Supplementary Information for

Gold catalyzed hydrofluorination of propargyl alcohols promoted by fluorine-hydrogen bonding

Hui Yang, Shaowen Wang, Jie Wang, Xiangsheng Xu* and Xiaoqing Li*

College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China. *X. Xu. E-mail: <u>future@zjut.edu.cn</u>; *X. Li. E-mail: <u>xqli@zjut.edu.cn</u>.

Table of Contents

GENERAL INFORMATIONS	
GENERAL PROCEDURE OF HYDROFLUORINATION	S3
GRAM-SCALE SYNTHESIS OF FLUOROALLYL ALCOHOL	S3
GENERAL PROCEDURE OF DERIVATIZATION	S4
CONTROL EXPERIMENT	S5
CHARACTERIZATION OF PRODUCTS	
REFERENCES	
NMR SPECTRUM	S12

General Informations

Unless stated otherwise, all reactions were carried out under an air atmosphere. All commercial reagents were used without additional purification. Flash chromatography was carried out with silica gel (200-300 mesh). ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded with 400 MHz, 101 MHz and 377 MHz spectrometers in CDCl₃ by using tetramethylsilane (TMS) as the internal standard, respectively. High-resolution mass spectra (HRMS) were recorded using a positive-ion electrospray ionization (ESI+) source.

General Procedure of Hydrofluorination

Following the standard procedure, a dried 5 mL Teflon tube was charged with propargyl alcohols 1 (0.2 mmol, 1.0 equiv.), JohnPhosAuNTf₂ (0.004 mmol, 5 mol%) and Et₃N·3HF (97 mg, 0.6 mmol, 3.0 equiv.) in 2.0 mL of dried toluene at 50°C (oil bath) under an air atmosphere. After 6 hours, the reaction was quenched with a saturated solution of NaOH (10 mL), then extracted with ethyl acetate (3×30 mL). The combined organic layers were washed with brine (50 mL), dried over Na₂SO₄, filtered, and concentrated in vacuum. The residue was purified by column chromatography on silica gel to give the product **2**.

Gram-scale synthesis of fluoroallyl alcohol

A 50 mL teflon tube was charged with propargyl alcohol **1a** (2.16 g, 10 mmol, 1.0 equiv.), JohnPhosAuNTf₂ (155 mg, 0.2 mmol, 2 mol%) and Et₃N·3HF (4.85 g, 30 mmol, 3.0 equiv.) in toluene (20 mL) at 50 °C (oil bath) under an air atmosphere. After 6 hours, the reaction was quenched with a saturated solution of NaOH (10 mL), then extracted with ethyl acetate (3×30 mL). The combined organic layers were washed with brine (50 mL), dried over Na₂SO₄, filtered, and concentrated in vacuum. The residue was purified by column chromatography on silica gel to give the product **2a**.

General Procedure of Derivatization

General Procedure A¹. A dried 8 mL tube was charged with fluorine-substituted allyl alcohol **2a** (0.2 mmol, 1.0 equiv.), TMSCl (1.2 mmol, 6.0 equiv.), NaI (1.2 mmol, 6.0 equiv.) and MeCN (1.2 mmol, 6.0 equiv.) in 2.0 mL of hexane at r.t. under an air atmosphere. After 10 hours, the reaction was extracted with ethyl acetate (3×15 mL). The combined organic layers were washed with brine (10 mL), dried over Na₂SO₄, filtered, and concentrated in vacuum. The residue was purified by column chromatography on silica gel to give the products **4**.

General Procedure B². A dried 8 mL tube was charged with fluorine-substituted allyl alcohol **2a** (0.2 mmol, 1.0 equiv.) and MnO_2 (1.0 mmol, 5.0 equiv.) in 2.0 mL of DCM at r.t. under an air atmosphere. After 6 hours, the MnO_2 was filtered out and new MnO_2 (1.0 mmol, 5.0 equiv.) was added. After 6 hours, the mixture was filtered and extracted with ethyl acetate (3×15 mL). The combined organic layers were washed with brine (10 mL), dried over Na_2SO_4 , filtered, and concentrated in vacuum. The residue was purified by column chromatography on silica gel to give the product **5**.

General Procedure C³. A dried 8 mL tube was charged with fluorine-substituted allyl alcohol **2j** (0.2 mmol, 1.0 equiv.) and TEMPO (0.2 mmol, 10 mol%), PhI(OAc)₂ (0.02 mmol, 1.1 equiv.), buffer (pH = 7, 0.02 ml) in 2.0 mL of MeCN at 0°C under an air atmosphere. The reaction was stirred at r.t. for 24 hours, the mixture was extracted with ethyl acetate (3×15 mL). The combined organic layers were washed with brine (10 mL), dried over Na₂SO₄, filtered, and concentrated in vacuum. The residue was purified by column chromatography on silica gel to give the product **6**.

Control experiment

A dried 5 mL Teflon tube A was charged with propargyl alcohols 1 (0.2 mmol, 1.0 equiv.) and B was charged with 7 (0.2 mmol, 1.0 equiv.), JohnPhosAuNTf₂ (0.004 mmol, 5 mol%) and Et₃N·3HF (97 mg, 0.6 mmol, 3.0 equiv.) in 2.0 mL of dried toluene at 50°C (oil bath) under an air atmosphere. After 4 hours, the reactions were quenched with a saturated solution of NaOH (10 mL), then extracted with ethyl acetate (3×30 mL). The combined organic layers were washed with brine (50 mL), dried over Na₂SO₄, filtered. 80mg mesitylene was added to the two crude products as the reference material, and the reaction was determined by the ¹H NMR.

Characterization of Products

(Z)-1-fluoro-1-phenylnon-1-en-3-ol (2a)

Compound **2a** was prepared following the general procedure. The reaction of **1a** (43 mg, 0.2 mmol) give **2a** as a yellow oil (38 mg, 80%); R_f =0.40 (petroleum ether/ethyl acetate 10: 1);

¹**H NMR (400 MHz, CDCl₃)** δ 7.58 – 7.52 (m, 2H), 7.44 – 7.33 (m, 3H), 5.49 (dd, *J* = 37.0, 8.7 Hz, 1H), 4.82 (dt, *J* = 8.8, 6.7 Hz, 1H), 2.00 (s, 1H), 1.80 – 1.54 (m, 2H), 1.43 – 1.25 (m, 8H), 0.96 – 0.88 (m, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 157.3 (d, J_{C-F} = 250.5 Hz), 131.9 (d, J_{C-F} = 28.3 Hz), 129.2, 128.5 (d, J_{C-F} = 2.0 Hz), 124.4 (d, J_{C-F} = 8.1 Hz), 109.2 (d, J_{C-F} = 15.2 Hz), 67.0 (d, J_{C-F} = 6.1 Hz), 37.5 (d, J_{C-F} = 1.0 Hz), 31.8, 29.2, 25.3, 22.6, 14.1;

¹⁹F NMR (377MHz, CDCl₃) δ -117.1;

HRMS (ESI) m/z: $[M+Na]^+$ calcd for $C_{15}H_{21}FNaO^+$ 259.1469, found 259.1468.

(Z)-1-fluoro-5-methyl-1-phenylhex-1-en-3-ol (2b)

Compound **2b** was prepared following the general procedure. The reaction of **1b** (38 mg, 0.2 mmol) give **2a** as a yellow oil (19 mg, 45%); R_{f} =0.45 (petroleum ether/ethyl acetate 10:1);

¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.53 (m, 2H), 7.43 – 7.34 (m, 3H), 5.60 – 5.43 (m, 1H), 4.68 (dt, *J* = 8.9, 5.9 Hz, 1H), 1.78 (s, 1H), 1.72 – 1.56 (m, 2H), 1.30 – 1.14 (m, 1H), 1.04 – 0.94 (m, 6H);

¹³C NMR (101 MHz, CDCl₃) δ 157.7 (dd, $J_{C-F} = 251.5$ Hz), 131.9 (d, $J_{C-F} = 29.23$ Hz), 129.2 (d, $J_{C-F} = 2.0$ Hz), 128.5 (d, $J_{C-F} = 2.0$ Hz), 124.4 (dd, $J_{C-F} = 7.1$ Hz), 107.3 (dd, $J_{C-F} = 67.7$ Hz), 69.5 (dd, $J_{C-F} = 23.2$ Hz), 41.0 (dd, $J_{C-F} = 18.2$ Hz), 25.3, 25.0 (d, $J_{C-F} = 20.2$ Hz), 13.0 (dd, $J_{C-F} = 281.8$ Hz);

¹⁹F NMR (377MHz, CDCl₃) δ -117.3 (d, *J* = 101.1 Hz);

HRMS (ESI) m/z: $[M+Na]^+$ calcd for $C_{13}H_{17}FNaO^+$ 231.1156, found 231.1155.

(Z)-1-fluoro-1,5-diphenylpent-1-en-3-ol (2c)

Compound **2c** was prepared following the general procedure. The reaction of **1c** (47 mg, 0.2 mmol) give **2c** as a yellow oil (35 mg, 68%); $R_{f}=0.50$ (petroleum ether/ethyl acetate 10:1);

¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.55 (m, 2H), 7.45 – 7.39 (m, 3H), 7.37 – 7.31 (m, 2H), 7.29 – 7.21 (m, 3H), 5.55 (dd, *J* = 36.9, 8.6 Hz, 1H), 4.94 – 4.80 (m, 1H), 2.90 – 2.69 (m, 2H), 2.15 – 2.03 (m, 1H), 1.96 (m, 2H);

¹³C NMR (101 MHz, CDCl₃) δ 157.5 (d, $J_{C-F} = 251.5$ Hz), 141.7, 131.7 (d, $J_{C-F} = 28.3$ Hz), 129.3, 128.6 (d, $J_{C-F} = 2.0$ Hz), 128.5 (d, $J_{C-F} = 3.0$ Hz), 125.9, 124.4 (d, $J_{C-F} = 7.1$ Hz), 108.8 (d, $J_{C-F} = 15.2$ Hz), 65.5 (d, $J_{C-F} = 6.1$ Hz), 38.91 (d, $J_{C-F} = 2.0$ Hz), 31.7;

¹⁹F NMR (377MHz, CDCl₃) δ -117.1;

HRMS (ESI) m/z: $[M+Na]^+$ calcd for $C_{17}H_{17}FNaO^+$ 279.1156, found 279.1155.

(Z)-1-fluoro-5,9-dimethyl-1-phenyldeca-1,8-dien-3-ol (2d)

Compound **2d** was prepared following the general procedure. The reaction of **1d** (51 mg, 0.2 mmol) give **2d** as a yellow oil (36 mg, 64%); R_f =0.37 (petroleum ether/ethyl acetate 10:1);

¹**H NMR (400 MHz, CDCl₃)** δ 7.54 (dt, *J* = 7.7, 1.7 Hz, 2H), 7.41 – 7.35 (m, 3H), 5.47 (m, 1H), 5.12 (m, 1H), 4.97 – 4.87 (m, 1H), 2.02 (m, 2H), 1.85 – 1.72 (m, 2H), 1.68 (t, *J* = 1.4 Hz, 3H), 1.62 (d, *J* = 1.3 Hz, 3H), 1.60 – 1.57 (m, 1H), 1.47 – 1.34 (m, 2H), 1.26 – 1.19 (m, 1H), 0.98 (t, *J* = 6.3 Hz, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 157.2 (dd, $J_{C-F} = 251.5$ Hz), 131.9 (dd, $J_{C-F} = 29.3$ Hz), 131.3, 129.2 (d, $J_{C-F} = 4.0$ Hz), 128.5 (d, $J_{C-F} = 2.0$ Hz), 124.7, 124.4 (dd, $J_{C-F} = 7.1$ Hz), 109.4 (dd, $J_{C-F} = 37.4$ Hz), 64.1 (d, $J_{C-F} = 17.2$ Hz), 44.7 (d, $J_{C-F} = 13.1$ Hz), 37.3 (d, $J_{C-F} = 8.1$ Hz), 29.1 (d, $J_{C-F} = 32.3$ Hz), 25.7, 25.4 (d, $J_{C-F} = 6.1$ Hz), 19.7 (d, $J_{C-F} = 50.5$ Hz), 17.7(d, $J_{C-F} = 2.0$ Hz);

¹⁹F NMR (377MHz, CDCl₃) δ -118.0 (d, *J* = 16.9);

HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₈H₂₅FNaO⁺ 299.1782, found 299.1785.

(Z)-1-cyclohexyl-3-fluoro-3-phenylprop-2-en-1-ol (2e)

Compound **2e** was prepared following the general procedure. The reaction of **1e** (43 mg, 0.2 mmol) give **2e** as a yellow oil (22 mg, 46%); R_f =0.52 (petroleum ether/ethyl acetate 10:1);

¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.53 (m, 2H), 7.43 – 7.34 (m, 3H), 5.50 (dd, *J* = 37.0, 9.0 Hz, 1H), 4.56 (t, *J* = 7.9 Hz, 1H), 1.99 (d, *J* = 12.7 Hz, 1H), 1.84 – 1.68 (m, 5H), 1.53 (m, 1H), 1.31 – 1.05 (m, 5H);

¹³C NMR (101 MHz, CDCl₃) δ 157.7 (d, J_{C-F} = 250.5 Hz), 131.9 (d, J_{C-F} = 28.3 Hz), 129.2, 128.5 (d, J_{C-F} = 1.0 Hz), 124.4 (d, J_{C-F} = 7.1 Hz), 107.6 (d, J_{C-F} = 5.1 Hz), 70.2 (d, J_{C-F} = 5.1 Hz), 44.1 (d, J_{C-F} = 1.1 Hz), 28.6 (d, J_{C-F} = 32.3 Hz), 26.5, 26.0 (d, J_{C-F} = 10.1 Hz);

¹⁹F NMR (377MHz, CDCl₃) δ -117.5;

HRMS (ESI) m/z: $[M+Na]^+$ calcd for $C_{15}H_{19}FNaO^+$ 257.1312, found 257.1318.

(Z)-1-fluoro-1-(4-methoxyphenyl)non-1-en-3-ol (2f)

Compound **2f** was prepared following the general procedure. The reaction of **1f** (49 mg, 0.2 mmol) give **2f** as a yellow oil (30 mg, 57%); R_f =0.43 (petroleum ether/ethyl acetate 10:1);

¹**H NMR (400 MHz, CDCl₃)** δ 7.53 – 7.44 (m, 2H), 6.91 (d, *J* = 8.7 Hz, 2H), 5.34 (dd, *J* = 37.2, 8.7 Hz, 1H), 4.85 – 4.73 (m, 1H), 3.84 (s, 3H), 1.87 (s, 1H), 1.72 (m, 1H), 1.63 – 1.52 (m, 1H), 1.42 – 1.24 (m, 8H), 0.89 (d, *J* = 6.9 Hz, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 160.4, 157.4 (d, $J_{C-F} = 250.5$ Hz), 125.9 (d, $J_{C-F} = 7.1$ Hz), 124.5 (d, $J_{C-F} = 29.3$ Hz), 113.9 (d, $J_{C-F} = 2.0$ Hz), 107.2 (d, $J_{C-F} = 15.2$ Hz), 66.0 (d, $J_{C-F} = 5.1$ Hz), 55.3, 37.5 (d, $J_{C-F} = 1.0$ Hz), 31.8, 29.2, 25.4, 22.6, 14.1;

¹⁹F NMR (377MHz, CDCl₃) δ -117.1;

HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₂₃FNaO₂⁺ 289.1574, found 289.1573.

(Z)-1-(4-chlorophenyl)-1-fluoronon-1-en-3-ol (2g)

Compound **2g** was prepared following the general procedure. The reaction of **1g** (50 mg, 0.2 mmol) give **2g** as a yellow oil (36 mg, 66%); Z/E = 100:3; $R_f = 0.43$ (petroleum ether/ethyl acetate 10:1);

¹**H** NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.4 Hz, 2H), 7.36 (d, *J* = 8.4 Hz, 2H), 5.47 (dd, *J* = 36.8, 8.6 Hz, 1H), 4.79 (q, *J* = 7.1 Hz, 1H), 1.91 (s, 1H), 1.71 (d, *J* = 16.6 Hz, 2H), 1.58 (dt, *J* = 19.1, 5.9 Hz, 1H), 1.36 – 1.27 (m, 8H), 0.93 – 0.87 (m, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 156.3 (d, J_{C-F} = 251.5 Hz), 135.1, 130.4 (d, J_{C-F} = 30.3 Hz), 128.8 (d, J_{C-F} = 2.0 Hz), 125.7 (d, J_{C-F} = 7.1 Hz), 109.7 (d, J_{C-F} = 15.2 Hz), 65.9 (d, J_{C-F} = 5.1 Hz), 37.4, 31.8, 29.2, 25.3, 22.6, 14.1; ¹⁹F NMR (377MHz, CDCl₃) δ -117.9;

HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₅H₂₀ClFNaO⁺ 293.1079, found 293.1075.

(Z)-1-(2-chlorophenyl)-1-fluoronon-1-en-3-ol (2h)

Compound **2h** was prepared following the general procedure. The reaction of **1h** (50 mg, 0.2 mmol) give **2h** as a yellow oil (35 mg, 66%); Z/E = 50:3; $R_f = 0.43$ (petroleum ether/ethyl acetate 10:1);

¹**H** NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 2.1 Hz, 1H), 7.42 (dt, *J* = 6.6, 2.0 Hz, 1H), 7.35 – 7.29 (m, 2H), 5.50 (dd, *J* = 36.8, 8.6 Hz, 1H), 4.84 – 4.75 (m, 1H), 1.94 (s, 1H), 1.77 – 1.69 (m, 1H), 1.64 – 1.52 (m, 1H), 1.43 – 1.24 (m, 8H), 0.95 – 0.84 (m, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 155.9 (d, J_{C-F} = 250.5 Hz), 134.7 (d, J_{C-F} = 2.0 Hz), 133.6 (d, J_{C-F} = 29.3 Hz), 129.8 (d, J_{C-F} = 2.0 Hz), 129.2, 124.5 (d, J_{C-F} = 7.1 Hz), 122.5, 122.4 (d, J_{C-F} = 7.1 Hz), 110.4 (d, J_{C-F} = 15.2 Hz), 65.9 (d, J_{C-F} = 6.1 Hz), 37.4 (d, J_{C-F} = 1.0 Hz), 31.8, 29.2, 25.3, 22.6, 14.1;

¹⁹F NMR (377MHz, CDCl₃) δ -118.1;

HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₅H₂₀ClFNaO⁺ 293.1079, found 293.1080.

(Z)-1-fluoro-1-(thiophen-3-yl)non-1-en-3-ol (2i)

Compound **2i** was prepared following the general procedure. The reaction of **1i** (45 mg, 0.2 mmol) give **2i** as a yellow oil (37 mg, 76%); Z/E = 20:1; $R_f = 0.33$ (petroleum ether/ethyl acetate 10:1);

¹**H NMR (400 MHz, CDCl₃)** δ 7.45 (d, *J* = 1.9 Hz, 1H), 7.35 – 7.30 (m, 1H), 7.17 (dt, *J* = 5.1, 1.3 Hz, 1H), 5.31 (dd, *J* = 37.0, 8.8 Hz, 1H), 4.81 – 4.72 (m, 1H), 1.86 (s, 1H), 1.76 – 1.68 (m, 1H), 1.63 – 1.52 (m, 1H), 1.39 – 1.25 (m, 8H), 0.93 – 0.88 (m, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 154.3 (d, J_{C-F} = 246.0 Hz), 134.0 (d, J_{C-F} = 32.3 Hz), 126.6 (d, J_{C-F} = 2.0 Hz), 124.2 (d, J_{C-F} = 7.1 Hz), 122.1 (d, J_{C-F} = 5.1 Hz), 108.7 (d, J_{C-F} = 14.1 Hz), 65.8 (d, J_{C-F} = 6.1 Hz), 37.4 (d, J_{C-F} = 1.0 Hz), 31.8, 29.2, 25.3, 22.6, 14.1;

¹⁹F NMR (377MHz, CDCl₃) δ -114.5;

HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₃H₁₉FNaOS⁺ 265.1033, found 265.1034.

(Z)-9-fluorotetradec-8-en-7-ol (2j)

Compound **2j** was prepared following the general procedure. The reaction of **1j** (42 mg, 0.2 mmol) give **2j** as a yellow oil (32 mg, 70%); Z/E = 100:9; $R_f = 0.45$ (petroleum ether/ethyl acetate 10:1);

¹H NMR (400 MHz, CDCl₃) δ 4.70 – 4.55 (m, 2H), 2.22 – 2.11 (m, 2H), 1.68 – 1.58 (m, 2H), 1.54 – 1.49 (m, 2H), 1.45 (td, *J* = 6.0, 3.4 Hz, 1H), 1.32 (td, *J* = 10.6, 9.0, 3.7 Hz, 14H), 0.90 (d, *J* = 6.9 Hz, 6H);

¹³C NMR (101 MHz, CDCl₃) δ 161.2 (d, J_{C-F} = 258.6 Hz), 108.9 (d, J_{C-F} = 13.1 Hz), 65.6 (d, J_{C-F} = 6.1 Hz), 37.4 (d, J_{C-F} = 2.0 Hz), 31.8 (d, J_{C-F} = 27.3 Hz), 31.8, 31.1, 29.2, 25.7 (d, J_{C-F} = 1.0 Hz), 25.3, 22.6, 22.4, 14.1, 13.9;

¹⁹F NMR (377MHz, CDCl₃) δ -105.5;

HRMS (ESI) m/z: $[M+Na]^+$ calcd for $C_{14}H_{21}FNaO^+$ 253.1938, found 253.1934.

(Z)-6-fluoro-2-methylundec-5-en-4-ol (2k)

Compound **2k** was prepared following the general procedure. The reaction of **1k** (36 mg, 0.2 mmol) give **2k** as a yellow oil (23 mg, 58%); Z/E = 100:7; $R_f = 0.40$ (petroleum ether/ethyl acetate 10:1);

¹**H NMR (400 MHz, CDCl₃)** δ 4.62 (dt, *J* = 37.1, 8.6 Hz, 1H), 4.43 (dt, *J* = 8.8, 5.9 Hz, 1H), 2.16 (dt, *J* = 16.7, 7.4 Hz, 2H), 1.57 – 1.47 (m, 4H), 1.31 (m, 4H), 1.11 (m, 1H), 0.90 (m, 9H);

¹³C NMR (101 MHz, CDCl₃) δ 161.7 (dd, $J_{C-F} = 258.6$ Hz), 106.9 (dd, $J_{C-F} = 63.6$ Hz), 69.3 (dd, $J_{C-F} = 28.3$ Hz), 40.8 (dd, $J_{C-F} = 21.2$ Hz), 32.1 (d, $J_{C-F} = 27.3$ Hz), 31.2, 25.9, 25.8, 25.4, 25.0, 22.5, 14.4 (d, $J_{C-F} = 29.3$ Hz), 14.1, 11.7 (d, $J_{C-F} = 23.2$ Hz);

¹⁹F NMR (377MHz, CDCl₃) δ-105.1 (d, *J* = 77.5 Hz);

HRMS (ESI) m/z: $[M+Na]^+$ calcd for $C_{12}H_{23}FNaO^+$ 225.1625, found 225.1625.

(Z)-5-fluoro-1-phenyldec-4-en-3-ol (2l)

Compound **21** was prepared following the general procedure. The reaction of **11** (46 mg, 0.2 mmol) give **21** as a yellow oil (37 mg, 73%); Z/E = 100:17; $R_f = 0.47$ (petroleum ether/ethyl acetate 10:1);

¹**H** NMR (400 MHz, CDCl₃) δ 7.32 – 7.29 (m, 2H), 7.23 (dt, *J* = 8.1, 2.6 Hz, 3H), 4.77 – 4.61 (m, 2H), 2.79 – 2.65 (m, 2H), 2.19 (dt, *J* = 17.6, 7.7 Hz, 2H), 1.95 (m, 1H), 1.88 – 1.77 (m, 1H), 1.71 (s, 1H), 1.59 – 1.49 (m, 2H), 1.35 (m, 4H), 0.96 – 0.91 (m, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 161.5 (d, J_{C-F} = 259.6 Hz), 141.9, 128.4 (d, J_{C-F} = 5.1 Hz), 125.8, 108.6 (d, J_{C-F} = 13.1 Hz), 65.2 (d, J_{C-F} = 5.1 Hz), 39.0 (d, J_{C-F} = 1.0 Hz), 32.0, 31.8, 31.7, 31.1, 25.7 (d, J_{C-F} = 2.0 Hz), 22.4, 14.0.; ¹⁹F NMR (377MHz, CDCl₃) δ -104.5;

HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₂₃FNaO⁺ 273.1625, found 273.1624.

(Z)-1-cyclohexyl-3-fluorooct-2-en-1-ol (2m)

Compound **2m** was prepared following the general procedure. The reaction of **1m** (42 mg, 0.2 mmol) give **2m** as a yellow oil (30 mg, 66%); Z/E = 25:1; $R_f = 0.50$ (petroleum ether/ethyl acetate 10:1);

¹**H NMR (400 MHz, CDCl₃)** δ 4.61 (dd, *J* = 37.3, 9.0 Hz, 1H), 4.31 (dd, *J* = 9.0, 6.9 Hz, 1H), 2.24 – 2.11 (m, 2H), 1.89 (m, 1H), 1.74 (m, 2H), 1.69 – 1.62 (m, 2H), 1.50 (m, 3H), 1.31 (dd, *J* = 7.5, 3.8 Hz, 5H), 0.92 – 0.87 (m, 3H).;

¹³C NMR (101 MHz, CDCl₃) δ 161.4 (d, J_{C-F} = 258.6 Hz), 106.9 (d, J_{C-F} = 13.1 Hz), 69.6 (d, J_{C-F} = 5.1 Hz), 43.7 (d, J_{C-F} = 2.0 Hz), 31.7 (d, J_{C-F} = 27.3 Hz), 31.0, 28.3 (d, J_{C-F} = 40.4 Hz), 26.4, 25.8 (d, J_{C-F} = 10.1 Hz), 25.6 (d, J_{C-F} = 2.0 Hz), 22.2, 13.8;

¹⁹F NMR (377MHz, CDCl₃) δ -105.4;

HRMS (ESI) m/z: $[M+Na]^+$ calcd for $C_{14}H_{25}FNaO^+$ 251.1782, found 251.1783.

(Z)-5-fluoro-2-methyldec-4-en-3-ol (2n)

Compound **2n** was prepared following the general procedure. The reaction of **1n** (34 mg, 0.2 mmol) give **2n** as a yellow oil (24 mg, 65%); Z/E = 25:1; $R_f = 0.55$ (petroleum ether/ethyl acetate 10:1);

¹**H NMR (400 MHz, CDCl₃)** δ 4.63 (dd, *J* = 37.2, 9.0 Hz, 1H), 4.33 (dd, *J* = 9.0, 6.5 Hz, 1H), 2.24 – 2.13 (m, 2H), 1.71 (m, 2H), 1.52 (p, *J* = 7.4 Hz, 2H), 1.33 (tt, *J* = 4.9, 2.0 Hz, 4H), 0.96 (d, *J* = 6.7 Hz, 3H), 0.90 (dd, *J* = 7.0, 3.0 Hz, 6H);

¹³C NMR (101 MHz, CDCl₃) δ 161.6 (d, J_{C-F} = 258.6 Hz), 106.8 (d, J_{C-F} = 13.1 Hz), 70.5 (d, J_{C-F} = 4.0 Hz), 34.0 (d, J_{C-F} = 1.0 Hz), 31.9 (d, J_{C-F} = 27.3 Hz), 31.1, 25.7 (d, J_{C-F} = 2.0 Hz), 22.3, 18.2, 17.8, 14.0;

¹⁹F NMR (377MHz, CDCl₃) δ -105.0;

HRMS (ESI) m/z: $[M+Na]^+$ calcd for $C_{11}H_{21}FNaO^+$ 211.1469, found 211.1466.

(Z)-5-fluoro-2,2-dimethyldec-4-en-3-ol (20)

Compound **20** was prepared following the general procedure. The reaction of **10** (36 mg, 0.2 mmol) give **20** as a yellow oil (22 mg, 66%); R_f =0.35 (petroleum ether/ethyl acetate 10:1);

¹H NMR (400 MHz, CDCl₃) δ 4.66 (dd, *J* = 37.0, 9.3 Hz, 1H), 4.27 (d, *J* = 9.2 Hz, 1H), 2.28 – 2.12 (m, 2H), 1.39 – 1.26 (m, 6H), 0.92 (s, 12H);

¹³C NMR (101 MHz, CDCl₃) δ 162.8, 160.3 (d, J_{C-F} = 258.6 Hz), 105.5 (d, J_{C-F} = 13.1 Hz), 73.0 (d, J_{C-F} = 5.1 Hz), 35.0 (d, J_{C-F} = 2.0 Hz), 32.0 (d, J_{C-F} = 27.3 Hz), 31.1, 28.7, 25.8 (d, J_{C-F} = 2.0 Hz), 25.3, 22.3, 14.0;

¹⁹F NMR (377MHz, CDCl₃) δ -104.6;

HRMS (ESI) m/z: $[M+Na]^+$ calcd for $C_{12}H_{23}FNaO^+$ 225.1625, found 225.1628.

(Z)-(1-fluoronon-1-en-1-yl)benzene (4)⁴

Compound 4 was prepared following the general procedure A. The reaction of 2a (47 mg, 0.2 mmol) give 4 as a lightyellow oil (35 mg, 66%); R_f =0.7 (petroleum ether/ethyl acetate 50:1);

¹**H NMR (400 MHz, CDCl₃)** δ 7.55 – 7.51 (m, 2H), 7.43 – 7.32 (m, 3H), 5.43 (dt, *J* = 37.6, 7.6 Hz, 1H), 2.31 (m, 2H), 1.53 – 1.44 (m, 2H), 1.37 – 1.26 (m, 8H), 0.95 – 0.90 (m, 3H).

(Z)-1-fluoro-1-phenylnon-1-en-3-one (5)

Compound **5** was prepared following the general procedure B. The reaction of **2a** (47mg, 0.2 mmol) give **5** as a lightyellow oil (33 mg, 70%); R_f =0.75 (petroleum ether/ethyl acetate 30:1);

¹**H NMR (400 MHz, CDCl₃)** δ 7.68 – 7.63 (m, 2H), 7.51 – 7.41 (m, 3H), 6.07 (d, *J* = 39.1 Hz, 1H), 2.79 (td, *J* = 7.4, 2.4 Hz, 2H), 1.70 – 1.63 (m, 2H), 1.37 – 1.28 (m, 6H), 0.92 – 0.86 (m, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 199.0 (d, $J_{C-F} = 2.0$ Hz), 164.7 (d, $J_{C-F} = 275.7$ Hz), 131.3, 130.6, 130.3 (d, $J_{C-F} = 27.3$ Hz), 128.7 (d, $J_{C-F} = 20.2$ Hz), 125.6 (d, $J_{C-F} = 8.1$ Hz), 106.3 (d, $J_{C-F} = 10.1$ Hz), 43.7 (d, $J_{C-F} = 5.1$ Hz), 31.5, 28.8, 23.9 (d, $J_{C-F} = 2.0$ Hz), 22.4, 13.9;

¹⁹F NMR (377MHz, CDCl₃) δ -96.5;

HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₅H₁₉FNaO⁺ 257.1312, found 257.1315.

(Z)-9-fluorotetradec-8-en-7-one (6)

Compound 6 was prepared following the general procedure C. The reaction of 2j (46 mg, 0.2 mmol) give 6 as a lightyellow oil (40 mg, 87%); R_f =0.8 (petroleum ether/ethyl acetate 30:1);

¹**H NMR (400 MHz, CDCl₃)** δ 5.33 (d, *J* = 39.0 Hz, 1H), 2.65 (td, *J* = 7.4, 2.3 Hz, 2H), 2.30 (dt, *J* = 17.3, 7.5 Hz, 2H), 1.63 – 1.56 (m, 4H), 1.37 – 1.30 (m, 10H), 0.94 – 0.88 (m, 6H);

¹³C NMR (101 MHz, CDCl₃) δ 199.1 (d, J_{C-F} = 3.0 Hz), 172.6 (d, J_{C-F} = 283.8 Hz), 108.3 (d, J_{C-F} = 8.1 Hz), 43.3 (d, J_{C-F} = 6.1 Hz), 32.7 (d, J_{C-F} = 25.3 Hz), 31.5, 30.8, 28.8, 25.2 (d, J_{C-F} = 2.0 Hz), 23.8 (d, J_{C-F} = 1.0 Hz), 22.4, 22.1, 13.9, 13.7;

¹⁹F NMR (377MHz, CDCl₃) δ -79.6;

HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₄H₂₅FNaO⁺ 251.1782, found 251.1784.

References

- 1. T. Sakai, K. Miyata, M. Utaka, M. Utaka and A. Takeda, Tetrahedron Lett., 1987, 28(33), 3817-3818.
- 2. A. J. Fatiadi, Synthesis, 1976, 65, 133-167.
- 3. G. Piancatelli and F. Leonelli, Org. Synth., 2006, 83, 18-23.
- 4. M.-H. Yang, S. S. Matikonda and R. A. Altman, Org. Lett., 2013, 15(15), 3894-3897.

NMR Spectrum

¹³C NMR (101 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

¹⁹F NMR (337 MHz, CDCl₃)


```
<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)
```


¹H NMR (400 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

NMR Yield determination

