Supplementary Information

Contents

1. General Methods	1
2. Representative Procedures	3
3. Characterization of Products	10
4. X-ray Single Crystal Data for 3p and (<i>meso</i>)- 3a'	
5. NMR Spectra	
6. HPLC Spectra	63
7. References	96

1. General Methods

Unless otherwise specified, all reactions were conducted under an inert atmosphere and anhydrous conditions. All the solvents were purified according to the standard procedures. All chemicals which are commercially available were employed without further purification. Thin-layer chromatography (TLC) was performed on silica gel plates (60F - 254) using UV - light (254 nm). Flash chromatography was conducted on silica gel (200-300 mesh). ¹H and ¹³C NMR spectra were recorded at ambient reported in parts per million (ppm). The data are reported as follows: for ¹H NMR, chemical shift in ppm from tetramethylsilane with the solvent as internal standard (DMSO δ 2.50 ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet or overlap of non-equivalent resonances), integration; for ¹³C NMR, chemical shift in ppm from tetramethylsilane with the solvent as internal indicator (DMSO § 39.5 ppm), multiplicity with respect to protons. All high-resolution mass spectra were obtained on a Q-TOF Micro LC/MS System ESI spectrometer to be given in m/z. Enantiomeric excesses values were determined with HPLC (chiral column; mobile phase hexane/*i*-PrOH). Cyclic β -keto esters 1 were employed directly from commercial sources except $1q-1s^{[1]}$, $1t^{[2]}$, $1x^{[3]}$, which prepared according to the literature; azoalkenes 2 were synthesized according to modified literature-reported procedures^[4].

2. Representative Procedures

Optimization of the reaction conditions for 3a-3k, 3p-3t, 3a'

1. Effect of Catalysts (Table S1)

- a) Reaction conditions: 1a (0.05 mmol), 2a (0.06 mmol.), Cat. (10 mol%) and toluene (1 mL) at
- 0 °C for 12 h. b) Isolated yields. c) Determined by chiral HPLC analysis. All dr > 20:1.
- 2. Effect of Solvents (Table S2)

CO ₂ Et	+	MeO ₂ C N CO ₂ Et	_	C2 (10 mol%) solvent, 0 °C	EtO ₂ C CO ₂ Et N OH NHCO ₂ Me
1a		2a			3a
Entry	Cat.		Solvent	Yield (%)	<i>ee</i> (%) ^c
1	C2		toluene	94	90
2	C2		THF	80	64
3	C2		CH ₃ CN	85	80
4	C2		CH_2Cl_2	96	94

a) Reaction conditions: **1a** (0.05 mmol), **2a** (0.06 mmol.), **C2** (10 mol%) and solvent (1 mL) at 0 $^{\circ}$ C for 12 h. b) Isolated yields. c) Determined by chiral HPLC analysis. All dr > 20:1.

CO ₂ Et	+	MeO ₂ C N N CO ₂ Et		C2. (10 mol%) CH ₂ Cl ₂ , T	EtO ₂ C	CO ₂ Et
1a		2a				3a
Entry	Cat.		T/ ℃	Yield	(%) ^b	<i>ee</i> (%) ^c
1	C2		25	8	0	88
2	C2		0	90	6	94
3	C2		-20	94	4	93

3. Effect of more Temperatures (Table S3)

a) Reaction conditions: **1a** (0.05 mmol), **2a** (0.06 mmol.), **C2** (10 mol%) and CH_2Cl_2 (1 mL), 12 h.

b) Isolated yields. c) Determined by chiral HPLC analysis. All dr > 20:1.

5. Effect of the amount of catalyst (Table S4)

O CO ₂ Et	+ N ^N + CO ₂ Et	(x r CH ₂ C	C2. E nol%) Cl ₂ , 0 ℃	EtO_2C CO_2Et OH NHCO ₂ Me 3a
Entry	Cat.	Eq (mol%)	Yield (%) ^b	<i>ee</i> (%) ^c
1	C2	2	36	10
2	C2	4	79	87
3	C2	6	82	93
4	C2	8	88	94
5	C2	10	96	94

a) Reaction conditions: **1a** (0.05 mmol), **2a** (0.06 mmol.), and CH_2Cl_2 (1 mL), at 0 °C for 12 h. b) Isolated yields. c) Determined by chiral HPLC analysis. All dr > 20:1.

Optimization of the reaction conditions for 31-30

1. Effect of more Temperatures (Table S5)

CO ₂ Et	+	EtO_2C N ⁻ N CO ₂ Et	C2. (10 mol%) CH ₂ Cl ₂ , T	→ EtO ₂ C	CO ₂ Et
1a		21		31	
Entry	Cat.	T/ '	C Y	ield (%) ^b	<i>ee</i> (%) ^c
1	C2	25		83	80
2	C2	0		88	86
3	C2	-20)	87	84
4	C2	-4)	92	90

a) Reaction conditions: 1a (0.05 mmol), 2l (0.06 mmol.), C2 (10 mol%) and CH₂Cl₂ (1 mL), 24 h.
b) Isolated yields. c) Determined by chiral HPLC analysis. All dr > 20:1.

.

Optimization of the reaction conditions for 3u-3z

CO ₂	Me + C	O_2C N^{N} O_2Et O_2Et O_2C O	$\begin{array}{c} \text{MeO} \\ \text{mol\%} \\ \text{I}_2, 0 \ ^\circ\text{C} \end{array} \end{array}$	² CO ₂ Et N OH _{NHCO₂Me}
1u		2a		3u
Entry	Cat.	Additive	Yield (%) ^b	<i>ee</i> (%) ^c
1	C2	-	78	32
2	C2	50 mg 3Å MS	89	93
3	C2	50 mg 4Å MS	91	94
4	C2	50 mg 5Å MS	90	94

1. Effect of additive (Table S6)

a) Reaction conditions: **1u** (0.05 mmol), **2a** (0.06 mmol.), **C2** (10 mol%) and CH_2Cl_2 (1 mL) at 0 $^{\circ}C$ for 48 h. b) Isolated yields. c) Determined by chiral HPLC analysis. All dr > 20:1.

General Procedures for the synthesis of products 3

For 3a-3k, 3p-3t, 3a'

Cyclic β -keto ester **1** (0.20 mmol), and **C2** (10 mol%) were dissolved in CH₂Cl₂ (2 mL) and azoalkene **2** (0.24 mmol) was added dropwise at 0 °C. The reaction mixture was stirred for 12 h. After the completion of the reaction which was indicated by TLC, the solvents were removed in vacuo and the crude product was separated by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 1.5:1–1:1) to afford the target products **3**.

For 31-30

Cyclic β -keto ester **1a** (0.20 mmol), and **C2** (10 mol%) were dissolved in CH₂Cl₂ (2 mL) and azoalkene **2** (0.24 mmol) was added dropwise at -40 °C. The reaction mixture was stirred for 12 h. After the completion of the reaction which was indicated by TLC, the solvents were removed in vacuo and the crude product was separated by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 1.5:1–1:1) to afford the target products **3**.

Cyclic β -keto ester 1 (0.20 mmol), 4Å MS (50 mg) and C2 (10 mol%) were dissolved in CH₂Cl₂ (2 mL) and azoalkene 2a (0.24 mmol) was added dropwise at 0 °C. The reaction mixture was stirred for 12 h. After the completion of the reaction which was indicated by TLC, the solvents were removed in vacuo and the crude product was separated by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 1.5:1–1:1) to afford the target products 3.

Procedure for the gram-scale reaction

Cyclic β -keto ester 1a (0.47 g, 3 mmol), and C2 (10 mol%) were dissolved in

CH₂Cl₂ (20 mL) and azoalkene **2a** (0.72 g, 3.6 mmol) was added dropwise at 0 °C. The reaction mixture was stirred for 24 h.After the completion of the reaction which was indicated by TLC, the solvents were removed in vacuo and the crude product was separated by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1-1:1) to afford the target products **3a**.(0.94 g, 88% yield) as a white solid.

Derivatization of 3a, 3c and 3e into compounds 4-8

To the solution of compound **3a** (68.4 mg, 0.19 mmol) in CH₂Cl₂ (1 mL) was add boron trifluoride ether (41.2 mg, 0.29 mmol) and triethyl silane (33.4 mg, 0.29 mmol) dissolved in CH₂Cl₂ (1mL), the reaction mixture was stirred at 20 °C for 4 h. After the completion of the reaction which was indicated by TLC, the reaction mixture was treated with H₂O and extracted with ethyl acetate and washed with brine. The combined organic layers were dried with anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. The residue was purified through preparative thin layer chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to afford pure product **4**.

To the solution of compound 4 (64.0 mg, 0.19 mmol) in CH_3CN (1 mL) was added ethyl 2-bromoacetate (48.1 mg, 0.29 mmol). Then, Cs_2CO_3 (94.5 mg, 0.29 mmol) was added to the reaction mixture, which was stirred at room temperature for 2 h. After the completion of the reaction which was indicated by TLC, the reaction mixture was purified through preparative thin layer chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) to afford pure product **5**.

To the solution of compound **5** (65.0 mg, 0.15 mmol) in CH₃CN (1 mL) was added Cs₂CO₃ (97.7 mg, 0.3 mmol), the reaction mixture was stirred at 60 °C for 3 day. After the completion of the reaction which was indicated by TLC, the reaction mixture was purified through preparative thin layer chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) to afford pure product **6**.

To the solution of compound **3c** (83.0 mg, 0.19 mmol) in THF (1 mL) was added Pd/C (25 mg) under H₂, the reaction mixture was stirred at room temperature overnight. After the completion of the reaction which was indicated by TLC, the reaction mixture was purified through preparative thin layer chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) to afford pure product **7**.

To the solution of compound 7 (53.2 mg, 0.18 mmol) in CH_2Cl_2 (1 mL) was added TFA (0.25 mmol), the reaction mixture was stirred at 20 °C for 24 h. After the completion of the reaction which was indicated by TLC, the reaction mixture was treated with H₂O and extracted with ethyl acetate and washed with brine. The combined organic layers were dried with anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. The residue was purified through preparative thin layer chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) to afford pure

product 8.

To the solution of compound **3e** (59.7 mg, 0.15 mmol) in CH₂Cl₂ (1 mL) was added TFA (0.26 mmol), the reaction mixture was stirred at 20 °C for 6 h. After the completion of the reaction which was indicated by TLC, the reaction mixture was treated with H₂O and extracted with ethyl acetate and washed with brine. The combined organic layers were dried with anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. The residue was purified through preparative thin layer chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) to afford pure product **8**.

3. Characterization of Products

Diethyl (3aR,6aR)-6a-hydroxy-1-((methoxycarbonyl)amino)-2-methyl-4,5,6,6a-tetrah ydrocyclopenta[b]pyrrole-3,3a(1H)-dicarboxylate **3a:**

A colorless solid; 68.4 mg; isolated yield = 96%; dr > 20:1; m.p. 87.5 – 87.8°C; $[\alpha]^{25.2}_{D} = -11.00$ (c 0.1 EtOAc); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, $\lambda = 254$ nm), retention time: t₁ = 5.76 min (minor), t₂ = 7.71 min (major), *ee* = 94%; ¹H NMR (400 MHz, DMSO) δ 9.32 – 8.82 (m, 1H), 6.49 (s, 1H), 4.11 – 3.95 (m, 4H), 3.64 (s, 3H), 2.68 – 2.60 (m, 1H), 2.08 (s, 3H), 1.99 – 1.62 (m, 5H), 1.11 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (100 MHz, DMSO) δ 172.2, 165.3, 159.5, 157.9, 104.8, 99.4, 63.3, 60.4, 58.5, 52.7, 38.0, 36.9, 23.0, 14.8, 14.6, 11.8. HRMS (ESI) m/z calcd for C₁₆H₂₄N₂O₇Na⁺ [M + Na]⁺ = 379.1476, found = 379.1486.

A colorless oil; 66.6 mg; isolated yield = 90%; dr > 20:1; $[\alpha]^{25.2}_{D}$ = 15.38 (c 0.13 EtOAc); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), retention time: t₁ = 5.67 min (minor), t₂ = 7.80 min (major), *ee* = 91%; ¹H NMR (400 MHz, DMSO) δ 9.24 – 8.76 (m, 1H), 6.51 – 6.45 (m, 1H), 4.10 – 3.94 (m, 6H), 2.67 – 2.62 (m, 1H), 2.08 (s, 3H), 1.75 – 1.62 (m, 5H), 1.20 (t, *J* = 7.0 Hz, 3H), 1.11 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (100 MHz, DMSO) δ 172.2, 165.3, 159.6, 157.4, 104.7, 99.2, 63.3, 61.5, 60.4, 58.5, 38.0, 36.9, 23.0, 14.9, 14.8, 14.6, 11.8. HRMS (ESI) m/z calcd for C₁₇H₂₆N₂O₇Na⁺ [M + Na]⁺ = 393.1632, found = 393.1636.

Diethyl (3a*R*,6a*R*)-1-(((benzyloxy)carbonyl)amino)-6a-hydroxy-2-methyl-4,5,6,6a-tet rahydrocyclopenta[*b*]pyrrole-3,3a(1*H*)-dicarboxylate **3c:**

A colorless solid; 83.0 mg; isolated yield = 96%; dr > 20:1; m.p. 84.2 – 84.4°C; $[\alpha]^{25.4}_{D}$ = -10.67 (c 0.15 EtOAc); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), retention time: t₁ = 8.35 min (minor), t₂ = 11.53 min (major), *ee* = 95%; ¹H NMR (400 MHz, DMSO) δ 9.30 – 8.81 (m, 1H), 7.36 – 7.28 (m, 5H), 6.56 – 6.50 (m, 1H), 5.08 – 5.00 (m, 2H), 4.12 – 3.90 (m, 4H), 2.70 – 2.66 (m, 1H), 2.11 (s, 3H), 1.99 – 1.64 (m, 5H), 1.20 (t, *J* = 7.0 Hz, 3H), 1.02 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, DMSO) δ 172.2, 165.3, 159.4, 157.4, 136.9, 129.0, 128.6, 128.3, 104.8, 99.3, 66.8, 63.3, 60.4, 58.5, 38.0, 36.9, 23.0, 14.8, 14.6, 11.8. HRMS (ESI) m/z calcd for C₂₂H₂₈N₂O₇Na⁺ [M + Na]⁺ = 455.1789, found = 455.1794. <u>Diethyl</u> (3aR,6aR)-1-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-6a-hydroxy-2-me thyl-4,5,6,6a-tetrahydrocyclopenta[*b*]pyrrole-3,3a(1H)-dicarboxylate **3d**:

A colorless solid; 98.8 mg; isolated yield = 95%; dr > 20:1; m.p. 140.2 – 140.5°C; $[\alpha]^{24.5}_{D} = 9.31$ (c 0.23 EtOAc); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, $\lambda = 254$ nm), retention time: t₁ = 9.86 min (minor), t₂ = 13.19 min (major), ee = 95%; ¹H NMR (400 MHz, DMSO) δ 9.57 – 8.68 (m, 1H), δ 7.91 – 7.33 (m, 8H), 6.47 – 6.29 (m, 1H), 4.65 – 4.05 (m, 4H), 4.00 – 3.95 (m, 3H), 2.65 – 2.51 (m, 1H), 2.06 (s, 3H), 1.96 – 1.60 (m, 5H), 1.14 – 1.09 (m, 6H). ¹³C NMR (100 MHz, DMSO) δ 172.2, 165.3, 159.5, 157.3, 144.0, 141.3, 128.2, 127.6, 125.8, 120.6, 104.8, 99.4, 66.7, 63.3, 60.4, 58.5, 47.1, 38.0, 37.0, 23.1, 14.9, 14.6, 11.8. HRMS (ESI) m/z calcd for C₂₉H₃₂N₂O₇Na⁺ [M + Na]⁺ = 543.2102, found = 543.2110.

<u>Diethyl</u> (3a*R*,6a*R*)-1-((*tert*-butoxycarbonyl)amino)-6a-hydroxy-2-methyl-4,5,6,6a-tetr ahydrocyclopenta[*b*]pyrrole-3,3a(1*H*)-dicarboxylate **3e:**

A colorless solid; 59.7 mg; isolated yield = 75%; dr > 20:1; m.p. 76.2 – 76.4°C; $[\alpha]^{24.6}_{D} = -5.20$ (c 0.51 EtOAc); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, $\lambda = 254$ nm), retention time: t₁ = 5.96 min (minor), t₂ = 6.85 min (major), *ee* = 85%; ¹H NMR (400 MHz, DMSO) δ 9.97 – 8.45 (m, 1H), 6.48 – 6.36 (m, 1H), 4.11 – 3.95 (m, 4H), 2.64 – 2.62 (m, 1H), 2.07 (s, 3H), 1.99 – 1.61 (m, 5H), 1.41 (s, 9H), 1.11 (t, J = 7.1 Hz, 6H). ¹³C NMR (100 MHz, DMSO) δ 172.2, 165.4, 159.8, 156.4, 104.7, 99.0, 80.4, 63.3, 60.5, 58.5, 38.0, 36.9, 28.3, 23.0, 14.9, 14.6, 11.8. HRMS (ESI) m/z calcd for C₁₉H₃₀N₂O₇Na⁺ [M + Na]⁺ = 421.1945, found = 421.1950.

<u>3a-ethyl</u> <u>3-methyl</u> <u>(3aR,6aR)-1-((ethoxycarbonyl)amino)-6a-hydroxy-2-methyl-4,5,6,</u> 6a-tetrahydrocyclopenta[*b*]pyrrole-3,3a(1*H*)-dicarboxylate **3f:**

A colorless solid; 68.4 mg; isolated yield = 96%; dr > 20:1; m.p. 78.3 – 78.5°C; $[\alpha]^{24.6}_{D} = -7.39$ (c 0.23 EtOAc); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, $\lambda = 254$ nm), retention time: t₁ = 5.94 min (minor), t₂ = 8.97 min (major), *ee* = 95%; ¹H NMR (400 MHz, DMSO) δ 9.26 – 8.78 (m, 1H), 6.54 – 6.49 (m, 1H), 4.11 – 3.91 (m, 4H), 3.49 (s, 3H), 2.66 – 2.58 (m, 1H), 2.07 (s, 3H), 1.95 – 1.61 (m, 5H), 1.19 (t, *J* = 7.0 Hz, 3H), 1.09 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, DMSO) δ 172.1, 165.8, 159.7, 157.4, 104.8, 99.0, 63.3, 61.5, 60.4, 50.4, 38.0, 36.9, 23.0, 14.9, 14.6, 11.9. HRMS (ESI) m/z calcd for C₁₆H₂₄N₂O₇Na⁺ [M + Na]⁺ = 379.1476, found = 379.1481.

<u>3a-ethyl</u> <u>3-methyl</u> <u>(3aR,6aR)-6a-hydroxy-1-((methoxycarbonyl)amino)-2-methyl-4,5,</u> <u>6,6a-tetrahydrocyclopenta[*b*]pyrrole-3,3a(1*H*)-dicarboxylate <u>3g:</u></u>

A colorless solid; 47.9 mg; isolated yield = 70%; dr > 20:1; m.p. 95.3 – 95.7°C; $[\alpha]^{24.6}_{D} = 7.95$ (c 0.23 EtOAc); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, $\lambda = 254$ nm), retention time: t₁ = 6.28 min (minor), t₂ = 9.43 min (major), ee = 93%; ¹H NMR (400 MHz, DMSO) δ 9.33 – 8.83 (m, 1H), 6.52 (s, 1H), 4.14 – 4.08 (m, 2H), 3.63 (s, 3H), 3.50 (s, 3H), 2.66 – 2.58 (m, 1H), 2.07 (s, 3H), 1.73 – 1.62 (m, 5H), 1.09 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, DMSO) δ 172.1, 165.8, 159.7, 157.9, 104.8, 99.2, 63.2, 60.4, 52.7, 50.4, 38.0, 36.9, 23.0, 14.6, 11.9. HRMS (ESI) m/z calcd for C₁₅H₂₂N₂O₇Na⁺ [M + Na]⁺ = 365.1319, found = 365.1328.

<u>3-benzyl 3a-ethyl (3aR,6aR)-6a-hydroxy-1-((ethoxycarbonyl)amino)-2-methyl-4,5,6,</u> <u>6a-tetrahydrocyclopenta[*b*]pyrrole-3,3a(1*H*)-dicarboxylate **3h:**</u>

A colorless oil; 77.8 mg; isolated yield = 90%; dr > 20:1; $[\alpha]^{24.7}_{D} = 10.42$ (c 0.05 EtOAc); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), retention time: t₁ = 5.36 min (minor), t₂ = 6.49 min (major), *ee* = 92%; ¹H NMR (400 MHz, DMSO) δ 9.28 – 8.80 (m, 1H), 7.35 – 7.25 (m, 5H), 6.58 – 5.50 (m, 1H), 5.07 – 5.00 (m, 2H), 4.11 – 3.89 (m, 4H), 2.67 – 2.65 (m, 1H), 2.11 (s, 3H), 1.98 – 1.64 (m, 5H), 1.19 (t, *J* = 7.1 Hz, 3H), 1.01 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, DMSO) δ 172.1, 165.0, 160.3, 157.4, 137.7, 128.7, 128.0, 127.7, 104.9, 98.8, 64.2, 63.3, 61.5, 60.5, 38.1, 37.0, 23.0, 14.9, 14.5, 11.9. HRMS (ESI) m/z calcd for C₂₂H₂₈N₂O₇Na⁺ [M + Na]⁺ = 455.1789, found = 455.1794.

<u>3-allyl 3a-ethyl (3aR,6aR)-6a-hydroxy-1-((ethoxycarbonyl)amino)-2-methyl-4,5,6,6a</u> -tetrahydrocyclopenta[*b*]pyrrole-3,3a(1*H*)-dicarboxylate **3i**:

A colorless oil; 33.6 mg; isolated yield = 55%; dr > 20:1; $[\alpha]^{24.8}_{D}$ = -2.67 (c 0.15 EtOAc); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), retention time: t₁ = 6.68 min (minor), t₂ = 9.25 min (major), *ee* = 93%; ¹H NMR (400 MHz, DMSO) δ 9.29 – 8.80 (m, 1H), 6.56 – 6.51 (m, 1H), 5.90 – 5.81 (m, 1H), 5.23 – 5.11 (m, 2H), δ 4.50 – 4.40 (m, 2H), δ 4.09 – 3.92 (m, 4H), δ 2.68 – 2.63 (m,

1H), 2.08 (s, 3H), 1.97 - 1.62 (m, 5H), 1.19 (t, J = 6.8 Hz, 3H), 1.09 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, DMSO) δ 172.2, 164.9, 160.2, 157.4, 133.9, 116.6, 104.8, 98.8, 63.2, 61.5, 60.5, 38.0, 36.9, 23.0, 14.9, 14.6, 11.9. HRMS (ESI) m/z calcd for $C_{18}H_{26}N_2O_7Na^+$ [M + Na]⁺ = 405.1632, found = 405.1638.

3-(tert-butyl) 3a-ethyl (3aR,6aR)-6a-hydroxy-1-((ethoxycarbonyl)amino)-2-methyl-4,5,6,6a-tetrahydrocyclopenta[*b*]pyrrole-3,3a(1*H*)-dicarboxylate **3j**:

A colorless oil; 71.6 mg; isolated yield = 90%; dr > 20:1; $[\alpha]^{24.8}$ _D = 1.86 (c 0.15) EtOAc); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, $\lambda = 254$ nm), retention time: $t_1 = 9.84$ min (major), $t_2 = 15.1$ min (minor), ee = 93%; ¹H NMR (400 MHz, DMSO) δ 9.22 – 8.71 (m, 1H), 6.44 – 6.38 (m, 1H), 4.16 – 4.03 (m, 4H), 2.73 - 2.68 (m, 1H), 2.10 (s, 3H), 2.00 - 1.66 (m, 5H), 1.40 (s, 9H), 1.25 (t, J = 7.0 Hz, 3H), 1.20 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, DMSO) δ 172.4, 164.9, 158.6, 157.5, 104.5, 100.7, 78.0, 63.5, 61.4, 60.4, 38.0, 37.0, 28.6, 22.9, 14.9, 14.7, 11.7. HRMS (ESI) m/z calcd for C₁₉H₃₀N₂O₇Na⁺ [M + Na]⁺ = 421.1945, found = 421.1956.

<u>3a-ethyl</u> <u>3-(2-methoxyethyl</u>) (3aR,6aR)-1-((ethoxycarbonyl)amino)-6a-hydroxy-2-m ethyl-4,5,6,6a-tetrahydrocyclopenta[b]pyrrole-3,3a(1H)-dicarboxylate 3k:

A colorless oil; 72.0 mg; isolated yield = 90%; dr > 20:1; $[\alpha]^{24.8}$ _D = 17.29 (c 0.17) EtOAc); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, $\lambda = 254$ nm), retention time: $t_1 = 6.93$ min (minor), $t_2 = 11.15$ min (major), ee = 80%; ¹H NMR (400 MHz, DMSO) δ 9.29 – 8.80 (m, 1H), 6.54 – 6.48 (m, 1H), 4.11 – 4.07 (m, 6H), 3.47 - 3.45 (m, 2H), 3.23 (s, 3H), 2.64 - 2.62 (m, 1H), 2.07 (s, 3H), 1.97 - 1.62 (m, 5H), 1.19 (t, J = 7.0 Hz, 3H), 1.11 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, DMSO) δ 172.1, 165.2, 159.8, 157.2, 104.8, 99.0, 70.7, 63.3, 61.9, 61.59, 60.4, 58.5, 38.1, 36.8, 23.0, 14.9, 14.6, 11.9. HRMS (ESI) m/z calcd for C₁₈H₂₈N₂O₈Na⁺ [M + Na]⁺ = 423.1738, found = 423.1740.

<u>Diethyl</u> (3a*R*,6a*R*)-1-((ethoxycarbonyl)amino)-2-ethyl-6a-hydroxy-4,5,6,6a-tetrahydr ocyclopenta[*b*]pyrrole-3,3a(1*H*)-dicarboxylate **3l**:

A colorless oil; 70.7 mg; isolated yield = 92%; dr > 20:1; $[\alpha]^{25.1}_{D}$ = 16.87 (c 0.15 EtOAc); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), retention time: t₁ = 5.12 min (minor), t₂ = 5.86 min (major), *ee* = 90%; ¹H NMR (400 MHz, DMSO) δ 9.21 – 8.75 (m, 1H), 6.49 – 6.43 (m, 1H), 4.11 – 3.93 (m, 6H), 2.85 – 2.63 (m, 2H), 2.20 – 1.62 (m, 6H), 1.22 – 1.19 (m, 3H), 1.12 (t, *J* = 7.1 Hz, 6H), 1.05 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, DMSO) δ 172.2, 165.1, 164.9, 157.3, 104.9, 98.5, 63.1, 61.3, 60.3, 58.4, 38.2, 36.8, 23.0, 19.0, 14.9, 14.7, 14.5, 12.5. HRMS (ESI) m/z calcd for C₁₈H₂₈N₂O₇Na⁺ [M + Na]⁺ = 407.1789, found = 407.1792.

<u>3a-ethyl</u> <u>3-methyl</u> <u>(3aR,6aR)-1-((ethoxycarbonyl)amino)-6a-hydroxy-2-propyl-4,5,6,</u> <u>6a-tetrahydrocyclopenta[*b*]pyrrole-3,3a(1*H*)-dicarboxylate **3m:**</u>

A colorless oil; 69.9 mg; isolated yield = 91%; dr > 20:1; $[\alpha]^{25.8}_{D}$ = 11.14 (c 0.21 EtOAc); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), retention time: t₁ = 6.13 min (minor), t₂ = 8.33 min (major), *ee* = 94%; ¹H NMR (400 MHz, DMSO) δ 9.18 – 8.72 (m, 1H), 6.49 – 6.43 (m, 1H), 4.15 – 3.86 (m, 4H), 3.49 (s, 3H), 2.82 – 2.58 (m, 2H), 2.02 – 1.46 (m, 8H), 1.21 – 1.17 (m, 3H), 1.09 (t, *J* = 7.1 Hz, 3H), 0.87 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, DMSO) δ 172.1, 165.6,

163.5, 157.2, 105.0, 99.6, 63.2, 61.3, 60.3, 50.3, 38.1, 36.9, 27.1, 23.1, 20.9, 14.9, 14.6, 14. 0. HRMS (ESI) m/z calcd for $C_{18}H_{28}N_2O_7Na^+$ [M + Na]⁺ = 407.1789, found = 407.1790.

<u>3a-ethyl</u> 3-methyl (3aR,6aR)-2-butyl-1-((ethoxycarbonyl)amino)-6a-hydroxy-4,5,6,6 a-tetrahydrocyclopenta[b]pyrrole-3,3a(1H)-dicarboxylate **3n:**

A colorless oil; 71.6 mg; isolated yield = 90%; dr > 20:1; $[\alpha]^{25.8}_{D}$ = 19.46 (c 0.13 EtOAc); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), retention time: t₁ = 5.02 min (minor), t₂ = 6.71 min (major), *ee* = 93%; ¹H NMR (400 MHz, DMSO) δ 9.21 – 8.74 (m, 1H), 6.52 – 6.46 (m, 1H), 4.15 – 3.86 (m, 4H), 3.49 (s, 3H), 2.84 – 2.58 (m, 2H), 2.45 – 1.61 (m, 6H), 1.44 – 1.42 (m, 2H), 1.33 – 1.27 (m, 2H), 1.19 (t, *J* = 6.8 Hz, 3H), 1.09 (t, *J* = 7.0 Hz, 3H), 0.86 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, DMSO) δ 172.2, 165.5, 164.0, 157.3, 105.0, 99.2, 63.1, 61.3, 60.3, 50.3, 38.2, 36.9, 29.6, 25.0, 23.1, 22.3, 14.9, 14.6, 14.1. HRMS (ESI) m/z calcd for C₁₉H₃₀N₂O₇Na⁺ [M + Na]⁺ = 421,1945, found = 421.1949.

<u>3a-ethyl</u> <u>3-methyl</u> <u>(3aR,6aR)-2-benzyl-1-((ethoxycarbonyl)amino)-6a-hydroxy-4,5,6,</u> <u>6a-tetrahydrocyclopenta[*b*]pyrrole-3,3a(1*H*)-dicarboxylate <u>3o:</u></u>

A colorless oil; 82.1 mg; isolated yield = 95%; dr > 20:1; $[\alpha]^{24.8}_{D}$ = -30.83 (c 0.12 EtOAc); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), retention time: t₁ = 7.42 min (minor), t₂ = 9.86 min (major), *ee* = 90%; ¹H NMR (400 MHz, DMSO) δ 9.17 - 8.68 (m, 1H), 7.25 - 7.18 (m, 5H), 6.59 - 6.48 (m, 1H), 4.15 - 3.93(m, 4H), 3.82 - 3.68 (m, 2H), 3.50 (s, 3H), 2.67 - 2.62 (m, 1H), 2.05 - 1.62 (m, 5H), 1.16 - 1.11 (m, 6H). ¹³C NMR (100 MHz, DMSO) δ 172.1, 165.1, 160.3,

157.4, 137.7, 128.7, 127.9, 127.7, 104.9, 104.7, 98.8, 64.2, 63.3, 61.5, 60.5, 38.1, 37.1, 23.1, 14.9, 14.7, 14.5, 11.9. HRMS (ESI) m/z calcd for C₂₂H₂₈N₂O₇Na⁺ [M + Na]⁺ = 455.1789, found = 455.1794.

<u>3-ethyl</u> <u>3a-methyl</u> (<u>3aR,6aR</u>)-<u>6a-hydroxy-1-((methoxycarbonyl)amino)-2-methyl-4,5,</u> <u>6,6a-tetrahydrocyclopenta[b]pyrrole-3,3a(1H)-dicarboxylate</u> **3p:**

A colorless solid; 61.6 mg; isolated yield = 90%; dr > 20:1; m.p. 86.9 – 87.3°C; $[\alpha]^{25.3}_{D} = 16.64$ (c 0.22 EtOAc); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, $\lambda = 254$ nm), retention time: t₁ = 6.44 min (minor), t₂ = 7.69 min (major), *ee* = 94%; ¹H NMR (400 MHz, DMSO) δ 9.34 – 8.84 (m, 1H), 6.56 (s, 1H), 4.04 – 3.90 (m, 2H), 3.63 (s, 3H), 3.52 (s, 3H), 2.66 – 2.58 (m, 1H), 2.07 (s, 3H), 1.99 – 1.66 (m, 5H), 1.10 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, DMSO) δ 172.8, 165.3, 159.7, 157.9, 104.7, 99.1, 63.4, 58.5, 52.8, 52.0, 38.2, 36.8, 23.0, 14.9, 11.8. HRMS (ESI) m/z calcd for C₁₅H₂₂N₂O₇Na⁺ [M + Na]⁺ = 365.1319, found = 365.1321.

<u>3a-benzyl</u> <u>3-ethyl</u> (3a*R*,6a*R*)-6a-hydroxy-1-((methoxycarbonyl)amino)-2-methyl-4,5, <u>6,6a-tetrahydrocyclopenta[*b*]pyrrole-3,3a(1*H*)-dicarboxylate **3q:**</u>

A colorless oil; 60.2 mg; isolated yield = 72%; dr > 20:1; $[\alpha]^{25.2}_{D}$ = 21.74 (c 0.23 EtOAc); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), retention time: t₁ = 5.70 min (minor), t₂ = 7.42 min (major), *ee* = 90%; ¹H NMR (400 MHz, DMSO) δ 9.37 – 8.87 (m, 1H), 7.34 – 7.29 (m, 5H), 6.64 – 5.89 (m, 1H), 5.18 – 4.91(m, 2H), 3.96 – 3.84 (m, 2H), 3.59 (s, 3H), 2.71 – 2.64 (m, 1H), 2.08 (s, 3H), 1.80 – 1.64 (m, 5H), 1.03 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, DMSO) δ 172.2,

165.3, 159.6, 157.9, 137.1, 128.7, 128.1, 127.9, 104.9, 99.1, 66.0, 63.6, 58.6, 52.7, 38.2, 37.0, 23.1, 14.8, 11.9. HRMS (ESI) m/z calcd for $C_{21}H_{26}N_2O_7Na^+$ [M + Na]⁺ = 441.1632, found = 441.1640.

<u>3-ethyl 3a-isopropyl (3aR,6aR)-6a-hydroxy-1-((methoxycarbonyl)amino)-2-methyl-</u> 4,5,6,6a-tetrahydrocyclopenta[*b*]pyrrole-3,3a(1*H*)-dicarboxylate **3r**:

A colorless oil; 66.6 mg; isolated yield = 90%; dr > 20:1; $[\alpha]^{24.8}_{D}$ = 14.06 (c 0.18 EtOAc); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), retention time: t₁ = 4.87 min (minor), t₂ = 6.48 min (major), *ee* = 92%; ¹H NMR (400 MHz, DMSO) δ 9.30 – 8.78 (m, 1H), 6.40 (s, 1H), 4.85 – 4.81 (m, 1H), 4.02 – 3.91 (m, 2H), 3.62 (s, 3H), 2.67 – 2.62 (m, 1H), 2.07 (s, 3H), 1.74 – 1.62 (m, 5H), 1.14 – 1.08 (m, 9H). ¹³C NMR (100 MHz, DMSO) δ 171.6, 165.3, 159.2, 157.9, 104.8, 99.6, 67.6, 63.1, 58.5, 52.7, 37.9, 37.0, 22.1, 21.9, 14.8, 11.8. HRMS (ESI) m/z calcd for C_{17H26}N₂O₇Na⁺ [M + Na]⁺ = 393.1632, found = 393.1634.

3-ethyl 3a-isobutyl (3aR,6aR)-6a-hydroxy-1-((methoxycarbonyl)amino)-2-methyl-4, 5,6,6a-tetrahydrocyclopenta[*b*]pyrrole-3,3a(1*H*)-dicarboxylate **3s:**

A colorless oil; 52.2 mg; isolated yield = 68%; dr > 20:1; $[\alpha]^{25.3}_{D} = 7.05$ (c 0.23 EtOAc); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, $\lambda = 254$ nm), retention time: t₁ = 4.85 min (minor), t₂ = 6.89 min (major), *ee* = 93%; ¹H NMR (400 MHz, DMSO) δ 9.33 - 8.83 (m, 1H), 6.47 (s, 1H), 4.02 - 3.81 (m, 4H), 3.63 (s, 3H), 2.67 - 2.62 (m, 1H), 2.07 (s, 3H), 1.99 - 1.97 (m, 1H), 1.81 - 1.62 (m, 5H), 1.11 (t, J = 7.1 Hz, 3H), 0.84 - 0.83 (m, 6H). ¹³C NMR (100 MHz, DMSO) δ 172.1, 165.3,

159.4, 157.9, 104.8, 99.4, 70.5, 63.5, 58.5, 52.7, 38.1, 36.8, 27.7, 23.1, 19.4, 14.8, 11.9. HRMS (ESI) m/z calcd for $C_{18}H_{28}N_2O_7Na^+$ [M + Na]⁺ = 407.1789, found = 407.1791.

<u>3a-(*tert*-butyl)</u> <u>3-ethyl</u> (<u>3aR,6aR</u>)-<u>6a-hydroxy-1-((methoxycarbonyl)amino)-2-methyl</u> -4,5,6,6a-tetrahydrocyclopenta[*b*]pyrrole-3,3a(1*H*)-dicarboxylate **3t**:

A colorless oil; 53.8 mg; isolated yield = 70%; dr > 20:1; $[\alpha]^{24.8}_{D}$ = 15.81 (c 0.16 EtOAc); HPLC (IC column, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm), retention time: t₁ = 5.08 min (minor), t₂ = 5.49 min (major), *ee* = 84%; ¹H NMR (400 MHz, DMSO) δ 8.85 - 8.44 (m, 1H), 6.53 - 6.39 (m, 1H), 4.04 - 3.90 (m, 2H), 3.52 (s, 3H), 2.64 - 2.59 (m, 1H), 2.07 (s, 3H), 1.98 - 1.90 (m, 1H), 1.75 - 1.61 (m, 4H), 1.42 (s, 9H), 1.10 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, DMSO) δ 171.1, 165.4, 159.0, 157.9, 104.9, 99.9, 79.5, 63.7, 58.5, 52.7, 37.9, 37.0, 28.1, 23.1, 14.9, 11.8. HRMS (ESI) m/z calcd for C₁₈H₂₈N₂O₇Na⁺ [M + Na]⁺ = 407.1789, found = 407.1791.

<u>3-ethyl 3a-methyl (3aR,7aR)-7a-hydroxy-1-((methoxycarbonyl)amino)-2-methyl-1,4,</u> 5,6,7,7a-hexahydro-3a*H*-indole-3,3a-dicarboxylate **3u:**

A colorless oil; 64.8 mg; isolated yield = 91%; dr > 20:1; $[\alpha]^{25.4}_{D}$ = 20.29 (c 0.17 EtOAc); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), retention time: t₁ = 7.54 min (minor), t₂ = 11.60 min (major), *ee* = 91%; ¹H NMR (400 MHz, DMSO) δ 8.88 – 8.40 (m, 1H), 5.87 (s, 1H), 4.09 – 3.95 (m, 2H), 3.63 (s, 3H), 3.53 (s, 3H), 2.47 – 2.44 (m, 1H), 2.05 (s, 3H), 1.79 – 1.36 (m, 7H), 1.14 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, DMSO) δ 172.7, 165.5, 157.5, 157.3, 105.2, 94.2,

58.8, 57.3, 52.5, 51.6, 34.1, 30.3, 21.4, 20.7, 14.8, 12.3. HRMS (ESI) m/z calcd for $C_{16}H_{24}N_2O_7Na^+$ [M + Na]⁺ = 379.1476, found = 379.1476.

Diethyl (3aR,7aR)-7a-hydroxy-1-((methoxycarbonyl)amino)-2-methyl-1,4,5,6,7,7a-h exahydro-3aH-indole-3,3a-dicarboxylate **3v:**

A colorless oil; 66.6 mg; isolated yield = 90%; dr > 20:1; $[\alpha]^{25.6}_{D}$ = 15.25 (c 0.24 EtOAc); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), retention time: t₁ = 6.58 min (minor), t₂ = 10.84 min (major), *ee* = 93%; ¹H NMR (400 MHz, DMSO) δ 8.78 – 8.33 (m, 1H), 5.73 (s, 1H), 4.06 – 3.95 (m, 4H), 3.63 (s, 3H), 2.45 -2.28 (s,1H), 2.05 (s, 3H), 1.80 – 1.76 (m, 1H), 1.64 – 1.46 (m, 6H), 1.66 – 1.11 (m, 6H). ¹³C NMR (100 MHz, DMSO) δ 172.0, 165.5, 157.2, 157.2, 105.9, 94.3, 60.1, 58.9, 57.2, 52.7, 34.5, 30.4, 21.6, 21.0, 14.7, 14.5, 12.3.HRMS (ESI) m/z calcd for C₁₇H₂₆N₂O₇Na⁺ [M + Na]⁺ = 393.1632, found = 393.1637.

<u>3-ethyl 3a-methyl (3aR,8aR)-8a-hydroxy-1-((methoxycarbonyl)amino)-2-methyl-4,5,</u> <u>6,7,8,8a-hexahydrocyclohepta[*b*]pyrrole-3,3a(1*H*)-dicarboxylate **3w:**</u>

A colorless oil; 60.7 mg; isolated yield = 82%; dr > 20:1; $[\alpha]^{25.6}_{D} = 6.51$ (c 0.35 EtOAc); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, $\lambda = 254$ nm), retention time: t₁ = 6.46 min (minor), t₂ = 8.99 min (major), *ee* = 86%; ¹H NMR (400 MHz, DMSO) δ 8.88 (s, 1H), δ 6.03 – 6.01 (m, 1H), 4.09 – 3.95 (m, 2H), 3.66 – 3.59 (m, 3H), 3.51 – 3.48 (m, 3H), 2.33 – 2.23(m, 1H), 2.14 (s, 3H), 1.99 – 1.78 (m, 3H), 1.55 – 1.24 (m, 6H), 1.12 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, DMSO) δ 172.8, 165.4, 160.3, 157.2, 122.9, 98.0, 63.9, 60.0, 58.7, 51.7, 35.7, 31.8, 30.8, 28.2,

23.8, 14.8, 12.2. HRMS (ESI) m/z calcd for $C_{17}H_{26}N_2O_7Na^+$ [M + Na]⁺ = 393.1632, found = 393.1637.

<u>3a,5-di-*tert*-butyl</u> <u>3-ethyl</u> (<u>3aS,6aS</u>)-<u>6a-hydroxy-1-((methoxycarbonyl)amino)-2-met</u> hyl-6,6a-dihydropyrrolo[<u>3,4-b</u>]pyrrole-<u>3,3a,5(1H,4H</u>)-tricarboxylate <u>3x:</u>

A colorless oil; 82.5 mg; isolated yield = 85%; dr > 20:1; $[\alpha]^{24.8}_{D}$ = 8.25 (c 0.24 EtOAc); HPLC (IC column, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm), retention time: t₁ = 5.25 min (minor), t₂ = 11.02 min (major), *ee* = 85%; ¹H NMR (400 MHz, DMSO) δ 9.33 – 8.95 (m, 1H), 7.03 (s, 1H), 4.14 – 4.03 (m, 4H), 3.68 (s, 3H), 3.31 – 3.28 (m, 2H), 2.09 (s, 3H), 1.43 – 1.40 (m, 18H), 1.21 - 1.19 (m, 3H). ¹³C NMR (100 MHz, DMSO) δ 169.5, 169.2, 165.0, 158.5, 157.5, 101.9, 92.6, 72.5, 64.1, 60.3, 59.2, 57.3, 52.7, 51.8, 30.4, 21.8, 14.7, 12.1. HRMS (ESI) m/z calcd for C₂₂H₃₅N₃O₉Na⁺ [M + Na]⁺ = 508.2266, found = 508.2266.

<u>3-ethyl 3a-methyl (3aS,7aR)-7a-hydroxy-1-((methoxycarbonyl)amino)-2-methyl-1,6,</u> <u>7,7a-tetrahydropyrano[4,3-*b*]pyrrole-3,3a(4*H*)-dicarboxylate **3y:**</u>

A colorless oil; 46.5 mg; isolated yield = 65%; dr > 20:1; $[\alpha]^{25.8}_{D}$ = 11.60 (c 0.15 EtOAc); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), retention time: t₁ = 13.5 min (minor), t₂ = 16.5 min (major), *ee* = 60%; ¹H NMR (400 MHz, DMSO) δ 9.07 – 8.60 (m, 1H), 6.20 (s, 1H), 4.35 – 4.91 (m, 4H), 3.79 – 3.74 (m, 1H), 3.62 (s, 3H), 3.56 (s, 3H), 2.92 – 2.89 (m, 1H), 2.06 (s, 3H), 1.70 – 1.68 (m, 2H), 1.12 (t, *J* = 7.1 Hz, 3H).¹³C NMR (100 MHz, DMSO) δ 171.1, 165.2, 158.5, 157.4, 102.0, 92.6, 72.5, 64.1, 59.1, 57.4, 52.6, 51.8, 30.5, 14.7, 12.2. HRMS (ESI) m/z calcd for C₁₅H₂₂N₂O₈Na⁺ [M + Na]⁺ = 381.1268, found = 381.1272.

A colorless oil; 46.8 mg; isolated yield = 65%; dr > 20:1; $[\alpha]^{26.1}_{D} = 15.93$ (c 0.15 EtOAc); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, $\lambda = 254$ nm), retention time: $t_1 = 6.77$ min (minor), $t_2 = 9.21$ min (major), ee = 75%; ¹H NMR (400 MHz, DMSO) δ 9.46–8.95 (m, 1H), 7.12 (s, 1H), 4.06–3.93 (m, 2H), 3.83–3.80 (m, 1H), 3.63 (s, 3H), 3.55 (s, 3H), 3.16 - 3.07 (s, 1H), 2.90 - 2.86 (m, 2H), 2.11 (s, 3H), 1.12 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, DMSO) δ 171.4, 165.0, 161.1, 157.7, 107.0, 98.3, 67.2, 58.8, 52.8, 52.4, 42.7, 41.1, 14.8, 12.1.HRMS (ESI) m/z calcd for $C_{14}H_{20}N_2O_7SNa^+$ [M + Na]⁺ = 388.0883, found = 388.0887.

3,7-diethyl 3a,7a-dimethyl (3aR,4aR,7aR,8aR)-1,5-bis((*tert*-butoxycarbonyl)amino)-4a,8a-dihydroxy-2,6-dimethyl-4a,5,8,8a-tetrahydropyrrolo[2,3-f]indole-3,3a,7,7a(1H,

A colorless solid; 86.9 mg; isolated yield = 61%; dr = 9:1; m.p. 290.8 – 291.1°C; $[\alpha]^{25.9}$ _D = 42.73 (c 0.11 EtOAc); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, $\lambda = 254$ nm), retention time: minor product: t₁ = 18.54 min (minor), t₂ = 23.56 min (major), ee = 80%; ¹H NMR (400 MHz, DMSO) δ 8.44–7.98 (m, 2H), 7.30-5.78 (m, 2H), 4.06-3.98 (m, 4H), 3.60-3.51 (m, 6H), 3.07-2.73 (m, 2H), 2.35-2.25 (m, 1H), 2.08–1.98 (m, 6H), 1.59–1.56 (m, 1H), 1.43–1.39 (m, 18H), 1.15–1.14 (d, J = 6.0 Hz, 6H). ¹³C NMR (100 MHz, DMSO) δ 165.1, 159.0, 156.8, 155.2, 100.6, 92.6, 81.4, 58.8, 57.1, 52.6, 28.3, 27.9, 14.8, 12.2. HRMS (ESI) m/z calcd for $C_{32}H_{48}N_4O_{14}Na^+$ [M + Na]⁺ = 735.3059, found = 735.3058.

<u>Diethyl</u> (3a*R*,6a*S*)-1-((methoxycarbonyl)amino)-2-methyl-4,5,6,6a-tetrahydrocyclope nta[*b*]pyrrole-3,3a(1*H*)-dicarboxylate **4**:

A colorless oil; 64.0 mg; isolated yield = 98%; dr > 20:1; $[\alpha]^{20.0}_{D}$ = -8.01 (c 0.35 EtOAc); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), retention time: t₁ = 6.24 min (minor), t₂ = 11.46 min (major), *ee* = 94%; ¹H NMR (400 MHz, DMSO) δ 9.52 (s, 1H), 4.09– 3.95 (m, 5H), 3.63 (s, 3H), 2.42– 2.38 (m, 1H), 2.03 (s, 3H), 1.89– 1.55 (m, 5H), 1.15– 1.10 (m, 6H). ¹³C NMR (100 MHz, DMSO) δ 174.5, 165.3, 161.3, 157.0, 100.5, 60.8, 60.7, 58.5, 56.5, 52.7, 36.8, 32.1, 24.4, 14.8, 14.5, 11.9. HRMS (ESI) m/z calcd for C₁₆H₂₄N₂O₆Na⁺ [M + Na]⁺ = 363.1527, found = 363.1533.

Diethyl (3aR, 6aS)-1-((2-ethoxy-2-oxoethyl)(methoxycarbonyl)amino)-2-methyl-4,5, 6,6a-tetrahydrocyclopenta[*b*]pyrrole-3,3a(1*H*)-dicarboxylate **5**: `

A colorless oil; 65.0 mg; isolated yield = 81%; dr = 2:3; $[\alpha]^{20.0}_{D}$ = 1.77(c 0.15 EtOAc); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), major product: t₁ = 12.20 min (minor), t₂ = 13.73 min (major), *ee* = 93%; minor product: t₁ = 14.93 min (minor), t₂ = 17.00 min (major), *ee* = 94%; ¹H NMR (400 MHz, DMSO) δ 4.41 – 4.33 (m, 1H), 4.15 – 4.07 (m, 4H), 4.06 – 3.96 (m, 4H), 3.67 – 3.64 (m, 3H), 2.41 – 2.27 (m, 1H), 2.08 – 2.05 (m, 3H), 1.91 – 1.56 (m, 5H), 1.22 – 1.09 (m, 9H). ¹³C NMR (100 MHz, DMSO) δ 174.4, 169.0, 165.4, 161.1, 159.7, 156.8, 102.5,

75.3, 72.8, 61.4, 60.9, 58.9, 54.0, 50.6, 36.6, 34.2, 24.5, 14.7, 14.4, 11.9. HRMS (ESI) m/z calcd for $C_{20}H_{30}N_2O_8Na^+$ [M + Na]⁺ = 449.1894, found = 449.1899.

<u>Diethyl (3aR,6aS)-2-methyl-4,5,6,6a-tetrahydrocyclopenta[b]pyrrole-3,3a(1H)-dicarb</u> oxylate **6:**

A colorless oil; 24.4 mg; isolated yield = 60%; dr > 20:1; $[\alpha]^{20.0}_{D}$ = 1.67 (c 0.21 EtOAc); HPLC (ID column, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm), retention time: t₁ = 12.50 min (minor), t₂ = 14.61 min (major), *ee* = 92%; ¹H NMR (400 MHz, DMSO) δ 6.24 (s, 1H), 4.63 - 4.64 (s, 1H), 4.08 - 3.98 (m, 4H), 2.33 - 2.25 (m, 1H), 1.85 - 1.82 (m, 1H), 1.75 (s, 3H), 1.56 - 1.39 (m, 2H), 1.26 - 1.24 (m, 2H), 1.15 - 1.10 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 174.2, 172.4, 170.8, 89.6, 78.8, 66.4, 63.0, 61.0, 33.3, 33.3, 24.1, 15.2, 14.0, 13.8. HRMS (ESI) m/z calcd for C₁₄H₂₁NO₄Na⁺ [M + Na]⁺ = 290.1363, found = 290.1363.

<u>Diethyl (3aR,6aR)-1-amino-6a-hydroxy-2-methyl-4,5,6,6a-tetrahydrocyclopenta[b]py</u> rrole-3,3a(1H)-dicarboxylate 7:

A colorless oil; 53.2 mg; isolated yield = 93%; dr > 20:1; ¹H NMR (400 MHz, DMSO) δ 5.99 (s, 1H), 4.24 (s, 2H), 4.09 – 3.88 (m, 4H), 2.66 – 2.58 (m, 1H), 2.15 (s, 3H), 1.69 – 1.58 (m, 5H), 1.13 – 1.08 (m, 6H). ¹³C NMR (100 MHz, DMSO) δ 172.6, 165.5, 162.02, 104.5, 96.0, 63.0, 60.2, 57.8, 37.2, 37.1, 22.8, 15.0, 14.6, 12.8. HRMS (ESI) m/z calcd for C₁₄H₂₂N₂O₅Na⁺ [M + Na]⁺ = 321.1421, found = 321.1425.

Diethyl (*R*)-3-methyl-2,5,6,7-tetrahydro-4a*H*-cyclopenta[*c*]pyridazine-4,4a-dicarboxy late **8** (from 7):

A colorless oil; 47.5 mg; isolated yield = 95%; $[\alpha]^{20.0}_{D}$ = 23.5 (c 0.1 EtO Ac); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), retention time: t₁ = 5.24 min (minor), t₂ = 5.81 min (major), *ee* = 9 4%; ¹H NMR (400 MHz, DMSO) δ 10.07 (s, 1H), 4.05 – 3.96 (m, 4H), 2.80 – 2.78 (m, 1H), 2.49 – 2.41 (m, 2H), 2.15 (s, 3H), 1.86 – 1.64 (m, 3H), 1.16 (t, *J* = 7.1 Hz, 3H), 1.11 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, DMSO) δ 172.2, 166.9, 153.6, 146.7, 92.5, 60.9, 59.1, 49.2, 38.4, 29.4, 19.6, 17.1, 14. 7, 14.4. HRMS (ESI) m/z calcd for C₁₄H₂₀N₂O₄Na⁺ [M + Na]⁺ = 303.1315, fo und = 303.1320.

Diethyl (*R*)-3-methyl-2,5,6,7-tetrahydro-4a*H*-cyclopenta[*c*]pyridazine-4,4a-dicarboxy late **8** (from 3e):

A colorless oil; 35.3 mg; isolated yield = 84%; $[\alpha]^{20.0}_{D} = 10.75$ (c 0.2 E tOAc); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), retention time: t₁ = 5.31 min (minor), t₂ = 5.95 min (major), *ee* = 81%; ¹H NMR (400 MHz, DMSO) δ 10.07 (s, 1H), 4.05 – 3.96 (m, 4H), 2. 80 – 2.78 (m, 1H), 2.49 – 2.41 (m, 2H), 2.15 (s, 3H), 1.86 – 1.64 (m, 3H), 1.16 (t, *J* = 7.1 Hz, 3H), 1.11 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, DM SO) δ 172.2, 166.9, 153.6, 146.7, 92.5, 60.9, 59.1, 49.2, 38.4, 29.4, 19.6, 17.1, 14.7, 14.4. HRMS (ESI) m/z calcd for C₁₄H₂₀N₂O₄Na⁺ [M + Na]⁺ = 303.131 5, found = 303.1320

Ethyl(3a*R*,6a*R*)-3a-acetyl-6a-hydroxy-1-((methoxycarbonyl)amino)-2-methyl-1,3a,4,5,6,6a-hexahydrocyclopenta[*b*]pyrrole-3-carboxylate **S1**:

A colorless oil; 49.6 mg; isolated yield = 76%; dr > 20:1; $[\alpha]^{24.8}_{D}$ = 14.01 (c 0.15 EtOAc); HPLC (IC column, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 254 nm), retention time: t₁ = 6.44 min (major), t₂ = 10.87 min (minor), *ee* = 40%; ¹H NMR (400 MHz, DMSO) δ 9.49 - 9.08 (m, 1H), 6.68 (s, 1H), 4.02 - 3.97 (m, 2H), 3.64 (s, 3H), 2.64 - 2.59 (m, 1H), 2.14 (s, 3H), 2.00 (s, 3H), 1.55 - 1.24 (m, 5H), 1.11 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, DMSO) δ 206.8, 165.5, 160.9, 157.8, 104.8, 99.6, 67.0, 58.7, 52.7, 38.4, 34.1, 28.5, 22.6, 14.8, 12.1. HRMS (ESI) m/z calcd for C₁₅H₂₂N₂O₆Na⁺ [M + Na]⁺ = 349.1370, found = 349.1372.

4. X-ray Single Crystal Data for Compound 3p and (meso)-3a'

3p

CCDC: 2253282

Table S7 Crystal data and structure refinement for 3p. Identification code 20230358_auto Empirical formula $C_{15}H_{22}N_2O_7$ Formula weight 342.34 Temperature/K 293(2) Crystal system orthorhombic Space group $P2_{1}2_{1}2_{1}$ a/Å 8.24888(18) b/Å 8.64551(16) c/Å 24.3498(5) α/° 90 β/° 90 γ/° 90 Volume/Å³ 1736.52(6) Ζ 4 $\rho_{calc}g/cm^3$ 1.309 μ/mm^{-1} 0.884 F(000) 728.0 Crystal size/mm³ $0.13 \times 0.12 \times 0.1$ Radiation CuK α (λ = 1.54184) 20 range for data collection/°7.26 to 140.8 Index ranges $-10 \le h \le 9, -10 \le k \le 9, -29 \le l \le 29$ Reflections collected 18852 Independent reflections 3330 [$R_{int} = 0.0328$, $R_{sigma} = 0.0223$] Data/restraints/parameters 3330/3/240 Goodness-of-fit on F² 1.027 Final R indexes $[I \ge 2\sigma(I)]$ $R_1 = 0.0427, wR_2 = 0.1130$ Final R indexes [all data] $R_1 = 0.0454, wR_2 = 0.1160$ Largest diff. peak/hole / e Å⁻³ 0.24/-0.20 Flack parameter -0.05(10)

(meso)-3a'

Table S8 Crystal data and structure refinement for 20230339.

Identification code	20230339
Empirical formula	$C_{32}H_{48}N_4O_{14}$
Formula weight	712.74
Temperature/K	293(2)
Crystal system	triclinic
Space group	P-1
a/Å	9.4928(9)
b/Å	9.8026(9)
c/Å	11.3802(8)
$\alpha/^{\circ}$	102.528(7)
β/°	110.036(8)
$\gamma/^{\circ}$	102.007(8)
Volume/Å ³	924.02(15)
Z	1
$\rho_{calc}g/cm^3$	1.281
μ/mm^{-1}	0.850
F(000)	380.0
Crystal size/mm ³	$0.15\times0.12\times0.1$
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/	° 8.71 to 143.166
Index ranges	$-11 \le h \le 11, -10 \le k \le 11, -13 \le l \le 12$
Reflections collected	6573
Independent reflections	3435 [$R_{int} = 0.0265$, $R_{sigma} = 0.0456$]
Data/restraints/parameters	3435/14/246
Goodness-of-fit on F ²	1.060
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0544, wR_2 = 0.1335$
Final R indexes [all data]	$R_1 = 0.0750, wR_2 = 0.1674$
Largest diff. peak/hole / e Å ⁻	³ 0.22/-0.23

5. NMR Spectra

3b

S32

3d

S34

S36

3i

3m

3w

5 (dr = 2:3)

6. HPLC Spectra

3a

3d

3e

X X X X X X X X X X w14321.che 1.8 1.6 1.4 1.2 Voltage(JV) 0.6 0.4 0.2 0.0 5.0 Time(Min) 0.5 2.0 2.5 3.0 3.5 4.0 4.5 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 1.5 0.0 1.0 +++ + + + 0 Show G V Integration Result Calculation Result TimeTable No. Retention Time 1 5.40 Peak Area(%) 49.41% 50.59% 100.00% Peak Height 305658 276504 582,162 Peak Width 0.922 BB 0.716 BB Peak Type PeakArea Area 3817611 3909123 7,726,734 2 6.61 Total

3h

3i

3j

3k

3m

3n

+++ + + + 0

Integration Result Calculation Result TimeTable

 Integration Hesuit
 Lacuation Hesuit
 Imme label

 No.
 Retention Time
 PeakArea

 1
 5.02
 124382

 2
 6.71
 3343296

 Total
 3,467,678

EtO₂C CO₂Me

 Peak Area(%)
 Peak Width

 3.59%
 0.602
 BB

 96.41%
 0.969
 BB

 100.00%
 0.969
 BB

Peak Height 10213 235275 245,488

🔲 Show Gri

Peak Type

V

w14595.che 1.8 1.6 1.4 1.2 (vottage(h/) 8.0 age 0.6 0.4 0.2 0.0 4.5 5.0 Time(Min) 2.0 2.5 3.0 3.5 4.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 0.5 0.0 1.5 1.0 Show Gr ~ Integration Result Calculation Result TimeTable No. Retention Time 1 6.34 Peak Height 249866 242284 492,150 Peak Area(%) 49.23% 50.77% 100.00% Peak Width 0.906 BB 0.887 BB Peak Type Peak Area 3656887 3771783 7,428,670 2 7.68 Total

3p

3q

3r

1 X X X X X X X X X X X w21777.che 2.0 1.8 1.6 1.4 () 1.2 () 1.0 1.0 0.8 0.6 0.4 02 0.0 3.5 Time(Min) 0.5 1.0 1.5 2.0 2.5 3.0 4.0 4.5 5.0 5.5 6.0 6.5 7.0 0.0 Show G V Integration Result Calculation Result TimeTable
 No.
 Retention Time

 1
 5.35

 2
 5.81
 PeakArea(%) 49.10% 50.90% 100.00% Peak Width
0.49 BV
0.518 VB Peak Height 170663 139413 310,076 Peak Type Peak Area 1846321 1913661 3,759,982 Total

S83

3v

3x

w20010.che 0.040 0.038 0.034 0.032 0.030 0.028 0.028 0.026 0.024 0.022 0.020 0.018 0.016 0.014 0.012 0.010 0.008 10 11 Time(Min) 12 13 14 15 16 17 21 18 19 +++ + + + + 0 Show Gr ~ Integration Result Calculation Result TimeTable No. Retention Time Peak Area 1 13.10 31 2 16.19 29 Peak Area(%) 51.19% 48.81% 100.00% Peak Width 3.838 BV 3.14 VB Peak Height 7804 6249 14,053 Peak Type 311826 297355 609,181 Total

3z

(*meso*)-**3a'** and **3a'** (dr = 9:1)

S89

5 (dr = 2:3)

X X X X X X X X X

8 from 3e

X X X X X X

7. References

[1] Jens Christoffers, Ulrich Rößler, Thomas Werner, *Eur. J. Org. Chem.* 2000, 701-705.
[2] Roxanne Krug, Dennis Schröder, Jan Gebauer, Sanel Suljić, Yuma Morimoto, Nobutaka Fujieda, Shinobu Itoh, Jörg Pietruszka, *Eur. J. Org. Chem.* 2018, 1789-1796.
[3] Alexander M. R. Smith, Denis Billen, King Kuok (Mimi) Hii, *Chem. Commun.*, 2009, 3925-3927

[4] a) Andrew J. G. Baxter, John Fuher, Simon J. Teague, *Synthesis* **1994**, 207-211; b) Nelson A.M. Pereira, Américo Lemos, Arménio C. Serra, Teresa M.V.D. Pinho e Melo, *Tetrahedron Lett.* **2013**, *54*, 1553-1557.