Metal-free and enantioselective synthesis of 1,4benzoxazepines from *para*-quinone methides derivatives and α-bromohydroxamates

Suo-Suo Qi,^a Xin Luo,^a Xiao-Ping Sun,^a Jing-Jing Zhai,^a Ming-Ming Chu,^{*b} Jin Chen,^{*c} Yi-Feng Wang,^{*a} and Dan-Qian Xu,^{*a}

^a Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Department of Green Chemistry and Technology, Zhejiang University of Technology, Hangzhou 310014, China. E-mail: <u>wangyifeng@zjut.edu.cn</u>, <u>chrc@zjut.edu.cn</u>.

^b College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China. E-mail: chumingming@zjxu.edu.cn.

^c Institute of Chemistry Co. Ltd., Henan Academy of Sciences, Zhengzhou 450002, Henan Province, P. R. of China. E-mail: <u>chenjin715@163.com</u>.

List of Contents

1.	General information	S2
2.	Experimental procedures and characterization data of products	S2
3.	Scale-up experiment	S10
4.	Synthetic transformations of products	S10
5.	HPLC spectra of products	S11
6.	NMR spectra of products	S25
7.	Crystal data and structure refinement for enantiopure 4i	

1. General information

All the starting materials were obtained from commercial sources and used without further purification unless otherwise stated. ¹ H NMR spectra were recorded on Bruker AVANCE III (500 MHz) or Bruker ASCEND (600 MHz) in CDCl₃ using residual solvent signals as the internal standard (CDCl₃ δ = 7.26 ppm). ¹³C NMR spectra were recorded at 126 MHz (Bruker AVANCE III) or 151 MHz (Bruker ASCEND) in CDCl₃ using solvent signals as the internal standard (CDCl₃ δ = 77.16 ppm). HRMS data were measured on an Agilent 6120 LC/TOF-MS with ESI source. Melting points (m.p.) were obtained using a Büchi B-545 apparatus and uncorrected. Chiral HPLC analyses were performed using Agilent 1260 chromatography. Chiralpak IB, IC, ID, AD and IF columns were purchased from Daicel Chemical Industries (Shanghai, China). Optical rotations were measured on a Rudolph Autopol IV polarimeter. Column chromatography and flash chromatography experiments were conducted using silica gel GF254 (200-300 mesh) eluting with ethyl acetate and petroleum ether. TLC experiments were carried out on glass-backed silica plates. The *ortho*-hydroxyphenyl-substituted *p*-QMs¹ and α-bromohydroxamates² were prepared according to the reported literature procedures.

[1] (a) Zhao, K.; Zhi, Y.; Shu, T.; Valkonen, A.; Rissanen, K.; Enders, D. *Angew. Chem. Int. Ed.* **2016**, *55*, 12104. (b) Zhang, L.; Zhou, X.; Li, P.; Liu, Z.; Liu, Y.; Sun, Y.; Li, W. *RSC Adv.* **2017**, 7, 39216.

[2] (a) 1. Singh, R.; Nagesh, K.; Yugandhar, D.; Prasanthi, A. V. G. Org. Lett. 2018, 20, 4848. (b)
Zhou, S.-J.; Cheng, X.; Hu, C.-X.; Xu, G.-Y.; Xiao, W.-J.; Xuan, J. Sci. China. Chem. 2021, 64, 61-65.

2. Experimental procedures and characterization data of products

A flame-dried Schlenk-tube equipped with a magnetic stir bar was charged with C6 (0.05 mmol, 10 mol%), 1 (0.1 mmol), 2 (1.2 equiv., 0.12 mmol) in 1.5mL DCM. The resulting mixture was stirred at 15 °C for 24 h. Then, the isolated conjugate adduct was treated with K_2CO_3 (2 equiv., 0.2 mmol) in CH₂Cl₂ (1 mL) at 15 °C for 6 h. The solvent was removed under reduced pressure, the resulting residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 6:1) to give the 1,4-Benzoxazepines 4.

(S)-4-(benzyloxy)-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-4,5-

dihydrobenzo[f][1,4]oxazepin-3(2H)-one (3a). white solid, mp 100-102 °C, 97% yield, 53.7 mg, 97:3 er. The enantiomeric excess was determined by HPLC on Daicel Chiralpak IA-H with hexane/i-PrOH (96:4) as the eluent, flow = 1.0

mL/min, UV = 254 nm, $[\alpha]_D^{25} = -34$ (c = 1.0 in CH₂Cl₂). ¹H NMR (600 MHz,

CDCl₃) δ 7.36-7.32 (m, 4H), 7.28-7.27 (m, 3H), 7.19 (t, J = 7.6 Hz, 1H), 7.11-7.10 (m, 2H), 6.94 (s, 1H), 6.90 (t, J = 7.5 Hz, 1H), 6.84 (d, J = 7.9 Hz, 1H), 5.28 (s, 1H), 4.57 (d, J = 9.6 Hz, 1H), 4.46 (d, J = 9.6 Hz, 1H), 4.07 (s, 2H), 1.42 (s, 18H). ¹³C NMR (151 MHz, CDCl₃) δ 154.6, 153.6, 136.0, 133.8, 130.1, 129.6, 129.1, 129.1, 129.0, 128.6, 126.6, 125.8, 124.6, 120.2, 116.7, 79.2,

62.0, 41.6, 34.4, 30.3. HRMS (ESI) m/z: [M + Na]+ Calcd for C₃₀H₃₆BrNO₄Na 576.1720; Found 576.1728.

(S)-4-(benzyloxy)-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-4,5-

dihydrobenzo[f][1,4]oxazepin-3(2H)-one (4a). Purified by silica gel chromatography using PE/EA 6:1, white solid, mp 112-114 °C, 92% yield, 43.5 mg, 94:6 er. The enantiomeric excess was determined by HPLC on Daicel Chiralpak IB-H with hexane/i-PrOH (90:10) as the eluent, flow = 1.0 mL/min,

UV = 254 nm, $[\alpha]_D^{25} = -44$ (c = 1.0 in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.36–7.34 (m, 2H), 7.32–7.27 (m, 4H), 7.08 (s, 2H), 7.05–7.00 (m, 2H), 6.81 (dd, *J* = 7.6, 1.4 Hz, 1H), 5.45 (s, 1H), 5.20 (s, 1H), 5.07 (d, *J* = 10.7 Hz, 1H), 4.96 (d, *J* = 10.7 Hz, 1H), 4.72 (d, *J* = 15.6 Hz, 1H), 4.43 (d, *J* = 15.6 Hz, 1H), 1.38 (s, 18H). ¹³C NMR (125 MHz, CDCl₃) δ 167.6, 156.6, 153.3, 135.9, 135.2, 131.3, 130.1, 129.9, 129.8, 128.7, 128.4, 123.7, 123.2, 121.0, 77.1, 72.3, 70.7, 34.3, 30.2. HRMS (ESI) m/z: [M + Na]+ Calcd for C₃₀H₃₅NO₄Na 496.2458; Found 496.2466.

(S)-4-(benzyloxy)-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-7-fluoro-4,5dihydrobenzo[f][1,4]oxazepin-3(2H)-one (4b). Purified by silica gel chromatography using PE/EA 6:1, white solid, mp 67-59 °C, 91% yield, 44.7 mg, 92.5:7.5 er. The enantiomeric excess was determined by HPLC on Daicel Chiralpak IB-H with hexane/i-PrOH (90:10) as the eluent, flow = 1.0 mL/min,

UV = 254 nm, $[\alpha]_D^{25} = -41$ (c = 1.0 in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃)

δ 7.36–7.28 (m, 5H), 7.06 (s, 2H), 7.02–6.09 (m, 2H), 6.44 (dd, J = 8.3, 2.4 Hz, 1H), 5.32 (s, 1H), 5.22 (s, 1H), 5.08 (d, J = 10.8 Hz, 1H), 4.94 (d, J = 10.8 Hz, 1H), 4.71 (d, J = 15.8 Hz, 1H), 4.41 (d, J = 15.8 Hz, 1H), 1.38 (s, 16H). ¹³**C NMR** (125 MHz, CDCl₃) δ 167.4, 159.3, 157.4, 153.5, 152.6 (d, ${}^{4}J_{C-F} = 2.4$ Hz), 136.1, 135.1, 130.7, 130.6 (d, ${}^{2}J_{C-F} = 7.5$ Hz), 130.5, 129.9, 128.9, 128.5, 127.3 (d, ${}^{1}J_{C-F} = 196.7$ Hz) 123.1, 122.3 (d, ${}^{2}J_{C-F} = 8.4$ Hz), 116.4 (d, ${}^{3}J_{C-F} = 3.1$ Hz), 116.2 (d, ${}^{3}J_{C-F} = 4.1$ Hz), 77.1, 72.6, 70.4, 34.3, 30.2. HRMS (ESI) m/z: [M + Na]+ Calcd for C₃₀H₃₄FNO₄Na 514.2364; Found 514.2369.

(S)-4-(benzyloxy)-7-chloro-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-4,5dihydrobenzo[f][1,4]oxazepin-3(2H)-one (4c). Purified by silica gel chromatography using PE/EA 6:1, white solid, mp 57-59 °C, 92% yield, 46.6 mg, 95:5 er. The enantiomeric excess was determined by HPLC on Daicel Chiralpak IB-H with hexane/i-PrOH (90:10) as the eluent, flow = 1.0 mL/min,

UV = 254 nm,
$$[\alpha]_D^{25} = -59$$
 (c = 1.0 in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃)

δ 7.38–7.32 (m, 3H), 7.30–7.28 (m, 2H), 7.22 (dd, J = 8.6, 2.5 Hz, 1H), 7.01 (s, 2H), 6.96 (d, J = 8.6 Hz, 1H), 6.60 (d, J = 2.4 Hz, 1H), 5.27 (s, 1H), 5.23 (s, 1H), 5.06 (d, J = 11.0 Hz, 1H), 4.97 (d, J = 11.0 Hz, 1H), 4.64 (d, J = 15.5 Hz, 1H), 4.40 (d, J = 15.5 Hz, 1H), 1.38 (s, 18H). ¹³C NMR (125 MHz, CDCl₃) δ 167.1, 155.0, 153.5, 136.1, 135.0, 130.7, 130.0, 129.8, 129.6, 129.3, 129.0, 128.5, 128.2, 123.0, 122.2, 77.2, 71.9, 70.2, 34.3, 30.1. HRMS (ESI) m/z: [M + Na]+ Calcd for C₃₀H₃₄CINO₄Na 530.2069; Found 530.2070.

(S)-4-(benzyloxy)-7-bromo-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-4,5dihydrobenzo[f][1,4]oxazepin-3(2H)-one (4d). Purified by silica gel chromatography using PE/EA 6:1, colorless oil, 90% yield, 49.6 mg, 94:6 er. The enantiomeric excess was determined by HPLC on Daicel Chiralpak IB-H with hexane/i-PrOH (90:10) as the eluent, flow = 1.0 mL/min, UV = 254 nm,

$$[\alpha]_D^{25} = -44$$
 (c = 1.0 in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.39–7.32

(m, 4H), 7.30–7.28 (m, 2H), 7.01 (s, 2H), 6.90 (d, J = 8.6 Hz, 1H), 6.73 (d, J = 1.9 Hz, 1H), 5.27 (s, 1H), 5.23 (s, 1H), 5.06 (d, J = 11.1 Hz, 1H), 4.98 (d, J = 11.0 Hz, 1H), 4.62 (d, J = 15.4 Hz, 1H), 4.39 (d, J = 15.4 Hz, 1H), 1.38 (s, 18H). ¹³C NMR (125 MHz, CDCl₃) δ 167.1, 155.5, 153.5, 136.2, 135.0, 132.8, 132.6, 130.7, 130.0, 129.5, 129.0, 128.5, 123.0, 122.5, 115.6, 77.2, 71.8, 70.2, 34.3, 30.2. HRMS (ESI) m/z: [M + Na]+ Calcd for C₃₀H₃₄BrNO₄Na 574.1563; Found 574.1571.

(S)-4-(benzyloxy)-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-7-methyl-4,5dihydrobenzo[f][1,4]oxazepin-3(2H)-one (4e). Purified by silica gel chromatography using PE/EA 6:1, colorless oil, 87% yield, 42.3 mg, 92.5:7.5 er. The enantiomeric excess was determined by HPLC on Daicel Chiralpak IB-H with hexane/i-PrOH (90:10) as the eluent, flow = 1.0 mL/min, UV = 254 nm, $[\alpha]^{25} = -26$

 $[\alpha]_D^{25} = -26$ (c = 1.0 in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.36–7.34

(m, 2H), 7.33–7.28 (m, 3H), 7.11 (s, 2H), 7.07 (dd, J = 8.2, 1.7 Hz, 1H), 6.93 (d, J = 8.1 Hz, 1H), 6.58 (d, J = 1.6 Hz, 1H), 5.37 (s, 1H), 5.19 (s, 1H), 5.07 (d, J = 10.7 Hz, 1H), 4.92 (d, J = 10.7 Hz, 1H), 4.74 (d, J = 15.8 Hz, 1H), 4.41 (d, J = 15.8 Hz, 1H), 2.28 (s, 3H), 1.38 (s, 18H). ¹³C NMR (125 MHz, CDCl₃) δ 167.6, 154.4, 153.3, 135.9, 135.3, 133.4, 131.3, 130.4, 130.4, 129.9, 129.0, 128.6, 128.4, 123.3, 120.7, 77.0, 72.7, 70.9, 34.3, 30.2, 20.6. HRMS (ESI) m/z: [M + Na]+ Calcd for C₃₁H₃₇NO₄Na 510.2615; Found 510.2615.

(S)-4-(benzyloxy)-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-7-methoxy-4,5dihydrobenzo[f][1,4]oxazepin-3(2H)-one (4f). Purified by silica gel chromatography using PE/EA 6:1, colorless oil, 85% yield, 42.7 mg, 91:9 er. The enantiomeric excess was determined by HPLC on Daicel Chiralpak IB-H with hexane/i-PrOH (90:10) as the eluent, flow = 1.0 mL/min, UV = 254

nm, $[\alpha]_D^{25} = -17$ (c = 1.0 in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.39-

7.38 (m, 3H), 7.33-7.32 (m, 2H), 7.12 (s, 2H), 6.98 (d, J = 8.8 Hz, 1H), 6.80 (dd, J = 8.8, 3.0 Hz, 1H), 6.35 (d, J = 3.0 Hz, 1H), 5.36 (s, 1H), 5.20 (s, 1H), 5.08 (d, J = 10.7 Hz, 1H), 4.92 (d, J = 10.7 Hz, 1H), 4.76 (d, J = 16.0 Hz, 1H), 4.41 (d, J = 16.0 Hz, 1H), 3.76 (s, 3H), 1.39 (s, 18H). ¹³C NMR (125 MHz, CDCl₃) δ 167.7, 155.8, 153.3, 150.4, 135.9, 135.3, 130.9, 129.9, 128.7, 128.5, 128.4, 128.0, 123.3, 121.9, 114.9, 114.9, 78.0, 73.1, 71.0, 55.7, 34.3, 30.2. HRMS (ESI) m/z: [M + Na]+ Calcd for C₃₁H₃₇BrNO₅Na 526.2564; Found 526.2577.

(8)-4-(benzyloxy)-8-chloro-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-4,5-

dihydrobenzo[f][1,4]oxazepin-3(2H)-one (4g). Purified by silica gel chromatography using PE/EA 6:1, colorless oil, 88% yield, 44.6 mg, 92:8 er. The enantiomeric excess was determined by HPLC on Daicel Chiralpak IB-H with hexane/i-PrOH (90:10) as the eluent, flow = 1.0 mL/min, UV = 254 nm,

$$[\alpha]_D^{25} = -57$$
 (c = 1.0 in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.34–7.30

(m, 3H), 7.28–7.25 (m, 2H), 7.05 (d, J = 2.1 Hz, 1H), 7.02 (s, 2H), 6.96 (dd, J = 8.2, 2.1 Hz, 1H), 6.65 (d, J = 8.2 Hz, 1H), 5.38 (s, 1H), 5.22 (s, 1H), 5.06 (d, J = 11.0 Hz, 1H), 4.98 (d, J = 10.9 Hz, 1H), 4.63 (d, J = 15.3 Hz, 1H), 4.42 (d, J = 15.3 Hz, 1H), 1.38 (s, 18H). ¹³C NMR (125 MHz, CDCl₃) δ 167.2, 157.0, 153.4, 136.2, 135.2, 134.6, 131.1, 131.0, 129.9, 128.8, 128.5, 126.1, 123.4, 123.0, 121.2, 77.2, 71.8, 70.0, 34.3, 30.2. HRMS (ESI) m/z: [M + Na]+ Calcd for C₃₀H₃₄ClNO₄Na 530.2069; Found 530.2063.

(S)-4-(benzyloxy)-8-bromo-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-4,5dihydrobenzo[f][1,4]oxazepin-3(2H)-one (4h). Purified by silica gel chromatography using PE/EA 6:1, colorless oil, 94% yield, 51.8 mg, 93:7 er. The enantiomeric excess was determined by HPLC on Daicel Chiralpak IB-H with hexane/i-PrOH (90:10) as the eluent, flow = 1.0 mL/min, UV = 254 nm,

$$[\alpha]_D^{25} = -85$$
 (c = 1.0 in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.35–7.26

(m, 5H), 7.22 (s, 1H), 7.13–7.11 (m, 1H), 7.04 (s, 2H), 6.59 (d, J = 8.1 Hz, 1H), 5.38 (s, 1H), 5.26 (s, 1H), 5.07 (d, J = 11.0 Hz, 1H), 4.98 (d, J = 10.9 Hz, 1H), 4.65 (d, J = 15.4 Hz, 1H), 4.43 (d, J = 15.3 Hz, 1H), 1.39 (s, 18H). ¹³**C NMR** (125 MHz, CDCl₃) δ 167.0, 156.9, 153.3, 136.0, 135.0, 131.2, 130.7, 129.7, 128.7, 128.3, 126.5, 126.2, 124.0, 122.8, 122.1, 77.0, 71.7, 69.9, 34.2, 30.0. HRMS (ESI) m/z: [M + Na]+ Calcd for C₃₀H₃₄BrNO₄Na 574.1563; Found 574.1569.

(S)-4-(benzyloxy)-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-9-fluoro-4,5-

dihydrobenzo[f][1,4]oxazepin-3(2H)-one (4i). Purified by silica gel chromatography using PE/EA 6:1, white solid, mp 121-123 °C, 95% yield, 46.6 mg, 97:3 er. The enantiomeric excess was determined by HPLC on Daicel Chiralpak IB-H with hexane/i-PrOH (90:10) as the eluent, flow = 1.0 mL/min,

UV = 254 nm,
$$[\alpha]_D^{25} = -85$$
 (c = 1.0 in CH₂Cl₂). ¹**H NMR** (600 MHz, CDCl₃)

δ 7.37 (d, J = 7.7 Hz, 2H), 7.34-7.27 (m, 3H), 7.13-7.05 (m, 3H), 6.96 (td, J = 7.9, 4.8 Hz, 1H), 6.59 (d, J = 7.6 Hz, 1H), 5.50 (s, 1H), 5.26 (d, J = 2.9 Hz, 1H), 5.10 (dd, J = 10.8, 1.4 Hz, 1H), 5.00 (d, J = 10.9 Hz, 1H), 4.76 (dd, J = 15.6, 1.3 Hz, 1H), 4.53 (dd, J = 15.6, 1.1 Hz, 1H), 1.40 (s, 18H). ¹³C **NMR** (151 MHz, CDCl₃) δ 167.2, 154.1 (d, ¹ J_{C-F} = 247.1 Hz), 153.5, 144.4 (d, ² J_{C-F} = 12.3 Hz), 136.2, 135.2, 131.2, 130.8, 129.9, 128.8, 128.5, 125.0 (d, ⁴ J_{C-F} = 3.4 Hz), 123.6 (d, ³ J_{C-F} = 7.3 Hz), 123.0, 116.6 (d, ² J_{C-F} = 18.7 Hz), 77.2, 72.3, 70.3, 34.4, 30.2. HRMS (ESI) m/z: [M + Na]+ Calcd for C₃₀H₃₄FNO₄Na 524.2364; Found 514.2367.

(S)-4-(benzyloxy)-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-9-methyl-4,5dihydrobenzo[f][1,4]oxazepin-3(2H)-one (4j). Purified by silica gel

chromatography using PE/EA 6:1, white solid, mp 61-63 °C, 87% yield, 42.3 mg, 90:10 er. The enantiomeric excess was determined by HPLC on Daicel Chiralpak IB-H with hexane/i-PrOH

(90:10) as the eluent, flow = 1.0 mL/min, UV = 254 nm, $[\alpha]_D^{25} = -66$ (c = 1.0 in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.39-7.32 (m, 5H), 7.18 (d, *J* = 7.5 Hz, 1H), 7.14 (s, 2H), 6.97 (t, *J* = 7.6 Hz, 1H), 6.75 (d, *J* = 7.4 Hz, 1H), 5.49 (s, 1H), 5.23 (s, 1H), 5.13 (d, *J* = 10.6 Hz, 1H), 4.98 (d, *J* = 10.6 Hz, 1H), 4.86 (d, *J* = 16.0 Hz, 1H), 4.43 (d, *J* = 16.1 Hz, 1H), 2.26 (s, 3H), 1.42 (s, 18H). ¹³C NMR (125 MHz, CDCl₃) δ 167.6, 154.8, 153.2, 135.9, 135.3, 131.4, 131.2, 130.5, 130.4, 129.8, 128.8, 128.5, 127.6, 123.9, 123.2, 77.0, 72.1, 71.0, 34.4, 30.3, 15.7. HRMS (ESI) m/z: [M + Na]+ Calcd for C₃₁H₃₇NO₄Na 510.2615; Found 510.2621.

(S)-4-(benzyloxy)-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-9-methoxy-4,5dihydrobenzo[f][1,4]oxazepin-3(2H)-one (4k). Purified by silica gel chromatography using PE/EA 6:1, colorless oil, 89% yield, 44.7 mg, 94:6 er. The enantiomeric excess was determined by HPLC on Daicel Chiralpak IB-H with hexane/i-PrOH (90:10) as the eluent, flow = 1.0 mL/min, UV = 254 nm,

 $[\alpha]_D^{25} = -21$ (c = 1.0 in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.38 (d, J =

4.5 Hz, 1H), 7.37–7.35 (m, 2H), 7.33–7.31 (m, 1H), 7.13 (s, 2H), 7.00 (t, J = 7.9 Hz, 1H), 6.90 (dd, J = 8.3, 1.2 Hz, 1H), 6.51 (d, J = 7.6 Hz, 1H), 5.49 (s, 1H), 5.20 (s, 1H), 5.10 (d, J = 10.5 Hz, 1H), 4.94 (d, J = 10.5 Hz, 1H), 4.87 (d, J = 16.0 Hz, 1H), 4.49 (d, J = 16.0 Hz, 1H), 3.86 (s, 3H), 1.39 (s, 18H). ¹³**C NMR** (125 MHz, CDCl₃) δ 167.5, 153.2, 151.5, 145.4, 135.8, 135.2, 131.9, 130.7, 129.7, 128.7, 128.4, 128.3, 127.9, 124.3, 123.0, 121.2, 112.3, 77.9, 72.6, 70.8, 56.0, 34.2, 30.1. HRMS (ESI) m/z: [M + Na]+ Calcd for C₃₁H₃₇NO₅Na 526.2564; Found 526.2569.

(S)-4-(benzyloxy)-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-9-ethoxy-4,5dihydrobenzo[f][1,4]oxazepin-3(2H)-one (4l). Purified by silica gel chromatography using PE/EA 6:1, white solid, mp 169-171 °C, 91% yield, 47.0 mg, 95:5 er. The enantiomeric excess was determined by HPLC on Daicel Chiralpak IB-H with hexane/i-PrOH (90:10) as the eluent, flow = 1.0

mL/min, UV = 254 nm, $[\alpha]_D^{25} = -98$ (c = 1.0 in CH₂Cl₂). ¹H NMR (500 MHz,

CDCl₃) δ 7.37-7.36 (m, 2H), 7.34–7.29 (m, 3H), 7.09 (s, 2H), 6.97 (t, J = 7.9 Hz, 1H), 6.89 (dd, J = 8.2, 1.2 Hz, 1H), 6.50 (d, J = 7.6 Hz, 1H), 5.48 (s, 1H), 5.16 (s, 1H), 5.09 (d, J = 10.6 Hz, 1H), 4.95 (d, J = 10.5 Hz, 1H), 4.84 (d, J = 16.1 Hz, 1H), 4.46 (d, J = 16.1 Hz, 1H), 4.09 (q, J = 7.0 Hz, 2H), 1.44 (t, J = 7.0 Hz, 3H), 1.38 (s, 18H). ¹³**C** NMR (125 MHz, CDCl₃) δ 167.7, 153.2, 150.9, 145.9, 135.8, 135.3, 132.3, 130.9, 129.7, 128.7, 128.4, 124.3, 123.0, 121.3, 113.9, 77.1, 72.6, 70.8, 64.6, 34.3, 30.2, 14.8. HRMS (ESI) m/z: [M + Na]+ Calcd for C₃₂H₃₉NO₅Na 540.2720; Found 540.2726.

(S)-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-4-methoxy-4,5-

dihydrobenzo[f][1,4]oxazepin-3(2H)-one (4m). Purified by silica gel chromatography using PE/EA 6:1, white solid, mp 186-188 °C, 96% yield, 38.1 mg, 94.5:5.5 er. The enantiomeric excess was determined by HPLC on

Daicel Chiralpak ID-H with hexane/i-PrOH (90:10) as the eluent, flow = 1.0 mL/min, UV = 254 nm, $[\alpha]_D^{25} = -31$ (c = 1.0 in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.36–7.32 (m, 2H), 7.16 (td, J = 7.5, 1.2 Hz, 1H), 7.11 (s, 2H), 7.08 (dd, J = 8.0, 1.0 Hz, 1H), 5.77 (s, 1H), 5.22 (s, 1H), 4.77 (d, J = 15.8 Hz, 1H), 4.42 (d, J = 15.8 Hz, 1H), 3.85 (s, 3H), 1.39 (s, 18H). ¹³C NMR (125 MHz, CDCl₃) δ 167.2, 156.6, 153.3, 136.0, 131.0, 130.2, 129.9, 129.8, 124.2, 123.1, 121.4, 72.5, 69.2, 62.4, 34.3, 30.2. HRMS (ESI) m/z: [M + Na]+ Calcd for C₂₄H₃₁NO₄Na 420.2145; Found 420.2149.

(S)-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-4-ethoxy-4,5-

dihydrobenzo[f][1,4]oxazepin-3(2H)-one (4n). Purified by silica gel chromatography using PE/EA 6:1, white solid, mp 168-170 °C, 95% yield, 39.0 mg, 93:7 er. The enantiomeric excess was determined by HPLC on Daicel Chiralpak ID-H with hexane/i-PrOH (90:10) as the eluent, flow = 1.0 mL/min,

UV = 254 nm,
$$[\alpha]_D^{25} = -32$$
 (c = 1.0 in CH₂Cl₂). ¹**H** NMR (500 MHz, CDCl₃)

δ 7.34-7.31 (m, 2H), 7.15 (td, J = 7.5, 1.1 Hz, 1H), 7.12 (s, 2H), 7.08 (d, J = 8.0 Hz, 1H), 5.75 (s, 1H), 5.22 (s, 1H), 4.72 (d, J = 15.7 Hz, 1H), 4.42 (d, J = 15.7 Hz, 1H), 4.08 (ddq, J = 39.3, 9.0, 7.1 Hz, 2H), 1.39 (s, 18H), 1.28 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 167.4, 156.6, 153.3, 135.9, 131.3, 130.1, 129.2, 123.9, 123.2, 121.3, 72.3, 70.3, 69.9, 34.3, 30.2, 13.7. HRMS (ESI) m/z: [M + Na]+ Calcd for C₂₅H₃₃NO₄Na 434.2302; Found 434.2300.

(S)-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-4-(dodecyloxy)-4,5dihydrobenzo[f][1,4]oxazepin-3(2H)-one (4o). Purified by silica gel chromatography using PE/EA 6:1, colorless oil, 90% yield, 49.5 mg, 91:9 er. The enantiomeric excess was determined by HPLC on Daicel Chiralpak IA-H with hexane/i-PrOH (95:5) as the eluent, flow = 1.0

mL/min, UV = 254 nm,
$$[\alpha]_D^{23} = -37$$
 (c = 1.0 in CH₂Cl₂). ¹H NMR (600

MHz, CDCl₃) δ 7.35-7.30 (m, 2H), 7.28 (s, 1H), 7.16-7.14 (m, 3H), 7.09 (dd, J = 8.0, 1.0 Hz, 1H), 5.74 (s, 1H), 5.21 (s, 1H), 4.72 (d, J = 15.7 Hz, 1H), 4.41 (d, J = 15.7 Hz, 1H), 4.05-3.96 (m, 2H), 1.68-1.69 (m, 2H), 1.40 (s, 18H), 1.33-1.28 (m, 18H), 0.91 (t, J = 7.0 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.2, 156.6, 153.3, 135.9, 131.4, 130.1, 129.3, 123.9, 123.4, 121.3, 75.0, 72.3, 69.9, 34.4, 31.9, 30.2, 29.7, 29.6, 29.6, 29.5, 29.4, 29.4, 28.2, 26.0, 22.7, 14.1. HRMS (ESI) m/z: [M + Na]+ Calcd for C₃₅H₅₃NO₄Na 574.3867; Found 574.3864.

(S)-4-(allyloxy)-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-4,5-

dihydrobenzo[f][1,4]oxazepin-3(2H)-one (4p). Purified by silica gel chromatography using PE/EA 6:1, white solid, mp 118-120 °C, 94% yield, 39.7 mg, 95.5:4.5 er. The enantiomeric excess was determined by HPLC on Daicel Chiralpak ID-H with hexane/i-PrOH (90:10) as the eluent, flow = 1.0

mL/min, UV = 254 nm, $[\alpha]_D^{25} = -29$ (c = 1.0 in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.34–7.28 (m, 2H), 7.14 (td, J = 7.5, 1.2 Hz, 1H), 7.12 (s, 2H), 7.08 (dd, J = 8.0,

1.0 Hz, 1H), 6.00 (ddt, J = 17.0, 10.3, 6.5 Hz, 1H), 5.75 (s, 1H), 5.28– 5.22 (m, 2H), 5.22 (s, 1H), 4.72 (d, J = 15.7 Hz, 1H), 4.50 (ddd, J = 35.3, 11.6, 6.5 Hz, 2H), 4.41 (d, J = 15.7 Hz, 1H), 1.39 (s, 18H). ¹³**C** NMR (125 MHz, CDCl₃) δ 167.6, 156.7, 153.3, 136.0, 132.0, 131.2, 130.1, 130.1, 129.1, 123.9, 123.2, 121.2, 120.8, 76.0, 72.3, 70.2, 34.3, 30.2. HRMS (ESI) m/z: [M + Na]+ Calcd for C₂₆H₃₃NO₄Na 446.2303; Found 446.2305.

(S,E)-4-((3-chloroallyl)oxy)-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-4,5-dihydrobenzo[f][1,4]oxazepin-3(2H)-one (4q). Purified by silica gel chromatography using PE/EA 6:1, colorless oil, 91% yield, 41.6 mg, 93:7 er. The enantiomeric excess was determined by HPLC on Daicel Chiralpak IF-H with hexane/i-PrOH (95:5) as the eluent, flow = 1.0

mL/min, UV = 254 nm, $[\alpha]_D^{25} = -19$ (c = 1.0 in CH₂Cl₂). ¹H NMR (400

MHz, Chloroform-d) δ 7.33 (dd, J = 20.9, 9.5 Hz, 2H), 7.17 (t, J = 7.4 Hz, 1H), 7.09 (d, J = 9.2 Hz, 3H), 6.23 (s, 1H), 6.09 (dt, J = 13.9, 7.2 Hz, 1H), 5.71 (s, 1H), 5.23 (s, 1H), 4.74 (d, J = 15.8 Hz, 1H), 4.56 – 4.51 (m, 1H), 4.45 – 4.41 (m, 2H), 1.40 (s, 18H). ¹³C NMR (101 MHz, CDCl3) δ 167.75, 156.61, 153.42, 136.03, 130.99, 130.21, 130.19, 128.96, 127.35, 125.18, 124.16, 123.13, 121.32, 72.86, 72.35, 70.73, 34.36, 30.19. HRMS (ESI) m/z: [M + Na]+ Calcd for C₂₆H₃₂ClNO₄Na 480.1912; Found 480.1915.

(8)-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-4-((4-

one (4r). Purified by silica gel chromatography using PE/EA 6:1, colorless oil, 88% yield, 44.2 mg, 93:7 er. The enantiomeric excess was determined by HPLC on Daicel Chiralpak IA-H with hexane/i-PrOH (90:10) as the eluent, flow = 1.0 mL/min, UV = 254 nm,

$$[\alpha]_D^{25} = -13$$
 (c = 1.0 in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ

7.29-7.25 (m, 3H), 7.07 (s, 2H), 7.04–6.99 (m, 2H), 6.81 (d, J = 7.5 Hz, 1H), 6.77 (d, J = 8.5 Hz, 2H), 5.42 (s, 1H), 5.22 (s, 1H), 5.05 (d, J = 10.7 Hz, 1H), 4.91 (d, J = 10.7 Hz, 1H), 4.69 (d, J = 15.5 Hz, 1H), 4.42 (d, J = 15.5 Hz, 1H), 3.79 (s, 3H), 1.38 (s, 18H). ¹³C NMR (125 MHz, CDCl₃) δ 167.4, 160.0, 156.5, 153.2, 135.9, 131.4, 130.2, 129.7, 128.1, 127.3, 123.3, 123.1, 120.8, 113.7, 76.6, 72.0, 70.6, 55.1, 34.3, 30.1. HRMS (ESI) m/z: [M + Na]+ Calcd for C₃₁H₃₇BrNO₅Na 526.2564; Found 526.2562.

(S)-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-4-((2,4-

dichlorobenzyl)oxy)-4,5-dihydrobenzo[f][1,4]oxazepin-3(2H)-one (4s). Purified by silica gel chromatography using PE/EA 6:1, colorless oil, 86% yield, 46.6 mg, 93:7 er. The enantiomeric excess was determined by HPLC on Daicel Chiralpak IF-H with hexane/i-PrOH (90:10) as the

eluent, flow = 1.0 mL/min, UV = 254 nm, $[\alpha]_D^{25} = -16$ (c = 1.0 in

CH₂Cl₂). ¹**H NMR** (400 MHz, CDCl₃) δ 7.43 –7.21 (m, 3H), 7.07 – 7.02 (m, 5H), 6.88 (d, J = 7.3 Hz, 1H), 5.52 (s, 1H), 5.25 – 5.15 (m, 2H), 5.10 (d, J = 11.4 Hz, 1H), 4.64 (d, J = 15.3 Hz, 1H),

4.41 (d, J = 15.3 Hz, 1H), 1.37 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 167.44, 156.29, 153.39, 135.98, 135.47, 135.36, 132.95, 131.50, 131.34, 130.07, 129.91, 129.33, 127.15, 127.05, 123.33, 123.22, 120.82, 73.03, 71.63, 70.40, 34.34, 30.15. HRMS (ESI) m/z: [M + Na]+ Calcd for C₃₀H₃₃Cl₂NO₄Na 564.1679; Found 564.1674.

(S)-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-4-isopropoxy-4,5-

dihydrobenzo[f][1,4]oxazepin-3(2H)-one (4t). Purified by silica gel chromatography using PE/EA 6:1, colorless oil, 74% yield, 31.4 mg, 83:17 er. The enantiomeric excess was determined by HPLC on Daicel Chiralpak AD-H with hexane/i-PrOH (90:10) as the eluent, flow = 1.0 mL/min, UV = 254

nm,
$$[\alpha]_D^{25} = -2.7$$
 (c = 1.0 in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.34

(ddd, J = 8.0, 7.3, 1.7 Hz, 1H), 7.27 (dd, J = 7.6, 1.7 Hz, 1H), 7.13 (td, J = 7.4, 1.2 Hz, 1H), 7.09 – 7.07 (m, 3H), 5.74 (s, 1H), 5.22 (s, 1H), 4.59 (d, J = 15.2 Hz, 1H), 4.44 – 4.37 (m, 2H), 1.38 (s, 18H), 1.29 (d, J = 6.2 Hz, 3H), 1.26 (d, J = 6.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.79, 156.62, 153.28, 135.93, 131.84, 130.52, 129.91, 127.13, 123.21, 123.09, 121.07, 76.82, 71.61, 70.44, 34.35, 30.18, 21.22, 20.80. HRMS (ESI) m/z: [M + Na]+ Calcd for C₂₆H₃₅NO₄Na 448.2458; Found 448.2461.

Scheme S1 List of unsuccessful α -haloamides

N-(benzyloxy)-2-bromo-N-((S)-(3,5-di-tert-butyl-4-hydroxyphenyl)(2hydroxyphenyl)methyl)propanamide (3u). Purified by silica gel chromatography using PE/EA 6:1, colorless oil, 93% yield, 52.8 mg, 1:1 dr, 93.5:6.5 er. The enantiomeric excess was determined by HPLC on Daicel Chiralpak IF-H with hexane/i-PrOH (90:10) as the eluent, flow = 1.0 mL/min, UV = 254 nm, $[\alpha]_D^{25} = 8$ (c = 1.0 in CH₂Cl₂). ¹H NMR (400 MHz,

CDCl₃) δ 7.39 – 7.35 (m, 4H), 7.28 (s, 1H), 7.24 – 7.20 (m, 3H), 7.14 (d, *J* = 5.7 Hz, 2H), 6.90 (dd,

 $J = 16.3, 7.7 \text{ Hz}, 2\text{H}, 6.73 \text{ (s, 1H)}, 5.27 \text{ (s, 1H)}, 4.82 \text{ (s, 1H)}, 4.69 \text{ (s, 1H)}, 4.53 \text{ (s, 1H)}, 1.68 \text{ (d, } J = 6.7 \text{ Hz}, 3\text{H}), 1.40 \text{ (s, 18H)}. {}^{13}\text{C} \text{ NMR} (101 \text{ MHz}, \text{CDCl}_3) \delta 153.66, 133.31, 130.67, 129.81, 129.23, 129.10, 128.70, 126.00, 125.54, 119.99, 116.43, 77.24, 63.23, 37.13, 33.67, 30.27, 21.15. \text{HRMS} (ESI) m/z: [M + Na] + Calcd for C_{31}H_{38}\text{NBrNO}_4\text{Na} 590.1876; Found 590.1881.$

N-(benzyloxy)-2-bromo-N-((6-hydroxybenzo[d][1,3]dioxol-5-yl)(4methoxyphenyl)methyl)acetamide (8a). Purified by silica gel chromatography using PE/EA 3:1, colorless oil, 85% yield, 42.5 mg, 92.5:7.5 er. The enantiomeric excess was determined by HPLC on Daicel Chiralpak IC-H with hexane/i-PrOH (80:20) as the eluent, flow

= 1.0 mL/min, UV = 254 nm, $[\alpha]_D^{25} = 6$ (c = 1.0 in CH₂Cl₂). ¹H NMR

(400 MHz, CDCl₃) δ 7.43 (s, 1H), 7.37-7.34 (m, 4H), 7.18 (dd, J = 6.5, 3.2 Hz, 2H), 6.91 (d, J = 8.8 Hz, 2H), 6.83 (s, 1H), 6.79 (d, J = 2.1 Hz, 1H), 5.92-5.91 (m, 2H), 4.58-4.46 (m, 2H), 4.05 (d, J = 1.5 Hz, 1H), 3.82 (s, 3H), 1.73 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 149.6, 148.1, 141.2, 133.6, 129.8, 129.4, 129.3, 129.2, 128.7, 116.3, 114.5, 114.1, 109.1, 101.2, 99.0, 79.5, 60.8, 55.3, 26.1. HRMS (ESI) m/z: [M + Na]+ Calcd for C₂₄H₂₂BrNO₆Na 522.0523; Found 522.0519.

3. Scale-up experiment

A Schlenk tube equipped with a magnetic stir bar was charged with C6 (0.3 mmol), 1 (3 mmol), 2 (3.6 mmol) in 1.5mL DCM. The resulting mixture was stirred at 15 °C for 24 h. Then K_2CO_3 (6 mmol) was added to the solution and the resulting mixture was stirred at 15 °C for 6 h. The solvent was removed under reduced pressure, the resulting residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 6:1) to give the 1,4-Benzoxazepines 4a.

4. Synthetic transformations of products

Compound **4a** (0.1mmol) was dissolved in MeOH (2 mL) and then 10% Pd/ C (3 mg) was added. The reaction mixture was stirred under H_2 atmosphere for 4 h at room temperature. After filtration through a plug of Celite, the resulting residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) to give the **5**. (48 mg, 94% yield).

(S)-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-4-hydroxy-4,5-

dihydrobenzo[f][1,4]oxazepin-3(2H)-one (5). Purified by silica gel chromatography using PE/EA 4:1, white solid, mp 173-175 °C, 95% yield, 36.3 mg, 93:7 er. The enantiomeric excess was determined by HPLC on Daicel Chiralpak IB-H with hexane/i-PrOH (95:5) as the eluent, flow = 1.0 mL/min,

UV = 254 nm,
$$[\alpha]_D^{25} = -60$$
 (c = 1.0 in CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃)

δ 8.89 (s, 1H), 7.39-7.36 (m, 2H), 7.28 (s, 1H), 7.21 (t, J = 7.3 Hz, 1H), 7.17 (s, 2H), 7.15 (d, J = 7.8 Hz, 1H), 5.88 (s, 1H), 5.22 (s, 1H), 5.00 (d, J = 15.8 Hz, 1H), 4.54 (d, J = 15.7 Hz, 1H), 1.41 (s, 18H). ¹³C NMR (151 MHz, CDCl₃) δ 156.6, 153.5, 135.9, 131.3, 130.5, 129.9, 129.7, 125.2, 123.3, 121.9, 72.0, 68.3, 34.3, 30.2. HRMS (ESI) m/z: [M + Na]+ Calcd for C₂₃H₂₉NO₄Na 406.1989; Found 406.1995.

A 50 mL Schlenk tube equipped with a magnetic stir bar was charged with **4a** (0.1 mmol) under Argon, and anhydrous THF (2 mL) was added at room temperature. Then SmI₂ (3 mL, 0.1 M in THF) was added to the stirring solution dropwise via syringe. After the reaction is complete, the solution was diluted with CH_2Cl_2 (5 mL) and quenched with a 10% solution of $Na_2S_2O_3$ (5 mL). The layers were separated, and the aqueous layer was extracted with CH_2Cl_2 (3×5 mL). The combined organic layers were washed with brine. The solvent was removed under reduced pressure, the resulting residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to give the **6**.

(S)-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-4,5-

dihydrobenzo[f][1,4]oxazepin-3(2H)-one (6), Purified by silica gel chromatography using PE/EA 3:1, colorless oil, 86% yield, 31.5 mg, 93:7 er. The enantiomeric excess was determined by HPLC on Daicel Chiralpak IA-H with hexane/i-PrOH (90:10) as the eluent, flow = 1.0 mL/min, UV =

254 nm, $[\alpha]_D^{25} = -23$ (c = 1.0 in CH₂Cl₂). ¹H NMR (600 MHz,

Chloroform-*d*) δ 7.34 (td, J = 7.7, 1.4 Hz, 1H), 7.31-7.28 (m, 1H), 7.26-7.23 (m, 1H), 7.17-7.16 (m, 1H), 7.10 (td, J = 7.6, 1.0 Hz, 1H), 6.82-6.80 (m, 1H), 6.60 (d, J = 2.1, 1H), 5.89 (d, J = 2.9 Hz, 1H), 5.36 (s, 1H), 4.81 (d, J = 16.9 Hz, 1H), 4.51 (d, J = 16.9 Hz, 1H), 1.46 (s, 18H).¹³C NMR (151 MHz, CDCl₃) δ 171.87, 157.51, 153.86, 136.66, 136.03, 129.88, 129.27, 128.32, 128.15, 127.98, 127.10, 124.85, 124.26, 121.11, 72.77, 57.09, 34.49, 30.26. HRMS (ESI) m/z: [M + Na]+ Calcd for C₂₃H₂₉NO₃Na 390.2040; Found 390.2043.

5. HPLC spectra of products

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	20.955	467.4	6.9	0.9655	0.509	59.426	BB
2	24.803	319.1	4	1.3155	0.531	40.574	MM

_	#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
	1	20.808	1218.4	16.9	1.1989	0.531	97.102	MM
Γ	2	24.633	36.4	5.5E-1	1.0959	0.657	2.898	MM

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	5.392	125.1	8.8	0.2379	1.011	6.112	MM
2	5.89	1922.2	160.2	0.2	0.949	93.888	MM

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	5.999	938.3	102.3	0.141	0.723	49.909	BB
2	6.923	941.7	101.6	0.1441	0.763	50.091	BB

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	6.539	173.9	14.9	0.1947	0.892	7.473	MM
2	7.456	2152.7	207	0.1733	0.772	92.527	MM

_	#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
	1	6.398	1045.2	85.7	0.2033	0.938	50.666	MM
	2	6.879	1017.7	108.2	0.1457	0.85	49.334	VB

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	6.169	42.5	3.8	0.1853	0.939	4.883	MM
2	6.662	827.7	86	0.1604	0.837	95.117	MM

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	9.318	1379.6	52.3	0.4395	0	49.259	MF
2	10.755	1421.1	38.8	0.6102	1.172	50.741	FM

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	9.046	1281.6	49.9	0.4279	1.038	93.944	MM
2	10.48	82.6	3	0.4662	1.13	6.056	MM

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	5.634	514.4	35.1	0.2444	0.864	49.586	MM
2	7.219	523	40.8	0.2138	0.858	50.414	MM

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	5.981	52.6	3.6	0.2453	0.96	7.522	MM
2	7.562	646.8	46	0.2343	0.923	92.478	MM

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	7.095	1844	160.6	0.1914	0.63	49.656	MM
2	8.888	1869.6	137.6	0.2085	0.608	50.344	BB

	#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
	1	7.172	80.6	7.5	0.1783	0.785	8.749	MM
Γ	2	8.955	840.4	61.5	0.2276	0.685	91.251	MM

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	5.9	673.9	45.1	0.2488	0.865	50.114	MM
2	7.537	670.8	61.4	0.1674	0.825	49.886	BB

DV0		ň
100 -		
80		
40 -		
20 -	28	
0		

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	5.637	110	7.6	0.2405	0.858	7.850	MM
2	7.219	1291.6	120.1	0.1792	0.807	92.150	MM

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	6.244	2480.5	212.9	0.1941	0.702	49.395	MM
2	8.427	2541.3	201.7	0.21	0.686	50.605	MM

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	6.444	180.6	16.2	0.1858	0.882	6.959	MM
2	8.575	2414.7	195	0.2064	0.691	93.041	MM

_	#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
	1	5.797	5288.8	527.7	0.1671	0.732	49.522	MM
	2	7.669	5390.9	443.6	0.2026	0.734	50.478	MM
_								
140 -						Anter and		
120						1		
100 -								
80 -								
40 -								
20					8			
					345			
- 1		12		1				10

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	5.8	67.6	5	0.2238	0.771	3.071	MM
2	7.762	2132.7	147.6	0.2408	0.656	96.929	MM

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	5.307	751.1	57	0.2038	0.783	51.322	BB
2	6.443	712.4	63.9	0.1702	0.759	48.678	BB

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	5.503	136.6	12	0.1905	0.834	10.117	MM
2	6.634	1213.5	106.8	0.1894	0.762	89.883	MM

1 8.453 2039.2 144.8 0.2123 0.476 50.111 BB 2 10.051 2030.2 126.8 0.2427 0.487 49.889 BB	#	ŧ	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
2 10.051 2030.2 126.8 0.2427 0.487 49.889 BB	1	L	8.453	2039.2	144.8	0.2123	0.476	50.111	BB
	2	2	10.051	2030.2	126.8	0.2427	0.487	49.889	BB

m4U			Ā	
50				
40				
20				
10		8		
•		87		
12	 	8	10	12

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	8.746	69.9	4.8	0.2402	0.818	6.163	MM
2	10.371	1063.6	62.1	0.2855	0.552	93.837	MM

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	8.007	1988	158.5	0.209	0.643	50.190	MM
2	9.377	1972.9	139	0.2365	0.583	49.810	MM

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	7.379	70.4	4.7	0.2476	0.785	4.790	MM
2	8.714	1399.8	99.2	0.2353	0.595	95.210	MM

1 10.102 1088.5 65.4 0.2581 0.83 50.108 BB 2 11.192 1083.8 54.7 0.305 0.625 49.892 BB	#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
2 11.192 1083.8 54.7 0.305 0.625 49.892 BB	1	10.102	1088.5	65.4	0.2581	0.83	50.108	BB
	2	11.192	1083.8	54.7	0.305	0.625	49.892	BB

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	10.098	1435.8	84.8	0.2821	0.798	94.651	MM
2	11.34	81.1	4.2	0.3219	0.753	5.349	MM

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	9.332	842	49.8	0.2634	0.901	50.059	BB
2	10.747	840	44.4	0.2929	0.718	49.941	BB

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	9.425	962.5	55.6	0.2886	0.856	93.050	MM
2	10.988	71.9	3.8	0.3131	0.868	6.950	MM

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	6.914	375.6	20.9	0.3	0.554	49.797	MM
2	9.104	378.6	17.2	0.3659	0.549	50.203	MM

m4U	A A
20	
10	
6	
0	
-5	

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	6.89	518.6	24.2	0.3571	0.488	91.005	MM
2	9.103	51.3	2.7	0.3118	0.746	8.995	MM

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	9.179	952	60.6	0.2453	0.863	50.181	BB
2	10.42	945.1	52.7	0.2791	0.678	49.819	BB

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	9.125	1284.1	73.3	0.2921	0.849	95.389	MM
2	10.507	62.1	3.3	0.3115	0.767	4.611	MM

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	13.486	576.6	26.8	0.3289	0.891	50.552	BB
2	17.254	564	20.5	0.4229	0.786	49.448	BB

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	13.042	2020.1	93.2	0.3613	0.815	93.181	MM
2	16.67	147.8	5.5	0.452	0.9	6.819	MM

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	10.853	1021.7	43.1	0.3423	0.519	49.070	BV
2	12.269	1060.5	38.6	0.3943	0.527	50.930	VB

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	10.793	71.5	3.6	0.3345	0.605	7.074	MM
2	12.183	939.8	34.7	0.3876	0.508	92.926	BB

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	10.414	1449.9	85.5	0.2558	0.615	50.177	BB
2	14.236	1439.6	53.1	0.4043	0.478	49.823	BB

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	10.339	5035.8	294.2	0.2853	0.558	93.114	MM
2	14.295	372.4	14.5	0.4293	0.62	6.886	MM

	#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
[1	4.876	601.8	72.5	0.1384	0.659	51.432	MM
[2	5.35	568.3	42.1	0.2248	0.592	48.568	MM

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	4.815	618.3	68	0.1515	0.64	82.961	MM
2	5.315	127	11	0.1929	0.646	17.039	MM

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	5.875	1085.1	69.2	0.251	0.878	50.301	BV
2	6.522	1072.1	73.3	0.2306	0.888	49.699	VB

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	5.888	104	6.9	0.2423	0.997	6.558	BV
2	6.51	1481.9	112.4	0.2059	0.854	93.442	VB

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	15.718	3078.1	51	1.0054	0	46.247	MF
2	17.707	3577.7	50.9	1.1717	0.388	53.753	FM

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	17.213	360.7	9.8	0.6108	7372.39	6.507	MF
2	17.79	5182.7	81.9	1.0542	0.468	93.493	FM

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	13.667	2844.8	98.4	0.4314	0.7	49.675	BV
2	14.905	2882	91.9	0.4697	0.72	50.325	VB

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	13.52	674.5	23.6	0.4764	0.709	7.185	MM
2	14.704	8713.6	246.1	0.5901	0.602	92.815	MM

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	12.845	2238.3	42.7	0.8728	0.569	49.632	MM
2	21.277	2271.4	26.2	1.4434	0.628	50.368	MM

mAU -		/ where a construction of the second se
-20		
-30		
-40	/	Barris and State
-50		
t	e 10 12	14 16 10 20 22 24 mm

#	时间	峰面积	峰高	峰宽	对称因子	峰面积 %	类型
1	13.036	3091.4	48	1.0734	0.484	92.630	MM
2	21.536	246	3.8	1.0917	0.583	7.370	MM

6. NMR spectra of products

¹H NMR of compound 3a (600 MHz in CDCl₃)

¹H NMR of compound 4a (500 MHz in CDCl₃)

¹H NMR of compound 4b (500 MHz in CDCl₃)

¹H NMR of compound 4c (500 MHz in CDCl₃)

¹H NMR of compound 4d (500 MHz in CDCl₃)

¹H NMR of compound 4e (500 MHz in CDCl₃)

¹H NMR of compound 4f (500 MHz in CDCl₃)

¹H NMR of compound 4g (500 MHz in CDCl₃)

¹H NMR of compound 4h (500 MHz in CDCl₃)

¹H NMR of compound 4i (600 MHz in CDCl₃)

¹³C NMR of compound 6 (150 MHz in CDCl₃)

¹H NMR of compound 8a (400 MHz in CDCl₃)

9. Crystal data and structure refinement for enantiopure 4i.

Crystals of enantiopure 4i suitable for X-ray analysis were obtained from crystallization in a solution of CH_2Cl_2 and n-hexan

CCDC deposition number	2226867			
Empirical formula	C ₃₀ H ₃₄ F N O ₄			
Formula weight	491.60			
Temperature	213.00 K			
Wavelength	1.34139 Å			
Crystal system	Orthorhombic			
Space group	P212121			
Unit cell dimensions	a = 10.13420(10) Å	α= 90°.		
	b = 10.9767(2) Å	β= 90°.		
	c = 27.3919(4) Å	$\gamma = 90^{\circ}$.		
Volume	3047.08(8) Å ³			
Z	4			
Density (calculated)	1.257 Mg/m ³			
Absorption coefficient	1.486 mm ⁻¹			
F(000)	1216			
Crystal size	0.1 x 0.07 x 0.07 mm ³			
Theta range for data collection	3.774 to 54.997°.			
Index ranges	-12<=h<=9, -13<=k<=13, -33<	≈=l<=33		
Reflections collected	32680			
Independent reflections	5782 [R(int) = 0.0460]			
Completeness to theta = 25.242°	99.3 %			
Absorption correction	Semi-empirical from equivalents			
Max. and min. transmission	0.7508 and 0.5934			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	5782 / 1 / 362			
Goodness-of-fit on F ²	1.064			
inal R indices [I>2sigma(I)] $R1 = 0.0754, wR2 = 0.2166$				
R indices (all data)	R1 = 0.0910, wR2 = 0.2322			
Absolute structure parameter	0.032(11)			
Extinction coefficient	n/a			

Largest diff. peak and hole

1.123 and -0.939 e.Å⁻³