Electronic Supplementary Information

A five-stranded heterometallic helicate

Sylvain Sudan,^a Farzaneh Fadaei-Tirani,^a and Kay Severin*^a

 ^a Institut of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
 *Email: <u>kay.severin@epfl.ch</u>

Table of contents

1	General	S2
2	Syntheses and characterization	S3
3	Mixture of [Pd(CH ₃ CN) ₄](BF ₄) ₂ and L1 (5:2 ratio)	S13
4	Addition of L2 to [Pd ₂ (L1) ₄] ⁴⁺	S15
5	Addition of La ³⁺ to [Pd ₂ (L1) ₄] ⁴⁺	S18
6	[Pd ₂ La(L1) ₄] ⁷⁺ / [Pd ₂ La(L1) ₅] ⁷⁺ interconversion	S21
7	Crystallographic data	S23
8	References	S26

1 General

All reagents were obtained from commercial sources and used without further purification unless stated otherwise. Ligand L1 and compound 2 were synthesized following reported literature procedures.^{1,2} The syntheses of 1, L1 and L2 were carried out under nitrogen atmosphere.

NMR spectra were measured on a Bruker Avance II spectrometer (¹H: 800 MHz) equipped with a 5 mm CPTCI_{xyz} cryoprobe, a Bruker Avance Neo spectrometer (¹H: 500 MHz) equipped with a CPTCI_{xyz} 5 mm cryoprobe, a Bruker Avance III spectrometer (¹H: 400 MHz) equipped with a BBFO_z 5 mm probe and a Bruker Avance III spectrometer (¹H: 400 MHz) equipped with a Prodigy BBO 5 mm cryoprobe. The chemical shifts are reported in parts per million (ppm) using the solvent residual signal as a reference

Routine ESI-MS experiments were carried out on a Xevo G2-S QTOF mass spectrometer (Waters) with a positive ionization mode.

High resolution mass spectrometry experiments were carried out using a hybrid ion trap-Orbitrap Fourier transform mass spectrometer, Orbitrap Elite (Thermo Scientific) equipped with a TriVersa Nanomate (Advion) nano-electrospray ionization source. Mass spectra were acquired with a minimum resolution setting of 120,000 at 400 *m/z*. To reduce the degree of analyte gas phase reactions leading to side products unrelated to solution phase, the transfer capillary temperature was lowered to 50 °C. Experimental parameters were controlled via standard and advanced data acquisition software.

2 Syntheses and characterization

2.1 1-Ethynylnaphthalene (1)

Scheme S1. Synthesis of 1-Ethynylnaphthalene (1).

1-Bromonaphthalene (1.43 g, 6.9 mmol, 1.0 eq) was degassed via vacuum/N₂ cycles. Trimethylsilylacetylene (1.25 mL, 9.0 mmol, 1.3 eq.), Cul (57 mg, 0.3 mmol, 0.04 eq.), [*t*Bu₃PH](BF₄) (120 mg, 0.4 mmol, 0.06 eq), Pd(CH₃CN)₂Cl₂ (65 mg, 0.3 mmol, 0.04 eq.) and 30 mL of a previously degassed dioxane-NEt₃ mixture (3:1) were added under N₂ and the mixture was stirred at 70 °C for 20 h. After cooling-down to room temperature, the mixture was diluted with with EtOAc (30 mL) and filtered through celite. The solvent was evaporated, replaced with DCM (5 mL), and passed through a silica plug. After evaporation under reduced pressure, the residue was redissolved in MeOH (40 mL) and K₂CO₃ (250 mg, excess) was added to the solution. After stirring overnight at room temperature, the suspension was filtered. The solvent was evaporated product was purified by column chromatography (100% hexane) to give **1** as a red oil (43 % yield). The chemical shifts observed in the ¹H NMR spectrum (400 MHz, CDCl₃) matched those reported in the literature.³ **1** was used directly in the next step without any further purification.

2.2 Synthesis of L2

Scheme S2. Synthesis of L2.

A mixture of compound 2 (213 mg, 0.40 mmol, 1.0 eq.), 1 (183 mg, 1.20 mmol, 3.0 eq.) Cul (8 mg, 0.04 mmol, 0.1 eg), [tBu₃PH](BF₄) (18 mg, 0.06 mmol, 0.15 eg), and Pd(CH₃CN)₂Cl₂ (11 mg, 0.04 mmol, 0.1 eq.) were degassed via vacuum/N₂ cycles. 10 mL of a previously degassed dioxane-NEt₃ mixture (3:1) were added under N₂ and the solution was stirred at 80 °C for 24 h. After cooling-down to room temperature, the residue was diluted with CHCl₃ (10 mL) and filtered over celite. The solvent was removed under vacuum. The solid was redissolved in DCM (5 mL) and passed through a silica column. The yellow fluorescent fractions (λ_{exc} = 366 nm) were collected and the solvent was evaporated under vacuum. The crude product was recrystallized from hot EtOAc to give L2 as a yellow solid (68 mg, 29 % yield). ¹H NMR (500 MHz, CDCl₃, 298 K) δ 8.89 (d, 2H), 8.51 (d,2H), 7.98 (dd, 2H), 7.88 (t, 4H), 7.81 (dd, 2H), 7.65 (ddd, 2H), 7.56 (m, 4H), 7.49 (dd, 2H), 4.41 (t, 2H), 1.99 (m, 2H), 1.65-1.39 (m, 6H), 0.97 (t, 3H). ¹³C NMR (125 MHz CDCl₃) δ 176.91, 141.28, 136.88, 133.40, 133.37, 131.75, 130.58, 128.99, 128.47, 127.08, 126.66, 126.46, 125.46, 122.71, 120.95, 117.03, 115.32, 93.61, 88.25, 46.73, 31.67, 27.43, 26.76, 22.82, 14.18. ESI-MS *m*/*z* calculated for C₄₃H₃₄NO⁺ [M+H]⁺ 580.264, found 580.264.

Figure S1. ¹H NMR spectrum (500 MHz, CDCl₃, 298 K) of L2.

Figure S2. ¹³C NMR spectrum (125 MHz, CDCl₃, 298 K) of L2.

2.3 Synthesis of $[Pd_2(L1)_4]^{4+}$

Scheme S3. Synthesis of $[Pd_2(L1)_4]^{4+}$.

The synthesis was adapted from a reported literature procedure.⁴ Namely, $[Pd(CH_3CN)_4](BF_4)_2$ (1.5 µmol, 84.6 µL of a 17.8 mM stock solution in CD₃CN, 1.0 eq.) was added to a suspension of L1 (1.75 mg, 3.0 µmol, 2.0 eq.) in CD₃CN (1 mL) and the mixture was heated at 70 °C for 3 h to give $[Pd_2(L1)_4]^{4+}$ in quantitative yield. The ¹H NMR (400 MHz, CD₃CN, 298 K) chemical shifts match with those reported in the literature.⁴

Figure S3. ¹H NMR spectrum (400 MHz, CD₃CN, 298 K) of [Pd₂(L1)₄]⁴⁺.

2.4 Synthesis of [Pd₂La(L1)₅]⁷⁺

Scheme S4. Synthesis of [Pd₂La(L1)₅]⁷⁺.

La(NO₃)₃·6H₂O (0.7 µmol, 2.02 µL of a 133.9 mM stock solution in CD₃CN, 1.0 eq.) was added to a mixture of $[Pd(CH_3CN)_4](BF_4)_2$ (1.4 µmol, 28.3 µL of a 49.3 mM stock solution in CD₃CN, 2.0 eq.) and L1 (2.0 mg, 3.5 µmol, 5.0 eq.) in CD₃CN (1 mL). The mixture was heated at 70 °C for 3 h to give [Pd₂La(L1)₅]⁷⁺. ¹H NMR (800 MHz, CD₃CN, 298 K) δ 10.28 (s, 1H), 9.57 (s, 1H), 9.44 (s, 1H), 9.26 (s, 1H), 9.19 (s, 1H), 8.79 (d, 1H), 8.76 (s, 1H), 8.66 (s, 1H), 8.57–8.40 (m, 2H), 8.30 (d, 1H), 8.24 (s, 1H), 8.07 (d, 1H), 8.00 (t, 1H), 7.96 (d, 1H), 7.96–7.93 (m, 2H), 7.90 (d, 1H), 7.86 (t, 1H), 7.82 (d, 1H), 7.74–7.67 (m, 3H), 7.64 (d, 1H), 7.59–7.53 (m, 4H), 7.51 (m, 2H), 7.48–7.41 (m, 2H), 7.26 (t, 1H), 7.23 (d, 1H), 7.12 (d, 1H), 7.00–6.93 (m, 2H), 6.91–6.86 (m, 3H), 6.84–6.78 (m, 4H), 6.71 (d, 1H). 4.37–3.91 (m, 6H), 1.73–1.30 (m, 24H), 1.05, (t, 3H), 1.02 (t, 3H), 0.98 (t, 3H). ¹³C NMR (200 MHz, CD₃CN, 298 K) δ 179.04, 177.70, 177.17, 157.35, 155.66, 154.26, 153.78, 150.51, 145.16, 145.00, 144.81, 144.59, 144.28, 142.49, 142.39, 141.81, 140.76, 140.53, 138.79, 138.09, 137.82, 137.49, 137.18, 137.09, 136.73, 136.41, 136.19, 136.15, 136.05, 135.32, 135.05, 134.88, 134.57, 134.38, 133.12, 132.46, 132.41, 132.34, 132.11, 131.48, 131.20, 130.48, 129.79, 129.63, 129.31, 128.69, 128.27, 128.25, 128.17, 127.99, 127.83, 126.49, 126.12, 126.10, 125.41, 124.89, 122.91, 122.24, 122.06, 121.27, 121.23, 120.95, 120.34, 119.19, 119.63, 119.35, 118.95, 117.82, 117.70, 117.47, 116.37, 116.03, 115.46, 96.43, 95.52, 95.28, 94.92, 93.46, 86.71, 86.49, 85.71, 83.93, 82.73, 48.35, 47.90, 47.59, 32.34, 32.21, 32.06, 28.73, 28.72, 28.25, 26.78, 26.77, 26.62, 23.49, 23.42, 23.33, 14.37, 14.34, 14.30.

Figure S4. ¹H NMR spectrum (800 MHz, CD₃CN, 298 K) of [Pd₂La(L1)₅]⁷⁺.

Figure S5. ¹H NMR spectrum (400 MHz, CD₃CN) of [Pd₂La(**L1**)₅]⁷⁺ recorded at different temperatures.

Figure S6. Zoom in the aromatic region of the ¹H NMR spectrum (800 MHz, CD₃CN, 323 K) of [Pd₂La(L1)₅]⁷⁺.

Figure S7. ¹³C NMR spectrum (200 MHz, CD₃CN, 298 K) of [Pd₂La(L1)₅]⁷⁺.

Figure S8. Zoom in the region 81.3 to 97.6 ppm of the ¹³C NMR spectrum (200 MHz, CD₃CN, 298 K) of $[Pd_2La(L1)_5]^{7+}$. A total of 10 alkyne carbon signals can be observed.

Figure S9. ¹H-¹³C HSQC NMR spectrum (800 MHz, CD₃CN, 298 K) of [Pd₂La(L1)₅]⁷⁺.

Figure S10. Zoom in the region from 6.5 to 10.4 ppm and 110 to 163 ppm of the ¹H-¹³C HSQC NMR spectrum (800 MHz, CD₃CN, 298 K) of $[Pd_2La(L1)_5]^{7+}$.

Figure S11. Zoom in the aromatic region of the ¹H-¹H COSY NMR spectrum (800 MHz, CD₃CN, 323 K) of [Pd₂La(L1)₅]⁷⁺.

Figure S12. HRMS of a mixture of L1 (5.0 eq.), $La(NO_3)_3 \cdot 6H_2O$ (1.0 eq.) and $[Pd(CH_3CN)_4](BF_4)_2$ (2.0 eq.) in CD₃CN after equilibration at 70 °C for 3 h.

Figure S13. HRMS of a mixture of **L1** (5.0 eq.), $La(NO_3)_3 \cdot 6H_2O$ (1.0 eq.) and $[Pd(CH_3CN)_4](BF_4)_2$ (2.0 eq.) in CD₃CN after equilibration at 70 °C for 3 h, comparing the 675–679 region m/z (bottom) and the calculated mass spectrum for $[Pd_2La(L1)_5(NO_3)_2]^{5+}$ (top).

2.5 Isolation of [Pd₂La(L1)₅(NO₃)₂](BF₄)₄(NO₃)

La(NO₃)₃·6H₂O (2.6 µmol, 26.9 µL of a 97.5 mM stock solution in CD₃CN, 1.0 eq.) was added to a mixture of [Pd(CH₃CN)₄](BF₄)₂ (5.2 µmol, 159.6 µL of a 32.8 mM stock solution in CD₃CN, 2.0 eq.) and L1 (7.6 mg, 13.1 µmol, 5.0 eq.) in CD₃CN (4 mL). The mixture was heated at 70 °C for 12 h and a ¹H NMR spectrum was recorded. The solution was then added to a mixture of pentane/diethyl ether (3:1, 40 mL) and the resulting suspension was centrifuged (4000 rpm, 5 min). The supernatant was discarded and the solid was dried under vacuum give to $[Pd_2La(L1)_5(NO_3)_2](BF_4)_4(NO_3)$ as a yellow/orange solid (8.6 mg, 87 % yield).

Figure S14. ¹H NMR spectrum (400 MHz, CD₃CN, 323 K) of the isolated $[Pd_2La(L1)_5(NO_3)_2](BF_4)_4(NO_3)$.

3 Mixture of [Pd(CH₃CN)₄](BF₄)₂ and L1 (5:2 ratio)

L1 + $[Pd(CH_3CN)_4](BF_4)_2$ (5 eq.) (2 eq.) CD₃CN 70 °C, 3 h

Scheme S5. Equilibration of a mixture of L1 (5 eq.) and [Pd(CH₃CN)₄](BF₄)₂ (2 eq.).

A mixture of L1 (2.5 mg, 4.4 μ mol, 5 eq.) and [Pd(CH₃CN)₄](BF₄)₂ (1.8 μ mol, 61.1 μ L of a 28.6 mM stock solution in CD₃CN, 2.0 eq.) in CD₃CN (1.5 mL) was equilibrated at 70 °C for 2 h.

Figure S15. ¹H NMR spectrum (800 MHz, CD₃CN) of and equilibrated mixture of L1 (5 eq.) and [Pd(CH₃CN)₄](BF₄)₂ (2 eq.).

Figure S16. ¹H-¹H COSY NMR spectrum (500 MHz, CD₃CN) of an equilibrated mixture of L1 (5 eq.) and [Pd(CH₃CN)₄](BF₄)₂ (2 eq.).

4 Addition of L2 to [Pd₂(L1)₄]⁴⁺

Scheme S6. Equilibration of a mixture of a mixture of $[Pd_2(L1)_4]^{4+}$ and L2.

 $[Pd_2(L1)_4]^{4+}$ (0.87 µmol, 1078.2 µL of a 0.81 mM stock solution, 1 eq.) was added to a vial containing L2 (2.0 mg, 3.48 µmol, 4 eq.). The suspension was heated at 70 °C for 12 h while stirring and subsequently filtered.

Figure S17. Comparison of the ¹H NMR spectra (800 MHz, CD₃CN, 323 K) of an equilibrated mixture of $[Pd_2(L1)_4]^{4+}$ and L2 (top), L2 (center) and $[Pd_2(L1)_4]^{4+}$ (bottom).

Figure S18. HRMS of an equilibrated mixture of $[Pd_2(L1)_4]^{4+}$ (1 eq.) and L2 (4 eq.) in CD₃CN.

Figure S19. HRMS of a mixture of $[Pd_2(L1)_4]^{4+}$ (1 eq.) and L2 (4 eq.) in CD₃CN after equilibration at 70 °C for 2 h, comparing the (a) 777–783, (b) 1065–1073, (c) 922–928, (d) 1258–1266 *m*/*z* regions (bottom) and the calculated mass spectrum for (a) $[Pd_2(L1)_4(L2)]^{4+}$, (b) $[Pd_2(L1)_4(L2)(BF_4)]^{3+}$, (c) $[Pd_2(L1)_4(L2)_2]^{4+}$ and (d) $[Pd_2(L1)_4(L2)_2(BF_4)]^{3+}$ (top).

5 Addition of La^{3+} to $[Pd_2(L1)_4]^{4+}$

Aliquots (1.6 µL, 0.5 eq.) of a 97.5 mM La(NO₃)₃·6H₂O stock solution in CD₃CN were added to an NMR tube containing $[Pd_2(L1)_4]^{4+}$ (400 µL of a 0.8 mM stock solution in CD₃CN, 1.0 eq), to give $[Pd_2La(L1)_4]^{7+}$. ¹H NMR (400 MHz, CD₃CN, 298 K) δ 9.44 (s, 2H), 9.05 (s, 2H), 8.21 (d, 2H), 8.03 (d, 2H), 7.94 (t, 2H), 7.89 (d, 2H), 7.76 (d, 2H), 7.61 (d, 1H), 7.30 (d, 2H), 4.49 (dd, 2H), 1.66 (q, 2H), 1.48 (m, 4H), 0.99 (t, 3H).The ¹H NMR spectra recorded directly after the addition of 0.5 and 1.0 equivalent of La³⁺ are shown below.

Scheme S7. Addition of La^{3+} to $[Pd_2(L1)_4]^{4+}$.

Figure S20. ¹H NMR spectrum (400 MHz, CD₃CN, 298 K) of $[Pd_2(L1)_4]^{4+}$ before (bottom) and after the addition of 0.5 (center) and 1.0 eq. (top) of La(NO₃)₃·6H₂O. The peaks associated to $[Pd_2(L1)_4]^{4+}$ and $[Pd_2La(L1)_4]^{7+}$ are highlighted in blue and red, respectively.

Figure S21. ¹³C NMR spectrum (200 MHz, CD₃CN, 298 K) of [Pd₂La(L1)₄]⁷⁺.

Figure S22. Zoom in the aromatic region of the ${}^{1}H{}^{-13}C$ HSQC NMR spectrum (800 MHz, CD₃CN, 298 K) of [Pd₂La(L1)₄]⁷⁺.

Figure S23. HRMS of a mixture of $[Pd_2(L1)_4]^{4+}$ (1 eq.) and $La(NO_3)_3 \cdot 6H_2O$ (1 eq.) in CD₃CN.

Figure S24. HRMS of a mixture of $[Pd_2(L1)_4]^{4+}$ (1 eq.) and $La(NO_3)_3 \cdot 6H_2O$ (1 eq.) in CD₃CN, comparing the 558–563 *m*/*z* region (bottom) and the calculated mass spectrum form $[Pd_2La(L1)_4(NO_3)_2]^{5+}$.

6 $[Pd_2La(L1)_4]^{7+}/ [Pd_2La(L1)_5]^{7+}$ interconversion

[Pd₂(L1)₄]⁴⁺ to [Pd₂La(L1)₄]⁷⁺

La(NO₃)₃·6H₂O (1.0 µmol, 10.23 µL of a 97.5 mM stock solution in CD₃CN, 1.0 eq.) was added to $[Pd_2(L1)_4]^{4+}$ (1.0 µmol, 1273.3 µL of a 0.78 mM stock solution in CD₃CN, 1.0 eq.) to give a 0.78 mM stock solution of $[Pd_2La(L1)_4]^{7+}$ (I).

$[Pd_{2}La(L1)_{4}]^{7+}$ to $[Pd_{2}La(L1)_{5}]^{7+}$

 $[Pd_2La(L1)_4]^{7+}$ (0.8 µmol, 1022.4 µL of stock solution I, 1 eq.) was then added to L1 (0.46 mg, 0.8 µmol, 1.0 eq.) and the suspension heated at 70 °C for 1 h to give a 0.78 mM solution of $[Pd_2La(L1)_5]^{7+}$ (II).

$[Pd_2La(L1)_5]^{7+}$ to $[Pd_2(L1)_4]^{4+}$

Finally, $[Pd(CH_3CN)_4](BF_4)_2$ (0.16 µmol, 5.43 µL of a 28.6 mM stock solution in CD₃CN, 0.5 eq.) and La(NO₃)₃·6H₂O (0.08 µmol, 0.80 µL of a 97.5 mM stock solution in CD₃CN, 0.25 eq.) were added to $[Pd_2La(L1)_5]^{7+}$ (0.31 µmol, 400 µL of a 0.78 mM stock solution, 1.0 eq.) and the mixture heated at 70 °C for 1 h to give $[Pd_2La(L1)_4]^{7+}$ (III).

¹H NMR spectra of the solutions, recorded at each step, are shown below.

Figure S25. ¹H NMR spectrum (400 MHz, CD₃CN, 298 K) of $[Pd_2(L1)_4]^{4+}$ (1 eq.) (d) and after the subsequent addition of La(NO₃)₃·6H₂O (1 eq.) (c), L1 (1 eq.) (b) $[Pd(CH_3CN)_4](BF_4)_2$ (0.5 eq.) and La(NO₃)₃·6H₂O (0.25 eq.) (a).

7 Crystallographic data

Figure S20. Molecular structure of $[Pd_2La(L1)_5(NO_3)_2]^{5+}$ in the crystal.

Experimental. Single clear intense yellow hexagonal-shaped crystals of $[Pd_2La(L1)_5(NO_3)_2](BF_4)_4(NO_3)$ were used as supplied. A suitable crystal with dimensions 0.11 × 0.06 × 0.06 mm³ was selected and mounted on an XtaLAB Synergy R, DW system, HyPix-Arc 150 diffractometer. The crystal was kept at a steady T = 140.00(10) K during data collection. The structure was solved with the *ShelXT*⁵ solution program using dual methods and by using *Olex2*⁶ as the graphical interface. The model was refined with ShelXL⁷ using full-matrix least-squares minimisation on F^2 .

Crystal Data. C₂₁₀H₁₅₅LaN₁₂O₁₁Pd₂, M_r = 3374.16, trigonal, $P\bar{3}$ (No. 147), a = 30.9679(6) Å, b = 30.9679(6) Å, c = 34.1539(5) Å, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 120^{\circ}$, V = 28365.8(12) Å³, T = 140.00(10) K, Z = 6, Z' = 1, μ (Cu K $_{\alpha}$) = 3.704, 133335 reflections measured, 33383 unique ($R_{int} = 0.0858$) which were used in all calculations. The final wR_2 was 0.3158 (all data) and R_1 was 0.0949 ($I \ge 2\sigma$ (I)).

Structure Quality Indicators

Reflections:	d min (Cu∖a) 2@=133.2°	0.84 /σ(I)	8.9 ^{Rint} m⊨4.00	8.58% Full 133.2°	99.9
Refinement:	Shift CIF	0.004 Max Peak	1.6 Min Peak	-0.8 GooF	0.982

A clear intense yellow hexagonal-shaped crystal with dimensions $0.11 \times 0.06 \times 0.06$ mm³ was mounted. Data were collected using an XtaLAB Synergy R, DW system, HyPix-Arc 150 diffractometer operating at *T* = 140.00(10) K.

Data were measured using ω scans with CuK α radiation. The diffraction pattern was indexed and the total number of runs and images was based on the strategy calculation from the program *CrysAlis*^{Pro.8} The maximum resolution achieved was Θ = 66.591° (0.84 Å).

The unit cell was refined using *CrysAlis*^{Pro} on 19036 reflections, 14% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using *CrysAlis^{Pro}*. The final completeness is 99.90 % out to 66.591° in Θ . A Gaussian absorption correction was performed using *CrysAlis^{Pro}* numerical absorption correction based on Gaussian integration over a multifaceted crystal model. Empirical absorption correction using spherical harmonics as implemented in SCALE3 ABSPACK scaling algorithm. The absorption coefficient μ of this material is 3.704 mm⁻¹ at this wavelength (λ = 1.54184Å) and the minimum and maximum transmissions are 0.754 and 0.904.

The structure was solved in the space group $P_{\bar{3}}$ (# 147) determined by the ShelXT structure solution program using dual methods and refined by full-matrix least-squares minimisation on F^2 using version 2019/3 of ShelXL. All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model.

There is a single formula unit in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 6 and Z' is 1.

A solvent mask was calculated, and 1332 electrons were found in a volume of 5697 Å³in 8 voids per unit cell. This is consistent with the presence of 5 $[BF_4]^-$ per asymmetric unit which account for 1230 electrons per unit cell and the rest are some solvent molecules of acetonitrile.

Table 1 Crystallographic data for [Pd2La(L1)5(NO3)2](BF4)4(NO3)

Formula	$C_{210}H_{155}LaN_{12}O_{11}Pd_2$		
D _{calc.} / g cm ⁻³	1.185		
<i>µ</i> /mm⁻¹	3.704		
Formula Weight	3374.16		
Colour	clear intense yellow		
Shape	hexagonal-shaped		
Size/mm ³	0.11×0.06×0.06		
T/K	140.00(10)		
Crystal System	trigonal		
Space Group	P 3		
<i>a</i> /Å	30.9679(6)		
b/Å	30.9679(6)		
c/Å	34.1539(5)		
$\alpha / ^{\circ}$	90		
βl°	90		
γl°	120		
V/Å ³	28365.8(12)		
Ζ	6		
Ζ'	1		
Wavelength/Å	1.54184		
Radiation type	Cu <i>K</i> a		
$\Theta_{min}/^{\circ}$	2.587		
$\Theta_{max}/^{\circ}$	66.591		
Measured Refl's.	133335		
Indep't Refl's	33383		
Refl's l≥2 <i>o</i> (l)	14532		
R _{int}	0.0858		
Parameters	2224		
Restraints	4049		
Largest Peak/e Å ⁻³	1.560		
Deepest Hole/e Å ⁻³	-0.832		
GooF	0.982		
wR2 (all data)	0.3158		
wR ₂	0.2537		
R1 (all data)	0.1872		
R_1	0.0949		
CCDC number	2258906		

8 References

- 1 W. M. Bloch, Y. Abe, J. J. Holstein, C. M. Wandtke, B. Dittrich and G. H. Clever, *J. Am. Chem. Soc.*, 2016, **138**, 13750–13755.
- 2 M. Krick, J. Holstein, C. Würtele and G. H. Clever, *Chem. Commun.*, 2016, **52**, 10411–10414.
- 3 D. Sharma, Y. Hussain, M. Sharma and P. Chauhan, *Green Chem.*, 2022, **24**, 4783–4788.
- 4 W. M. Bloch, J. J. Holstein, W. Hiller and G. H. Clever, *Angew. Chem. Int. Ed Engl.*, 2017, **56**, 8285–8289.
- 5 G. M. Sheldrick, Acta Cryst., 2015, A71, 3–8.
- 6 O. V. Dolomanov, L. J. Bourhis, R.J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339–341.
- 7 G. M. Sheldrick, Acta Cryst., 2015, C71, 3–8.
- 8 CrysAlis^{Pro} Software System, Rigaku Oxford Diffraction, 2022.