Supporting Information

Yunhao Zhou,^a Tao Zheng,^a Yue Xu,^a Bo Li,^a Yuchi Wang,^a Ruhuai Mei,^a Linghui Gu,*^a Wenbo Ma*^{a,b}

 ^aAntibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, P. R China.
 ^bDepartment of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R China.

General Remarks	S2
Optimized reaction conditions	S3
Representative procedures for the palladium-catalyzed C-H chalcogenation	S4
Representative procedures for 8-membered N, Se(S)-heterocycles	S5
Preparation and characterization data of products 3, 5 and 7	S6
Scaled-up experiment	S38
Removal of the directing group	S39
H/D exchanged experiment	S39
Competition experiments	S40
Radical trap experiments	S41
X-Ray crystallographic data of 3ea , 3ka' and 7e	S41
References	S46
¹ H, ¹³ C and ¹⁹ F NMR	S47

General Remarks

Catalytic reactions were carried out under an ambient atmosphere of nitrogen. The starting materials were prepared according to previously described methods ^[1-3]. The reagents and solvents were obtained from commercial sources and were used without further purification. Yields refer to isolated compounds, estimated to be >95 % pure as determined by ¹H-NMR. TLC: Macherey-Nagel, TLC plates Alugram R Sil G/UV254. Detection under UV light at 254 nm. Chromatography: Separations were carried out on Merck Silica 60(0.040–0.063 mm, 70–230 mesh ASTM). EI-MS: Finnigan MAT 95, 70eV; ESI-MS: Finnigan LCQ. High resolution mass spectrometry (HRMS): APEX IV 7T FTICR, Bruker Daltonic. M. p. Stuart R Melting Point Apparatus SMP3 melting point apparatus, values are uncorrected. ¹H, ¹³C, ¹⁹F-spectra were recorded at 600 (¹H), 150 (¹³C) and 565 (¹⁹F) respectively, on BRUKER instruments in CDCl₃ solutions. If not otherwise specified, chemical shifts (δ) are given in ppm.

Optimized reaction conditions

Table S1. Palladium-catalyzed C-H selenylations

Table S2. Palladium-catalyzed C-H selenylations

Me		NHPA	PhSeSePh (2a) Pd(TFA) ₂ (5 mol%) [O] Solvent, Additive, T, 12 h, N ₂	→ Me ⁻	NHPA SePh
_	1a				3aa
	Entry	Solvent	Oxidant	Additive	3aa
-	1	DMSO	AgOAc	-	23
	2	DMF	AgOAc	-	88
	3	1,4-dioxano	e AgOAc	-	40
	4	CH ₃ CN	AgOAc	-	80
	5	DCE	AgOAc	-	85
	6	TFE	AgOAc	-	20
	7	HFIP	AgOAc	-	trace
	8	Toluene	AgOAc		71
	9	PhCF ₃	AgOAc	-	89

PhCF ₃	Ag ₂ O	-	72
PhCF ₃	AgNO ₃	-	87
PhCF ₃	Ag ₂ CO ₃	-	75
PhCF ₃	AgOPiv	-	88
PhCF ₃	Cu(OAc) ₂	-	<10
PhCF ₃	PhI(OAc) ₂	-	75
PhCF ₃	$K_2S_2O_8$	-	33
PhCF ₃	-	-	25
PhCF ₃	AgOAc	PivOH	80
PhCF ₃	AgOAc	TfOH	87
PhCF ₃	AgOAc	1-AdmCO ₂ H	81
PhCF ₃	AgOAc	TFA	93
PhCF ₃	AgOAc	TFA	83 ^b
PhCF ₃	AgOAc	TFA	74°
PhCF ₃	AgOAc	TFA	d
	PhCF3 PhCF3 PhCF3 PhCF3 PhCF3 PhCF3 PhCF3 PhCF3 PhCF3 PhCF3 PhCF3 PhCF3 PhCF3	PhCF3 Ag2O PhCF3 AgNO3 PhCF3 Ag2CO3 PhCF3 Ag0Piv PhCF3 Ag0Oiv PhCF3 Cu(OAc)2 PhCF3 PhI(OAc)2 PhCF3 K2S2O8 PhCF3 AgOAc PhCF3 AgOAc	PhCF3 Ag2O - PhCF3 AgNO3 - PhCF3 Ag2CO3 - PhCF3 Ag0Piv - PhCF3 Ag0Piv - PhCF3 Cu(OAc)2 - PhCF3 PhI(OAc)2 - PhCF3 K2S2O8 - PhCF3 AgOAc PivOH PhCF3 AgOAc TfOH PhCF3 AgOAc TFA PhCF3 AgOAc TFA

^{*a*}Reaction conditions: **1a** (0.20 mmol), **2a** (1.0 equiv, 0.20 mmol), Pd(TFA)₂ (5.0 mol %), oxidant (1.8 equiv), solvent (2.0 mL), 120 °C, 12 h, under N₂. ^{*b*}1.5 equiv AgOAc. ^{*c*}100 °C. ^{*d*} without catalyst

Representative procedures for the palladium-catalyzed C-H chalcogenation

suspension N-(3'-methyl-**Representative Procedure** A: of А [1,1'-biphenyl]-2-yl)picolinamide (1a) (57.7 mg, 0.20 mmol), 1,2-diphenyldiselane (2a) (62.4 mg, 0.20 mmol), Pd(TFA)₂ (3.3 mg, 5.0 mol%), AgOAc (60.1 mg, 0.36 mmol), TFA (10 µL) in anhydrous PhCF₃ (2.0 mL) was stirred in seal tube under nitrogen at 120 °C for 12 h. At ambient temperature, the reaction mixture was quenched with H₂O (10 mL) and extracted with EtOAc (3 x 25 mL). The combined organic layers were dried over anhydrous Na₂SO₄. After filtration and evaporation of the solvents in vacuo, the crude product was purified by column chromatography on silica gel (Petroleum ether/EtOAc: 30/1->15/1) to yield 3aa (82.8 mg, 93 %) as a white solid.

Representative Procedure of N-(3'-methyl-**B**: suspension А [1,1'-biphenyl]-2-yl)picolinamide (1a) (57.7 mg, 0.20 mmol), 1,2-diphenyldisulfane (5a) (43.7 mg, 0.20 mmol), Pd(TFA)₂ (6.6 mg, 10.0 mol%), AgOAc (66.8 mg, 0.40 mmol), NaOPiv (12.4 mg, 0.10 mmol) in anhydrous toluene (2.0 mL) was stirred in seal tube under nitrogen at 140 °C for 24 h. At ambient temperature, the reaction mixture was quenched with H₂O (10 mL) and extracted with EtOAc (3 x 25 mL). The combined organic layers were dried over anhydrous Na₂SO₄. After filtration and evaporation of the solvents in vacuo, the crude product was purified by column chromatography on silica gel (Petroleum ether/EtOAc: $30/1 \rightarrow 15/1$) to yield **5aa** (56.3 mg, 71 %) as a white solid.

Representative procedures for the 8-membered N, Se(S)-heterocycles

Representative Procedure C:

A suspension of N-(2'-((2-bromophenyl)selanyl)-5'-methyl-[1,1'-biphenyl]-2-yl) picolinamide (**3ad**) (52.2 mg, 0.1 mmol), NaOH (60.0 mg, 1.5 mmol) in EtOH (1.5 mL) was stirred in Schlenk tube under air at 80 °C for 12 h. At ambient temperature, the reaction mixture was quenched with H₂O (10 mL) and extracted with DCM (3 x 15 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and evaporated to give the crude product of amine. A suspension of the crude product, CuI (9.5 mg, 0.05 mmol), Cs₂CO₃ (65.2 mg, 0.20 mmol) in ethylene glycol (2.0 mL) was stirred in Schlenk tube under nitrogen at 125 °C for 12 h. At ambient temperature, the reaction mixture was quenched with the saturated aqueous NH₄Cl (10 mL) and

extracted with EtOAc (3 x 25 mL). The combined organic layers were dried over anhydrous Na_2SO_4 . After filtration and evaporation of the solvents in *vacuo*, the crude product was purified by column chromatography on silica gel (Petroleum ether/EtOAc: 40/1) to yield **6a** (16.2 mg, 48 %) as a colorless oil.

Preparation and Characterization Data of Products 3, 5 and 7

N-(5'-methyl-2'-(phenylselanyl)-[1,1'-biphenyl]-2-yl)picolinamide (3aa). The general procedure **A** was followed by using *N*-(3'-methyl-[1,1'-biphenyl]-2-yl) picolinamide (1a) (57.7 mg, 0.20 mmol), 1,2-diphenyldiselane (2a) (62.4 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 15/1$) yielded 3aa (82.8 mg, 93 %) as a white solid. M.p = 96 – 97 °C. ¹H NMR (600 MHz, CDCl₃) δ = 10.02 (s, 1H), 8.58 (dd, *J* = 8.3, 1.2 Hz, 1H), 8.35 – 8.34 (m, 1H), 8.24 – 8.22 (m, 1H), 7.85 – 7.82 (m, 1H), 7.46 – 7.43 (m, 1H), 7.39 – 7.36 (m, 1H), 7.36 – 7.35 (m, 1H), 7.35 – 7.34 (m, 1H), 7.28 (d, *J* = 8.0 Hz, 1H), 7.20 – 7.17 (m, 2H), 7.17 – 7.15 (m, 1H), 7.14 – 7.12 (m, 2H), 7.11 – 7.10 (m, 2H), 2.34 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 162.0, 150.2, 148.0, 139.3, 137.5, 135.2, 134.5, 132.7, 132.1, 131.8, 130.5, 130.3, 130.3, 130.0, 129.2, 129.0, 127.7, 126.2, 123.9, 122.4, 120.5, 21.1. HR-MS(ESI) m/z calcd for: C₂₅H₂₁N₂O⁸⁰Se⁺ [M+H]⁺ 445.0814, found 445.0818.

N-(5'-methoxy-2'-(phenylselanyl)-[1,1'-biphenyl]-2-yl)picolinamide (3ba). The general procedure **A** was followed by using *N*-(3'-methoxy-[1,1'-biphenyl]-2-yl) picolinamide (1b) (60.5 mg, 0.20 mmol), 1,2-diphenyldiselane (2a) (62.5 mg, 0.20

mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 7/1$) yielded **3ba** (84.4 mg, 92 %) as a pink solid. M.p = 123 - 124 °C. ¹H NMR (600 MHz, CDCl₃) δ = 9.99 (s, 1H), 8.58 - 8.56 (m, 1H), 8.35 - 8.34 (m, 1H), 8.22 - 8.20 (m, 1H), 7.84 - 7.81 (m, 1H), 7.47 - 7.46 (m, 1H), 7.45 - 7.41 (m, 1H), 7.37 (ddd, J = 7.6, 4.7, 1.2 Hz, 1H), 7.27 - 7.26 (m, 1H), 7.26 - 7.25 (m, 1H), 7.16 - 7.14 (m, 1H), 7.13 (dd, J = 7.0, 1.1 Hz, 1H), 7.12 - 7.09 (m, 1H), 7.06 - 7.02 (m, 2H), 6.92 - 6.88 (m, 2H), 3.78 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 161.9, 159.7, 150.1, 148.0, 141.8, 137.6, 135.8, 135.2, 133.3, 132.2, 131.5, 130.1, 129.0, 129.0, 127.2, 126.2, 123.8, 123.4, 122.3, 120.4, 116.1, 115.8, 55.6. HR-MS(ESI) m/z calcd for: C₂₅H₂₁N₂O₂⁸⁰Se⁺ [M+H]⁺ 461.0763, found 461.0769.

N-(5'-(*tert*-butyl)-2'-(phenylselanyl)-[1,1'-biphenyl]-2-yl)picolinamide (3ca). The general procedure **A** was followed by using *N*-(3'-(*tert*-butyl)-[1,1'-biphenyl]-2-yl) picolinamide (1c) (66.0 mg, 0.20 mmol), 1,2-diphenyldiselane (2a) (62.4 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 7/1$) yielded 3ca (56.3 mg, 58 %) as a white solid. M.p = 144 – 145 °C. ¹H NMR (600 MHz, CDCl₃) δ = 9.99 (s, 1H), 8.63 (dd, *J* = 8.2, 1.1 Hz, 1H), 8.29 – 8.28 (m, 1H), 8.23 – 8.21 (m, 1H), 7.84 – 7.81 (m, 1H), 7.47 – 7.44 (m, 1H), 7.37 – 7.34 (m, 3H), 7.34 – 7.32 (m, 3H), 7.30 – 7.28 (m, 1H), 7.20 – 7.16 (m, 2H), 7.12 – 7.08 (m, 2H), 1.29 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ = 161.9, 150.8, 150.2, 147.8, 138.7, 137.5, 135.4, 134.6, 132.6, 132.2, 130.6, 130.5, 130.4, 129.2, 129.0, 128.0, 127.7, 126.3, 126.2, 123.8, 122.3, 120.4, 34.7, 31.4. HR-MS(ESI) m/z calcd for: C₂₈H₂₇N₂O⁸⁰Se⁺ [M+H]⁺ 487.1283, found 487.1288.

N-(5'-fluoro-2'-(phenylselanyl)-[1,1'-biphenyl]-2-yl)picolinamide (3da). The general procedure A was followed by using N-(3'-fluoro-[1,1'-biphenyl]-2-yl) picolinamide (1d) (58.4 mg, 0.20 mmol), 1,2-diphenyldiselane (2a) (62.4 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 10/1$) yielded **3da** (63.4 mg, 71 %) as a white solid. M.p = 100 - 101 °C. ¹H NMR (600 MHz, CDCl₃) $\delta = 9.95$ (s, 1H), 8.57 (d, J = 8.2 Hz, 1H), 8.35 (dd, J = 4.7, 1.5 Hz, 1H), 8.23 (d, J = 7.7 Hz, 1H), 7.86 - 7.83 (m, 1H), 7.49 - 7.45 (m, 1H), 7.41 - 7.38 (m, 1H), 7.37 – 7.33 (m, 3H), 7.22 – 7.18 (m, 1H), 7.18 – 7.16 (m, 2H), 7.14 – 7.11 (m, 2H), 7.05 (dd, J = 9.0, 2.8 Hz, 1H), 7.03 – 7.00 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) $\delta = 162.3$ (d, J = 249.2 Hz), 161.9, 150.0, 148.0, 141.3 (d, J = 7.3 Hz), 137.7, 135.1, 134.6, 134.3 (d, J = 7.8 Hz), 131.0, 130.0, 129.5, 129.4, 129.0, 129.0, 128.0, 126.4, 124.1, 122.4, 120.8, 118.1 (d, J = 21.7 Hz), 116.3 (d, J = 21.2 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ = -114.85 - -114.89 (m). HR-MS(ESI) m/z calcd for: C₂₄H₁₈FN₂O⁸⁰Se⁺ [M+H]⁺ 449.0563, found 449.0567.

N-(5'-chloro-2'-(phenylselanyl)-[1,1'-biphenyl]-2-yl)picolinamide (3ea). The general procedure **A** was followed by using *N*-(3'-chloro-[1,1'-biphenyl]-2-yl) picolinamide (1e) (62.1 mg, 0.20 mmol), 1,2-diphenyldiselane (2a) (62.4 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 15/1$) yielded 3ea (79.9 mg, 86 %) as a white solid. M.p = 112 - 113 °C. ¹H NMR (600 MHz, CDCl₃) δ = 10.02 (s, 1H), 8.58 (d, *J* = 8.2 Hz, 1H), 8.39 - 8.37 (m, 1H), 8.26 - 8.24 (m, 1H), 7.88 - 7.85 (m, 1H), 7.50 - 7.47 (m, 1H), 7.42 - 7.40 (m, 3H), 7.29 (d,

J = 2.3 Hz, 1H, 7.28 - 7.26 (m, 1H), 7.23 (dd, J = 8.5, 2.3 Hz, 1H), 7.20 - 7.19 (m,2H), 7.19 - 7.17 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 162.0, 150.0, 148.0, 140.2, 137.6, 135.4, 135.1, 133.4, 133.0, 132.7, 130.8, 130.6, 130.1, 129.6, 129.5, 129.2, 129.1, 128.4, 126.4, 124.2, 122.4, 120.9. HR-MS(ESI) m/z calcd for: C₂₄H₁₈ClN₂O⁸⁰Se⁺ [M+H]⁺ 465.0267, found 465.0269.

N-(5'-bromo-2'-(phenylselanyl)-[1,1'-biphenyl]-2-yl)picolinamide (3fa). The general procedure **A** was followed by using *N*-(3'-bromo-[1,1'-biphenyl]-2-yl) picolinamide (1f) (70.9 mg, 0.20 mmol), 1,2-diphenyldiselane (2a) (62.7 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 15/1$) yielded 3fa (80.3 mg, 79 %) as a white solid. M.p = 111 - 112 °C. ¹H NMR (600 MHz, CDCl₃) $\delta = 10.04$ (s, 1H), 8.59 (d, *J* = 8.2 Hz, 1H), 8.39 – 8.38 (m, 1H), 8.25 (d, *J* = 7.8 Hz, 1H), 7.87 – 7.84 (m, 1H), 7.51 – 7.47 (m, 1H), 7.45 – 7.43 (m, 1H), 7.43 – 7.38 (m, 3H), 7.38 – 7.35 (m, 1H), 7.28 – 7.27 (m, 1H), 7.20 – 7.18 (m, 4H), 7.10 (d, *J* = 8.7 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) $\delta = 162.0$, 150.0, 148.0, 140.3, 137.6, 135.5, 135.1, 134.2, 133.6, 132.7, 132.0, 130.4, 130.1, 129.6, 129.5, 128.9, 128.5, 126.3, 124.2, 122.3, 120.8, 120.8. HR-MS(ESI) m/z calcd for: C₂₄H₁₈BrN₂O⁸⁰Se⁺ [M+H]⁺ 508.9762, found 508.9760.

N-(6'-(phenylselanyl)-[1,1':3',1''-terphenyl]-2-yl)picolinamide (3ga). The general procedure **A** was followed by using *N*-([1,1':3',1"-terphenyl]-2-yl)picolinamide (1g) (70.0 mg, 0.20 mmol), 1,2-diphenyldiselane (2a) (62.7 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 10/1$) yielded 3ga (81.1 mg, 80 %) as a white solid. M.p = 137 - 138 °C. ¹H NMR (600 MHz, CDCl₃) δ =

10.16 (s, 1H), 8.64 (d, J = 8.2 Hz, 1H), 8.28 – 8.26 (m, 1H), 8.23 (d, J = 7.5 Hz, 1H), 7.84 – 7.81 (m, 1H), 7.59 – 7.57 (m, 2H), 7.55 (d, J = 2.1 Hz, 1H), 7.51 – 7.48 (m, 2H), 7.46 – (m, 2H), 7.40 – 7.39 (m, 1H), 7.37 (s, 1H), 7.37 – 7.35 (m, 1H), 7.34 – 7.32 (m, 1H), 7.32 – 7.29 (m, 2H), 7.27 – 7.24 (m, 1H), 7.22 – 7.20 (m, 1H), 7.20 – 7.17 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) $\delta = 162.0$, 150.2, 148.0, 140.2, 139.0, 137.6, 135.3, 135.3, 133.8, 132.2, 131.6, 130.4, 129.6, 129.5, 129.4, 129.3, 129.0, 129.0, 128.2, 127.7, 127.6, 127.0, 126.2, 124.0, 122.3, 120.6. HR-MS(ESI) m/z calcd for: C₃₀H₂₃N₂O⁸⁰Se⁺ [M+H]⁺ 507.0970, found 507.0977.

N-(2'-(phenylselanyl)-5'-(trifluoromethyl)-[1,1'-biphenyl]-2-yl)picolinamide (3ha). The general procedure **A** was followed by using *N*-(3'-(trifluoromethyl)-[1,1'-biphenyl]-2-yl)picolinamide (1h) (68.0 mg, 0.20 mmol), 1,2-diphenyldiselane (2a) (62.6 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 15/1$) yielded 3ha (47.5 mg, 48 %) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) $\delta = 10.06$ (s, 1H), 8.64 (d, J = 8.3 Hz, 1H), 8.33 – 8.32 (m, 1H), 8.26 – 8.24 (m, 1H), 7.87 – 7.84 (m, 1H), 7.54 – 7.51 (m, 2H), 7.52 – 7.49 (m, 2H), 7.46 – 7.44 (m, 1H), 7.39 (ddd, J = 7.6, 4.7, 1.2 Hz, 1H), 7.38 – 7.35 (m, 1H), 7.31 – 7.30 (m, 1H), 7.29 – 7.27 (m, 2H), 7.25 – 7.23 (m, 1H), 7.21 (d, J = 8.4 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) $\delta = 162.1$, 150.0, 148.0, 141.4, 138.0, 137.7, 136.5, 135.2, 130.2, 130.1, 130.0, 129.9, 129.2, 128.8 (q, J = 32.9 Hz), 127.9, 127.5 (q, J = 3.9 Hz), 126.4, 125.6 (q, J = 3.7 Hz), 124.4, 124.2 (q, J = 271.7 Hz), 122.4, 121.0. ¹⁹F NMR (565 MHz, CDCl₃) $\delta = -62.34$. (s) HR-MS(ESI) m/z calcd for: C₂₅H₁₈F₃N₂O⁸⁰Se⁺ [M+H]⁺ 499.0531, found 499.0533.

N-(4'-methoxy-2'-(phenylselanyl)-[1,1'-biphenyl]-2-yl)picolinamide (3ia). The general procedure **A** was followed by using *N*-(4'-methoxy-[1,1'-biphenyl]-2-yl) picolinamide (1i) (60.6 mg, 0.20 mmol), 1,2-diphenyldiselane (2a) (62.8 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 10/1$) yielded 3ia (85.3 mg, 93 %) as a pink solid. M.p = 126 - 127 °C. ¹H NMR (600 MHz, CDCl₃) δ = 9.98 (s, 1H), 8.57 (d, *J* = 8.2 Hz, 1H), 8.36 - 8.33 (m, 1H), 8.21 (d, *J* = 8.0 Hz, 1H), 7.84 - 7.81 (m, 1H), 7.47 (d, *J* = 8.4 Hz, 1H), 7.46 - 7.42 (m, 1H), 7.38 - 7.36 (m, 1H), 7.27 - 7.25 (m, 2H), 7.17 - 7.12 (m, 2H), 7.12 - 7.09 (m, 1H), 7.06 - 7.03 (m, 2H), 6.92 - 6.88 (m, 2H), 3.78 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 161.9, 159.7, 150.1, 148.0, 141.8, 137.6, 135.8, 135.1, 133.3, 132.2, 131.5, 130.1, 129.0, 129.0, 127.2, 126.2, 123.8, 123.4, 122.3, 120.4, 116.1, 115.8, 55.6. HR-MS(ESI) m/z calcd for: C₂₅H₂₁N₂O₂⁸⁰Se⁺ [M+H]⁺ 461.0763, found 461.0767.

N-(4'-(*tert*-butyl)-2'-(phenylselanyl)-[1,1'-biphenyl]-2-yl)picolinamide (3ja). The general procedure **A** was followed by using *N*-(4'-(*tert*-butyl)-[1,1'-biphenyl]-2-yl) picolinamide (1j) (65.9 mg, 0.20 mmol), 1,2-diphenyldiselane (2a) (62.6 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 15/1$) yielded 3ja (78.9 mg, 81 %) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ = 9.98 (s, 1H), 8.60 (d, *J* = 8.2 Hz, 1H), 8.25 – 8.20 (m, 2H), 7.84 – 7.81 (m, 1H), 7.46 – 7.43 (m, 1H), 7.40 (d, *J* = 2.2 Hz, 1H), 7.37 – 7.35 (m, 4H), 7.24 – 7.20 (m, 2H), 7.20 – 7.13 (m, 2H), 7.13 – 7.10 (m, 2H), 1.27 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ =

161.8, 152.1, 150.2, 147.7, 137.6, 136.2, 135.5, 134.7, 133.8, 131.8, 130.6, 130.3,
130.2, 129.6, 129.2, 129.0, 127.8, 126.2, 124.5, 123.8, 122.3, 120.1, 34.9, 31.3.
HR-MS(ESI) m/z calcd for: C₂₈H₂₇N₂O⁸⁰Se⁺ [M+H]⁺ 487.1283, found 487.1288.

N-(2'-(phenylselanyl)-[1,1'-biphenyl]-2-yl)picolinamide (3ka'). The general procedure **A** was followed by using *N*-([1,1'-biphenyl]-2-yl)picolinamide (1k) (54.7 mg, 0.20 mmol), 1,2-diphenyldiselane (2a) (63.2 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 15/1$) yielded 3ka' (66.4 mg, 77 %) as a white solid. M.p = 106 - 107 °C. ¹H NMR (600 MHz, CDCl₃) δ = 10.00 (s, 1H), 8.60 (d, *J* = 8.3 Hz, 1H), 8.33 – 8.31 (m, 1H), 8.23 (d, *J* = 7.8 Hz, 1H), 7.85 – 7.82 (m, 1H), 7.48 – 7.45 (m, 1H), 7.42 – 7.40 (m, 2H), 7.37 (ddd, *J* = 7.5, 4.8, 1.2 Hz, 1H), 7.33 – 7.29 (m, 2H), 7.29 – 7.26 (m, 2H), 7.24 – 7.22 (m, 2H), 7.19 (dd, *J* = 7.4, 1.2 Hz, 1H), 7.17 – 7.14 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ = 162.0, 150.2, 148.0, 138.8, 137.6, 135.3, 134.7, 131.9, 131.7, 131.0, 130.3, 129.7, 129.4, 129.4, 129.2, 129.1, 128.1, 127.2, 126.2, 124.1, 122.4, 120.6. HR-MS(ESI) m/z calcd for: C₂₄H₁₉N₂O⁸⁰Se⁺ [M+H]⁺ 431.0657, found 431.0556.

N-(2',6'-bis(phenylselanyl)-[1,1'-biphenyl]-2-yl)picolinamide (**3ka''**). The general procedure **A** was followed by using *N*-([1,1'-biphenyl]-2-yl)picolinamide (**1k**) (54.7 mg, 0.20 mmol), 1,2-diphenyldiselane (**2a**) (63.2 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 15/1$) yielded **3ka''** (22.3 mg, 19 %) as a white solid. M.p = 120 - 121 °C. ¹H NMR (600 MHz, CDCl₃) $\delta = 10.04$ (s, 1H), 8.69 (d, J = 8.2 Hz, 1H), 8.34 – 8.32 (m, 1H), 8.26 (d, J = 7.8 Hz, 1H), 7.87 – 7.85 (m, 1H), 7.55 – 7.52 (m, 1H), 7.43 (d, J = 7.5 Hz, 4H), 7.41 – 7.39 (m, S12

1H), 7.26 – 7.25 (m, 1H), 7.25 – 7.23 (m, 3H), 7.19 – 7.15 (m, 4H), 7.03 – 7.02 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 161.9, 150.3, 147.9, 137.6, 137.3, 136.8, 135.7, 135.2, 130.6, 130.1, 130.0, 129.8, 129.6, 129.5, 128.8, 128.4, 126.2, 124.4, 122.4, 120.6. HR-MS(ESI) m/z calcd for: C₃₀H₂₃N₂O⁸⁰Se₂⁺ [M+H]⁺ 587.0135, found 587.0143.

N-(4'-methyl-2'-(phenylselanyl)-[1,1'-biphenyl]-2-yl)picolinamide (3la'). The general procedure **A** was followed by using *N*-(4'-methyl-[1,1'-biphenyl]-2-yl) picolinamide (1l) (57.5 mg, 0.20 mmol), 1,2-diphenyldiselane (2a) (62.6 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 10/1$) yielded **3la'** (66.8 mg, 75 %) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ = 9.99 (s, 1H), 8.57 (dd, *J* = 8.2, 1.1 Hz, 1H), 8.35 – 8.34 (m, 1H), 8.23 – 8.22 (m, 1H), 7.84 – 7.81 (m, 1H), 7.45 – 7.43 (m, 1H), 7.39 – 7.36 (m, 3H), 7.22 – 7.20 (m, 1H), 7.19 – 7.18 (m, 2H), 7.17 (s, 1H), 7.16 – 7.11 (m, 4H), 2.32 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 162.0, 150.2, 148.0, 139.0, 137.5, 136.2, 135.4, 134.8, 133.9, 132.8, 132.0, 130.8, 130.5, 130.1, 129.3, 128.9, 128.3, 127.8, 126.2, 124.0, 122.4, 120.5, 21.3. HR-MS(ESI) m/z calcd for: C₂₅H₂₁N₂O⁸⁰Se⁺ [M+H]⁺ 445.0814, found 445.0818.

N-(4'-methyl-2',6'-bis(phenylselanyl)-[1,1'-biphenyl]-2-yl)picolinamide (3la''). The general procedure **A** was followed by using *N*-(4'-methyl-[1,1'-biphenyl]-2-yl) picolinamide (1l) (57.5 mg, 0.20 mmol), 1,2-diphenyldiselane (2a) (62.6 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 10/1$) yielded **3la**" (19.1 mg, 16 %) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ = 10.01 (s, 1H), 8.66 (d, J = 8.3 Hz, 1H), 8.35 (s, 1H), 8.25 (d, J = 7.9 Hz, 1H), 7.87 – 7.85 (m, 1H), 7.52 – 7.49 (m, 1H), 7.43 – 7.39 (m, 5H), 7.24 – 7.17 (m, 3H), 7.17 – 7.14 (m, 5H), 6.91 (s, 2H),2.15 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 161.9, 150.3, 147.9, 139.8, 137.6, 136.0, 135.4, 135.3, 135.2, 130.9, 130.3, 130.2, 129.9, 129.7, 129.4, 128.2, 126.2, 124.2, 122.4, 120.4, 21.3. HR-MS(ESI) m/z calcd for: C₃₁H₂₅N₂O⁸⁰Se₂⁺ [M+H]⁺ 601.0292, found 601.0295.

N-(4'-chloro-2'-(phenylselanyl)-[1,1'-biphenyl]-2-yl)picolinamide (3ma'). The general procedure **A** was followed by using *N*-(4'-chloro-[1,1'-biphenyl]-2-yl) picolinamide (1m) (61.4 mg, 0.20 mmol), 1,2-diphenyldiselane (2a) (62.4 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 15/1$) yielded **3ma'** (72.1 mg, 78 %) as a white solid. M.p = 100 - 101 °C. ¹H NMR (600 MHz, CDCl₃) δ = 9.98 (s, 1H), 8.57 (d, *J* = 8.3 Hz, 1H), 8.39 (d, *J* = 4.7 Hz, 1H), 8.24 (d, *J* = 7.8 Hz, 1H), 7.87 - 7.84 (m, 1H), 7.51 - 7.47 (m, 1H), 7.45 - 7.43 (m, 2H), 7.42 - 7.39 (m, 1H), 7.33 - 7.27 (m, 2H), 7.26 - 7.22 (m, 2H), 7.21 - 7.19 (m, 3H), 7.17 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ = 162.0, 150.0, 148.1, 137.6, 137.1, 136.7, 135.8, 135.2, 135.0, 131.9, 130.7, 130.3, 129.7, 129.7, 129.5, 128.8, 128.5, 127.1, 126.4, 124.3, 122.4, 121.0. HR-MS(ESI) m/z calcd for: C₂₄H₁₈ClN₂O⁸⁰Se⁺ [M+H]⁺ 465.0267, found 465.0266.

N-(4'-chloro-2',6'-bis(phenylselanyl)-[1,1'-biphenyl]-2-yl)picolinamide (**3ma**''). The general procedure **A** was followed by using *N*-(4'-chloro-[1,1'-biphenyl]-2-yl) picolinamide (**1m**) (61.4 mg, 0.20 mmol), 1,2-diphenyldiselane (**2a**) (62.4 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 15/1$) yielded **3ma''** (19.5 mg, 16 %) as a white solid. M.p = 151 - 152 °C. ¹H NMR (600 MHz, CDCl₃) $\delta = 10.04$ (s, 1H), 8.69 (dd, J = 8.3, 1.1 Hz, 1H), 8.41 – 8.39 (m, 1H), 8.28 (d, J = 7.8 Hz, 1H), 7.90 – 7.87 (m, 1H), 7.57 – 7.54 (m, 1H), 7.46 – 7.44 (m, 4H), 7.44 – 7.42 (m, 1H), 7.33 – 7.30 (m, 2H), 7.25 – 7.22 (m, 4H), 7.22 – 7.20 (m, 2H), 6.88 (s, 2H). ¹³C NMR (150 MHz, CDCl₃) $\delta = 162.0$, 150.2, 148.1, 138.7, 137.7, 136.1, 135.7, 135.3, 134.8, 130.7, 130.4, 129.8, 129.0, 128.9, 128.5, 127.4, 126.4, 124.6, 122.5, 120.8. HR-MS(ESI) m/z calcd for: C₃₀H₂₂ClN₂O⁸⁰Se₂⁺ [M+H]⁺ 620.9746, found 620.9748.

N-(4'-fluoro-2'-(phenylselanyl)-[1,1'-biphenyl]-2-yl)picolinamide (3na'). The general procedure **A** was followed by using *N*-(4'-fluoro-[1,1'-biphenyl]-2-yl) picolinamide (1n) (58.0 mg, 0.20 mmol), 1,2-diphenyldiselane (2a) (62.9 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 10/1$) yielded 3na' (67.0 mg, 75 %) as a white solid. M.p = 91 – 92 °C. ¹H NMR (600 MHz, CDCl₃) δ = 10.02 (s, 1H), 8.59 (d, *J* = 8.2 Hz, 1H), 8.39 – 8.37 (m, 1H), 8.25 (dd, *J* = 7.9, 2.5 Hz, 1H), 7.88 – 7.85 (m, 1H), 7.51 – 7.49 (m, 1H), 7.47 – 7.46 (m, 2H), 7.42 – 7.40 (m, 1H), 7.34 – 7.31 (m, 1H), 7.25 – 7.17 (m, 5H), 7.00 – 6.97 (m, 1H), 6.86 (d, *J* = 9.4 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ = 163.0 (d, *J* = 249.9 Hz), 162.0, 150.1, 148.0, 137.7, 137.7, 136.1, 135.5, 133.8 (d, *J* = 3.2 Hz), 132.2 (d, *J* = 8.1 Hz), 130.7, 130.5, 129.8, 129.5, 128.9, 128.4, 126.4, 124.3, 122.4, 120.9, 117.2 (d, *J* = 23.9)

Hz), 113.8 (d, J = 21.7 Hz). ¹⁹F NMR (565 MHz, CDCl₃) $\delta = -112.78 - -112.82$ (m). HR-MS(ESI) m/z calcd for: C₂₄H₁₈FN₂O⁸⁰Se⁺ [M+H]⁺ 449.0563, found 449.0568.

N-(4'-fluoro-2',6'-bis(phenylselanyl)-[1,1'-biphenyl]-2-yl)picolinamide (3na''). The general procedure **A** was followed by using *N*-(4'-fluoro-[1,1'-biphenyl]-2-yl) picolinamide (1n) (58.0 mg, 0.20 mmol), 1,2-diphenyldiselane (2a) (62.9 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 10/1$) yielded **3na''** (23.0 mg, 19 %) as a white solid. M.p = 154 - 155 °C. ¹H NMR (600 MHz, CDCl₃) $\delta = 10.07$ (s, 1H), 8.72 (d, *J* = 7.9 Hz, 1H), 8.41 – 8.38 (m, 1H), 8.29 (d, *J* = 7.8 Hz, 1H), 7.90 – 7.87 (m, 1H), 7.58 – 7.56 (m, 1H), 7.48 – 7.46 (m, 4H), 7.43 (ddd, *J* = 7.6, 4.7, 1.2 Hz, 1H), 7.34 – 7.31 (m, 2H), 7.26 – 7.24 (m, 3H), 7.24 (s, 2H), 7.23 (d, *J* = 0.8 Hz, 1H), 6.59 – 6.58 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) $\delta = 163.2$ (d, *J* = 252.2 Hz), 162.0, 150.2, 148.0, 139.2 (d, *J* = 7.2 Hz), 137.7, 136.4, 135.6, 131.8, 131.0, 130.4, 129.8, 129.1, 128.8, 128.4, 126.4, 124.5, 122.5, 120.8, 114.4 (d, *J* = 24.2 Hz). ¹⁹F NMR (565 MHz, CDCl₃) $\delta = -111.68 - -111.71$ (m). HR-MS(ESI) m/z calcd for: C₃₀H₂₂FN₂O⁸⁰Se₂⁺ [M+H]⁺ 605.0041, found 605.0049.

N-(2'-fluoro-6'-(phenylselanyl)-[1,1'-biphenyl]-2-yl)picolinamide (3oa). The general procedure **A** was followed by using *N*-(2'-fluoro-[1,1'-biphenyl]-2-yl) picolinamide (1o) (57.6 mg, 0.20 mmol), 1,2-diphenyldiselane (2a) (62.4 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 10/1$) yielded 3oa (64.4 mg, 72 %) as a white solid. M.p = 123 - 124 °C. ¹H NMR (600 MHz, CDCl₃) $\delta = 10.00$ (s, 1H), 8.64 (dd, J = 8.3, 1.2 Hz, 1H), 8.33 – 8.32 (m, 1H),

8.25 – 8.23 (m, 1H), 7.86 – 7.83 (m, 1H), 7.53 – 7.50 (m, 1H), 7.45 – 7.43 (m, 2H), 7.38 (ddd, J = 7.6, 4.7, 1.2 Hz, 1H), 7.30 – 7.28 (m, 1H), 7.27 (d, J = 1.5 Hz, 1H), 7.25 – 7.23 (m, 1H), 7.23 – 7.21 (m, 1H), 7.21 – 7.18 (m, 2H), 7.06 – 7.03 (m, 1H), 7.00 (dd, J = 8.0, 1.1 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) $\delta = 161.9$, 160.3 (d, J =249.2 Hz), 150.1, 147.9, 138.0, 137.6, 135.8, 135.8, 130.8, 130.4 (d, J = 8.5 Hz), 129.9, 129.6, 128.9, 128.6, 126.5, 126.3, 125.5 (d, J = 18.3 Hz), 124.9, 124.2, 122.4, 120.8, 113.8 (d, J = 22.5 Hz). ¹⁹F NMR (565 MHz, CDCl₃) $\delta = -111.29 - -111.32$ (m). HR-MS(ESI) m/z calcd for: C₂₄H₁₈FN₂O⁸⁰Se⁺ [M+H]⁺ 449.0563, found 449.0568.

N-(2'-methoxy-6'-(phenylselanyl)-[1,1'-biphenyl]-2-yl)picolinamide (3pa). The general procedure **A** was followed by using *N*-(2'-methoxy-[1,1'-biphenyl]-2-yl) picolinamide (1p) (60.7 mg, 0.20 mmol), 1,2-diphenyldiselane (2a) (62.7 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: 30/1→10/1) yielded **3pa** (38.4 mg, 47 %) as a brown oil. ¹H NMR (600 MHz, CDCl₃) δ = 10.03 (s, 1H), 8.64 – 8.61 (m, 1H), 8.35 – 8.33 (m, 1H), 8.25 – 8.23 (m, 1H), 7.85 – 7.82 (m, 1H), 7.50 – 7.47 (m, 1H), 7.46 – 7.43 (m, 2H), 7.37 (ddd, *J* = 7.6, 4.7, 1.2 Hz, 1H), 7.29 (dd, *J* = 7.6, 1.7 Hz, 1H), 7.26 – 7.25 (m, 1H), 7.24 – 7.21 (m, 2H), 7.20 – 7.17 (m, 2H), 6.88 (d, *J* = 8.3 Hz, 1H), 6.80 (d, *J* = 8.0 Hz, 1H), 3.70 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 161.9, 157.6, 150.4, 147.9, 137.5, 137.2, 135.8, 135.7, 131.0, 130.0, 129.6, 129.4, 129.2, 128.3, 127.9, 126.4, 126.1, 124.1, 123.2, 122.3, 120.5, 109.0, 56.0. HR-MS(ESI) m/z calcd for: C₂₅H₂₁N₂O₂⁸⁰Se⁺ [M+H]⁺ 461.0763, found 461.0763.

N-(2',4'-difluoro-6'-(phenylselanyl)-[1,1'-biphenyl]-2-yl)picolinamide (3qa). The general procedure **A** was followed by using *N*-(2',4'-difluoro-[1,1'-biphenyl]-2-yl) picolinamide (1q) (62.1 mg, 0.20 mmol), 1,2-diphenyldiselane (2a) (62.4 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 15/1$) yielded **3qa** (62.4 mg, 67 %) as a blue oil. ¹H NMR (600 MHz, CDCl₃) δ = 10.01 (s, 1H), 8.64 (d, *J* = 8.3 Hz, 1H), 8.38 (d, *J* = 4.8 Hz, 1H), 8.26 (d, *J* = 7.7 Hz, 1H), 7.88 – 7.85 (m, 1H), 7.55 – 7.53 (m, 1H), 7.50 – 7.47 (m, 2H), 7.41 (ddd, *J* = 7.6, 4.7, 1.2 Hz, 1H), 7.38 – 7.34 (m, 1H), 7.31 – 7.25 (m, 4H), 6.80 – 6.76 (m, 1H), 6.63 – 6.60 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ = 163.1 (dd, *J* = 251.8, 12.8 Hz), 161.9, 160.4 (dd, *J* = 250.8, 12.2 Hz), 150.0, 148.0, 140.4 (dd, *J* = 9.3, 3.0 Hz), 137.7, 136.5, 136.0, 131.0, 130.2, 129.9, 129.3, 127.6, 126.4, 124.4, 123.9, 122.4, 121.0, 120.8 (d, *J* = 18.3 Hz), 112.6 (dd, *J* = 23.9, 3.6 Hz), 102.0 (dd, *J* = 26.2 26.0 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ = -107.63 – -107.66 (m), -109.02 – -109.06 (m). HR-MS(ESI) m/z calcd for: C₂₄H₁₇F₂N₂O⁸⁰Se⁺ [M+H]⁺ 467.0469, found 467.0472.

N-(3',5'-difluoro-2'-(phenylselanyl)-[1,1'-biphenyl]-2-yl)picolinamide (3ra). The general procedure **A** was followed by using *N*-(3',5'-difluoro-[1,1'-biphenyl]-2-yl) picolinamide (1r) (62.1 mg, 0.20 mmol), 1,2-diphenyldiselane (2a) (62.4 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 15/1$) yielded 3ra (63.7 mg, 68 %) as a white solid. M.p = 80 - 81 °C. ¹H NMR (600 MHz, CDCl₃) $\delta = 9.76$ (s, 1H), 8.51 (d, J = 8.2 Hz, 1H), 8.37 - 8.34 (m, 1H), 8.19 (d, J = 7.8 Hz, 1H), 7.85 - 7.82 (m, 1H), 7.45 - 7.42 (m, 1H), 7.39 (ddd, J = 7.5, 4.8, 1.2 Hz, 1H), 7.13 - 7.09 (m, 3H), 7.04 - 7.03 (m, 1H), 7.02 - 6.97 (m, 3H), 6.93 - 6.91 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) $\delta = 163.6$ (dd, J = 247.8, 13.1 Hz), 163.5 (dd, J = 252.2, 13.0 Hz), 161.7, 149.8, 148.0, 146.2 (dd, J = 10.1, 2.8 Hz), 137.6, 135.1, 132.0, 130.9, 130.8, 129.9, 129.4, 128.9, 127.1, 126.4, 123.9, 122.3, 120.6, 114.8 (dd, J = 7.5 + 10.5 + 1

22.4, 4.5 Hz), 114.6 (dd, J = 21.3, 3.7 Hz), 104.3 (dd, J = 29.4, 25.4 Hz). ¹⁹F NMR $(565 \text{ MHz}, \text{CDCl}_3) \delta = -92.03 - -92.07 \text{ (m)}, -107.77 - -107.82 \text{ (m)}. \text{ HR-MS(ESI) m/z}$ calcd for: $C_{24}H_{17}F_2N_2O^{80}Se^+$ [M+H]⁺ 467.0469, found 467.0475.

N-(2-(3-(phenylselanyl)thiophen-2-yl)phenyl)picolinamide (3sa). The general procedure A was followed by using N-(2-(thiophen-2-yl)phenyl)picolinamide (1s) (56.4 mg, 0.20 mmol), 1,2-diphenyldiselane (2a) (62.4 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 10/1$) yielded 3sa (49.1 mg, 56 %) as a pink solid. M.p = 109 – 110 °C. ¹H NMR (600 MHz, CDCl₃) δ = 10.18 (s, 1H), 8.61 - 8.59 (m, 1H), 8.41 - 8.40 (m, 1H), 8.24 (d, J = 7.8 Hz, 1H), 7.86-7.83 (m, 1H), 7.48 - 7.45 (m, 2H), 7.40 (ddd, J = 7.5, 4.8, 1.1 Hz, 1H), 7.29 - 7.27(m, 3H), 7.15 - 7.13 (m, 1H), 7.11 (d, J = 5.3 Hz, 1H), 7.10 - 7.07 (m, 1H), 7.06 - 7.077.04 (m, 1H), 7.04 – 7.02 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ = 162.0, 150.0, 148.1, 138.6, 137.6, 136.5, 133.2, 132.4, 131.9, 131.3, 130.0, 129.0, 127.2, 127.1, 126.3, 125.2, 124.1, 123.8, 122.4, 120.6. HR-MS(ESI) m/z calcd for: C₂₂H₁₇N₂OS⁸⁰Se⁺ [M+H]⁺ 437.0221, found 437.0225.

N-(2-(3-(phenylselanyl)pyridin-4-yl)phenyl)picolinamide (3ta). The general procedure A was followed by using N-(2-(pyridin-4-yl)phenyl)picolinamide (1t) (54.9 mg, 0.20 mmol), 1,2-diphenyldiselane (2a) (62.5 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 3/1$) yielded **3ta** (58.5 mg, 68 %) as a white solid. M.p = 117 - 118 °C. ¹H NMR (600 MHz, CDCl₃) δ = 9.87 (s, 1H), 8.57 – 8.51 (m, 3H), 8.38 – 8.36 (m, 1H), 8.23 (d, J = 7.5 Hz, 1H), 7.87 – 7.84 (m, 1H), 7.52 – 7.49 (m, 1H), 7.42 – 7.41 (m, 1H), 7.39 – 7.38 (m, 2H), 7.25 – 7.22

(m, 2H), 7.22 – 7.20 (m, 1H), 7.18 – 7.14 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 162.0, 152.3, 149.8, 148.2, 148.1, 147.4, 137.7, 135.1, 134.5, 131.5, 129.9, 129.7, 129.6, 129.4, 128.5, 128.1, 126.5, 125.5, 124.5, 122.4, 121.4. HR-MS(ESI) m/z calcd for: C₂₃H₁₈N₃O⁸⁰Se⁺ [M+H]⁺ 432.0610, found 432.0612.

N-(2-(3-(phenylselanyl)naphthalen-2-yl)phenyl)picolinamide (3ua). The general procedure **A** was followed by using *N*-(2-(naphthalen-2-yl)phenyl)picolinamide (1u) (64.3 mg, 0.20 mmol), 1,2-diphenyldiselane (2a) (63.6 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 10/1$) yielded 3ua (75.4 mg, 79 %) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) $\delta = 10.07$ (s, 1H), 8.59 (d, *J* = 8.3 Hz, 1H), 8.20 (d, *J* = 7.8 Hz, 1H), 8.10 – 8.08 (m, 1H), 7.80 – 7.77 (m, 4H), 7.68 (d, *J* = 6.9 Hz, 1H), 7.51 – 7.45 (m, 3H), 7.42 – 7.41 (m, 2H), 7.29 – 7.24 (m, 3H), 7.20 – 7.16 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) $\delta = 162.0$, 150.1, 147.9, 137.5, 136.8, 135.7, 135.2, 133.8, 132.5, 132.5, 131.7, 130.8, 130.7, 130.1, 129.8, 129.4, 129.2, 128.2, 128.0, 127.1, 126.8, 126.3, 126.1, 124.0, 122.3, 120.8. HR-MS(ESI) m/z calcd for: C₂₈H₂₁N₂O⁸⁰Se⁺ [M+H]⁺ 481.0814, found 481.0817.

N-(4-chloro-2'-(phenylselanyl)-[1,1'-biphenyl]-2-yl)picolinamide (3va'). The general procedure **A** was followed by using *N*-(4-chloro-[1,1'-biphenyl]-2-yl) picolinamide (1v) (60.7 mg, 0.20 mmol), 1,2-diphenyldiselane (2a) (62.7 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 15/1$) yielded 3va' (68.6 mg, 74 %) as a white solid. M.p = 126 - 127 °C. ¹H NMR (600

MHz, CDCl₃) $\delta = 9.99$ (s, 1H), 8.71 (d, J = 1.9 Hz, 1H), 8.32 – 8.31 (m, 1H), 8.22 (d, J = 7.7 Hz, 1H), 7.86 – 7.83 (m, 1H), 7.40 – 7.38 (m, 2H), 7.38 – 7.37 (m, 1H), 7.35 – 7.32 (m, 2H), 7.30 – 7.27 (m, 1H), 7.25 – 7.22 (m, 2H), 7.16 – 7.15 (m, 1H), 7.15 – 7.14 (m, 1H), 7.14 (d, J = 1.9 Hz, 1H), 7.13 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) $\delta = 162.0, 149.7, 148.0, 137.8, 137.7, 136.3, 135.1, 134.8, 134.6, 132.2, 131.1, 131.0, 130.0, 129.6, 129.4, 129.4, 128.2, 127.5, 126.5, 124.0, 122.4, 120.4. HR-MS(ESI) m/z calcd for: C₂₄H₁₈ClN₂O⁸⁰Se⁺ [M+H]⁺ 465.0267, found 465.0269.$

N-(4-chloro-2',6'-bis(phenylselanyl)-[1,1'-biphenyl]-2-yl)picolinamide (3va''). The general procedure **A** was followed by using *N*-(4-chloro-[1,1'-biphenyl]-2-yl) picolinamide (1v) (60.7 mg, 0.20 mmol), 1,2-diphenyldiselane (2a) (62.7 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 15/1$) yielded **3va''** (8.8 mg, 7 %) as a pink solid. M.p = 105 - 106 °C. ¹H NMR (600 MHz, CDCl₃) $\delta = 10.01$ (s, 1H), 8.78 (d, J = 2.1 Hz, 1H), 8.33 – 8.31 (m, 1H), 8.25 (d, J = 7.8 Hz, 1H), 7.90 – 7.87 (m, 1H), 7.42 – 7.39 (m, 5H), 7.26 – 7.23 (m, 2H), 7.20 – 7.18 (m, 2H), 7.18 – 7.15 (m, 3H), 7.09 (d, J = 8.1 Hz, 1H), 7.07 – 7.05 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) $\delta = 161.9$, 149.8, 147.9, 137.7, 136.7, 136.4, 136.3, 135.6, 131.5, 130.0, 129.5, 129.5, 129.3, 129.2, 128.5, 128.2, 126.5, 124.4, 122.5, 120.5. HR-MS(ESI) m/z calcd for: $C_{30}H_{22}ClN_2O^{80}Se_2^+$ [M+H]⁺ 620.9746, found 620.9740.

N-(5'-methyl-2'-(*o*-tolylselanyl)-[1,1'-biphenyl]-2-yl)picolinamide (3ab). The general procedure **A** was followed by using *N*-(3'-methyl-[1,1'-biphenyl]-2-yl) picolinamide (1a) (57.7 mg, 0.20 mmol), 1,2-di-*o*-tolyldiselane (2b) (69.3 mg, 0.20

mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 15/1$) yielded **3ab** (70.4 mg, 77 %) as a brown oil. ¹H NMR (600 MHz, CDCl₃) $\delta = 10.01$ (s, 1H), 8.60 (d, J = 8.4 Hz, 1H), 8.33 – 8.32 (m, 1H), 8.24 – 8.21 (m, 1H), 7.85 – 7.82 (m, 1H), 7.46 – 7.43 (m, 1H), 7.38 – 7.34 (m, 2H), 7.21 – 7.18 (m, 1H), 7.18 – 7.15 (m, 1H), 7.15 – 7.13 (m, 1H), 7.13 – 7.11 (m, 2H), 7.11 – 7.07 (m, 2H), 6.93 – 6.90 (m, 1H), 2.34 (s, 3H), 2.16 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) $\delta = 162.0, 150.2,$ 147.9, 141.5, 139.0, 137.5, 137.1, 135.9, 135.3, 132.0, 131.8, 130.8, 130.2, 130.2, 130.2, 130.1, 130.0, 129.0, 128.4, 126.6, 126.2, 124.0, 122.3, 120.5, 22.5, 21.1. HR-MS(ESI) m/z calcd for: C₂₆H₂₃N₂O⁸⁰Se⁺ [M+H]⁺ 459.0970, found 459.0973.

N-(2'-((2-fluorophenyl)selanyl)-5'-methyl-[1,1'-biphenyl]-2-yl)picolinamide (3ac). The general procedure **A** was followed by using *N*-(3'-methyl-[1,1'-biphenyl]-2-yl) picolinamide (1a) (57.7 mg, 0.20 mmol), 1,2-bis(2-fluorophenyl)diselane (2c) (70.9 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 15/1$) yielded **3ac** (83.6 mg, 91 %) as a white solid. M.p = $103 - 104 \,^{\circ}$ C. ¹H NMR (600 MHz, CDCl₃) δ = 9.99 (s, 1H), 8.59 (d, *J* = 8.2 Hz, 1H), 8.33 (d, *J* = 4.6 Hz, 1H), 8.21 (d, *J* = 7.7 Hz, 1H), 7.84 - 7.81 (m, 1H), 7.46 - 7.42 (m, 1H), 7.38 - 7.35 (m, 2H), 7.21 - 7.17 (m, 2H), 7.17 - 7.12 (m, 4H), 6.92 - 6.90 (m, 1H), 6.82 - 6.80 (m, 1H), 2.36 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 161.9, 161.8 (d, *J* = 244.6 Hz), 150.1, 148.0, 140.0, 138.2, 137.5, 135.7, 135.3, 133.7, 131.9, 131.9, 130.2, 130.1, 129.8 (d, *J* = 7.7 Hz), 129.0, 128.1, 126.2, 124.7 (d, *J* = 3.8 Hz), 123.9, 122.3, 120.4, 117.7 (d, *J* = 21.8 Hz), 115.6 (d, *J* = 23.3 Hz), 21.1. ¹⁹F NMR (565 MHz, CDCl₃) δ = -102.50 - -102.55 (m). HR-MS(ESI) m/z calcd for: C₂₅H₂₀FN₂O⁸⁰Se⁺ [M+H]⁺ 463.0719, found 463.0720.

N-(2'-((2-bromophenyl)selanyl)-5'-methyl-[1,1'-biphenyl]-2-yl)picolinamide (3ad). The general procedure **A** was followed by using *N*-(3'-methyl-[1,1'-biphenyl]-2-yl) picolinamide (1a) (57.6 mg, 0.20 mmol), 1,2-bis(2-bromophenyl)diselane (2d) (95.0 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 10/1$) yielded 3ad (91.4 mg, 88 %) as a white solid. M.p = 139 - 140 °C. ¹H NMR (600 MHz, CDCl₃) δ = 9.98 (s, 1H), 8.57 (d, *J* = 8.2 Hz, 1H), 8.34 (d, *J* = 4.9 Hz, 1H), 8.21 (d, *J* = 7.7 Hz, 1H), 7.84 − 7.81 (m, 1H), 7.49 (d, *J* = 8.0 Hz, 1H), 7.41 − 7.36 (m, 3H), 7.23 (s, 1H), 7.20 (d, *J* = 8.0 Hz, 1H), 6.87 − 6.84 (m, 1H), 7.12 − 7.10 (m, 1H), 7.07 (d, *J* = 7.7 Hz, 1H), 6.94 − 6.92 (m, 1H), 6.87 − 6.84 (m, 1H), 2.39 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 161.8, 150.1, 147.9, 141.3, 139.1, 137.6, 135.6, 135.2, 135.2, 133.3, 132.8, 132.2, 132.1, 130.4, 130.1, 129.0, 128.3, 128.1, 127.6, 126.2, 126.0, 123.8, 122.3, 120.4, 21.2. HR-MS(ESI) m/z calcd for: C₂₅H₂₀BrN₂O⁸⁰Se⁺ [M+H]⁺ 522.9919, found 522.9920.

N-(2'-((4-methoxyphenyl)selanyl)-5'-methyl-[1,1'-biphenyl]-2-yl)picolinamide

(3ae). The general procedure A was followed by using *N*-(3'-methyl-[1,1'-biphenyl]-2-yl)picolinamide (1a) (57.7 mg, 0.20 mmol), 1,2-bis(4-methoxyphenyl)diselane (2e) (75.3 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 10/1$) yielded 3ae (64.0 mg, 68 %) as a white solid. M.p = 149 – 150 °C. ¹H NMR (600 MHz, CDCl₃) δ = 10.04 (s, 1H), 8.61 (d, *J* = 8.3 Hz, 1H), 8.34 – 8.32 (m, 1H), 8.23 (d, *J* = 7.8 Hz, 1H), 7.84 – 7.82 (m, 1H), 7.48 – 7.45 (m, 1H), 7.36 (ddd, *J* = 7.6, 4.7, 1.2 Hz, 1H), 7.35 – 7.32 (m, 2H), 7.23 (dd, J = 7.5, 1.7 Hz, 1H), 7.20 –7.17 (m, 1H), 7.12 (d, J = 8.1 Hz, 1H), 7.08 – 7.07 (m, 1H), 7.07 – 7.04 (m, 1H), 6.71 – 6.69 (m, 2H), 3.75 (s, 3H), 2.31 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) $\delta = 162.0$, 159.9, 150.3, 147.9, 138.1, 137.5, 137.4, 136.7, 135.3, 132.0, 131.7, 131.6, 131.0, 130.3, 129.9, 129.0, 126.2, 124.0, 122.3, 120.5, 119.6, 115.0, 55.3, 21.0. HR-MS(ESI) m/z calcd for: C₂₆H₂₃N₂O₂⁸⁰Se⁺ [M+H]⁺ 475.0919, found 475.0925.

N-(5'-methyl-2'-(*p*-tolylselanyl)-[1,1'-biphenyl]-2-yl)picolinamide (3af). The general procedure **A** was followed by using *N*-(3'-methyl-[1,1'-biphenyl]-2-yl) picolinamide (1a) (57.7 mg, 0.20 mmol), 1,2-di-*p*-tolyldiselane (2f) (69.3 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 15/1$) yielded **3af** (59.4 mg, 65 %) as a white solid. M.p = 148 - 149 °C. ¹H NMR (600 MHz, CDCl₃) $\delta = 10.03$ (s, 1H), 8.60 (d, *J* = 8.3 Hz, 1H), 8.39 - 8.33 (m, 1H), 8.24 - 8.22 (m, 1H), 7.85 - 7.82 (m, 1H), 7.50 - 7.43 (m, 1H), 7.37 (ddd, *J* = 7.0, 4.5, 0.9 Hz, 1H), 7.31 - 7.27 (m, 2H), 7.24 - 7.16 (m, 3H), 7.14 - 7.06 (m, 2H), 6.96 - 6.94 (m, 2H), 2.32 (s, 3H), 2.27 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) $\delta = 162.0, 150.3, 147.9, 138.7, 138.0, 137.5, 137.0, 135.3, 135.2, 132.1, 131.8, 131.6, 131.0, 130.3, 130.1, 129.9, 129.0, 126.2, 126.2, 124.0, 122.3, 120.5, 21.3, 21.0. HR-MS(ESI) m/z calcd for: C₂₆H₂₃N₂O⁸⁰Se⁺ [M+H]⁺ 459.0970, found 459.0976.$

N-(2'-((4-fluorophenyl)selanyl)-5'-methyl-[1,1'-biphenyl]-2-yl)picolinamide (3ag). The general procedure **A** was followed by using *N*-(3'-methyl-[1,1'-biphenyl]-2-yl) picolinamide (1a) (57.7 mg, 0.20 mmol), 1,2-bis(4-fluorophenyl)diselane (2g) (70.9 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc:

30/1→20/1) yielded **3ag** (48.1 mg, 52 %) as a white solid. M.p = 130 – 131 °C. ¹H NMR (600 MHz, CDCl₃) δ = 9.98 (s, 1H), 8.59 (d, *J* = 8.3 Hz, 1H), 8.32 – 8.31 (m, 1H), 8.23 (d, *J* = 7.8 Hz, 1H), 7.86 – 7.83 (m, 1H), 7.46 – 7.44 (m, 1H), 7.37 (ddd, *J* = 7.6, 4.7, 1.2 Hz, 1H), 7.33 – 7.30 (m, 2H), 7.24 (d, *J* = 7.9 Hz, 1H), 7.16 (s, 1H), 7.16 – 7.14 (m, 1H), 7.12 – 7.10 (m, 2H), 6.82 – 6.78 (m, 2H), 2.34 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 162.8 (d, *J* = 244.5 Hz), 161.9, 150.2, 147.9, 139.1, 137.6, 137.6, 136.9 (d, *J* = 8.0 Hz), 135.2, 132.3, 131.9, 131.9, 130.5, 130.2, 130.0, 129.0, 126.2, 124.8 (d, *J* = 3.4 Hz), 124.0, 122.4, 120.5, 116.4 (d, *J* = 21.6 Hz), 21.1. ¹⁹F NMR (565 MHz, CDCl₃) δ = -113.54 – -113.58 (m). HR-MS(ESI) m/z calcd for: C₂₅H₂₀FN₂O⁸⁰Se⁺ [M+H]⁺ 463.0719, found 463.0724.

N-(2'-((3-bromophenyl)selanyl)-5'-methyl-[1,1'-biphenyl]-2-yl)picolinamide (3ah). The general procedure **A** was followed by using *N*-(3'-methyl-[1,1'-biphenyl]-2-yl) picolinamide (1a) (57.7 mg, 0.20 mmol), 1,2-bis(3-bromophenyl)diselane (2h) (95.3 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 15/1$) yielded **3ah** (56.0 mg, 54 %) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) $\delta = 9.98$ (s, 1H), 8.57 (d, J = 8.3 Hz, 1H), 8.36 (d, J = 3.4 Hz, 1H), 8.22 (d, J = 7.8 Hz, 1H), 7.84 – 7.81 (m, 1H), 7.45 – 7.41 (m, 2H), 7.39 – 7.36 (m, 2H), 7.26 (d, J = 8.1Hz, 1H), 7.22 – 7.20 (d, J = 7.8 Hz, 1H), 7.16 – 7.12 (m, 4H), 6.94 – 6.92 (m, 1H), 2.36 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) $\delta = 161.9$, 150.1, 148.1, 139.9, 138.3, 137.6, 136.3, 135.2, 133.5, 132.7, 132.5, 132.1, 131.9, 130.6, 130.4, 130.2, 130.2, 129.3, 129.0, 126.3, 123.9, 122.9, 122.3, 120.4, 21.1. HR-MS(ESI) m/z calcd for: C₂₅H₂₀BrN₂O⁸⁰Se⁺ [M+H]⁺ 522.9919, found 522.9920.

N-(2'-((3-fluorophenyl)selanyl)-5'-methyl-[1,1'-biphenyl]-2-yl)picolinamide (3ai). The general procedure **A** was followed by using *N*-(3'-methyl-[1,1'-biphenyl]-2-yl) picolinamide (1a) (57.6 mg, 0.20 mmol), 1,2-bis(3-fluorophenyl)diselane (2i) (69.5 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 15/1$) yielded 3ai (70.9 mg, 77 %) as a white solid. M.p = 101 - 102 °C. ¹H NMR (600 MHz, CDCl₃) $\delta = 9.97$ (s, 1H), 8.56 (d, J = 8.0 Hz, 1H), 8.37 – 8.35 (m, 1H), 8.22 (d, J = 7.8 Hz, 1H), 7.85 – 7.82 (m, 1H), 7.45 – 7.42 (m, 1H), 7.40 – 7.37 (m, 2H), 7.17 – 7.13 (m, 4H), 7.08 – 7.04 (m, 2H), 7.04 – 7.01 (m, 1H), 6.84 – 6.81 (m, 1H), 2.37 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) $\delta = 162.8$ (d, J = 247.5 Hz), 161.9, 150.1, 148.0, 140.1, 138.4, 137.6, 135.2, 133.8, 132.9 (d, J = 6.8 Hz), 132.1, 132.0, 130.3, 130.2, 129.2, 129.1, 129.0, 126.3, 123.9, 122.3, 120.5, 120.3 (d, J = 22.2 Hz), 114.4 (d, J = 21.3 Hz), 21.2. ¹⁹F NMR (565 MHz, CDCl₃) $\delta = -111.93 - -111.97$ (m). HR-MS(ESI) m/z calcd for: C₂₅H₂₀FN₂O⁸⁰Se⁺ [M+H]⁺ 463.0719, found 463.0726.

N-(2'-((3-chlorophenyl)selanyl)-5'-methyl-[1,1'-biphenyl]-2-yl)picolinamide (3aj). The general procedure **A** was followed by using *N*-(3'-methyl-[1,1'-biphenyl]-2-yl) picolinamide (1a) (57.7 mg, 0.20 mmol), 1,2-bis(3-chlorophenyl)diselane (2j) (77.8 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 15/1$) yielded 3aj (72.6 mg, 76 %) as a white solid. M.p = 92 – 93 °C. ¹H NMR (600 MHz, CDCl₃) δ = 9.98 (s, 1H), 8.57 (d, *J* = 8.2 Hz, 1H), 8.36 (d, *J* = 4.7 Hz, 1H), 8.22 (d, *J* = 7.8 Hz, 1H), 7.84 – 7.81 (m, 1H), 7.46 – 7.42 (m, 1H), 7.38 – 7.36 (m, 2H), 7.29 – 7.26 (m, 1H), 7.17 – 7.13 (m, 5H), 7.11 (d, J = 8.1 Hz, 1H), 7.02 – 6.97 (m, 1H), 2.36 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) $\delta = 161.9$, 150.1, 148.1, 139.9, 138.3, 137.6, 135.2, 134.7, 133.6, 133.4, 132.5, 132.0, 131.9, 131.9, 130.2, 130.2, 130.1, 129.3, 129.0, 127.7, 126.3, 123.9, 122.3, 120.4, 21.1. HR-MS(ESI) m/z calcd for: C₂₅H₂₀ClN₂O⁸⁰Se⁺ [M+H]⁺ 479.0424, found 479.0427.

N-(2'-((2-bromophenyl)selanyl)-5'-methoxy-[1,1'-biphenyl]-2-yl)picolinamide

(3bd). The general procedure A was followed by using N-(3'-methoxy-[1,1'-biphenyl]-2-yl)picolinamide (1b)(60.6 mg, 0.20 mmol), 1,2-bis(2-bromophenyl)diselane (2d) (94.2 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 7/1$) yielded **3bd** (92.5 mg, 86 %) as a white solid. M.p = 124 - 125 °C. ¹H NMR (600 MHz, CDCl₃) δ = 9.99 (s, 1H), 8.58 - 8.55 (m, 1H), 8.38 - 8.36 (m, 1H), 8.22 - 8.19 (m, 1H), 7.85 - 7.82 (m, 1H), 7.67 - 7.64 (m, 1H), 7.43 - 7.40 (m, 1H), 7.38 (dd, J = 7.4, 4.1 Hz, 1H), 7.35 - 7.32(m, 1H), 7.14 – 7.13 (m, 1H), 7.12 – 7.08 (m, 1H), 7.01 – 6.98 (m, 2H), 6.92 – 6.88 (m, 2H), 6.83 - 6.79 (m, 1H), 3.82 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) $\delta = 161.8$, 160.6, 150.0, 148.0, 143.9, 138.7, 137.6, 136.2, 135.1, 132.7, 132.2, 131.8, 129.9, 129.1, 127.5, 127.5, 126.3, 124.6, 123.8, 122.3, 121.4, 120.4, 116.5, 116.2, 55.7. HR-MS(ESI) m/z calcd for: $C_{25}H_{20}BrN_2O_2^{80}Se^+$ [M+H]⁺ 538.9868, found 538.9870.

N-(6'-((2-bromophenyl)selanyl)-[1,1':3',1''-terphenyl]-2-yl)picolinamide (3gd). The general procedure **A** was followed by using *N*-([1,1':3',1"-terphenyl]-2-yl) picolinamide (1g) (70.3 mg, 0.20 mmol), 1,2-bis(2-bromophenyl)diselane (2d) (94.8 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 10/1$) yielded **3gd** (107.2 mg, 92 %) as a white solid. M.p = 133 – 134 °C. ¹H NMR (600 MHz, CDCl₃) δ = 10.13 (s, 1H), 8.62 (d, J = 7.2 Hz, 1H), 8.28 – 8.25 (m, 1H), 8.22 (d, J = 7.8 Hz, 1H), 7.84 – 7.81 (m, 1H), 7.64 (d, J = 2.1 Hz, 1H), 7.63 – 7.61 (m, 1H), 7.61 – 7.59 (m, 2H), 7.56 (d, J = 8.2 Hz, 1H), 7.48 – 7.45 (m, 2H), 7.42 – 7.40 (m, 2H), 7.36 – 7.32 (m, 2H), 7.27 (dd, J = 7.6, 1.6 Hz, 1H), 7.26 – 7.24 (m, 1H), 7.18 – 7.16 (m, 1H), 7.03 – 7.00 (m, 1H), 6.95 – 6.92 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ = 161.9, 150.0, 148.0, 141.4, 140.9, 140.0, 137.6, 135.3, 134.9, 134.5, 134.2, 133.1, 131.6, 130.2, 129.9, 129.3, 129.0, 129.0, 128.8, 128.0, 127.9, 127.8, 127.1, 127.1, 126.3, 124.0, 122.3, 120.5. HR-MS(ESI) m/z calcd for: C₃₀H₂₂BrN₂O⁸⁰Se⁺ [M+H]⁺ 585.0075, found 585.0077.

N-(2'-((2-bromophenyl)selanyl)-4'-methoxy-[1,1'-biphenyl]-2-yl)picolinamide

The followed (**3id**). general procedure A by using was *N*-(4'-methoxy-[1,1'-biphenyl]-2-yl)picolinamide (1i) (60.9 mg, 0.20 mmol), 1,2-bis(2-bromophenyl)diselane (2d) (95.0 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 7/1$) yielded **3id** (93.8 mg, 87 %) as a white solid. M.p = 123 - 124 °C. ¹H NMR (600 MHz, CDCl₃) δ = 9.99 (s, 1H), 8.56 (dd, J = 8.3, 1.1 Hz, 1H), 8.37 - 8.36 (m, 1H), 8.21 - 8.20 (m, 1H), 7.85 - 7.82 (m, 1H), 71H), 7.65 (dd, J = 8.1, 0.9 Hz, 1H), 7.43 – 7.40 (m, 1H), 7.38 (ddd, J = 7.6, 4.8, 1.1 Hz, 1H), 7.34 (dd, J = 7.8, 1.4 Hz, 1H), 7.14 - 7.13 (m, 1H), 7.11 - 7.08 (m, 1H), 7.00 – 6.98 (m, 2H), 6.92 – 6.88 (m, 2H), 6.82 – 6.79 (m, 1H), 3.82 (s, 3H). ¹³C NMR $(150 \text{ MHz}, \text{CDCl}_3) \delta = 161.8, 160.6, 150.0, 148.0, 143.9, 138.7, 137.6, 136.2, 135.1,$ 132.7, 132.2, 131.8, 129.9, 129.1, 127.5, 127.5, 126.3, 124.6, 123.8, 122.3, 121.4, 120.4, 116.5, 116.2, 55.7. HR-MS(ESI) m/z calcd for: C₂₅H₂₀BrN₂O₂⁸⁰Se⁺ [M+H]⁺ 538.9868, found 538.9866.

N-(2-(3-((2-bromophenyl)selanyl)naphthalen-2-yl)phenyl)picolinamide (**3ud**). The general procedure Α followed using was by *N*-(2-(naphthalen-2-yl)phenyl)picolinamide (1u)(64.7 mg, 0.20 mmol), 1,2-bis(2-bromophenyl)diselane (2d) (94.0 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 10/1$) yielded **3ud** (83.2 mg, 75 %) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ = 10.04 (s, 1H), 8.58 (d, J = 7.3 Hz, 1H), 8.18 (d, J = 6.9 Hz, 1H), 8.07 – 8.06 (m, 1H), 8.02 (s, 1H), 7.88 (s, 1H), 7.84 (dd, J = 6.4, 3.2 Hz, 1H), 7.79 - 7.76 (m, 2H), 7.55 - 7.51 (m, 2H), 7.48 - 7.42 (m, 2H), 7.29 - 7.24 (m, 1H), 7.24 - 7.20 (m, 1H), 7.18 - 7.12 (m, 2H), 7.01 - 6.98 (m, 1H), 6.92 - 6.89 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) $\delta = 161.9$, 150.0, 147.9, 137.9, 137.5, 135.6, 134.4, 134.1, 133.9, 133.1, 133.0, 131.6, 130.5, 130.2, 129.2, 128.7, 128.1, 127.8, 127.4, 127.0, 127.0, 126.9, 126.1, 123.9, 122.3, 120.6. HR-MS(ESI) m/z calcd for: C₂₈H₂₀BrN₂O⁸⁰Se⁺ [M+H]⁺ 558.9919, found 558.9919.

N-(5'-methyl-2'-(phenylthio)-[1,1'-biphenyl]-2-yl)picolinamide (5aa). The general procedure **B** was followed by using *N*-(3'-methyl-[1,1'-biphenyl]-2-yl)picolinamide (1a) (57.7 mg, 0.20 mmol), 1,2-diphenyldisulfane (5a) (44.3 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 15/1$) yielded 5aa (56.3 mg, 71 %) as a white solid. M.p = $82 - 83 \,^{\circ}$ C. ¹H NMR (600 MHz, CDCl₃) $\delta = 10.02$ (s, 1H), 8.54 (d, $J = 8.1 \,$ Hz, 1H), 8.37 (d, $J = 4.6 \,$ Hz, 1H), 8.23 (d, $J = 7.6 \,$ Hz, 1H), 7.85 – 7.82 (m, 1H), 7.43 – 7.40 (m, 1H), 7.39 – 7.37 (m, 1H), 7.27 –

7.25 (m, 1H), 7.20 – 7.15 (m, 4H), 7.14 – 7.12 (m, 2H), 7.12 – 7.07 (m, 3H), 2.36 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 161.9, 150.2, 147.9, 138.8, 137.6, 137.6, 135.5, 135.3, 133.3, 132.1, 131.8, 131.8, 131.4, 130.4, 129.9, 129.0, 128.8, 127.1, 126.2, 124.0, 122.4, 120.6, 21.1. HR-MS(ESI) m/z calcd for: C₂₅H₂₁N₂OS⁺ [M+H]⁺ 397.1369, found 397.1372.

N-(5'-methoxy-2'-(phenylthio)-[1,1'-biphenyl]-2-yl)picolinamide (5ba). The general procedure **B** was followed by using *N*-(3'-methoxy-[1,1'-biphenyl]-2-yl) picolinamide (1b) (60.1 mg, 0.20 mmol), 1,2-diphenyldisulfane (5a) (43.7 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 10/1$) yielded 5ba (39.2 mg, 48 %) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ = 9.98 (s, 1H), 8.53 – 8.52 (m, 1H), 8.38 – 8.37 (m, 1H), 8.22 – 8.21 (m, 1H), 7.85 – 7.82 (m, 1H), 7.47 (d, *J* = 8.7 Hz, 1H), 7.43 – 7.40 (m, 1H), 7.40 – 7.37 (m, 1H), 7.13 – 7.09 (m, 2H), 7.07 – 7.05 (m, 2H), 7.04 – 7.01 (m, 3H), 6.97 (dd, *J* = 8.7, 2.9 Hz, 1H), 6.90 (d, *J* = 2.8 Hz, 1H), 3.80 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 161.9, 159.8, 150.2, 148.0, 141.9, 137.6, 137.0, 135.4, 135.2, 131.4, 130.2, 130.2, 128.9, 128.8, 128.8, 126.4, 126.2, 123.9, 122.4, 120.5, 116.4, 115.7, 55.7. HR-MS(ESI) m/z calcd for: C₂₅H₂₁N₂O₂S⁺ [M+H]⁺ 413.1318, found 413.1323.

N-(5'-chloro-2'-(phenylthio)-[1,1'-biphenyl]-2-yl)picolinamide (5ea). The general procedure **B** was followed by using *N*-(3'-chloro-[1,1'-biphenyl]-2-yl)picolinamide (1e) (61.0 mg, 0.20 mmol), 1,2-diphenyldisulfane (5a) (43.7 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 15/1$)

yielded **5ea** (44.2 mg, 53 %) as a white solid. M.p = 120 - 121 °C. ¹H NMR (600 MHz, CDCl₃) δ = 10.02 (s, 1H), 8.54 (d, J = 8.2 Hz, 1H), 8.40 (d, J = 4.4 Hz, 1H), 8.25 - 8.24 (m, 1H), 7.87 - 7.84 (m, 1H), 7.48 - 7.45 (m, 1H), 7.41 (ddd, J = 7.5, 4.7, 1.2 Hz, 1H), 7.30 (d, J = 2.3 Hz, 1H), 7.29 - 7.26 (m, 2H), 7.26 (s, 1H), 7.23 - 7.20 (m, 1H), 7.20 - 7.16 (m, 4H), 7.13 (d, J = 8.4 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ = 162.0, 150.1, 148.0, 139.3, 137.7, 136.8, 135.2, 133.6, 133.2, 132.6, 131.2, 131.1, 130.2, 129.9, 129.5, 129.4, 129.1, 128.1, 126.4, 124.3, 122.5, 121.0. HR-MS(ESI) m/z calcd for: C₂₄H₁₈ClN₂OS⁺ [M+H]⁺ 417.0823, found 417.0827.

N-(5'-bromo-2'-(phenylthio)-[1,1'-biphenyl]-2-yl)picolinamide (5fa). The general procedure **B** was followed by using *N*-(3'-bromo-[1,1'-biphenyl]-2-yl)picolinamide (1f) (70.1 mg, 0.20 mmol), 1,2-diphenyldisulfane (5a) (43.9 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 15/1$) yielded 5fa (52.3 mg, 57 %) as a white solid. M.p = 120 - 121 °C. ¹H NMR (600 MHz, CDCl₃) $\delta = 10.04$ (s, 1H), 8.54 (d, *J* = 8.3 Hz, 1H), 8.44 – 8.39 (m, 1H), 8.25 (d, *J* = 7.8 Hz, 1H), 7.87 – 7.85 (m, 1H), 7.50 – 7.44 (m, 2H), 7.43 – 7.40 (m, 2H), 7.30 – 7.23 (m, 3H), 7.22 (d, *J* = 6.2 Hz, 1H), 7.20 – 7.18 (m, 4H), 7.05 – 7.03 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) $\delta = 162.0, 150.1, 148.0, 139.4, 137.7, 137.6, 135.2, 133.9, 133.4, 133.3, 132.0, 131.1, 130.3, 129.8, 129.5, 129.4, 128.2, 126.4, 124.3, 122.5, 121.0, 120.4. HR-MS(ESI) m/z calcd for: C₂₄H₁₈BrN₂OS⁺ [M+H]⁺ 461.0318, found 461.0316.$

N-(4'-methoxy-2'-(phenylthio)-[1,1'-biphenyl]-2-yl)picolinamide (5ia). The general procedure **B** was followed by using *N*-(4'-methoxy-[1,1'-biphenyl]-2-yl)

picolinamide (1i) (60.1 mg, 0.20 mmol), 1,2-diphenyldisulfane (5a) (43.8 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 10/1$) yielded 5ia (49.8 mg, 60 %) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ = 9.98 (s, 1H), 8.53 – 8.52 (m, 1H), 8.38 – 8.37 (m, 1H), 8.22 (d, *J* = 7.8 Hz, 1H), 7.85 – 7.83 (m, 1H), 7.47 (d, *J* = 8.7 Hz, 1H), 7.43 – 7.40 (m, 1H), 7.40 – 7.37 (m, 1H), 7.14 – 7.10 (m, 2H), 7.08 – 7.05 (m, 2H), 7.04 – 7.01 (m, 3H), 6.97 (dd, *J* = 8.7, 2.9 Hz, 1H), 6.90 (d, *J* = 2.8 Hz, 1H), 3.80 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 161.9, 159.8, 150.1, 148.0, 141.8, 137.6, 137.0, 135.4, 135.2, 131.4, 130.2, 128.9, 128.8, 128.8, 126.4, 126.3, 126.3, 123.9, 122.4, 120.5, 116.4, 115.7, 55.7. HR-MS(ESI) m/z calcd for: C₂₅H₂₁N₂O₂S⁺ [M+H]⁺ 413.1318, found 413.1321.

N-(2-(3-(phenylthio)naphthalen-2-yl)phenyl)picolinamide (5ua). The general procedure **B** was followed by using *N*-(2-(naphthalen-2-yl)phenyl)picolinamide (1u) (64.5 mg, 0.20 mmol), 1,2-diphenyldisulfane (5a) (43.9 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 15/1$) yielded 5ua (40.2 mg, 46 %) as a brown oil. ¹H NMR (600 MHz, CDCl₃) $\delta = 10.07$ (s, 1H), 8.53 (d, *J* = 8.3 Hz, 1H), 8.20 (d, *J* = 7.8 Hz, 1H), 8.16 – 8.12 (m, 1H), 7.80 – 7.77 (m, 3H), 7.72 – 7.71 (m, 2H), 7.50 – 7.45 (m, 3H), 7.31 – 7.22 (m, 4H), 7.21 – 7.13 (m, 4H). ¹³C NMR (150 MHz, CDCl₃) $\delta = 162.1$, 150.1, 147.9, 137.5, 136.2, 135.7, 135.6, 134.2, 133.6, 133.0, 132.4, 131.0, 130.8, 130.7, 129.3, 129.2, 129.1, 128.0, 127.8, 127.2, 126.9, 126.4, 126.1, 124.1, 122.3, 120.9. HR-MS(ESI) m/z calcd for: C₂₈H₂₁N₂OS⁺ [M+H]⁺ 433.1369, found 433.1368.

N-(2'-((2-bromophenyl)thio)-5'-methyl-[1,1'-biphenyl]-2-yl)picolinamide (5ab). The general procedure **B** was followed by using *N*-(3'-methyl-[1,1'-biphenyl]-2-yl) picolinamide (1a) (57.6 mg, 0.20 mmol), 1,2-bis(2-bromophenyl)disulfane (5b) (75.6 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 15/1$) yielded 5ab (55.0 mg, 58 %) as a white solid. M.p = 117 - 118 °C. ¹H NMR (600 MHz, CDCl₃) δ = 9.98 (s, 1H), 8.53 (d, *J* = 7.3 Hz, 1H), 8.35 - 8.34 (m, 1H), 8.21 (d, *J* = 7.6 Hz, 1H), 7.84 - 7.81 (m, 1H), 7.42 - 7.35 (m, 3H), 7.32 (d, *J* = 8.1 Hz, 1H), 7.24 - 7.18 (m, 2H), 7.15 (d, *J* = 7.4 Hz, 1H), 7.11 - 7.09 (m, 1H), 7.05 - 6.99 (m, 1H), 6.92 - 6.89 (m, 2H), 2.38 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 161.9, 150.2, 148.0, 140.0, 138.6, 137.7, 137.6, 135.3, 133.4, 133.1, 132.4, 132.0, 131.3, 131.0, 130.2, 130.2, 128.9, 127.9, 127.6, 126.2, 125.1, 123.9, 122.4, 120.5, 21.2. HR-MS(ESI) m/z calcd for: C₂₅H₂₀BrN₂OS⁺ [M+H]⁺ 475.0474, found 475.0477.

N-(2'-((4-chlorophenyl)thio)-5'-methyl-[1,1'-biphenyl]-2-yl)picolinamide (5ac). The general procedure **B** was followed by using *N*-(3'-methyl-[1,1'-biphenyl]-2-yl) picolinamide (1a) (57.4 mg, 0.20 mmol), 1,2-bis(3-chlorophenyl)disulfane (5c) (57.6 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 15/1$) yielded 5ac (63.0 mg, 73 %) as a white solid. M.p = 59 – 60 °C. ¹H NMR (600 MHz, CDCl₃) δ = 9.94 (s, 1H), 8.54 (d, *J* = 8.2 Hz, 1H), 8.34 (d, *J* = 4.7 Hz, 1H), 8.22 (d, *J* = 7.7 Hz, 1H), 7.86 – 7.83 (m, 1H), 7.43 – 7.41 (m, 1H), 7.40 – 7.38 (m, 1H), 7.30 (d, *J* = 8.0 Hz, 1H), 7.20 (d, *J* = 8.2 Hz, 1H), 7.16 (s, 1H), 7.13 – 7.11 (m, 2H), 7.08 – 7.04 (m, 2H), 7.04 – 6.98 (m, 2H), 2.37 (s, 3H). ¹³C NMR (150 MHz, $CDCl_3$) $\delta = 161.9, 150.1, 147.9, 139.3, 138.2, 137.6, 135.2, 134.4, 133.0, 132.7, 132.6, 135.2, 134.4, 133.0, 132.7, 132.6, 135.2, 134.4, 133.0, 135.2, 134.4, 133.0, 135.2, 134.4, 135.2, 134.4, 135.2, 135.2, 134.4, 135.2,$ 132.3, 132.3, 131.2, 130.3, 130.0, 129.0, 128.9, 126.3, 124.0, 122.4, 120.5, 21.2. HR-MS(ESI) m/z calcd for: C₂₅H₂₀ClN₂OS⁺ [M+H]⁺ 431.0979, found 431.0988.

N-(5'-methyl-2'-(p-tolylthio)-[1,1'-biphenyl]-2-yl)picolinamide (5ad). The general procedure **B** was followed by using N-(3'-methyl-[1,1'-biphenyl]-2-yl)picolinamide (1a) (57.4 mg, 0.20 mmol), 1,2-di-p-tolyldisulfane (5d) (50.0 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 15/1$) yielded **5ad** (60.1 mg, 73 %) as a brown solid. M.p = 123 - 124 °C. ¹H NMR (600 MHz, CDCl₃) $\delta = 10.03$ (s, 1H), 8.55 (d, J = 8.3 Hz, 1H), 8.37 – 8.36 (m, 1H), 8.23 (d, J = 7.7 Hz, 1H), 7.85 - 7.82 (m, 1H), 7.45 - 7.42 (m, 1H), 7.38 (ddd, J = 7.6, 4.7, 1.2Hz, 1H), 7.21 – 7.16 (m, 2H), 7.15 – 7.14 (m, 1H), 7.14 – 7.12 (m, 3H), 7.10 (s, 1H), 6.96 - 6.94 (m, 2H), 2.34 (s, 3H), 2.26 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) $\delta =$ 162.0, 150.3, 147.9, 137.8, 137.6, 137.5, 136.8, 135.3, 134.5, 133.0, 131.9, 131.4, 131.0, 130.4, 130.4, 129.9, 129.8, 128.9, 126.2, 124.0, 122.4, 120.6, 21.2, 21.1. HR-MS(ESI) m/z calcd for: C₂₆H₂₃N₂OS⁺ [M+H]⁺ 411.1526, found 411.1531.

N-(5'-methyl-2'-(thiophen-2-ylthio)-[1,1'-biphenyl]-2-yl)picolinamide (5ae). The general procedure **B** was followed by using N-(3'-methyl-[1,1'-biphenyl]-2-yl) picolinamide (1a) (57.4 mg, 0.20 mmol), 1,2-di(thiophen-2-yl)disulfane (5e) (48.0 mg, 0.20 mmol). Purification by column chromatography (Petroleum ether /EtOAc: $30/1 \rightarrow 15/1$) yielded **5ae** (43.1 mg, 54 %) as a brown oil. ¹H NMR (600 MHz, CDCl₃) $\delta = 10.09$ (s, 1H), 8.61 (dd, J = 8.3, 1.2 Hz, 1H), 8.36 - 8.35 (m, 1H), 8.25 - 8.24 (m, 1H), 8.25 (m, 1H), 7.85 - 7.83 (m, 1H), 7.50 - 7.46 (m, 1H), 7.39 - 7.36 (m, 1H), 7.36 (dd, J = 5.4,

1.2 Hz, 1H), 7.27 (dd, J = 7.6, 1.7 Hz, 1H), 7.23 – 7.20 (m, 1H), 7.14 – 7.12 (m, 1H), 7.08 – 7.07 (m, 1H), 7.03 (d, J = 8.2 Hz, 1H), 7.01 (dd, J = 3.6, 1.3 Hz, 1H), 6.94 (dd, J = 5.3, 3.5 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) $\delta = 162.1$, 150.2, 148.1, 137.5, 136.5, 136.3, 135.9, 135.6, 135.5, 131.7, 131.3, 131.0, 130.6, 130.5, 129.9, 129.1, 127.9, 127.8, 126.2, 124.2, 122.3, 120.7, 21.0. HR-MS(ESI) m/z calcd for: C₂₃H₁₉N₂OS₂⁺ [M+H]⁺ 403.0933, found 403.0936.

2-methyl-10*H***-tribenzo[***b,e,g***][1,4]selenazocine (7a). The general procedure C** was followed by using *N*-(2'-((2-bromophenyl)selanyl)-5'-methyl-[1,1'-biphenyl]-2-yl) picolinamide (**3ad**) (52.2 mg, 0.10 mmol), CuI (9.5 mg, 0.05 mmol) at 125 °C for 12 h. Purification by column chromatography (Petroleum ether/EtOAc: 40/1) yielded **7a** (16.2 mg, 48 %) as a colorless oil. ¹H NMR (600 MHz, *d*₆-DMSO) δ = 7.68 (d, *J* = 7.8 Hz, 1H), 7.43 – 7.40 (m, 1H), 7.34 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.33 – 7.30 (m, 2H), 7.26 (dd, *J* = 7.5, 1.7 Hz, 1H), 7.19 – 7.15 (m, 2H), 7.09 – 7.06 (m, 1H), 7.01 (s, 1H), 6.98 (dd, *J* = 8.0, 1.4 Hz, 1H), 6.71 – 6.68 (m, 1H), 2.38 (s, 3H). ¹³C NMR (150 MHz, *d*₆-DMSO) δ = 148.5, 147.6, 144.6, 139.6, 139.2, 136.3, 133.7, 129.7, 129.3, 128.5, 128.2, 128.1, 127.9, 126.1, 122.5, 120.0, 119.8, 115.5, 20.9. HR-MS(ESI) m/z calcd for: C₁₉H₁₆N⁸⁰Se⁺ [M+H]⁺ 338.0442, found 338.0446.

2-methoxy-10*H***-tribenzo[***b,e,g***][1,4]selenazocine (7b). The general procedure C was followed by using** *N***-(2'-((2-bromophenyl)selanyl)-5'-methoxy-[1,1'-biphenyl]-2-yl) picolinamide (3bd**) (53.8 mg, 0.10 mmol), CuI (9.7 mg, 0.05 mmol) at 130 °C for 12 h. Purification by column chromatography (Petroleum ether/EtOAc: 30/1) yielded **7b** (15.7 mg, 45 %) as a colorless oil. ¹H NMR (600 MHz, *d*₆-DMSO) δ = 7.72 – 7.68 (m,

1H), 7.44 – 7.40 (m, 1H), 7.34 (dd, J = 7.7, 1.5 Hz, 1H), 7.32 (dd, J = 7.3, 1.2 Hz, 1H), 7.30 – 7.28 (m, 1H), 7.19 – 7.15 (m, 1H), 7.10 – 7.05 (m, 1H), 7.05 – 7.03 (m, 1H), 7.01 – 7.00 (m, 1H), 7.00 – 6.97 (m, 1H), 6.93 (dd, J = 8.5, 3.0 Hz, 1H), 6.71 – 6.68 (m, 1H), 3.81 (s, 3H). ¹³C NMR (150 MHz, d_6 -DMSO) $\delta = 160.4$, 149.2, 148.4, 144.5, 139.2, 137.6, 133.5, 129.4, 128.6, 128.1, 127.8, 126.1, 120.0, 119.9, 116.7, 115.7, 114.4, 113.3, 55.4. HR-MS(ESI) m/z calcd for: $C_{19}H_{16}NO^{80}Se^+$ [M+H]⁺ 354.0392, found 354.0394.

2-phenyl-10*H***-tribenzo[***b,e,g***][1,4]selenazocine (7c). The general procedure C** was followed by using *N*-(6'-((2-bromophenyl)selanyl)-[1,1':3',1"-terphenyl]-2-yl) picolinamide (**3gd**) (58.4 mg, 0.10 mmol), CuI (9.6 mg, 0.05 mmol) at 130 °C for 12 h. Purification by column chromatography (Petroleum ether/EtOAc: 60/1) yielded **7c** (18.7 mg, 47 %) as a colorless oil. ¹H NMR (600 MHz, *d*₆-DMSO) δ = 7.89 (d, *J* = 7.9 Hz, 1H), 7.75 – 7.74 (m, 2H), 7.74 – 7.73 (m, 1H), 7.65 (dd, *J* = 8.0, 2.2 Hz, 1H), 7.49 – 7.47 (m, 2H), 7.46 – 7.44 (m, 1H), 7.41 – 7.38 (m, 3H), 7.36 – 7.34 (m, 1H), 7.22 – 7.19 (m, 1H), 7.12 – 7.07 (m, 2H), 7.02 (dd, *J* = 8.0, 1.4 Hz, 1H), 6.74 – 6.71 (m, 1H). ¹³C NMR (150 MHz, *d*₆-DMSO) δ = 148.4, 148.3, 144.5, 141.7, 139.3, 139.2, 137.1, 133.7, 129.5, 129.1, 128.6, 128.3, 128.0, 127.2, 127.0, 127.0, 126.2, 125.6, 124.9, 120.1, 120.0, 115.4. HR-MS(ESI) m/z calcd for: C₂₄H₁₈N⁸⁰Se ⁺ [M+H]⁺ 400.0599, found 400.0591.

3-methoxy-10*H***-tribenzo**[*b*,*e*,*g*][1,4]**selenazocine** (7d). The general procedure C was followed by using *N*-(2'-((2-bromophenyl)selanyl)-4'-methoxy-[1,1'-biphenyl]-2-yl)
picolinamide (**3id**) (53.8 mg, 0.10 mmol), CuI (9.5 mg, 0.05 mmol) at 130 °C for 12 h. Purification by column chromatography (Petroleum ether/EtOAc: 40/1) yielded **7d** (16.1 mg, 46 %) as a colorless oil. ¹H NMR (600 MHz, *d*₆-DMSO) δ = 7.41 (d, *J* = 8.3 Hz, 1H), 7.39 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.38 – 7.34 (m, 2H), 7.31 – 7.29 (m, 1H), 7.25 – 7.22 (m, 1H), 7.18 – 7.15 (m, 1H), 7.12 – 7.09 (m, 1H), 7.09 – 7.07 (m, 1H), 7.06 – 7.04 (m, 1H), 7.01 – 6.99 (m, 1H), 6.72 – 6.69 (m, 1H), 3.78 (s, 3H). ¹³C NMR (150 MHz, *d*₆-DMSO) δ = 159.3, 148.4, 144.1, 140.0, 139.2, 133.8, 129.0, 128.4, 128.3, 128.2, 128.1, 126.4, 126.1, 121.2, 120.0, 119.8, 115.6, 115.1, 55.4. HR-MS(ESI) m/z calcd for: C₁₉H₁₆NO⁸⁰Se⁺ [M+H]⁺ 354.0392, found 354.0392.

5*H*-dibenzo[*b,e*]naphtho[2,3-*g*][1,4]selenazocine (7e). The general procedure C was followed by using *N*-(2-(3-((2-bromophenyl)selanyl)naphthalen-2-yl)phenyl) picolinamide (**3ud**) (55.8 mg, 0.10 mmol), CuI (9.5 mg, 0.05 mmol) at 130 °C for 12 h. Purification by column chromatography (Petroleum ether/EtOAc: 60/1) yielded 7e (19.7 mg, 53 %) as a white solid. M.p = 162 – 163 °C. ¹H NMR (600 MHz, *d*₆-DMSO) δ = 8.47 (s, 1H), 8.03 – 8.00 (m, 2H), 7.98 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.61 – 7.58 (m, 1H), 7.56 – 7.53 (m, 1H), 7.48 – 7.45 (m, 1H), 7.43 – 7.40 (m, 2H), 7.39 – 7.36 (m, 1H), 7.19 (d, *J* = 7.7 Hz, 1H), 7.10 – 7.08 (m, 1H), 7.02 (d, *J* = 7.1 Hz, 1H), 6.95 (s, 1H), 6.76 – 6.73 (m, 1H). ¹³C NMR (150 MHz, *d*₆-DMSO) δ = 148.6, 144.7, 144.4, 139.6, 136.3, 133.5, 133.4, 133.2, 129.5, 128.8, 128.4, 127.9, 127.8, 127.6, 127.4, 126.4, 126.3, 125.6, 125.0, 120.5, 120.1, 117.9. HR-MS(ESI) m/z calcd for: C₂₂H₁₆N⁸⁰Se⁺ [M+H]⁺ 374.0442, found 374.0446.

2-methyl-10*H***-tribenzo[***b,e,g***][1,4]thiazocine (7f). The general procedure C** was followed by using *N*-(2'-((2-bromophenyl)thio)-5'-methyl-[1,1'-biphenyl]-2-yl) picolinamide (**5ab**) (47.5 mg, 0.10 mmol), CuI (19.5 mg, 0.10 mmol) at 140 °C for 12 h. Purification by column chromatography (Petroleum ether/EtOAc: 40/1) yielded 7f (19.4 mg, 67 %) as a colorless oil. ¹H NMR (600 MHz, *d*₆-DMSO) δ = 7.54 (d, *J* = 7.8 Hz, 1H), 7.44 – 7.41 (m, 1H), 7.33 – 7.28 (m, 3H), 7.26 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.23 (dd, *J* = 7.5, 1.7 Hz, 1H), 7.22 – 7.21 (m, 1H), 7.18 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.07 – 7.04 (m, 1H), 6.93 (dd, *J* = 8.1, 1.4 Hz, 1H), 6.69 – 6.67 (m, 1H), 2.37 (s, 3H). ¹³C NMR (150 MHz, *d*₆-DMSO) δ = 148.3, 147.3, 141.8, 139.7, 139.5, 135.3, 133.2, 129.8, 129.4, 128.5, 128.4, 128.2, 127.4, 125.9, 125.8, 119.1, 118.9, 118.3, 20.9. HR-MS(ESI) m/z calcd for: C₁₉H₁₆NS⁺ [M+H]⁺ 290.0998, found 290.1000.

A suspension of *N*-(3'-methyl-[1,1'-biphenyl]-2-yl)picolinamide (**1a**) (1153.0 mg, 4.0 mmol), 1,2-bis(2-bromophenyl)diselane (**2d**) (1878.9 mg, 4.0 mmol), Pd(TFA)₂ (66.7 mg, 5.0 mol%), AgOAc (1200.7 mg, 7.2 mmol), TFA (200 μ L) in anhydrous PhCF₃ (20.0 mL) was stirred in Schlenk tube under nitrogen at 120 °C for 48 h. At ambient temperature, the reaction mixture was quenched with H₂O (20 mL) and extracted with EtOAc (3 x 35 mL). The combined organic layers were dried over anhydrous Na₂SO₄. After filtration and evaporation of the solvents in *vacuo*, the crude product was purified by column chromatography on silica gel (Petroleum ether/EtOAc: $30/1 \rightarrow 15/1$) to yield **3ad** (1678.4 mg, 80 %) as a white solid.

A suspension of *N*-(2'-((2-bromophenyl)selanyl)-5'-methyl-[1,1'-biphenyl]-2-yl) picolinamide (**3ad**) (1567.0 mg, 3.0mmol), NaOH (1801.0 mg, 45.0 mmol) in EtOH (42.9 mL) was stirred in Schlenk tube under air at 80 °C for 12 h. At ambient temperature, the reaction mixture was quenched with H₂O (30 mL) and extracted with DCM (3 x 50 mL). The combined organic layers were dried over anhydrous Na₂SO₄. After filtration and evaporation of the solvents in *vacuo*, the crude product was purified by column chromatography on silica gel (Petroleum ether/EtOAc: $50/1\rightarrow 20/1$) to yield **6** (1116.5 mg, 89 %) as a brown solid. M.p = 108 – 109 °C. ¹H NMR (600 MHz, CDCl₃) δ = 7.49 (d, *J* = 7.8 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.19 (s, 1H), 7.17 – 7.14 (m, 2H), 7.11 – 7.09 (m, 2H), 7.07 – 7.03 (m, 1H), 6.96 (d, *J* = 7.2 Hz, 1H), 6.75 – 6.73 (m, 2H), 3.37 (brs, 2H), 2.37 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 143.8, 142.2, 138.8, 135.4, 134.8, 133.6, 133.0, 132.0, 130.1, 129.9, 129.1, 128.3, 128.2, 127.9, 127.6, 126.4, 118.4, 115.6, 21.2. HR-MS(ESI) m/z calcd for: C₁₉H₁₇BrN⁸⁰Se⁺ [M+H]⁺ 417.9704, found 417.9708.

Scheme S3: H/D Exchanged Experiment

A suspension of *N*-(3'-methyl-[1,1'-biphenyl]-2-yl)picolinamide (**1a**) (57.7 mg, 0.20 mmol), Pd(TFA)₂ (3.3 mg, 5.0 mol %), AgOAc (60.1 mg, 0.36 mmol), TFA (10 μ L)

in a mixture solvent of anhydrous PhCF₃ and CH₃OD(1.8/0.2 mL) was stirred in seal tube under nitrogen at 120 °C for 12 h. At ambient temperature, the reaction mixture was quenched with H₂O (10 mL) and extracted with DCM (3 x 25 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and evaporated to give the crude product. A suspension of the crude product, NaOH (120.0 mg, 3.0 mmol) in EtOH (2.9 mL) was stirred in Schlenk tube under air at 80 °C for 12 h. At ambient temperature, the reaction mixture was quenched with H₂O (10 mL) and extracted with DCM (3 x 15 mL). The combined organic layers were dried over anhydrous Na₂SO₄. After filtration and evaporation of the solvents in *vacuo*, the crude product was purified by column chromatography on silica gel (Petroleum ether/EtOAc: $50/1 \rightarrow 20/1$) to yield [D]_n-1a (42.7 mg, 74 %) as a brown oil. The D-incorporation in [D]_n-1a was estimated by ¹H-NMR spectroscopy.

Scheme S4: Competition experiments

A suspension of *N*-(3'-methoxy-[1,1'-biphenyl]-2-yl)picolinamide (**1b**) (60.5 mg, 0.20 mmol), *N*-(3'-fluoro-[1,1'-biphenyl]-2-yl)picolinamide (**1d**) (58.5 mg, 0.20 mmol), 1,2-diphenyldiselane (**2a**) (62.4 mg, 0.20 mmol), Pd(TFA)₂ (3.3 mg, 5.0 mol %), AgOAc (60.1 mg, 0.36 mmol), TFA (10 μ L) in anhydrous PhCF₃ (2.0 mL) was stirred in seal tube under nitrogen at 120 °C for 12 h. At ambient temperature, the reaction mixture was quenched with H₂O (10 mL) and extracted with EtOAc (3 x 25 mL). The combined organic layers were dried over anhydrous Na₂SO₄. After filtration and evaporation of the solvents in *vacuo*, the crude product was purified by column chromatography on silica gel (Petroleum ether/EtOAc: 30/1 \rightarrow 5/1) to yield **3ba** (59.7 mg, 65 %) as a pink solid and yield **3da** (24.6 mg, 28 %) as a white solid.

A suspension of N-(3'-methyl-[1,1'-biphenyl]-2-yl)picolinamide (1a) (57.7 mg, 0.20 mmol), 1,2-bis(4-methoxyphenyl)diselane (2e) (74.7)0.20 mg, mmol), 1,2-bis(4-fluorophenyl)diselane (2g) (69.1 mg, 0.20 mmol), Pd(TFA)₂ (3.3 mg, 5.0 mol %), AgOAc (60.1 mg, 0.36 mmol), TFA (10 µL) in anhydrous PhCF₃ (2.0 mL) was stirred in seal tube under nitrogen at 120 °C for 12 h. At ambient temperature, the reaction mixture was quenched with H₂O (10 mL) and extracted with EtOAc (3 x 25 mL). The combined organic layers were dried over anhydrous Na₂SO₄. After filtration and evaporation of the solvents in vacuo, the crude product was purified by column chromatography on silica gel (Petroleum ether/EtOAc: $30/1 \rightarrow 5/1$) to yield **3ae** (41.1 mg, 43 %) as a white solid and yield **3ag** (14.7 mg, 16 %) as a white solid.

Scheme S5: Radical trap experiments

A suspension of *N*-(3'-methyl-[1,1'-biphenyl]-2-yl)picolinamide (**1a**) (57.7 mg, 0.20 mmol), 1,2-diphenyldiselane (**2a**) (62.4 mg, 0.20 mmol), Pd(TFA)₂ (3.3 mg, 5.0 mol%), AgOAc (60.1 mg, 0.36 mmol), TFA (10 μ L), the radical scavenger BHT (4 equiv) or TEMPO (4 equiv) or 1,1-diphenylethylene (4 equiv) in anhydrous PhCF₃ (2.0 mL) was stirred in seal tube under nitrogen at 120 °C for 12 h. At ambient temperature, the reaction mixture was quenched with H₂O (10 mL) and extracted with EtOAc (3 x 25 mL). The combined organic layers were dried over anhydrous Na₂SO₄. After filtration and evaporation of the solvents in *vacuo*, the crude product was

purified by column chromatography on silica gel (Petroleum ether/EtOAc: $30/1 \rightarrow 15/1$) to yield **3aa** as a white solid.

X-Ray crystallographic data of 3ea, 3ka' and 7e

The structure of **3ea** (CDCC: 2256296), **3ka'** (CDCC: 2256297) **and 7e** (CDCC: 2256298) was determined by the X-ray diffraction. Recrystallized from DCM and n-hexane. Further information can be found in the CIF file.

Datablock mo_cd_glh_mwb_zyh_2_161a_0ma_a - ellipsoid plot

Bond precision:	C-C = 0.0045 A	Wavelength=	0.71073
Cell:	a=20.765(5) alpha=90	b=14.171(3) beta=109.346(8)	c=15.154(4) gamma=90
Temperature:	300 K		
	Calculated	Reported	
Volume	4207.4(18)	4207.5(17)	
Space group	P 21/c	P 1 21/c 1	
Hall group	-P 2ybc	-P 2ybc	
Moiety formula	C24 H17 C1 N2 O S	Se C24 H17 C1	N2 0 Se
Sum formula	C24 H17 C1 N2 O S	Se C24 H17 Cl	N2 O Se
Mr	463.81	463.80	
Dx,g cm-3	1.464	1.464	
Z	8	8	
Mu (mm-1)	1.929	1.929	
F000	1872.0	1872.0	
F000'	1873.02		
h,k,lmax	24,16,18	24,16,18	
Nref	7400	7380	
Tmin, Tmax	0.566,0.654	0.525,0.74	6
Tmin'	0.514		
Correction metho AbsCorr = MULTI-	d= # Reported T L SCAN	imits: Tmin=0.525 Tma	ax=0.746
Data completenes	s= 0.997	Theta(max) = 24.999	
R(reflections)=	0.0334(5162)		wR2(reflections)= 0.0766(7380)
S = 1.021	Npar= 5	23	

Bond precision:	C-C = 0.0049 A	Wavelength=0.71073			
Cell:	a=15.2884(10)	b=12.8941(9)	c=21.3671(16)		
	alpha=90	beta=106.412(3)	gamma=90		
Temperature:	273 K				
	Calculated	Reported			
Volume	4040.5(5)	4040.5(5)			
Space group	P 21/n	P 1 21/n 1			
Hall group	-P 2yn	-P 2yn			
Moiety formula	C24 H18 N2 O Se	C24 H18 N2	2 O Se		
Sum formula	C24 H18 N2 O Se	C24 H18 N2	O Se		
Mr	429.36	429.36			
Dx,g cm-3	1.412	1.412			
Z	8	8			
Mu (mm-1)	1.875	1.875			
F000	1744.0	1744.0			
F000'	1743.82				
h,k,lmax	19,16,27	19,16,27			
Nref	9357	9312			
Tmin,Tmax	0.378,0.384	0.499,0.74	6		
Tmin'	0.349				
Correction method= # Reported T Limits: Tmin=0.499 Tmax=0.746 AbsCorr = MULTI-SCAN					
Data completenes	s= 0.995	Theta(max) = 27.588			
R(reflections)=	0.0433(5176)		wR2(reflections) 0.0954(9312)		
S = 0.996	Npar= 5	06	· · · · · · · · · · · · · · · · · · ·		

=

Datablock mo_glh_mwb_zyh_3_301a_2_0m_a - ellipsoid plot

Bond precision:	C-C = 0.0042 A	Wavelength=0.71073		
Cell:	a=8.3047(2) alpha=90	b=18.4642(6) beta=90	c=21.7070(7) gamma=90	
Temperature:	281 K			
	Calculated	Reported		
Volume	3328.54(17)	3328.54(1	7)	
Space group	Pbca	Pbca		
Hall group	-P 2ac 2ab	-P 2ac 2a	b	
Moiety formula	C22 H15 N Se	C22 H15 N	Se	
Sum formula	C22 H15 N Se	C22 H15 N	Se	
Mr	372.31	372.31		
Dx,g cm-3	1.486	1.486		
Z	8	8		
Mu (mm-1)	2.257	2.257		
F000	1504.0	1504.0		
F000'	1503.71			
h,k,lmax	9,21,25	9,21,25		
Nref	2915	2915		
Tmin,Tmax	0.414,0.835	0.527,0.7	46	
Tmin'	0.373			
Correction metho AbsCorr = MULTI-	d= # Reported T Lin SCAN	nits: Tmin=0.527 Tm	ax=0.746	
Data completenes	s= 1.000	Theta(max) = 24.999	9	
R(reflections)=	0.0313(2117)		wR2(reflections)	
S = 1.026	Npar= 22	1	0.0794 (2913)	

Reference:

- 1. A. Baccalini, S. Vergura, P. Dolui, S. Maiti, S. Dutta, S. Maity, F. F. Khan, G. K. Lahiri, G. Zanoni, D. Maiti, *Org. Lett.*, 2019, **21**, 8842.
- 2. W. Ma, Y. Zhou, Y. Wang, B. Li, T. Zheng, Z. Cheng, R. Mei, Adv. Synth. Catal., 2022, 364, 3544.
- 3. J. L. Kenwright, W. R. J. D. Galloway, D. T. Blackwell, A. Isidro-Llobet, J. Hodgkinson, L. Wortmann, S. D. Bowden, M. Welch, D. R. Spring. *Chem. Eur. J.*, 2011, **17**, 2981.

¹H, ¹³C and ¹⁹F NMR

9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9
 9.9

00 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 -270 -280 -290 -30 I1 (ppm)

 $\underbrace{ \{ \begin{smallmatrix} 112.78 \\ 112.80 \\ 112.81 \\ 112.82 \\ 112$

00 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 -270 -280 -290 -30 ft (ppm)

S68

00 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 -270 -280 -290 -30 -11 (ppm)

9 10 8 10

00 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 -270 -280 -290 -30 -11 (ppm)

S84

3ud (CDCl₃, 600 MHz)

S98

