF, m/z) calcd for C₁₃H₁₂O₂ [M]⁺ 200.0837, found 200.0836.

4-(2-chlorophenoxy)phenol

4aq was synthesized following the general procedure for 1,6-addition. After purification by preparative thin-layer chromatography using PE/EtOAc (4/1) as the eluent, **4aq** was obtained in 73% yield (161.1 mg) as a white solid.

4aq: m.p. 66.4-67.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (dd, J = 7.9, 1.6 Hz, 1H), 7.15 (ddd, J = 8.2, 7.5, 1.6 Hz, 1H), 7.01 (td, J = 7.7, 1.5 Hz, 1H), 6.91 – 6.78 (m, 5H), 5.38 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 153.66, 151.77, 150.13, 130.71, 127.86, 124.74, 123.89, 120.24 (2C), 119.12, 116.48 (2C). HRMS (EI-TOF, m/z) calcd for C₁₂H₉³⁵ClO₂ [M]⁺ 220.0291, found 220.0294; calcd for C₁₂H₉³⁷ClO₂ [M]⁺ 222.0262, found 220.0261.

2-(4-hydroxyphenoxy)phenol

4ar was synthesized following the general procedure for 1,6-addition. After purification by preparative thin-layer chromatography using PE/EtOAc (3/1) as the eluent, **4ar** was obtained in 65% yield (131.4 mg) as a white solid.

4ar: m.p. 70.3-71.8 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.33 (s, 1H), 9.14 (s, 1H), 6.95 – 6.89 (m, 2H), 6.80 – 6.70 (m, 6H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 152.69, 149.68, 148.59, 144.62, 124.02, 119.78, 119.37, 118.52 (2C), 116.98, 115.83 (2C). HRMS (EI-TOF, m/z) calcd for C₁₂H₁₀O₃ [M]⁺ 202.0630, found 202.0631.

4-(3,5-dimethoxyphenoxy)phenol

4as was synthesized following the general procedure for 1,6-addition. After purification by preparative thin-layer chromatography using PE/EtOAc (3/1) as the eluent, **4as** was obtained in 83% yield (204.4 mg) as a white solid.

4as: m.p. 148.5-149..9 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.94 – 6.89 (m, 2H), 6.81 – 6.75 (m, 2H), 6.18 (t, *J* = 2.2 Hz, 1H), 6.11 (d, *J* = 2.2 Hz, 2H), 5.93 (s, 1H), 3.72 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 161.48 (2C), 160.57, 152.15, 149.47, 121.42 (2C), 116.43 (2C), 96.30 (2C), 94.82, 55.48 (2C). HRMS (EI-TOF, m/z) calcd for C₁₄H₁₄O₄ [M]⁺ 246.0892, found 246.0893.

4-(3,4,5-trimethoxyphenoxy)phenol

4at was synthesized following the general procedure for 1,6-addition. After purification by preparative thin-layer chromatography using PE/EtOAc (3/1) as the eluent, **4at** was obtained in 78% yield (215.5 mg) as a white solid.

4at: m.p. 168.6-169.4 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.30 (s, 1H), 6.91 – 6.86 (m, 2H), 6.81 – 6.74 (m, 2H), 6.23 (s, 2H), 3.69 (s, 6H), 3.62 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 154.29, 153.56, 153.46 (2C), 148.26, 132.94, 120.32 (2C), 116.12 (2C), 95.30 (2C), 60.06, 55.78 (2C). HRMS (EI-TOF, m/z) calcd for C₁₅H₁₆O₅ [M]⁺ 276.0998, found 276.0997.

4-(benzo[d][1,3]dioxol-5-yloxy)phenol

4au was synthesized following the general procedure for 1,6-addition. After purification by preparative thin-layer chromatography using PE/EtOAc (3/1) as the eluent, **4au** was obtained in 80% yield (184.2 mg) as a white solid.

4au: m.p. 158.3-159.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.88 – 6.84 (m, 2H), 6.79 – 6.75 (m, 2H), 6.71 (d, J = 8.4 Hz, 1H), 6.52 (d, J = 2.4 Hz, 1H), 6.41 (dd, J = 8.4, 2.4 Hz, 1H), 5.93 (s, 2H), 5.40 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 152.88, 151.38, 151.27, 148.29,

143.19, 120.03 (2C), 116.33 (2C), 110.60, 108.23, 101.44, 101.13. HRMS (EI-TOF, m/z) calcd for $C_{13}H_{10}O_4$ [M]⁺ 230.0579, found 230.0578.

4-(naphthalen-2-yloxy)phenol

4av was synthesized following the general procedure for 1,6-addition. After purification by preparative thin-layer chromatography using PE/EtOAc (4/1) as the eluent, **4av** was obtained in 82% yield (193.7 mg) as a white solid.

4av: m.p. 79.2-80.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 8.8 Hz, 2H), 7.64 (d, J = 8.1 Hz, 1H), 7.38 (dtd, J = 16.2, 6.9, 1.2 Hz, 2H), 7.23 (dd, J = 8.9, 2.5 Hz, 1H), 7.18 (d, J = 2.3 Hz, 1H), 7.01 – 6.95 (m, 2H), 6.85 – 6.79 (m, 2H), 5.08 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 156.36, 151.92, 150.20, 134.37, 129.87, 129.86, 127.76, 127.07, 126.57, 124.49, 121.27 (2C), 119.37, 116.52 (2C), 112.40. HRMS (EI-TOF, m/z) calcd for C₁₆H₁₂O₂ [M]⁺ 236.0837, found 236.0838.

(E)-4-(styryloxy)phenol

4aw was synthesized following the general procedure for 1,6-addition. After purification by preparative thin-layer chromatography using PE/EtOAc (2/1) as the eluent, **4aw** was obtained in 63% yield (133.7 mg) as a white solid.

4aw: m.p. 55.4-56.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.27 (m, 4H), 7.18 (ddd, J = 5.4, 4.1, 2.3 Hz, 1H), 7.09 (d, J = 12.5 Hz, 1H), 6.96 – 6.92 (m, 2H), 6.81 – 6.77 (m, 2H), 6.24 (d, J = 12.5 Hz, 1H), 4.98 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 151.60, 151.08, 144.78, 135.32, 128.71 (2C), 126.52, 125.59 (2C), 118.66 (2C), 116.28 (2C), 112.49. HRMS (EI-TOF, m/z) calcd for C₁₄H₁₂O₂ [M]⁺ 212.0837, found 212.0838.

2,5-dimethyl-4-phenoxyphenol

4ba was synthesized following the general procedure for 1,6-addition. After purification by preparative thin-layer chromatography using PE/EtOAc (5/1) as the eluent, **4ba** was obtained in 62% yield (132.8 mg) as a white solid. **4ba** was obtained in 58% yield (124.3 mg) using Cu₂O as a catalyst.

4ba: m.p. 94.6-95.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.23 (m, 2H), 7.01 – 6.96 (m, 1H), 6.86 – 6.81 (m, 2H), 6.75 (s, 1H), 6.65 (s, 1H), 4.72 (s, 1H), 2.18 (s, 3H), 2.10 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.89, 150.35, 147.03, 129.56 (2C), 129.03, 123.35, 122.47, 121.64, 117.41, 116.12 (2C), 15.82, 15.49. HRMS (EI-TOF, m/z) calcd for C₁₄H₁₄O₂ [M]⁺ 214.0994, found 214.0993.

2,5-di-tert-butyl-4-phenoxyphenol

4ca was synthesized following the general procedure for 1,6-addition. After purification by preparative thin-layer chromatography using PE/EtOAc (4/1) as the eluent, **4ca** was obtained in 36% yield (107.4 mg) as a white solid.

4ca: m.p. 98.5-99.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.25 (m, 2H), 6.99 (dd, J = 10.6, 4.1 Hz, 1H), 6.90 (dt, J = 3.3, 1.8 Hz, 2H), 6.80 (s, 1H), 6.68 (s, 1H), 4.68 (s, 1H), 1.32 (s, 9H), 1.32 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 158.94, 149.85, 147.51, 140.06, 134.78, 129.50 (2C), 121.57, 120.75, 117.01 (2C), 115.40, 34.23, 34.17, 30.18 (3C), 29.54 (3C). HRMS (EI-TOF, m/z) calcd for C₂₀H₂₆O₂ [M]⁺ 298.1933, found 298.1932.

4da

2,5-dichloro-4-phenoxyphenol

4da was synthesized following the general procedure for 1,6-addition. After purification by preparative thin-layer chromatography using PE/EtOAc (5/1) as the eluent, **4da** was obtained in 82% yield (209.2 mg) as a white solid. **4da** was obtained in 83% yield (211.7 mg) using Cu₂O as a catalyst.

4da: m.p. 144.5-145.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.28 (m, 2H), 7.16 – 7.13 (m, 1H), 7.08 (t, *J* = 7.4 Hz, 1H), 7.04 (s, 1H), 6.94 – 6.89 (m, 2H), 5.55 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 157.37, 148.38, 145.73, 129.86 (2C), 126.16, 123.27, 121.77, 118.56, 117.78, 117.10 (2C). HRMS (EI-TOF, m/z) calcd for C₁₂H₈³⁵Cl₂O₂ [M]⁺ 253.9901, found 253.9899; calcd for C₁₂H₈³⁵Cl³⁷ClO₂ [M]⁺ 255.9872, found 255.9871; calcd for C₁₂H₈³⁷Cl₂O₂ [M]⁺ 257.9842, found 257.9841.

2,6-dimethyl-4-phenoxyphenol

4ea was synthesized following the general procedure for 1,6-addition. After purification by preparative thin-layer chromatography using PE/EtOAc (4/1) as the eluent, **4ea** was obtained in 63% yield (135.0 mg) as a white solid.

4ea: m.p. 89.5-90.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.24 (dd, J = 8.5, 7.5 Hz, 2H), 6.95 (t, J = 7.3 Hz, 1H), 6.80 – 6.71 (m, 2H), 6.56 (s, 2H), 4.86 (s, 1H), 2.06 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 158.16, 152.21, 144.81, 132.72, 129.62 (2C), 121.22, 115.31 (2C), 114.54 (2C), 16.45 (2C). HRMS (EI-TOF, m/z) calcd for C₁₄H₁₄O₂ [M]⁺ 214.0994, found 214.0993.

2,6-dimethoxy-4-phenoxyphenol

4fa was synthesized following the general procedure for 1,6-addition. After purification by preparative thin-layer chromatography using PE/EtOAc (3/1) as the eluent, **4fa** was obtained in 54% yield (133.0 mg) as a white solid.

4fa: m.p. 98.8-99.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.21 (m, 2H), 6.96 (t, *J* = 7.3 Hz, 1H), 6.86 (dt, *J* = 3.4, 1.8 Hz, 2H), 6.15 (s, 2H), 5.26 (s, 1H), 3.69 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 158.69, 153.88 (2C), 153.70, 129.28 (2C), 125.82, 121.49, 114.66 (2C), 93.24 (2C), 56.16 (2C). HRMS (EI-TOF, m/z) calcd for C₁₄H₁₄O₄ [M]⁺ 246.0892, found 246.0893.

2-methyl-4-phenoxyphenol (4ag)

3-methyl-4-phenoxyphenol (4ga')

4ga and **4ga'** was synthesized following the general procedure for 1,6-addition. After purification by preparative thin-layer chromatography using PE/EtOAc (4/1) as the eluent. **4ga** was obtained in 49% yield (98.1 mg) as a white solid. **4ga'** was obtained in 19% yield (38.0 mg) as a white solid.

4ga: m.p. 86.6-87.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.23 (m, 2H), 7.03 – 6.95 (m, 1H), 6.84 (d, *J* = 8.6 Hz, 3H), 6.72 (d, *J* = 2.9 Hz, 1H), 6.64 (dd, *J* = 8.6, 3.0 Hz, 1H), 5.10 (s, 1H), 2.14 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.72, 152.09, 147.52, 132.03, 129.62 (2C), 122.01, 121.83, 117.97, 116.20 (2C), 113.76, 16.29. HRMS (EI-TOF, m/z) calcd for C₁₃H₁₂O₂ [M]⁺ 200.0837, found 200.0836.

4ga: m.p. 88.1-89.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.26 (m, 2H), 7.05 – 7.01 (m, 1H), 6.96 – 6.91 (m, 2H), 6.83 (d, *J* = 2.6 Hz, 1H), 6.78 – 6.72 (m, 2H), 4.74 (s, 1H), 2.22 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.58, 150.05, 149.92, 129.59 (2C), 125.35, 122.39, 122.36, 118.27, 117.59 (2C), 115.74, 15.96. HRMS (EI-TOF, m/z) calcd for C₁₃H₁₂O₂ [M]⁺ 200.0837, found 200.0836.

2,3-dimethoxy-6-methyl-4-phenoxyphenol (4ha)

2,3-dimethoxy-5-methyl-4-phenoxyphenol (4ha')

4ha and **4ha'** was synthesized following the general procedure for 1,6-addition. After purification by preparative thin-layer chromatography using PE/EtOAc (4/1) as the eluent. **4ha** was obtained in 31% yield (80.7 mg) as a white solid. **4ha'** was obtained in 19% yield (49.5 mg) as a white solid.

4ha: m.p. 168.5-169.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.22 (m, 2H), 7.00 – 6.94 (m, 1H), 6.85 – 6.80 (m, 2H), 6.60 (d, J = 0.6 Hz, 1H), 5.69 (s, 1H), 3.91 (s, 3H), 3.77 (s, 3H), 2.07 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.50, 146.10, 145.75, 138.91, 138.27,

129.53 (2C), 127.80, 121.59, 114.72 (2C), 111.03, 61.31, 60.84, 15.94. HRMS (EI-TOF, m/z) calcd for $C_{15}H_{16}O_4$ [M]⁺ 260.1049, found 260.1048.

4ha': m.p. 170.1-171.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.25 (m, 2H), 7.03 – 6.98 (m, 1H), 6.91 (dt, *J* = 4.5, 1.8 Hz, 2H), 6.57 (d, *J* = 0.4 Hz, 1H), 5.71 (s, 1H), 3.96 (s, 3H), 3.80 (s, 3H), 2.18 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.83, 144.11, 142.83, 140.74, 139.91, 129.51 (2C), 122.03, 119.05, 118.35, 116.21 (2C), 61.27, 61.02, 15.27. HRMS (EI-TOF, m/z) calcd for C₁₅H₁₆O₄ [M]⁺ 260.1049, found 260.1050.

[1,1'-biphenyl]-4-ol

5aa was synthesized following the general procedure for one-pot construction of 4phenylphenols. After purification by preparative thin-layer chromatography using PE/EtOAc (6/1) as the eluent, **5aa** was obtained in 76% yield (163.7 mg) as a white solid. **5aa**: m.p. 114.4-116.0 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.54 (s, 1H), 7.59 – 7.54 (m, 2H), 7.51 – 7.46 (m, 2H), 7.40 (t, *J* = 7.7 Hz, 2H), 7.27 (t, *J* = 7.3 Hz, 1H), 6.89 – 6.83 (m, 2H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 157.08, 140.19, 130.90, 128.75 (2C), 127.69 (2C), 126.31, 125.92 (2C), 115.68 (2C); HRMS (EI-TOF, m/z) calcd for C₁₂H₁₀O [M]⁺ 170.0732, found 170.0730.

4'-methoxy-[1,1'-biphenyl]-4-ol

5ab was synthesized following the general procedure for one-pot construction of 4phenylphenols. After purification by preparative thin-layer chromatography using PE/EtOAc (5/1) as the eluent, **5ab** was obtained in 60% yield (120.1 mg) as a white solid. **5ab**: m.p. 138.1-139.5 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.44 (s, 1H), 7.52 – 7.39 (m, 4H), 7.00 – 6.92 (m, 2H), 6.87 – 6.79 (m, 2H), 3.77 (s, 3H); ¹³C NMR (101 MHz, DMSO*d*₆) δ 158.06, 156.48, 132.72, 130.70, 127.17 (2C), 126.95 (2C), 115.60 (2C), 114.17 (2C), 55.04. HRMS (EI-TOF, m/z) calcd for C₁₃H₁₂O₂ [M]⁺ 200.0837, found 200.0835.

4'-chloro-[1,1'-biphenyl]-4-ol

5ac was synthesized following the general procedure for one-pot construction of 4phenylphenols. After purification by preparative thin-layer chromatography using PE/EtOAc (6/1) as the eluent, **5ac** was obtained in 80% yield (163.7 mg) as a white solid. **5ac**: m.p. 146.5-147.4 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.63 (s, 1H), 7.63 – 7.56 (m, 2H), 7.51 – 7.42 (m, 4H), 6.91 – 6.83 (m, 2H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 157.39, 138.98, 131.08, 129.49, 128.65 (2C), 127.68 (2C), 127.57 (2C), 115.77 (2C). HRMS (EI-TOF, m/z) calcd for C₁₂H₉³⁵ClO [M]⁺ 204.0342, found 204.0339; calcd for C₁₂H₉³⁷ClO [M]⁺ 206.0312, found 206.0315.

4'-(trifluoromethyl)-[1,1'-biphenyl]-4-ol

5ad was synthesized following the general procedure for one-pot construction of 4phenylphenols. After purification by preparative thin-layer chromatography using PE/EtOAc (6/1) as the eluent, **5ad** was obtained in 81% yield (192.9 mg) as a white solid. **5ad**: m.p. 118.2-119.5 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.75 (s, 1H), 7.81 – 7.69 (m, 4H), 7.57 (d, *J* = 8.6 Hz, 2H), 6.91 (d, *J* = 8.6 Hz, 2H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 158.01, 144.09 (d, *J*_{CF} = 1.1 Hz), 129.15, 128.13 (2C), 126.71 (q, *J*_{CF} = 31.8 Hz, 2C), 126.41 (2C), 125.54 (q, *J*_{CF} = 3.7 Hz), 124.43 (q, *J*_{CF} = 271.7 Hz), 115.89 (2C). HRMS (EI-TOF, m/z) calcd for C₁₃H₉F₃O [M]⁺ 238.0605, found 238.0607.

5ae

3'-methoxy-[1,1'-biphenyl]-4-ol

5ae was synthesized following the general procedure for one-pot construction of 4phenylphenols. After purification by preparative thin-layer chromatography using PE/EtOAc (5/1) as the eluent, **5ae** was obtained in 71% yield (142.2 mg) as a white solid. **5ae**: m.p. 121.9-122.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.43 (m, 2H), 7.31 (t, *J* = 7.9 Hz, 1H), 7.12 (ddd, *J* = 7.6, 1.7, 1.0 Hz, 1H), 7.07 (dd, *J* = 2.6, 1.7 Hz, 1H), 6.91 – 6.83 (m, 3H), 5.74 (s, 1H), 3.84 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.83, 155.29, 142.38, 133.76, 129.82, 128.49 (2C), 119.46, 115.75 (2C), 112.59, 112.19, 55.41. HRMS (EI-TOF, m/z) calcd for C₁₃H₁₂O₂ [M]⁺ 200.0837, found 200.0839.

3'-chloro-[1,1'-biphenyl]-4-ol

5af was synthesized following the general procedure for one-pot construction of 4phenylphenols. After purification by preparative thin-layer chromatography using PE/EtOAc (6/1) as the eluent, **5af** was obtained in 75% yield (153.5 mg) as a white solid. **5af**: m.p. 130.5-131.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (t, J = 1.8 Hz, 1H), 7.45 – 7.40 (m, 2H), 7.38 (dt, J = 7.6, 1.5 Hz, 1H), 7.31 (t, J = 7.7 Hz, 1H), 7.28 – 7.23 (m, 1H), 6.93 – 6.87 (m, 2H), 5.43 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 155.48, 142.57, 134.61, 132.60, 129.99, 128.45 (2C), 126.82, 126.72, 124.84, 115.88 (2C). HRMS (EI-TOF, m/z) calcd for C₁₂H₉³⁵ClO [M]⁺ 204.0342, found 204.0343; calcd for C₁₂H₉³⁷ClO [M]⁺ 206.0312, found 206.0320.

2'-chloro-[1,1'-biphenyl]-4-ol

5ag was synthesized following the general procedure for one-pot construction of 4phenylphenols. After purification by preparative thin-layer chromatography using PE/EtOAc (6/1) as the eluent, **5ag** was obtained in 60% yield (122.8 mg) as a white solid. **5ag**: m.p. 119.8-120.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.42 (m, 1H), 7.35 – 7.21 (m, 5H), 6.91 – 6.88 (m, 2H), 5.32 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 155.10, 140.08, 132.59, 132.05, 131.39, 130.88 (2C), 129.96, 128.25, 126.84, 115.03 (2C). HRMS (EI-TOF, m/z) calcd for C₁₂H₉³⁵ClO [M]⁺ 204.0342, found 204.0344; calcd for C₁₂H₉³⁷ClO [M]⁺ 206.0312, found 206.0318.

4-(benzo[d][1,3]dioxol-5-yl)phenol

5ah was synthesized following the general procedure for one-pot construction of 4phenylphenols. After purification by preparative thin-layer chromatography using PE/EtOAc (6/1) as the eluent, **5ah** was obtained in 60% yield (128.5 mg) as a white solid. **5ah**: m.p. 147.1-148.3 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.48 (s, 1H), 7.43 – 7.38 (m, 2H), 7.14 (d, *J* = 1.7 Hz, 1H), 7.03 (dd, *J* = 8.1, 1.8 Hz, 1H), 6.93 (d, *J* = 8.1 Hz, 1H), 6.85 – 6.80 (m, 2H), 6.03 (s, 2H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 156.68, 147.79, 145.93, 134.67, 130.77, 127.45 (2C), 119.22, 115.55 (2C), 108.48, 106.54, 100.87. HRMS (EI-TOF, m/z) calcd for C₁₃H₁₀O₃ [M]⁺ 214.0630, found 214.0632.

2,5-dimethyl-[1,1'-biphenyl]-4-ol

5ba was synthesized following the general procedure for one-pot construction of 4phenylphenols. After purification by preparative thin-layer chromatography using PE/EtOAc (6/1) as the eluent, **5ba** was obtained in 85% yield (168.5 mg) as a white solid. **5ba**: m.p. 126.8-127.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.35 (m, 2H), 7.31 – 7.26 (m, 3H), 6.99 (s, 1H), 6.67 (s, 1H), 4.87 (s, 1H), 2.24 (s, 3H), 2.19 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 152.87, 141.74, 134.66, 134.24, 132.53, 129.45 (2C), 128.05 (2C), 126.47, 121.03, 116.72, 20.10, 15.32. HRMS (EI-TOF, m/z) calcd for C₁₄H₁₄O [M]⁺ 198.1045, found 198.1043.

2-methyl-[1,1'-biphenyl]-4-ol

5ca was synthesized following the general procedure for one-pot construction of 4phenylphenols. After purification by preparative thin-layer chromatography using PE/EtOAc (6/1) as the eluent, **5ca** was obtained in 88% yield (162.1 mg) as a white solid. **5ca**: m.p. 124.4-125.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.36 (m, 2H), 7.33 – 7.27 (m, 3H), 7.10 (d, *J* = 8.2 Hz, 1H), 6.77 – 6.68 (m, 2H), 4.97 (s, 1H), 2.23 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 154.63, 141.58, 137.05, 134.80, 131.05, 129.41 (2C), 128.04 (2C), 126.51, 116.94, 112.67, 20.58. HRMS (EI-TOF, m/z) calcd for C₁₃H₁₂O [M]⁺ 184.0888, found 184.0885.

1,2-dihydroxy-2,3-dihydro-[1,1'-biphenyl]-4(1H)-one

7 was synthesized following the general procedure for transformation of products. After purification by preparative thin-layer chromatography using DCM/EtOAc (3/1) as the eluent,
7 was obtained in 85% yield (86.8 mg) as a white oil.

7: ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 7.1 Hz, 2H), 7.43 – 7.31 (m, 3H), 6.79 – 6.66 (m, 1H), 6.22 (d, *J* = 10.2 Hz, 1H), 4.19 (s, 1H), 3.92 (s, 1H), 3.41 (s, 1H), 2.69 – 2.46 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 197.63, 149.46, 140.60, 129.89, 128.81 (2C), 128.54, 126.11 (2C), 74.84, 74.55, 41.76. HRMS (EI-TOF, m/z) calcd for C₁₂H₁₂O₃ [M]⁺ 204.0786, found 204.0787.

fenoxycard

ethyl (2-(4-phenoxyphenoxy)ethyl)carbamate

Fenoxycard was synthesized following the general procedure for transformation of products. After purification by preparative thin-layer chromatography using PE/EtOAc (5/1) as the eluent, **fenoxycard** was obtained in 86% yield (259.2 mg) as a white solid.

Fenoxycard: m.p. 53.3-54.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.26 (m, 2H), 7.04 (t, J = 7.4 Hz, 1H), 6.98 – 6.91 (m, 4H), 6.88 – 6.83 (m, 2H), 5.21 (s, 1H), 4.13 (dd, J = 14.0, 7.0 Hz, 2H), 4.00 (t, J = 5.1 Hz, 2H), 3.57 (d, J = 5.1 Hz, 2H), 1.24 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.35, 156.72, 154.77, 150.59, 129.65 (2C), 122.58, 120.80 (2C), 117.73 (2C), 115.55 (2C), 67.49, 60.97, 40.53, 14.65. HRMS (EI-TOF, m/z) calcd for C₁₇H₁₉NO₄ [M]⁺ 301.1314, found 301.1312.

1-(4-phenoxy)propan-2-ol

8 was synthesized following the general procedure for transformation of products. After purification by preparative thin-layer chromatography using PE/EtOAc (5/1) as the eluent, **8** was obtained in 86% yield (210.1 mg) as a white oil.

8: ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.26 (m, 2H), 7.03 (t, *J* = 7.4 Hz, 1H), 6.96 (ddd, *J* = 10.8, 7.2, 5.6 Hz, 4H), 6.91 – 6.85 (m, 2H), 4.23 – 4.14 (m, 1H), 3.84 (ddd, *J* = 16.9, 9.2, 5.5 Hz, 2H), 2.41 (s, 1H), 1.28 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.38, 154.87, 150.59, 129.67 (2C), 122.58, 120.81 (2C), 117.73 (2C), 115.69 (2C), 73.90, 66.30, 18.83. HRMS (EI-TOF, m/z) calcd for C₁₅H₁₆O₃ [M]⁺ 244.1099, found 244.1098.

pyriproxyfen

2-((1-(4-phenoxy)propan-2-yl)oxy)pyridine

Pyriproxyfen was synthesized following the general procedure for transformation of products. After purification by preparative thin-layer chromatography using PE/EtOAc (10/1) as the eluent, **pyriproxyfen** was obtained in 85% yield (136.6 mg) as a white solid.

Pyriproxyfen: m.p. 45.8-46.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.15 (dd, J = 5.0, 1.5 Hz, 1H), 7.58 – 7.53 (m, 1H), 7.31 – 7.25 (m, 2H), 7.03 (t, J = 7.4 Hz, 1H), 6.98 – 6.90 (m, 6H), 6.85 (dd, J = 6.6, 5.5 Hz, 1H), 6.74 (d, J = 8.3 Hz, 1H), 5.63 – 5.55 (m, 1H), 4.13 (ddd, J = 46.3, 9.9, 5.1 Hz, 2H), 1.48 (d, J = 6.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 163.14, 158.51, 155.24, 150.31, 146.70, 138.80, 129.62 (2C), 122.44, 120.77 (2C), 117.63 (2C), 116.79, 115.82 (2C), 111.74, 71.09, 69.42, 17.02. HRMS (EI-TOF, m/z) calcd for C₂₀H₁₉NO₃ [M]⁺ 321.1365, found 321.1364.

4. Mechanistic Investigations

4.1 Control experiments

Condition A: A 10 mL sealed tube equipped with a stirring bar was charged with quinones **1a'** (1.0 mmol), organic boronic acid **2a** (1.2 mmol), Cu₂O (2.9 mg, 0.02 mmol, 2.0 mol%) and H₂O (2.0 mL). The tube was tightly capped and stirred at 25 °C for 24 h. Upon completion, the mixture was diluted with water (2.0 mL) and then extracted with ethyl acetate (5 ml \times 3). The combined organic layers were dried over MgSO₄, filtered, concentrated under reduced pressure, and purified by silica gel column chromatography using CH₂Cl₂/EtOAc (9/1) as the eluent to obtain the desired product.

Condition B: A 10 mL sealed tube equipped with a stirring bar was charged with quinones **1a'** (1.0 mmol), organic boronic acid **2a** (1.2 mmol), $CuFe_2O_4$ (12.0 mg, 0.05 mmol, 5.0 mol%) and MeOH (2.0 mL). The tube was tightly capped and stirred at 25 °C for 24. Upon completion, the mixture was diluted with 5 mL of ethyl acetate, filtered through a celite pad and washed with 10 mL of ethyl acetate. The filtrate was collected and concentrated. The residue was purified by silica gel column chromatography using PE/EtOAc (5/1) as the eluent to obtain the desired product.

A 10 mL sealed tube equipped with a stirring bar was charged with quinones **1a** (1.0 mmol), organic boronic acid **2a** (1.2 mmol), Cu₂O (2.9 mg, 0.02 mmol, 2.0 mol%), H₂O (1.0 mL) and MeOH (1.0 mL). The tube was tightly capped and stirred at 25 °C for 24 h. Upon completion, the mixture was diluted with water (2.0 mL) and then extracted with ethyl acetate (5 ml \times 3). The combined organic layers were dried over MgSO₄, filtered, concentrated under reduced pressure, and purified by silica gel column chromatography using PE/EtOAc (5/1) to CH₂Cl₂/EtOAc (9/1) as the eluent to obtain the desired product.

A 10 mL sealed tube equipped with a stirring bar was charged with quinones **1a** (1.0 mmol), organic boronic acid **2a** (1.2 mmol), CuFe₂O₄ (12.0 mg, 0.05 mmol, 5.0 mol%), H₂O (1.0 mL) and MeOH (1.0 mL). The tube was tightly capped and stirred at 25 °C for 24 h.

Upon completion, the mixture was diluted with 5 mL of ethyl acetate, filtered through a celite pad and washed with 10 mL of ethyl acetate. The filtrate was collected and concentrated. The residue was purified by silica gel column chromatography using PE/EtOAc (5/1) to CH₂Cl₂/EtOAc (9/1) as the eluent to obtain the desired product.

4.2 Free Radical Capture Experiment

Condition A: A 10 mL sealed tube equipped with a stirring bar was charged with quinones **1a** (1.0 mmol), organic boronic acid **2a** (1.2 mmol), Cu₂O (2.9 mg, 0.02 mmol, 2.0 mol%), TEMPO (2.0 mmol) and H₂O (2.0 mL). The tube was tightly capped and stirred at 25 °C for 24 h. Upon completion, the mixture was diluted with water (2.0 mL) and then extracted with ethyl acetate (5 ml \times 3). The combined organic layers were dried over MgSO₄, filtered, concentrated under reduced pressure, and purified by silica gel column chromatography using CH₂Cl₂/EtOAc (9/1) as the eluent to obtain the desired product.

Condition B: A 10 mL sealed tube equipped with a stirring bar was charged with quinones **1a** (1.0 mmol), organic boronic acid **2a** (1.2 mmol), $CuFe_2O_4$ (12.0 mg, 0.05 mmol, 5.0 mol%), TEMPO (2.0 mmol) and MeOH (2.0 mL). The tube was tightly capped and stirred at 25 °C for 24. Upon completion, the mixture was diluted with 5 mL of ethyl acetate, filtered through a celite pad and washed with 10 mL of ethyl acetate. The filtrate was collected and concentrated. The residue was purified by silica gel column chromatography using PE/EtOAc (5/1) as the eluent to obtain the desired product.

5. References

1 M. F. Boehm and G. D. Prestwich, *Journal of Labelled Compounds and Radiopharmaceuticals*, 1988, **25**, 1007-1015.

6. NMR spectra

¹H NMR of compound **3ab**

¹³C NMR of compound **3ac**

S39

¹H NMR of compound **3ae**

¹H NMR of compound **3ag**

¹H NMR of compound **3ah**

S46

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR of compound **3am**

¹H NMR of compound **3ao**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 fl (ppm)

5000

0

0 -10

¹H NMR of compound **3aq**

¹³C NMR of compound **3aq**

¹H NMR of compound **3ar**

S54

¹H NMR of compound **3au**

¹³C NMR of compound **3ba**

S58

H-H NOEZY of compound 3ca

¹³C NMR of compound **3da**

¹H NMR of compound **3ea**

¹H NMR of compound **3ga**

H-H NOEZY of compound 3ga

¹H NMR of compound **3ga'**

¹³C NMR of compound **3ga'**

¹³C NMR of compound **3ha** 151.7 146.8 146.8 133.6 129.7 128.5 128.5 128.5 128.5 128.3 128.3 126.3 126.3 126.2 126.2 -184.972.0 - 34000 нó -2000

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 fl (ppm)

0 -10

¹H NMR of compound 4aa

¹³C NMR of compound 4aa

¹H NMR of compound **4ab**

0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 fl (ppm)

¹H NMR of compound 4ac

¹³C NMR of compound **4ac**

¹H NMR of compound **4ad**

¹³C NMR of compound **4ad**

¹H NMR of compound 4ae

. 170 160 150

140 130

70

50 40

60

30 20

10

0 -10

100

120 110

90 80 f1 (ppm) - 15000 - 10000 - 5000 - 0 - -5000

¹H NMR of compound 4ag

¹H NMR of compound **4ah**

0 -10

¹H NMR of compound 4ai

152.6 148.8 128.3 128.3 127.1 127.1 127.00 161.4 - 35000 ï Ń 30000 25000 20000 `он ۲ 15000 - 10000 5000 0 90 80 fl (ppm) 180 170 160 150 140 130 120 110 100 70 60 50 40 30 20 10 0 -10

¹H NMR of compound 4aj

¹H NMR of compound 4ak

¹³C NMR of compound **4ak**

¹H NMR of compound 4al

¹³C NMR of compound 4al

~ 130.1 $ar{121.2}$ $ar{116.4}$ $ar{109.9}$ $ar{108.2}$ $ar{108.2}$ $\begin{pmatrix} 160.8 \\ 159.7 \\ 151.9 \\ 151.9 \\ 149.9 \\ \end{bmatrix}$ - 55.4 - 70000 1 65000 60000 55000 50000 45000 0 40000 он 35000 сн₃ 30000 25000 20000 15000 10000 5000 0 - - 5000 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 fl (ppm) 50 40 30 20 10 0 -10

¹H NMR of compound **4an**

^{13}C NMR of compound **4an**

¹H NMR of compound 4ao

¹³C NMR of compound **4ao**

¹³C NMR of compound **4ap**

¹³C NMR of compound 4aq

¹H NMR of compound **4ar**

¹H NMR of compound **4as**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 fl(ppm)

0

10

0 -10

L-10000

¹H NMR of compound 4at

¹H NMR of compound **4au**

^{13}C NMR of compound **4au**

¹H NMR of compound 4av

¹³C NMR of compound **4av**

¹H NMR of compound **4aw**

¹³C NMR of compound **4aw**

¹³C NMR of compound **4ba**

¹H NMR of compound **4ca**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 fl (ppm) - 12000 - 10000 - 8000 - 6000 - 4000 - 2000 - 0 - -2000

10

0 -10

^{13}C NMR of compound 4da

¹H NMR of compound **4ea**

¹³C NMR of compound 4ea

¹H NMR of compound 4fa

¹³C NMR of compound 4fa

¹H NMR of compound 4ga

¹³C NMR of compound 4ga

H-H NOEZY of compound 4ga

¹³C NMR of compound **4ga**'

¹H NMR of compound **4ha**

¹³C NMR of compound **4ha**

H-H NOEZY of compound 4ha

¹H NMR of compound **4ha'**

¹³C NMR of compound **4ha'**

¹H NMR of compound **5aa**

¹³C NMR of compound 5aa

¹H NMR of compound **5ab**

¹H NMR of compound **5ac**

¹³C NMR of compound **5ad**

¹H NMR of compound **5ae**

S104

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 fl (ppm)

`сн₃

- 30000 - 25000 - 20000 - 15000 - 10000 - - 5000

- 0 . - -5000

10

0 -10

¹H NMR of compound **5ah**

¹H NMR of compound **5ba**

¹³C NMR of compound **5ba**

¹H NMR of compound **5ca**

¹H NMR of compound **7**

¹H NMR of compound Fenoxycard

S111

-10

90 80 fl (ppm)

110 100

160 150 140 130 120

-5000

¹H NMR of compound **Pyriproxyfen**

