Supporting Information

Selective synthesis of boron-substituted enynes *via* one-pot diboration/protodeboration sequence

Jakub Szyling,*a Aleksandra Szymańska,a,b and Jędrzej Walkowiak*a

^aCenter for Advanced Technology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland.

^bFaculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.

*E-mail: j.szyling@amu.edu.pl , jedrzej.walkowiak@amu.edu.pl

Outline

1. General information	S2
1.1. NMR analyzes	<u>S2</u>
1.2. GC-MS analysis	<u>S2</u>
1.3. FT-IR analysis	<u>S</u> 2
1.4. Elemental analysis	<u>S2</u>
1.5. Products purification	<u>S2</u>
1.5.1. 1,3-Diynes (1a–s)	<u>S2</u>
1.5.2. Boryl-functionalized enynes (4a–s)	<u>S</u> 2
2. Materials	<u>S</u> 2
3. General procedures	<u>S</u> 3
3.1. Synthesis of CuCl	<u>S</u> 3
3.2. Synthesis of alkynyl bromides	<u>S</u> 3
3.3. Synthesis of symmetrical diynes (2a–d)	<u> </u>
3.4. Synthesis of unsymmetrical diynes (2e–s)	<u>S</u> 3
3.5. Synthesis of monoborylenynes (4a-s)	<u>S</u> 4
3.5.1. One step procedure	S4
3.5.2. Two steps procedure	S4
3.6. Suzuki coupling (for product 7)	S4
3.7. Transformation of alkoxy to amionoborane (for product 8)	S4
3.8. Bromodesilylation (for product 9)	S4
3.9. Sila-Sonogashira (for product 10)	S4
3.10. Mechanistic studies	S4
3.10.1. One step procedure	S4
3.10.2. Two steps procedure	S5
4. Results for diboration/protodeboration of symmetrical silyl- and aryl- substituted 1,3-diynes	<u>S</u> 5
5. Products characterization	<u></u>
6. NMR spectra.	<u>S</u> 18
7. References	<u>S</u> 91

1. General information:

1.1. NMR analyzes

¹H, ¹¹B ¹³C and ²⁹Si NMR spectra were recorded at 25 °C on Bruker UltraShield 300, 400 or 600 MHz with a number of scans (NS) for ¹H NMR = 16, ¹³C NMR = 512 or 1024 (unless otherwise stated). Chemical shifts were reported in ppm with the reference to the residue portion solvent peak (¹H, ¹³C NMR) or BF₃-Et₂O and TMS for ¹¹B and ²⁹Si, respectively. Chloroform-d₁ or toluene-d₈ were used as solvents and for internal deuterium lock. The multiplicities were reported as follows: singlet (s), doublet (d), doublet of doublets (dd), multiplet (m), triplet (t), pentet (p), doublet of doublets of triplets (ddt).

1.2. GC-MS analysis

The mass spectra of the products were obtained by GC-MS analysis on a Bruker Scion 436-GC with a 30m Varian DB-5 0.25mm capillary column and a Scion SQ-MS mass spectrometry detector. Two temperature programs were used a) 60 °C (3 min), 10°C/min, 250 °C (30 min), b) 100 °C (3 min), 10°C/min, 280 °C (44.5 min).

1.3. FT-IR analysis

FT-IR spectra were measured on a Nicolet iS50 FT-IR spectrometer (Thermo Scientific) equipped with a built-in ATR accessory with ATR diamond unit. In all experiments, 16 scans at a resolution of 2 cm⁻¹ were performed.

1.4. Elemental analysis

Elemental analyses were performed using the Vario EL III instrument.

1.5. Products purification

1.5.1. 1,3-Diynes (1a-s)

The UV-absorbing products (1,3-diynes) were purified on silica by flash chromatography (Biotage IsoleraOne chromatograph) with UV detector (λ 1 = 255 nm, λ 2= 280 nm). Purification details: cartridge 10 g, flow rate: 12 mL/min, length: 10 CV (CV = column volume), phase: *n*-hexane/dichloromethane (step 1: *n*-hexane 100% by 4 CV, step 2: gradient 10%/CV by 4 CV, step 3: *n*-hexane 50% by 2 CV). The non-aromatic products (1,3-diynes) were purified on silica using standard column chromatography using *n*-hexane/dichloromethane (95/5–7/3) as eluents. Products were characterized by GC-MS, ¹H, ¹³C, ²⁹Si NMR, FT-IR analyses.

1.5.2. Boryl-functionalized enynes (4a-s)

The reaction mixture was evaporated to remove all volatiles. Subsequently, the crude product was dissolved in *n*-pentane and filtered through the syringe filter (0.2 μ m). After evaporation of *n*-pentane, the product was heated (approx. 70–130 °C) and condensed at cold-finger trap under vacuum (<10⁻³ mbar). The products were obtained as oils.

2. Materials

Phenylacetylene (98%, Sigma-Aldrich), 1-ethynyl-4-fluorobenzene (99%, Sigma-Aldrich), 1-ethynyl-4-(trifluoromethyl)benzene (98%, Sigma-Aldrich), 1-octyne (97%, Sigma-Aldrich), ethynyltrimethylsilane (98%, abcr), ethynyltriethylsilane (97%, Sigma-Aldrich) (tri*iso*propylsilyl)acetylene (97%, Sigma-Aldrich), (*tert*-butyldimethylsilyl)acetylene (99%, Sigma-Aldrich), 3-cyclohexyl-1-propyne (97%, Sigma-Aldrich), 3-ethynylthiophene (96%, Sigma-Aldrich), 4-*tert*-butylphenylacetylene (96%, Sigma-Aldrich), 3-phenoxy-1-propyne (90%, Sigma-Aldrich), ethynylcyclopropane (98%, Apollo Scientific), iodobenzene (98%, Sigma-Aldrich), 1,4-bis(trimethylsilyl)buta-1,3-diyne (98%, Sigma-Aldrich), bis(pinacolato)diboron (98%, AmBeed), N-bromosuccinimide (98%, Sigma-Aldrich), hydroxylamine hydrochloride (98%, abcr), tributylamine (99%, Sigma-Aldrich), piperidine (99%, TCI), ammonium chloride (99%, Avantor Performance Materials Poland), silver nitrate (99%, Sigma-Aldrich), ion(III) chloride anhydrous (>97,5%, Chempur), imidazole (99%, fluorochem), 1,8-diaminonaftalen, copper(I) iodide (98%, Sigma-Aldrich), 1-iodo-4-nitrobenzene (98%, Sigma-Aldrich), tetrakis(triphenylphosphine) palladium(0) (99%, Sigma-Aldrich), tetrakis(triphenylphosphine)platinum(0) (98%, Acros Organics), silica gel (MN-Kieselgel 60, 0.04-0.063 mm (230-400 mesh ASTM; Sigma-Aldrich)) were used as received. Toluene, *n*-hexane, hexanes, ethyl acetate, acetone, acetonitrile were purchased from Avantor Performance Materials Poland. Toluene used in the reactions was dried, deoxygenated (SP5-800 MBraun) and stored over molecular sieves 4 Å under argon atmosphere. Argon (99,999%) was purchased from Messer.

3. General procedures

3.1. Synthesis of CuCl

A set was prepared to consist of two two-neck flasks equipped with septa and connected to each other by a Teflon tubing for SO₂ transport. In the first flask equipped with a reflux condenser, a magnetic stirrer and a cap with a hose for removing excess gas, a solution of 10.5 g of CuSO₄·5H₂O and 5.04 g of NaCl in 150 mL of water was placed. In the second flask (SO₂ generation system) equipped with a dropping funnel with concentrated hydrochloric acid (57 mL) and a magnetic stirrer, a concentrated aqueous solution of 41.46 g of Na₂SO₃ was prepared. Then, the content of the first flask was heated to a temperature of about 60 °C, and in the second flask, hydrochloric acid was started to be added dropwise to the concentrated Na₂SO₃ solution. The evolved gas (SO₂) was transported by means of a Teflon hose to the first flask and passed in a gentle stream through the heated solution until the product - copper(I) chloride precipitated out. After completion of the reaction, the mixture was cooled to room temperature and filtered off on a Büchner funnel. Then the obtained precipitate (CuCl) was purified by washing it with two small portions of concentrated acetic acid and three portions of diethyl ether.

3.2. Synthesis of alkynyl bromides

To a solution of N-bromosuccinimide (1.3 equiv.) and alkyne (1 equiv.) in acetone (1 mL of acetone/1 mmol of alkyne), silver nitrate (0,025 equiv.) was added under argon atmosphere. The reaction mixture was stirred at room temperature over 18 h and subsequently evaporated to remove all volatiles. The crude mixture was dissolved in hexane and filtered through a silica gel and concentrated to give a colourless or slightly yellow liquids.

Caution: All synthesized alkynyl bromides are strong lachrymators. The isolation should be performed under the hood.

3.3. Synthesis of symmetrical diynes (2a–d)

The CuCl (0.1 mmol) was placed in a round bottom flask equipped with a condenser and magnetic stirring bar. Subsequently, toluene (10 mL), piperidine (0.15 mmol), and alkyne (5 mmol) were placed in the reaction vessel. The reaction was performed at 80 °C for 18 hours in an air atmosphere. Afterwards, the reaction mixture was cooled and all volatiles were removed under vacuum. The crude residue was dissolved in hexanes (with a small amount of dichloromethane if necessary) and purified.

3.4. Synthesis of unsymmetrical diynes (2e-s)

The unsymmetrical 1,3-diynes were prepared according to the literature with some modifications:

CuCl was dissolved in a 2:3 mixture by volume of n-BuNH₂:H₂O (5 mL/mmol alkyne) and the solution was cooled to 0 °C in an ice bath. Hydroxylamine hydrochloride was slowly added until trace amounts of copper(II) were reduced and the colour of the solution changed from blue to colourless. The alkyne bromide and alkyne were dissolved in dichloromethane (5 mL/mmol alkyne), and this solution was added to the reaction flask at once. The biphasic mixture was vigorously stirred overnight under an argon atmosphere. Subsequently, the organic layer was removed and washed with portions of saturated aq. NH₄Cl until these portions no longer took on a blue colour. The organic layer was dried (Na₂SO₄) and concentrated by rotary evaporation. The crude residue was dissolved in hexanes and purified.

3.5. Synthesis of monoborylenynes (4a–s)

3.5.1. One step procedure

[Pt(PPh₃)₄] (0.0025 mmol), bis(pinacolato)diboron (0.3 mmol), diyne (0.25 mmol), toluene and aqueous solution of Cs₂CO₃ (3M, 2mL) were added into a Rotaflo®-type Schlenk vessel under an argon atmosphere and stirred for 18 h at 100 °C. Afterwards, the crude reaction mixture was analyzed by GC-MS and ¹H NMR analyses and purified by sublimation.

3.5.2. Two steps procedure

[Pt(PPh₃)₄] (0.0025 mmol), bis(pinacolato)diboron (0.25 mmol), diyne (0.25 mmol), and toluene were added into a Rotaflo®-type Schlenk vessel under an argon atmosphere and stirred for 18 h at 100 °C. Afterwards, aqueous solution of Cs₂CO₃ (3M, 2mL) was added and reaction mixture was stirred for another 1 h at 100 °C. The crude reaction mixture was analyzed by GC-MS and ¹H NMR analyses and purified by sublimation.

3.6. Suzuki coupling (for product 7)

 $[Pd(PPh_3)_4]$ (0.01 mmol), **4a** (0.145 mmol), 4-iodotoluene (0.348 mmol) were placed in the Schlenk vessel and evacuated. Then the toluene (1.45 mL) and aqueous solution of Cs₂CO₃ (3M, 1.45 mL) were added under argon atmosphere and stirred for 48 h at 60 °C. Upon completion of reaction, crude mixture was purified by flash chromatography.

3.7. Transformation of alkoxy to amionoborane (for product 8)

FeCl₃ (10.4 μ mol), 1,8-diaminonaphthalene (0.13 mmol), imidazole (0.26 mmol) were dissolved in water (0.25 mL) and acetonitrile (0.25 mL) in a 4-mL screw-capped vial equipped with a magnetic stirring bar. Subsequently, **4a** (0.1 mmol) was transferred and rinsed with acetonitrile (0.75 mL) into the vial and stirred for 48 h at room temperature. After the completion of the reaction, the crude mixture was washed with brine and extracted with ethyl acetate. The organic layer was then dried over sodium sulfate, filtered and evaporated under vacuum to remove all volatiles. Afterwards, the crude product was purified by flash chromatography.

3.8. Bromodesilylation (for product 9)

The **4a** (0.1 mmol) and N-bromosuccinimide (0.15mmol) and acetonitrile (1 mL) were placed in the round bottom flask. The reaction mixture was stirred at room temperature over 17 h. Afterwards, crude reaction mixture was analyzed by GC-MS and then purified by filtration through a silica gel and sublimation.

3.9. Sila-Sonogashira (for product 10)

[Pd(PPh₃)₄] (0.0225 mmol), CuI (0.225 mmol), **4a** (0.3 mmol) and *p*-iodonitrobenzene (0.36 mmol) were placed in the Schlenk vessel and evacuated. Then the dry DMF (3 mL) was added under argon atmosphere and stirred for 18 h at 80 °C. Afterwards, crude reaction mixture was analyzed by GC-MS and purified by flash chromatography.

3.10. Mechanistic studies

The mechanism of the diboration of 1,3-diynes was proposed by our group earlier.⁶ The deuterium labelling experiments were conducted as follows:

3.10.1. One step procedure

 $[Pt(PPh_3)_4]$ (0.0025 mmol), bis(pinacolato)diboron (0.3 mmol), diyne (0.25 mmol), toluene and aqueous solution (D₂O) of Cs₂CO₃ (3M, 2mL) were added into a Rotaflo[®]-type Schlenk vessel under an argon atmosphere and stirred for 18 h at 100 °C. Afterwards, the crude reaction mixture was analyzed by GC-MS and ¹H NMR analyses. Aqueous phase was analyzed by ¹¹B NMR.

3.10.2. Two steps procedure

[Pt(PPh₃)₄] (0.0025 mmol), bis(pinacolato)diboron (0.25 mmol), diyne (0.25 mmol), and toluene were added into a Rotaflo[®]-type Schlenk vessel under an argon atmosphere and stirred for 18 h at 100 °C. Afterwards, aqueous solution (D₂O) of Cs₂CO₃ (3M, 2mL) was added and reaction mixture was stirred for another 1 h at 100 °C. The crude reaction mixture was analyzed by GC-MS and ¹H NMR analyses. Aqueous phase was analyzed by ¹¹B NMR.

R- <u></u> R	+ , B-B, 0 (2)	Pt(PPh ₃) ₄ (1 mol%) toluene (0.125M) Cs ₂ CO ₃ /H ₂ O (3M) 100 °C, 18 h	pinB Bpin pinB $+ \alpha = \beta + \beta$ R (3) R (4) R (5) R
Entry	Diyne (1)	Conv. of 1 [%] ^a	Selectivity [3/4/5] ^b
1	$R = Si(i-Pr)_3$	19	0/100/0 (100/0) ^c
2		100	0/70/30 (83/17) ^c
3 ^d	R = Ph	100	20/40/40 (81/19)°
4 e		99	0/4/96

4. Results for diboration/protodeboration of symmetrical silyl and aryl substituted 1,3-diynes

^{a)} Based on GC-MS analysis. ^{b)} Based on GC-MS and ¹H NMR analyses. ^{c)} Ratio of (**4**) *α*-isomer and (**4**) β-isomers. ^{d)} K₂CO₃ as a base (3M). ^{e)} MeONa/MeOH as a base (3M).

5. Products characterization

(Bromoethynyl) benzene

¹**H NMR** (300 MHz, CDCl₃, δ, ppm): 7.54 – 7.43 (m, 2H, Ph), 7.40 – 7.28 (m, 3H, Ph). ¹³**C NMR** (75 MHz, CDCl₃, δ, ppm): 132.11, 128.81, 128.46, 122.79, 80.16 (<u>C</u>=C-Br), 49.90 (C=<u>C</u>-Br). **MS** (EI, m/z): 182 (M⁺+2, 100), 180(M⁺, 97), 101(93), 75(48), 62(5), 51(8). Pale yellow liquid. Isolated yield: 91% (8.5 g). Analytical data are in agreement with the literature.¹

1-Bromooct-1-yne

Chemical Formula: C₈H₁₃Br Molecular Weight: 189,10

¹**H** NMR (300 MHz, CDCl₃, δ , ppm): 2.20 (t, J_{H-H} = 7.0 Hz, 2H, C<u>H</u>₂C=C), 1.51 (p, J_{H-H} = 6.8 Hz, 2H), 1.38 – 1.24 (m, 6H), 0.89 (t, J_{H-H} = 6.8 Hz, 3H, CH₂C<u>H</u>₃). ¹³C NMR (75 MHz, CDCl₃, δ , ppm): 80.63 (C=C), 37.55, 31.43, 28.62, 28.42, 22.67, 19.83, 14.18. **MS** (EI, m/z): 161(M⁺-28, 4), 159(M⁺-30, 4), 147(4), 145(4), 132(7), 119(8), 117(9), 109(15), 79(41), 67(100). Colorless liquid. Isolated yield: 93% (12.8 g). Analytical data are in agreement with the literature.¹

(Bromoethynyl)trimethylsilane

Me₃Si — Br Chemical Formula: C₅H₉BrSi Molecular Weight: 177,12

¹**H NMR** (300 MHz, CDCl3, δ, ppm): 0.19 (s, 9H, Si(C<u>H</u>₃)₃). ¹³**C NMR** (75 MHz, CDCl3, δ, ppm): 87.13 (C=C), 61.56 (C=C), -0.11. ²⁹Si NMR (80 MHz, CDCl₃, δ, ppm): -15.64. **MS** (EI, m/z): 177(3), 175(3), 161(100), 133(12), 109(12), 97(27), 67(17), 53(14). Pale yellow liquid. Isolated yield: 69% (12,5g). Analytical data are in agreement with the literature.²

(Bromoethynyl)triisopropylsilane

(*i*-Pr)₃Si Br Chemical Formula: C₁₁H₂₁BrSi Molecular Weight: 261,28

¹H NMR (300 MHz, CDCl3, δ , ppm): 1.08 (s, 21H, (Si(C<u>H</u>(C<u>H</u>₃)₂)₃). ¹³C NMR (75 MHz, CDCl3, δ , ppm): 83.60 (C=C-Br), 61.87 (C=C-Br), 18.63 (Si(CH(CH₃)₂)₃), 11.44 (Si(CH(CH₃)₂)₃). ²⁹Si NMR (80 MHz, CDCl₃, δ , ppm): -0.26. MS (EI, m/z): 262 (M⁺+2, 5) 260 (M⁺, 5), 219(83), 217(83), 191(43), 189(42), 163(74), 161(68), 149(100), 147(93), 137(22), 109(31), 95(23), 69(17), 53(22). Colorless liquid. Isolated yield: 91% (5.4 g). Analytical data are in agreement with the literature.³

(Bromoethynyl)tert-butyldimethylsilane

t-BuMe₂Si Br Chemical Formula: C₈H₁₅BrSi Molecular Weight: 219,20

¹**H NMR** (300 MHz, CDCl₃, δ , ppm): 0.82 (s, 9H, C(C<u>H</u>₃)₃) 0.00. (s, 6H, Si(C<u>H</u>₃)₂). ¹³**C NMR** (75 MHz, CDCl₃, δ , ppm): δ 85.48, (C=C), 61.62 (C=C), 26.13 (C(CH₃)₃), 16.83 (C(CH₃)₃), -4.57 (Si(CH₃)₂). ²⁹**Si NMR** (80 MHz, CDCl₃ δ , ppm): -6.05. **MS** (EI, m/z): 219(M⁺, 0.2), 73(100), 81(12), 101(16), 107(19), 115(16), 121(16), 145(10). Colorless liquid. Isolated yield: 58% (6,1 g). Analytical data are in agreement with the literature.⁴

1,4-Bis(triethylsilyl)buta-1,3-diyne (2b)

Et₃Si SiEt₃

Chemical Formula: C₁₆H₃₀Si₂ Molecular Weight: 278,59

¹**H NMR** (300 MHz, CDCl₃, δ , ppm): 1.00 (t, J_{H+H} = 7.9 Hz, 18H, Si(CH₂C<u>H₃</u>)₃), 0.64 (t, J_{H+H} = 7.9 Hz, 12H, Si(C<u>H</u>₂CH₃)₃). ¹³**C NMR** (101 MHz, CDCl₃, δ , ppm): 89.38 (C=C), 83.31 (C=C), 7.48, 4.29. ²⁹Si **NMR** (79 MHz, CDCl₃ δ , ppm): -5.84. **MS** (EI, m/z): 278(M⁺, 7), 249(100), 221(94), 193(38), 165(27), 137(20), 109(11), 82(17), 68(8). **FT-IR** (cm⁻¹): 2955, 2936, 2912, 2875, 2064, 1457, 1004, 723, 695, 620. Colorless liquid. Isolated yield: 90% (1.24 g). Analytical data are in agreement with the literature.^{5,6}

1,4-Bis(tert-butyldimethylsilyl)buta-1,3-diyne (2c)

t-BuMe₂Si SiMe₂t-Bu Chemical Formula: C₁₈H₃₀Si₂ Molecular Weight: 278,59

¹H NMR (300 MHz, CDCl₃, δ , ppm): 0.95 (s, 18H, Si(CH₃)₂(C(C<u>H</u>₃)₃), 0.13 (s, 12H, Si(C<u>H</u>₃)₂(C(CH₃)₃). ¹³C NMR (75 MHz, CDCl₃, δ , ppm): 88.98 (<u>C</u>=C), 84.17 (C=<u>C</u>), 26.19, 16.89, -4.72. ²⁹Si NMR (79 MHz, CDCl₃ δ , ppm): -6.37. MS (EI, m/z): 278(M⁺, 6), 221(100), 179(17), 165(8), 123(11), 73(19). White solid. Isolated yield: 81% (1.13 g). Analytical data are in agreement with the literature.⁷

1,6-Dicyclohexylhexa-2,4-diyne (2d)

¹**H NMR** (300 MHz, CDCl₃, δ , ppm): 2.15 (s, 2H, C=CC<u>H</u>₂), 2.13 (s, 2H, C=CC<u>H</u>₂), 1.82 – 1.60 (m, 10H), 1.53 – 1.42 (m, 2H), 1.30 – 1.07 (m, 6H), 1.04 – 0.92 (m, 4H). ¹³**C NMR** (75 MHz, CDCl₃, δ , ppm): 76.52, 66.25, 37.41, 32.83, 27.15, 26.29, 26.21 **MS** (EI, m/z): 242(M⁺, 4), 199(6), 159(7), 145(13), 131(25), 117(39), 105(19), 91(34), 83(40), 67(20), 55(100). Orange oil. Isolated yield: 93% (1.12 g). Analytical data are in agreement with the literature.⁸

(Phenylbuta-1,3-diyn-1-yl)trisopropylsilane (2e)

= Chemical Formula: C₁₉H₂₆Si Molecular Weight: 282,50

¹**H NMR** (300 MHz, CDCl₃, δ, ppm): 7.55 – 7.27 (m, 5H, Ph), 1.12 (s, 21H, Si(C<u>H</u>(C<u>H</u>₃)₂)₃). ¹³**C NMR** (75 MHz, CDCl₃, δ, ppm): 132.84, 129.36, 128.54, 121.68, 89.63 (C≡C), 88.03 (C≡C), 75.69

(C=C), 74.80 (C=C), 18.72, 11.45. ²⁹Si NMR (79 MHz, CDCl₃ δ, ppm): -0.65. MS (EI, m/z): 282(M⁺, 8), 239(98), 211(44), 197(40), 183(54), 169(100), 159(21), 153(27), 91(20) 59(10). FT-IR (cm⁻¹): 2942, 2890, 2865, 2204, 2101, 1488, 1461, 1070, 1018, 995, 881, 752, 729, 675, 602. Colorless oil. Isolated yield: 75% (1.05 g). Analytical data are in agreement with the literature.^{6, 9}

((4-Fluorophenyl)buta-1,3-diyn-1-yl)triisopropylsilane (2f)

¹**H NMR** (300 MHz, CDCl₃, δ , ppm): 7.53 – 7.45 (m, 2H, Ph), 7.05 – 6.97 (m, 2H, Ph), 1.12 (s, 21H, Si(C<u>H</u>(C<u>H</u>₃)₂)₃) ¹³**C NMR** (101 MHz, CDCl₃, δ , ppm): 163.18 (d,¹J_{C-F} = 251.5 Hz), 134.86 (d, ³J_{C-F} = 8.5 Hz), 117.80 (d, ⁴J_{C-F} = 3.6 Hz), 116.00 (d, ²J_{C-F} = 22.2 Hz), 89.48 (C=C), 88.11 (C=C), 74.61 (C=C), 74.58 (C=C), 18.71, 11.45. ²⁹**Si NMR** (79 MHz, CDCl₃ δ , ppm): -0.57. **MS** (EI, m/z): 300(M+, 6), 257(66), 229(35), 201(54), 187(100), 171(29), 147(22). Pale yellow oil. Isolated yield: 81% (1.21 g). Analytical data are in agreement with the literature.^{6, 9}

Trisopropyl((4-(trifluoromethyl)phenyl)buta-1,3-diyn-1-yl)silane (2g)

¹**H NMR** (300 MHz, CDCl₃, δ , ppm): 7.68 – 7.50 (m, 4H, Ph), 1.12 (s, 21H, Si(C<u>H</u>(C<u>H</u>₃)₂)₃). ¹³**C NMR** (101 MHz, CDCl₃, δ , ppm): 133.05, 131.09, 130.77, 125.50 (q, J_{3C-F} = 3.8 Hz), 122.54, 89.94 (C=C), 89.07 (C=C) , 73.98 (C=C), 18.71, 11.43. ²⁹Si NMR (79 MHz, CDCl₃ δ , ppm): -0.28. **MS** (EI, m/z): 350(M⁺, 5), 307(100), 279(38), 265(26), 251(55), 237(82), 197(12), 175(17), 151(7), 137(8), 125(6). Colorless oil. Isolated yield: 81% (1.42 g). Analytical data are in agreement with the literature.^{6, 10}

((4-(Tert-butyl)phenyl)buta-1,3-diyn-1-yl)triisopropylsilane (2h)

¹**H** NMR (600 MHz, CDCl₃, δ , ppm): 7.44 (d, J_{H-H} = 8.4 Hz, 2H, Ph), 7.34 (d, J_{H-H} = 8.5 Hz, 1H, Ph), 1.31 (s, 9H, C(C<u>H</u>₃)₃), 1.12 (s, 21H, Si(C<u>H</u>(C<u>H</u>₃)₂)₃). ¹³**C** NMR (101 MHz, CDCl₃, δ , ppm): 152.81, 132.63, 125.59, 118.56, 89.88 (C=C), 87.44 (C=C), 76.01 (C=C), 74.21 (C=C), 35.05, 31.24, 18.74, 11.48. ²⁹Si NMR (79 MHz, CDCl₃ δ , ppm): -0.77. MS (EI, m/z): 338(M⁺, 18), 295(100), 267(43), 253(42), 239(33), 225(71), 112(23), 57(17). Elemental Anal. for C₂₃H₃₄Si (%): calcd.: C, 81.58; H, 10.12; found: C, 81.79; H, 10.31. White solid. Isolated yield: 79% (1.33 g).

(Cyclopropylbuta-1,3-diyn-1-yl)triisopropylsilane (2i)

(*i*-Pr)₃Si ______ Chemical Formula: C₁₆H₂₆Si Molecular Weight: 246,47

¹**H NMR** (300 MHz, CDCl₃, δ , ppm): 1.37 – 1.28 (m, 1H, C<u>H</u>), 1.07 (s, 21H, Si(C<u>H</u>(C<u>H</u>₃)₂)₃), 0.85 – 0.78 (m, 4H, CH₂CH₂).¹³**C NMR** (75 MHz, CDCl₃, δ , ppm): 90.43 (C=C), 81.92 (C=C), 79.73 (C=C), 61.47 (C=C), 18.69, 11.45, 8.94, 0.17. ²⁹**Si NMR** (79 MHz, CDCl₃ δ , ppm): -1.15. **MS** (EI, m/z): 246(M⁺, 4), 203(93), 175(42), 161(50), 147(48), 133(100), 118(17), 93(27), 59(23). Yellow oil. Isolated yield: 83% (1.02 g). Analytical data are in agreement with the literature.⁶

Deca-1,3-diyn-1-yltrisopropylsilane (2j)

(*i*-Pr)₃Si-Chemical Formula: C₁₉H₃₄Si Molecular Weight: 290,57

¹**H NMR** (300 MHz, CDCl₃, δ , ppm): 2.28 (d, J_{H-H} = 7.0 Hz, 2H, \equiv CC<u>H</u>₂), 1.59 – 1.18 (m, 8H), 1.08 (s, 21H, Si(C<u>H</u>(C<u>H</u>₃)₂)₃), 0.89 (t, J_{H-H} = 6.8 Hz, 3H, CH₂C<u>H</u>₃). ¹³**C NMR** (75 MHz, CDCl₃, δ , ppm): 90.25 (<u>C</u>=C), 80.09 (C=<u>C</u>), 79.12 (<u>C</u>=C), 65.94 (C=<u>C</u>), 31.43, 28.75, 28.28, 22.64, 19.44, 18.70, 14.18, 11.44. ²⁹**Si NMR** (79 MHz, CDCl₃ δ , ppm): -1.14. **MS** (EI, m/z): 290(M⁺, 3), 247(100), 219(38), 205(33), 191(28), 177(52), 163(5), 149(9), 137(11), 109(13), 95(10), 83(15), 59(20). **FT-IR** (cm⁻¹): 2941, 2865, 2223, 2104, 1462, 1181, 995, 881, 675. Pale yellow oil. Isolated yield: 82% (1.19g). Analytical data are in agreement with the literature.^{6, 11}

(5-Phenoxypenta-1,3-diyn-1-yl)trisopropylsilane (2k)

¹**H NMR** (300 MHz, CDCl₃, δ , ppm): 7.42 – 7.31 (m, 2H, Ph), 7.08 – 6.96 (m, 3H, Ph) 4.80 (s, 2H, =CC<u>H</u>²OPh), 1.11 (s, 21H, Si(C<u>H</u>(C<u>H</u>₃)₂)₃). ¹³**C NMR** (75 MHz, CDCl₃, δ , ppm): 157.69, 129.70, 125.27, 121.82, 114.97, 88.84 (C=C), 85.52 (C=C), 72.49 (C=C), 71.48 (C=C), 56.42, 18.64, 11.35. ²⁹Si **NMR** (79 MHz, CDCl₃ δ , ppm): -0.45. **MS** (EI, m/z): 312(M⁺, 26), 269(100), 241(50), 225(29), 213(24), 199(38), 185(20), 173(30), 151(81), 137(32), 121(22), 106(34), 92(19), 59(25). **FT-IR** (cm⁻¹): 2943, 2891, 2865, 2225, 2106, 1598, 1588, 1494, 1461, 1211, 1172, 1032, 1015, 994, 881, 801, 750, 676. Yellow oil. Isolated yield: 69% (1.07 g). Analytical data are in agreement with the literature.⁶

Triisopropyl(thiophen-3-ylbuta-1,3-diyn-1-yl)silane (2l)

¹H NMR (300 MHz, CDCl₃, δ, ppm): 7.61 – 7.53 (m, 1H, Ar), 7.25 – 7.22 (m, 1H, Ar), 7.17 – 7.12 (m, 1H, Ar), 1.10 (s, 21H, Si(C<u>H</u>(C<u>H</u>₃)₂)₃). ¹³C NMR (101 MHz, CDCl₃, δ, ppm): 131.74, 130.39, 125.68, 120.78, 89.60 (<u>C</u>=C), 87.90 (C=<u>C</u>), 74.47(<u>C</u>=C), 70.92(C=<u>C</u>), 18.72, 11.45. ²⁹Si NMR (79 MHz, CDCl₃ δ, ppm): -0.64. MS (EI, m/z): 288(M⁺, 19), 245(100), 217(42), 203(39), 189(44), 175(87), 165(16), 159(17), 135(16), 95(15). Dark-brown oil. Isolated yield: 69% (0.99g). Analytical data are in agreement with the literature.¹²

Deca-1,3-diyn-1-yltrimethylsilane (2m)

Me₃Si-_ Chemical Formula: C₁₃H₂₂Si Molecular Weight: 206,40

¹**H** NMR (400 MHz, CDCl₃, δ , ppm): 2.26 (t, J_{H-H} = 7.0 Hz, 2H, C=CC<u>H</u>₂), 1.56 – 1.49 (m, 2H), 1.40 – 1.26 (m, 6H) 0.88 (t, J_{H-H} = 6.9 Hz, 3H, CH₂C<u>H</u>₃), 0.18 (s, 9H, Si(CH₃)₃). ¹³**C** NMR (101 MHz, CDCl₃, δ , ppm): 88.62 (<u>C</u>=C), 83.09 (C=<u>C</u>), 80.39 (<u>C</u>=C), 65.55 (C=<u>C</u>), 31.42, 28.67, 28.23, 22.65, 19.37, 14.18, -0.18. ²⁹Si NMR (79 MHz, CDCl₃ δ , ppm): -16.74. **MS** (EI, m/z): 206(M⁺, 2), 191(100), 177(9), 149(4), 133(10), 121(10), 105(13), 97(20), 83(17), 73(31), 59(16). Elemental Anal. for C₁₃H₂Si (%): calcd.: C, 75.65; H, 10.74; found: C, 76.01; H, 10.82. Pale yellow oil. Isolated yield: 79% (0.81g). Analytical data are in agreement with the literature.¹³

(5-Cyclohexylpenta-1,3-diyn-1-yl)trimethylsilane (2n)

¹**H NMR** (400 MHz, CDCl₃, δ , ppm): 2.17 (d, J_{H-H} = 6.6 Hz, 2H), 1.84 – 1.44 (m, 5H), 1.30 – 0.92 (m, 6H), 0.18 (s, 9H, Si(CH₃)₃). ¹³**C NMR** (101 MHz, CDCl₃, δ , ppm): 88.66 (C=C), 83.04 (C=C), 79.39, 66.37, 53.56, 37.30, 32.82, 27.15, 26.18, -0.16. ²⁹Si **NMR** (79 MHz, CDCl₃ δ , ppm): -16.76. **MS** (EI, m/z): 218(M⁺, 5), 203(100), 176(5), 145(4), 120(12), 107(14), 83(22), 73(52), 55(34). Pale yellow oil. Isolated yield: 86% (0.94g). Title compound is known, but characterized for the first time.¹⁴

Trimethyl(phenylbuta-1,3-diyn-1-yl)silane (20)

¹**H NMR** (300 MHz, CDCl₃, δ , ppm): 7.62 – 7.43 (m, 2H, Ph), 7.43 – 7.18 (m, 3H, Ph), 0.24 (s, 9H, Si(C<u>H</u>₃)₃). ¹³**C NMR** (75 MHz, CDCl₃, δ , ppm): 132.82, 129.47, 128.56, 121.53, 90.78 (C=C), 87.96 (C=C), 76.88 (C=C), 74.28 (C=C), -0.24 (Si(<u>C</u>H₃)₃). ²⁹**Si NMR** (79 MHz, CDCl₃ δ , ppm): -16.1. **MS** (EI, m/z): 198(M⁺, 26), 183(100), 167(3), 153(5), 129(8). **FT-IR** (cm⁻¹): 2959, 2205, 2104, 1489, 1442, 1250, 837, 751, 686, 632. Pale yellow oil. Isolated yield: 66% (0.65 g). Analytical data are in agreement with the literature.^{6, 15}

((4-(Tert-butyl)phenyl)buta-1,3-diyn-1-yl)trimethylsilane (2p)

¹**H** NMR (300 MHz, CDCl₃, δ , ppm): 7.45 – 7.40 (m, 2H, Ph), 7.36 – 7.31 (m, 2H, Ph), 1.30 (s, 9H, C(C<u>H</u>₃)₃), 0.23 (s, 9H, Si(C<u>H</u>₃)₃). ¹³**C** NMR (75 MHz, CDCl₃, δ , ppm): 152.97, 132.62, 125.62, 118.41, 90.27 (C=C), 88.18 (C=C), 73.66 (C=C), 35.07, 31.23, -0.21 (Si(<u>C</u>H₃)₃). ²⁹Si NMR (79 MHz, CDCl₃ δ , ppm): -16.29. MS (EI, m/z): 254(M⁺, 30), 73(7), 84(4), 98(13), 209(7), 223(8), 234(100). Pale yellow oil. Isolated yield: 59% (0.75 g). Analytical data are in agreement with the literature.¹⁶

Deca-1,3-diyn-1-yltriethylsilane (2q)

¹H NMR (400 MHz, CDCl₃, δ , ppm): 2.27 (t, J_{H-H} = 7.0 Hz, 2H, C=CC<u>H</u>₂), 1.60 – 1.50 (m, 2H), 1.42 – 1.25 (m, 6H), 0.99 (t, J_{H-H} = 7.8 Hz, 9H, Si(CH₂C<u>H</u>₃)₃), 0.94 – 0.83 (m, 3H), 0.66 – 0.56 (m, 6H, Si(C<u>H</u>₂CH₃)₃). ¹³C NMR (101 MHz, CDCl₃, δ , ppm): 89.59 (C=C), 81.09 (C=C), 79.65 (C=C), 65.77 (C=C), 31.43, 28.71, 28.26, 22.64, 19.41, 14.18, 7.51, 4.41.²⁹Si NMR (79 MHz, CDCl₃ δ , ppm): -6.34. MS (EI, m/z): 248(M⁺, 1), 219(100), 191(70), 163(27), 133(12), 121(10), 107(14), 95(18), 79(15), 67(18), 55(23). Elemental Anal. for C₁₆H₂₈Si (%): calcd.: C, 77.34; H, 11.36; found: C, 78.08; H, 11.53. Pale yellow oil. Isolated yield: 70% (0.87 g).

Tert-butyl(deca-1,3-diyn-1-yl)dimethylsilane (2r)

¹**H** NMR (400 MHz, CDCl₃, δ , ppm): 2.27 (t, J_{H-H} = 7.1 Hz, 2H, C=CC<u>H</u>₂), 1.56 – 1.49 (m, 2H), 1.39 – 1.25 (m, 6H), 0.94 (s, 9H, Si(CH₃)₂C(C<u>H</u>₃)₃) 0.89 (t, J_{H-H} = 6.9 Hz, 3H, CH₂C<u>H</u>₃) 0.12 (s, 6H, Si(C<u>H</u>₃)₂C(CH₃)₃). ¹³C NMR (101 MHz, CDCl₃, δ , ppm): 89.23 (<u>C</u>=C), 81.68 (C=<u>C</u>), 79.85 (<u>C</u>=C), 65.72, 31.43, 28.70, 28.25, 26.19, 22.65, 19.40, 16.85, 14.18, -4.62. ²⁹Si NMR (79 MHz, CDCl₃ δ , ppm): -6.99. MS (EI, m/z): 248(M⁺, 3), 191(100), 133(3), 120(4), 83(7), 73(4), 59(7). Pale yellow oil. Isolated yield: 85% (1.06 g). Analytical data are in agreement with the literature.¹⁷

Tert-butyldimethyl(phenylbuta-1,3-diyn-1-yl)silane (2s)

¹**H NMR** (300 MHz, CDCl₃, δ , ppm): 7.52 – 7.47 (m, 2H, Ph), 7.38 – 7.28 (m, 3H, Ph), 0.99 (s, 9H, Si(CH₃)₂C(C<u>H₃</u>)₃), 0.18 (s, 6H, Si(C<u>H₃</u>)₂C(CH₃)₃). ¹³**C NMR** (101 MHz, CDCl₃, δ , ppm): 132.83, 129.44, 128.56, 121.57, 89.48 (C=C), 88.59 (C=C), 76.38 (C=C), 74.50 (C=C), 26.22, 16.93, -4.67. ²⁹Si **NMR** (79 MHz, CDCl₃ δ , ppm): -6.43. **MS** (EI, m/z): 240(M⁺, 19), 105(2), 129(6), 153(6), 169(5), 183(100). Pale yellow oil. Isolated yield: 88% (1.05 g). Analytical data are in agreement with the literature.¹⁸

(Z)-(1-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)but-1-en-3-yne-1,4-diyl)bis(trimethylsilane) (4a)

Chemical Formula: C₁₆H₃₁BO₂Si₂ Molecular Weight: 322,40

¹**H** NMR (400 MHz, CDCl₃, δ , ppm): 6.85 (s, 1H, C<u>H</u>=C), 1.23 (s, 12H, C(C<u>H</u>₃)₂), 0.22 (s, 9H, Si(C<u>H</u>₃)₃), 0.18 (s, 9H, Si(C<u>H</u>₃)₃). ¹³**C** NMR (101 MHz, CDCl₃, δ , ppm): 134.88 (<u>C</u>H=C), 106.01 (<u>C</u>=C), 102.37 (C=<u>C</u>), 84.44 (<u>C</u>(CH₃)₂), 24.87 (C(<u>C</u>H₃)₂), -0.26 (Si(<u>C</u>H₃)₃). C α to boron atom was not observed. ²⁹Si NMR (79 MHz, CDCl₃ δ , ppm): -5.77 (SiC=C), -18.03 (SiC=C). MS (EI, m/z): 322(M⁺, 1), 307(7), 265(25), 225(22), 197(8), 181(19), 155(14), 83(100), 73(89), 55(38). Elemental Anal. for C₁₆H₃₁BO₂Si₂ (%): calcd.: C, 59.61; H, 9.69; found: C, 60.08; H, 9.77. Yellowish oil. Isolated yield: 88% (71 mg).

(Z)-(1-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)but-1-en-3-yne-1,4-diyl)bis(triethylsilane) (4b)

¹**H** NMR (400 MHz, CDCl₃, δ, ppm): 6.98 (s, 1H, C<u>H</u>=C), 1.23 (s, 12H, C(C<u>H</u>₃)₂), 1.05 – 0.88 (m, 18H), 0.85 – 0.75 (m, 6H, Si(C<u>H</u>₂CH₃)₃), 0.62 (q, J_{H-H} = 7.9 Hz, 6H, Si(C<u>H</u>₂CH₃)₃). ¹³**C** NMR (101 MHz, CDCl₃, δ, ppm): 136.27 (<u>C</u>H=C), 107.09 (<u>C</u>=C), 99.78 (C=<u>C</u>), 83.34 (<u>C</u>(CH₃)₂), 24.86 (C(<u>C</u>H₃)₂), 7.77, 7.49, 4.38, 3.91. Cα to boron atom was not observed. ²⁹Si NMR (79 MHz, CDCl₃ δ, ppm): -2.34 (SiC=C), -7.83 (SiC=C). ¹¹B NMR (128 MHz, CDCl₃, δ, ppm): 31.34. MS (EI, m/z): 406(M⁺, 1), 391(1), 377(16), 350(13), 293(27), 267(43), 237(25), 209(13), 137(10), 107(8), 83(100), 69(89), 55(45). Elemental Anal. for C₂₂H₄₃BO₂Si₂ (%): calcd.: 64.99; H, 10.66; found: C, 65.27; H, 10.81. Yellowish oil. Isolated yield: 81% (82 mg).

(Z)-(1-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl) but-1-en-3-yne-1,4-diyl) bis(tert-butyl dimethyl silane) (4c)

¹**H** NMR (300 MHz, CDCl₃, δ , ppm): 7.04 (s, 1H C<u>H</u>=C), 1.22 (s, 12H, C(C<u>H</u>₃)₂), 0.92 (s, 9H, C(C<u>H</u>₃)₃), 0.90 (s, 9H, C(C<u>H</u>₃)₃), 0.23 (s, 6H, SiC<u>H</u>₃), 0.11 (s, 6H, SiC<u>H</u>₃). ¹³C NMR (101 MHz, CDCl₃, δ , ppm): 136.69 (<u>C</u>H=C), 107.31 (<u>C</u>=C), 101.04 (C=<u>C</u>), 83.37 (<u>C</u>(CH₃)₂), 27.20, 26.27, 24.87, 18.83, 16.82, -3.71, -4.70. C α to boron atom was not observed. ²⁹Si NMR (79 MHz, CDCl₃ δ , ppm): 2.57 (SiC=C), -8.37 (SiC=C). MS (EI, m/z): 406(M⁺, 1), 349(16), 293(10), 265(16), 223(14), 211(82), 181(7), 167(8), 83(100), 73(44), 55(36), 57(8). Elemental Anal. for C₂₂H₄₃BO₂Si₂ (%): calcd.: C, 64.99; H, 10.66; found: C, 65.78; H, 10.90. Yellowish solid. Isolated yield: 72% (73 mg).

(Z)-2-(1,6-Dicyclohexylhex-2-en-4-yn-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4d)

Chemical Formula: C₂₄H₃₉BO Molecular Weight: 370,38

¹**H NMR** (600 MHz, C₆D₆, δ, ppm): 6.24 (C<u>H</u>=C), 2.27 (m, 2H, C<u>H</u>₂C₆H₁₁), 2.25 (m, 2H, C<u>H</u>₂C₆H₁₁), 1.83 – 1.79 (m, 2H), 1.74 – 1.63 (m, 9H), 1.54 – 1.45 (m, 2H), 1.26 (m, 3H), 1.24 (s, 12H, C(C<u>H</u>₃)₂), 1.18 – 0.91 (m,

5H). ¹³**C NMR** (151 MHz, CDCl₃, δ, ppm): 123.55 (<u>C</u>H=C), 97.70 (<u>C</u>=C), 83.52 (<u>C</u>(CH₃)₂), 79.95 (C=<u>C</u>), 39.25, 38.56, 37.75, 33.51, 32.83, 27.76, 26.83, 26.57, 26.42, 26.31, 24.80. C*α* to boron atom was not observed. **MS** (EI, m/z): 370(M⁺, 2), 355(2), 327(2), 288(10), 274(10), 231(6), 205(6), 187(16), 159(24), 146(28), 131(21), 101(52), 83(69), 67(22), 55(100). **Elemental Anal**. for C₂₄H₃₉BO₂ (%): calcd.: C, 77.83; H, 10.61; found: C, 78.12; H, 10.79. Pale yellow oil. Isolated yield 63% (58 mg).

(Z)-Triisopropyl(4-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-yn-1-yl)silane (4e)

¹**H NMR** (400 MHz, CDCl₃, δ, ppm): 7.66 – 7.63 (m, 2H, Ph), 7.32 – 7.27 (m, 2H, Ph), 7.25 – 7.21 (m, 1H, Ph), 6.56 (s, 1H, C<u>H</u>=C), 1.29 (s, 12H, C(C<u>H</u>₃)₂), 1.01 (s, 21H, Si(C<u>H</u>(C<u>H</u>₃)₂)₃). ¹³**C NMR** (101 MHz, CDCl₃, δ, ppm): 139.05, 129.16, 127.75, 127.38, 122.52 105.48 (C=C), 100.32 (C=C), 84.17 (C(CH₃)₂), 24.91 (C(C<u>H</u>₃)₂), 18.69, 11.41. Cα to boron atom was not observed. ²⁹**Si NMR** (79 MHz, CDCl₃ δ, ppm): -2.17. ¹¹**B NMR** (128 MHz, CDCl₃, δ, ppm): 30.70. **MS** (EI, m/z): 410(M⁺, 17), 367(100), 311(18), 297(29), 267(25), 239(22) 211(29), 197(47), 183(25), 169(37), 155(22), 129(16), 101(76), 83(77), 69(22), 59(58). **Elemental Anal**. for C₂₅H₃₉BO₂Si (%): calcd.: C, 73.15; H, 9.58; found: C, 73.91; H, 9.93. Pale yellow oil. Isolated yield: 78% (80 mg).

(Z)-(4-(4-Fluorophenyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) but-3-en-1-yn-1-yl) triisopropyl silane (4f)

Si(*i*-Pr)₃ Chemical Formula: C₂₅H₃₈BFO₂Si Molecular Weight: 428,47

¹**H** NMR (400 MHz, CDCl₃, δ , ppm) 7.68 – 7.61 (m, 2H, Ph), 7.03 – 6.94 (m, 2H, Ph), 6.55 (s, 1H, C<u>H</u>=C), 1.29 (s, 12H, C(C<u>H</u>₃)₂)), 1.02 (s, 21H, Si(C<u>H(CH</u>₃)₂)₃). ¹³**C** NMR (101 MHz, CDCl₃, δ , ppm): 162.19 (d, ¹J_{C-F} = 246.2 Hz), 135.04 (d, ⁴J_{C-F} = 3.3 Hz), 132.26 (d, ³J_{C-F} = 9.9 Hz), 130.92, 130.92, 128.71, 128.59, 122.56, 114.60 (d, ²J_{C-F} = 21.2 Hz), 105.28 (<u>C</u>=C), 100.71 (C=<u>C</u>), 84.27 (<u>C</u>(CH₃)₂), 24.90 (C(<u>C</u>H₃)₂), 18.68, 11.39. C α to boron atom was not observed. ²⁹Si NMR (79 MHz, CDCl₃ δ , ppm): -2.03 MS (EI, m/z): 428(M⁺, 42), 385(100), 357(13), 329(17), 301(8), 285(11), 257(10), 243(12), 215(48), 201(18), 173(18), 101(44), 83(74), 55(43). Elemental Anal. for C₂₅H₃₈BFO₂Si (%): calcd.: C, 70.08; H, 8.94; found: C, 70.76; H, 9.03. Pale yellow oil. Isolated yield: 59% (63 mg).

(Z)-Triisopropyl (4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4-(4-(trifluoromethyl)phenyl) but-3-en-1-yn-1-yl) silane (4g)

Chemical Formula: C₂₆H₃₈BF₃O₂Si Molecular Weight: 478,48

¹**H NMR** (600 MHz, C₆D₆, δ , ppm): 7.70 (d, J_{H-H} = 8.2 Hz, 2H), 7.50 – 7.42 (m, 2H, Ph), 6.93 (s, 1H, C<u>H</u>=C), 1.02 (s, 12H, C(C<u>H</u>₃)₂), 1.01 (s, 21H, Si(C<u>H</u>(C<u>H</u>₃)₂)₃). ¹³**C NMR** (151 MHz, C₆D₆, δ , ppm): 143.61, 132.50, 132.44, 131.66, 130.33, 130.13, 129.83, 129.33 (q, J³_{C-F} = 32.0 Hz), 126.07, 125.00 (q, J³_{C-F} = 3.7 Hz)., 124.27, 12

105.37 (<u>C</u>=C), 101.71 (C=<u>C</u>), 84.26 (<u>C</u>(CH₃)₂), 24.72 (C(<u>C</u>H₃)₂), 18.71, 11.56. Cα to boron atom was not observed. ²⁹Si NMR (79 MHz, CDCl₃ δ, ppm): -1.78. MS (EI, m/z): 478(M⁺, 8), 435(100), 393(5), 265(6), 151(12), 133(10), 101(6), 83(15), 69(7), 59(15). Elemental Anal. for C₂₆H₃₈BF₃O₂Si (%): calcd.: C, 65.27; H, 8.01; found: C, 65.90; H, 8.22. Pale yellow oil. Isolated yield: 63% (75 mg).

 $(Z)-(4-(4-(Tert-butyl)phenyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-yn-1-yl)triisopropylsilane (\mathbf{4h})$

Si(*i*-Pr) Chemical Formula: C₂₉H₄₇BO₂Si Molecular Weight: 466,59

¹**H** NMR (600 MHz, C₆D₆, δ , ppm): 7.60 (d, J_{H+H} = 8.4 Hz, 2H, Ph), 7.31 (d, J_{H+H} = 8.4 Hz, 2H, Ph), 6.53 (s, 1H, C<u>H</u>=C), 1.31 (s, 9H, C(C<u>H</u>₃)₃), 1.30 (s, 12H, C(C<u>H</u>₃)₂), 1.02 (s, 21H, Si(C<u>H</u>(C<u>H</u>₃)₂)₃). ¹³C NMR (151 MHz, C₆D₆, δ , ppm): 150.08, 136.16, 128.84, 124.71, 122.06, 105.81 (C=C), 99.85 (C=C), 84.10 (C(CH₃)₂), 34.64, 31.44, 24.91 (C(C<u>H</u>₃)₂), 18.71, 11.44. C α to boron atom was not observed. ²⁹Si NMR (79 MHz, CDCl₃ δ , ppm): -2.30. MS (EI, m/z): 466(M⁺, 22), 423(25), 395(8), 365(8), 323(14), 265(8) 170(12), 133(10),101(31), 83(24), 57(100). Elemental Anal. for C₂₉H₄₇BO₂Si (%): calcd.: C, 74.65; H, 10.15; found: C, 75.08; H, 10.29. Pale yellow oil. Isolated yield: 51% (59 mg).

(Z)-(4-Cyclopropyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) but-3-en-1-yn-1-yl) triisopropyl silane (4i)

Chemical Formula: C₂₂H₃₉BO₂S Molecular Weight: 374,45

¹H NMR (400 MHz, CDCl₃, δ, ppm): 6.23 (C<u>H</u>=C), 2.22 – 2.07 (m, 1H, C<u>H</u>CH₂CH₂), 1.21 (s, 12H, C(C<u>H</u>₃)₂), 1.07 (s, 21H, Si(C<u>H</u>(C<u>H</u>₃)₂)₃), 0.97 – 0.92 (m, 2H), 0.79 – 0.74 (m, 2H). ¹³C NMR (101 MHz, CDCl₃, δ, ppm): 12.55 (CH=C), 105.14 (C=C), 98.55 (C=C), 83.43 (C(CH₃)₂), 24.78 (C(CH₃)₂), 18.79 Si(CH(CH₃)₂)₃), 11.46 Si(CH(CH₃)₂)₃), 7.68. Cα to boron atom was not observed. ²⁹Si NMR (79 MHz, CDCl₃ δ, ppm): -2.17. ¹¹B NMR (128 MHz, CDCl₃, δ, ppm): 30.37. MS (EI, m/z): 374(M⁺, 11), 331(26), 289(14), 247(8), 205(12), 189(26) 161(42), 147(19), 133(31), 119(17), 83(100), 55(52). Elemental Anal. for C₂₂H₃₉BO₂Si (%): calcd.: C, 70.57; H, 10.50; found: C, 71.02; H, 10.66. Pale Pale yellow oil. Isolated yield: 85% (80 mg).

(Z)-Triisopropyl(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)dec-3-en-1-yn-1-yl)silane (4j)

Chemical Formula: C₂₅H₄₇BO₂Si Molecular Weight: 418,54

¹**H NMR** (300 MHz, CDCl₃, δ , ppm): 6.26 (s, 1H, C<u>H</u>=C), 2.41 (t, J_{H-H}=7.4 Hz, 2H, C=CC<u>H</u>₂), 1.43 – 1.27 (m, 8H), 1.25 (s, 12H, C(C<u>H</u>₃)₂), 1.08 (s, 21H, Si(C<u>H</u>(C<u>H</u>₃)₂)₃), 0.92-0.81 (m, 3H, CH₂C<u>H</u>₃). ¹³**C NMR** (101 MHz, CDCl₃, δ , ppm): 122.36 (<u>C</u>H=C), 106.68 (<u>C</u>=C), 98.99 (C=<u>C</u>), 83.67 (<u>C</u>(CH₃)₂), 32.28, 32.05, 29.66, 29.49, 24.85 (C(<u>C</u>H₃)₂, 22.80, 18.78, 14.24, 11.44. C α to boron atom was not observed. ²⁹**Si NMR** (79 MHz, CDCl₃ δ , ppm): -2.09. **MS** (EI, m/z): 418(M⁺, 7), 375(100), 347(8), 275(6), 233(8), 147(10), 135(14), 101(15), 83(36), 59(52). **Elemental Anal**. for C₂₅H₄₇BO₂Si (%): calcd.: C, 71.74; H, 11.32;; found: C, 72.18; H, 11.81. Pale yellow oil. Isolated yield: 68% (71 mg).

(Z)-Triisopropyl(5-phenoxy-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-3-en-1-yn-1-yl)silane (4k)

¹**H** NMR (300 MHz, CDCl₃, δ, ppm): 7.34 – 7.27 (m, 2H, Ph), 7.03 – 6.93 (m, 3H, Ph), 6.52 (s, 1H, C<u>H</u>=C) 4.98 (s, 2H, C<u>H</u>₂OPh), 1.27 (s, 12H, C(C<u>H</u>₃)₂), 1.13 (s, 21H, Si(C<u>H</u>(C<u>H</u>₃)₂)₃). ¹³C NMR (175 MHz, CDCl₃, δ, ppm): 158.87, 129.33, 125.64 120.54, 115.18, 103.14 (<u>C</u>=C), 102.75 (C=<u>C</u>), 84.02 (<u>C</u>(CH₃)₂), 67.15, 24.77 (C(<u>C</u>H₃)₂), 18.73, 11.34. Cα to boron atom was not observed. ²⁹Si NMR (79 MHz, CDCl₃ δ, ppm): -1.47. MS (EI, m/z): 440(M⁺, 4), 398(6), 347(15), 241(13), 227(16), 179(11) 151(21), 133(11), 121(25), 83(100), 55(42). Elemental Anal. for C₂₆H₄₁BO₃Si (%): calcd.: C, 70.89; H, 9.38; found: C, 71.21; H, 9.84. Pale yellow oil. Isolated yield: 80% (88 mg).

(Z) - Triis opropyl (4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4-(thiophen-3-yl) but-3-en-1-yn-1-yl) silane (Z) - Triis opropyl (4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4-(thiophen-3-yl) but-3-en-1-yl) silane (Z) - Triis opropyl (4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4-(thiophen-3-yl) but-3-en-1-yl) silane (Z) - Triis opropyl (4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4-(thiophen-3-yl) but-3-en-1-yl) silane (Z) - Triis opropyl (4-(4,4,5,5-tetramethyl-1,3,2-tetramethyl

¹**H NMR** (300 MHz, CDCl₃, δ , ppm): 8.00 (dd, J_{H+H} = 3.0, 1.2 Hz, 1H, thienyl), 7.93 (dd, J_{H+H} = 5.1, 1.3 Hz, 1H, thienyl), 7.21 (dd, J_{H+H} = 5.1, 3.0 Hz, 1H, thienyl), 6.48 (s, 1H, C<u>H</u>=C)), 1.31 (s, 12H, C(C<u>H</u>₃)₂), 1.09 (s, 21H, Si(C<u>H</u>(C<u>H</u>₃)₂)₃). ¹³**C NMR** (75 MHz, CDCl₃, δ , ppm): 128.88, 125.86, 123.74, 120.01, 84.19, 24.95, 18.78, 11.53. C α to boron atom and Csp atoms were not observed (512 scans). ²⁹**Si NMR** (79 MHz, CDCl₃ δ , ppm): -2.16. **MS** (EI, m/z): 416(M⁺, 45), 373(100), 317(19), 273(50), 245(32), 231(41), 217(36), 203(54), 189(29), 175(30), 129(22), 115(18), 101(47), 83(81), 73(19), 55(60). Elemental Anal. for C₂₃H₃₇BO₂SSi (%): calcd.: C, 66.33; H, 8.95; found: C, 66.91; H, 9.17. Yellow oil. Isolated yield: 74% (77 mg).

(Z)-Trimethyl(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)dec-3-en-1-yn-1-yl)silane (4m)

¹**H NMR** (600 MHz, C₆D₆, δ , ppm): 6.09 (s, 1H, C<u>H</u>=C), 2.28 (t, J_{H-H}=7.4 Hz, 2H, C=CC<u>H</u>₂), 1.26 – 1.17 (m, 8H), 1.14 (s, 12H, C(C<u>H</u>₃)₂), 0.80-0.75 (m, 3H, CH₂C<u>H</u>₃) 0.09 (s, 9H, Si(C<u>H</u>₃)₃). ¹³**C NMR** (151 MHz, C₆D₆, δ , ppm): 122.44 (<u>C</u>H=C) 103.44 (<u>C</u>=C), 102.53 (C=<u>C</u>), 83.29 (<u>C</u>(CH₃)₂), 32.27, 31.82, 29.53, 29.41, 24.39 (C(<u>C</u>H₃)₂), 22.72, 13.98, -0.33. C α to boron atom was not observed. ²⁹**Si NMR** (119 MHz, CDCl₃ δ , ppm): -18.37. ¹¹**B NMR** (128 MHz, CDCl₃, δ , ppm): 31.26, 28.47. **MS** (EI, m/z): 334(M⁺, 2), 319(4), 235(20), 203(19), 192(53), 177(26), 147(46), 135(44), 121(17), 101(27), 73(100), 59(42). **Elemental Anal.** for C₁₉H₃₅BO₂Si (%): calcd.: C, 68.25; H, 10.55; found: C, 68.71; H, 10.83. Pale yellow oil. Isolated yield: 77% (64 mg).

(Z)-(5-Cyclohexyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-3-en-1-yn-1-yl)trimethylsilane (4n)

Chemical Formula: C₂₀H₃₅BO₂S Molecular Weight: 346,39

¹**H NMR** (600 MHz, C₆D₆, δ, ppm): 6.81 (s, 1H), C<u>H</u>=C, 2.75 (d, J_{H-H} = 6.7 Hz, 2H, C<u>H</u>₂C₆H₁₁), 1.94 – 1.88 (m, 2H), 1.75 - 1.71 (m, 2H), 1.64 - 1.58 (m, 2H), 1.28 - 1.11 (m, 5H), 1.02 (s, 12H, C(CH₃)₂), 0.19 (s, 9H Si(CH₃)₃). ¹³C NMR (151 MHz, C₆D₆, δ , ppm): 123.15 (CH=C), 103.89 (C=C), 102.70 (C=C), 83.29 (C(CH₃)₂), 39.66, 38.59, 33.60, 26.70, 26.43, 24.36, -0.35 (Si(<u>C</u>H₃)₃). Cα to boron atom was not observed. ²⁹Si NMR (119 MHz, CDCl₃ δ, ppm): -18.37. MS (EI, m/z): 346(M⁺, 22) 331(12), 249(28), 235(19), 207(32), 165(18), 149(28), 134(15), 109(22), 101(44), 83(76), 73(100), 55(94). Elemental Anal. for C₂₀H₃₅BO₂Si (%): calcd.: C, 69.35; H, 10.18; found: C, 70.02; H, 10.44. Pale vellow oil. Isolated vield: 82% (71 mg).

(Z)-Trimethyl(4-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-yn-1-yl)silane (40)

Chemical Formula: C₁₉H₂₇BO₂Si Molecular Weight: 326,32

¹**H NMR** (600 MHz, C₆D₆, δ, ppm): 8.01 – 7.98 (m, 2H, Ph), 7.29 – 7.25 (m, 2H, Ph), 7.14 – 7.10 (m, 1H, Ph), 7.01 (s, 1H, CH=C), 0.98 (s, 12H, C(CH₃)₂), 0.08 (s, 9H, Si(CH₃)₃). ¹³C NMR (151 MHz, C₆D₆, δ , ppm): 139.67, 129.72, 122.83, 104.75 (<u>C</u>=C), 103.60 (C=<u>C</u>), 84.04 (<u>C</u>(CH₃)₂), 24.71 (C(<u>C</u>H₃)₂), -0.34 (Si(<u>C</u>H₃)₃). Cα to boron atom was not observed. ²⁹Si NMR (119 MHz, CDCl₃ δ, ppm): -18.07. MS (EI, m/z): 326(M⁺, 15), 311(24), 211(46), 169(15), 129(100), 112(24), 83(33), 55(51). Pale yellow oil. Isolated yield: 78% (64 mg). Analytical data are in agreement with the literature.¹⁹

(Z)-(4-(4-Ttert-butyl)phenyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-yn-1-yl)trimethylsilane(4p)

¹H NMR (300 MHz, CDCl₃, δ, ppm): 7.64 (d, J_{H-H} = 8.5 Hz, 1H), 7.34 (d, J_{H-H} = 8.6 Hz, 2H, Ph), 6.44 (s, 1H, C<u>H</u>=C), 1.32 (s, 9H, C(C<u>H</u>₃)₃), 1.29 (s, 12H, C(C<u>H</u>₃)₂), 0.14 (s, 9H, Si(C<u>H</u>₃)₃). ¹³C NMR (75 MHz, CDCl₃, δ, ppm): 150.42, 135.93, 128.91, 124.60, 121.18, 104.40, 103.34, 84.14, 77.58, 76.74, 34.71, 31.46, 24.89, -0.20. Cα to boron atom was not observed. 29Si NMR (119 MHz, CDCl₃ δ, ppm): -17.82 MS (EI, m/z): 382(M+, 46), 367(100), 311(12), 267(15), 225(24), 211(12), 200(14), 183(15), 169(16), 101(22), 83(38), 73(60), 57(66). Elemental Anal. for C23H35BO2Si (%): calcd.: C, 72.24; H, 9.23; found: C, 72.78; H, 9.41. Yellowish solid. Isolated yield: 81% (78 mg).

(Z)-Tert-butyldimethyl(4-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-yn-1-yl)silane (4q)

Chemical Formula: C₂₂H₃₃BO₂Si Molecular Weight: 368,40

¹**H** NMR (400 MHz, CDCl₃, δ , ppm): 7.70 – 7.63 (m, 2H, Ph), 7.39 – 7.27 (m, 3H, Ph), 6.54 (s, 1H, C<u>H</u>=C), 1.32 (s, 12H, C(C<u>H</u>₃)₂), 0.90 (s, 9H, C(C<u>H</u>₃)₃), 0.09 (s, 6H, Si(C<u>H</u>₃)₂). ¹³C NMR (101 MHz, CDCl₃, δ , ppm): 138.97, 129.15, 127.71, 127.46, 122.15, 104.44 (C=C), 101.91 (C=C), 84.17 (C(CH₃)₂), 26.18, 24.89, 16.85, - 4.71. C α to boron atom was not observed. ²⁹Si NMR (79 MHz, CDCl₃ δ , ppm): -8.01. ¹¹B NMR (128 MHz, CDCl₃, δ , ppm): 30.66. MS (EI, m/z): 368(M⁺, 21), 311(100), 211(54), 169(19), 101(15), 83(15), 73(13), 67(9), 55(11). Elemental Anal. for C₂₂H₃₃BO₂Si (%): calcd.: C, 71.73; H, 9.03; found: C, 71.98; H, 9.20. Yellow solid. Isolated yield: 72% (66 mg).

(Z)-Tert-butyldimethyl(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)dec-3-en-1-yn-1-yl)silane (4r)

¹**H** NMR (300 MHz, CDCl₃, δ , ppm): 6.21 (s, 1H, C<u>H</u>=C), 2.39 (t, J_{H-H} = 7.2 Hz, 2H, =C(B)C<u>H</u>₂), 1.49 – 1.27 (m, 8H), 1.24 (s, 12H, C(C<u>H</u>₃)₂), 0.95 (s, 9H, C(C<u>H</u>₃)₃)), 0.90 – 0.83 (m, 3H), 0.12 (s, 6H, Si(C<u>H</u>₃)₂). ¹³C NMR (75 MHz, CDCl₃, δ , ppm): 121.99 (C=<u>C</u>H), 103.57 (<u>C</u>=C), 100.82 (C=<u>C</u>), 83.69 (<u>C</u>(CH₃)₂), 32.20, 31.97, 29.51, 29.39, 26.25, 24.83, 22.80, 16.80, 14.25, -4.47. C α to boron atom was not observed. ²⁹Si NMR (79 MHz, CDCl₃ δ , ppm): -8.21. MS (EI, m/z): 376(M⁺, 2), 319(100), 219(10), 191(10), 177(9), 101(8), 83(32), 73(20), 59(16). Elemental Anal. for C₂₂H₄₁BO₂Si (%): calcd.: C, 70.19; H, 10.98; found: C, 70.71; H, 11.11. Yellow oil. Isolated yield: 70% (66 mg).

(Z)-Triethyl (4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) dec-3-en-1-yn-1-yl) silane (4s)

¹**H** NMR (300 MHz, CDCl₃, δ , ppm): 6.23 (s, 1H, C<u>H</u>=C), 2.40 (t, J_{H-H} = 7.4 Hz, 2H, =C(B)C<u>H</u>₂), 1.42 – 1.27 (m, 8H), 1.24 (s, 12H, C(C<u>H</u>₃)₂), 1.00 (t, J_{H-H} = 7.8 Hz, 9H, Si(CH₂C<u>H</u>₃)₃), 0.91 – 0.84 (m, 3H, CH₂CH₂C<u>H</u>₃), 0.62 (q, J_{H-H} = 7.9 Hz, 6H, Si(C<u>H</u>₂CH₃)₃). ¹³C NMR (151 MHz, CDCl₃, δ , ppm): 122.09 (C=<u>C</u>H), 104.10 (<u>C</u>=C), 100.00 (C=<u>C</u>), 83.68, 32.18, 31.96, 29.47, 29.39, 24.83, 22.80, 14.24, 7.62, 4.60. . C α to boron atom was not observed. ²⁹Si NMR (79 MHz, CDCl₃ δ , ppm): -7.36. MS (EI, m/z): 376(M⁺, 4) 347(37), 247(14), 207(10), 191(16), 177(11), 163(21), 147(11), 131(16), 121(19), 101(28), 91(11), 83(70), 69(34), 59(100). Elemental Anal. for C₂₂H₄₁BO₂Si (%): calcd.: C, 70.19; H, 10.98; found: C, 70.83; H, 11.17. Yellow oil. Isolated yield: 68% (59 mg).

(Z)-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-1-en-3-yne-1,4-diyl-2-d)bis(trimethylsilane) (6a)

Chemical Formula: C₁₆H₃₀DBO₂Si₂ Molecular Weight: 323,41

¹**H NMR** (300 MHz, CDCl₃, δ, ppm): 1.23 (s, 12H, C(C<u>H</u>₃)₂), 0.22 (s, 9H, Si(C<u>H</u>₃)₃), 0.18 (s, 9H, Si(C<u>H</u>₃)₃). **MS** (EI, m/z): 323(M⁺, 1), 308(4), 266(8), 226(36), 198(10), 166(11), 84(100), 73(64), 69(25), 55(28). Yellow oil. Isolated yield: 87% (84 mg).

(*Z*)-(1-Phenylbut-1-en-3-yne-1,4-diyl)bis(trimethylsilane) (7)

Chemical Formula: C₁₆H₂₄Si₂ Molecular Weight: 272,54

¹**H NMR** (300 MHz, CDCl₃, δ, ppm): 7.37 – 7.27 (m, 3H, Ph), 7.12 – 7.07 (m, 2H, Ph), 6.19 (s, 1H, C<u>H</u>=C), 0.31 (s, 9H, Si(C<u>H</u>₃)₃), 0.28 (s, 9H, Si(C<u>H</u>₃)₃). ¹³**C NMR** (75 MHz, CDCl₃, δ, ppm): 159.98, 145.26, 128.11, 126.85, 126.56, 122.17, 105.11, 100.66, -0.16, -0.28. **MS** (EI, m/z): 272 (M⁺, 40), 257(66), 73(100), 241(12), 199(34), 183(24), 169(8), 159(42), 155(49), 135(15), 97(22). Colorless oil. Isolated yield: 78% (31 mg). Analytical data are in agreement with the literature.²⁰

(Z)-2-(1,4-Bis(trimethylsilyl)but-1-en-3-yn-1-yl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (8)

¹**H** NMR (300 MHz, CDCl₃, δ , ppm): 7.13 – 7.06 (m, 2H, Ar), 7.04 – 6.99 (m, 2H, Ar), 6.58 (s, 1H, C<u>H</u>=C), 6.30 (dd, J_{H-H} = 7.2, 1.1 Hz, 2H, Ar), 5.48 (s, 2H, N<u>H</u>), 0.29 (s, 9H, Si(C<u>H</u>₃)₃), 0.21 (s, 9H, Si(C<u>H</u>₃)₃). ¹³C NMR (75 MHz, CDCl₃, δ , ppm): 139.05, 134.39, 127.33, 125.68, 117.69, 115.84, 103.95, 103.73, 99.02, -2.10, -2.27. C α to boron atom was not observed. ²⁹Si NMR (80 MHz, CDCl₃ δ , ppm): -6.59, -17.94. MS (EI, m/z): 362(M⁺,100), 346(18), 289(9), 273(11), 192(14), 155(13), 129(8), 84(8), 73(34). Dark brown-green solid. Isolated yield: 55% (26 mg). Analytical data are in agreement with the literature.²¹

(Z)-(4-Bromo-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-yn-1-yl)trimethylsilane (9)

Chemical Formula: C₁₃H₂₂BBrO₂Si Molecular Weight: 329.12

¹H NMR (300 MHz, CDCl₃, δ , ppm): 6.92 (1H, s, C<u>H</u>=C), 1.29 (12H, s, C(C<u>H</u>₃)₂), 0.23 (s, 9H, SiC<u>H</u>₃)₃). ¹³C NMR (75 MHz, CDCl₃, δ , ppm): 126.86 (BC=<u>C</u>H), 107.60 (<u>C</u>=C), 101.80 (C=<u>C</u>), 85.35 (<u>C</u>(CH₃)₂), 24.82 (C(<u>C</u>H₃)₂), -0.15 (Si(<u>C</u>H₃)₃). C α to boron atom was not observed. ²⁹Si NMR (80 MHz, CDCl₃ δ , ppm): -16.54. MS (EI, m/z): 330(M+2)⁺, 14), 328(M⁺, 13), 315(22), 313(21), 191(11), 163(34), 149(21), 139(16), 133(17), 121(12), 105(46), 91(18), 84(100), 73(28), 67(12), 55(59). Yellow oil. Isolated yield: 36% (12 mg).

 $(Z)-Trimethyl(4-(4-nitrophenyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-1-en-3-yn-1-yl)silane (\mathbf{10})$

¹H NMR (300 MHz, CDCl₃, δ , ppm): 8.19 (d, J_{H-H} = 9.0 Hz, 2H, Ph), 7.56 (d, J_{H-H} = 9.0 Hz, 2H, Ph), 7.07 (s, 1H, C<u>H</u>=C), 1.27 (s, 12H, C(C<u>H</u>₃)₂), 0.28 (s, 9H, SiC<u>H</u>₃)₃). ¹³C NMR (101 MHz, CDCl₃, δ , ppm): 147.23, 133.45, 132.19, 130.36, 123.81, 95.48 (C=C), 93.86 (C=C), 83.70 (C(CH₃)₂), 24.91 (C(CH₃)₂), -0.03 (Si(CH₃)₃). ²⁹Si NMR (80 MHz, CDCl₃ δ , ppm): -4.70. MS (EI, m/z): 371(M⁺, 1), 314(4), 204(11), 158(9), 127(4), 83(100), 69(32), 55(46). Yellowish solid. Isolated yield: 56% (62 mg).

5. NMR spectra

Figure S2. ¹³C NMR spectrum of (bromoethynyl)benzene.

Figure S4. ¹³C NMR spectrum of 1-bromooct-1-yne.

S20

Figure S8. ¹H NMR spectrum of (bromoethynyl)triisopropylsilane.

Figure S10. ²⁹Si NMR spectrum of (bromoethynyl)triisopropylsilane.

Figure S12. ¹³C NMR spectrum of (bromoethynyl)tert-butyldimethylsilane.

Figure S16. ²⁹Si NMR spectrum of **2b**.

Figure S18. ¹³C NMR spectrum of 2c.

Figure S20. ¹H NMR spectrum of 2d.

Figure S21. ¹³C NMR spectrum of 2d.

Figure 24. ²⁹Si NMR spectrum of 2e.

S30

Figure S30. ²⁹Si NMR spectrum of **2g**.

Figure S32. ¹³C NMR spectrum of **2h**.

Figure S34. ¹H NMR spectrum of 2i.

Figure S36. ²⁹Si NMR spectrum of 2i.

Figure S38. ¹³C NMR spectrum of 2j.

Figure S40. ¹H NMR spectrum of 2k.

Figure S42. ²⁹Si NMR spectrum of **2k**.

Figure S44. ¹³C NMR spectrum of 21.

Figure S46. ¹H NMR spectrum of 2m.

Figure S48. ²⁹Si NMR spectrum of **2m**.

2.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 Figure S49. ¹H NMR spectrum of **2n**.

S43

Figure S54. ²⁹Si NMR spectrum of **20**.

Figure S56. ¹³C NMR spectrum of **2p**.

Figure S58. ¹H NMR spectrum of **2q**.

Figure S60. ²⁹Si NMR spectrum of 2q.

Figure S61. ¹H NMR spectrum of 2r.

Figure S62. ¹³C NMR spectrum of 2r.

Figure S64. ¹H NMR spectrum of 2s.

Figure S66. ²⁹Si NMR spectrum of **2s**.

Figure S67. ¹H NMR spectrum of 4a.

Figure S68. ¹³C NMR spectrum of 4a.

Figure S69. ¹H-¹³C HMBC NMR spectrum of 4a.

Figure S70. ²⁹Si NMR spectrum of 4a.

Figure S72. Selective 1D NOESY spectrum of 4b; freq. 6.98 ppm.

Figure S74. ¹H-¹³C HSQC NMR spectrum of 4b.

Figure S76. ²⁹Si NMR spectrum of 4b.

Figure S78. ¹H NMR spectrum of 4c; * - traces of PPh₃.

Figure S79. ¹³C NMR spectrum of 4c; * - traces of PPh₃.

Figure S80. ²⁹Si NMR spectrum of 4c.

Figure S81. ¹H NMR spectrum of 4d.

Figure S82. ¹³C NMR spectrum of 4d.

Figure S84. ¹³C NMR spectrum of 4e.

Figure S86. ¹¹B NMR spectrum of 4e.

Figure S88. ¹³C NMR spectrum of 4f.

Figure S90. ¹H NMR spectrum of 4g.

Figure S92. ²⁹Si NMR spectrum of 4g.

Figure S94. ¹¹C NMR spectrum of 4h.

Figure S96. 1H NMR spectrum of 4i

Figure S97. Selective 1D NOESY spectrum of spectrum of 4i.; freq.: 6.26 ppm.

Figure S98. ¹¹C NMR spectrum of 4i.

Figure S100. ¹H-¹³C HSQC NMR spectrum of 4i.

Figure S102. ¹³C NMR spectrum of 4j.

Figure S104. ¹H NMR spectrum 4k; * - traces of PPh₃.

Figure S106. ²⁹Si NMR spectrum of 4k.

Figure S107. ¹H NMR spectrum of 41.

Figure S108. ¹³C NMR spectrum of 4l.

Figure S110. ¹H NMR spectrum of 4m.

Figure S112. ²⁹Si NMR spectrum of 4m.

S74

Figure S116. ¹H NMR spectrum of 40.

Figure S118. ²⁹Si NMR spectrum of 40.

Figure S120. ¹³C NMR spectrum of 4p.

Figure S122. ¹H NMR spectrum of 4q.

Figure S126. ¹H NMR spectrum of 4r.

Figure S128. ²⁹Si NMR spectrum of 4r.

Figure S130. ¹¹C NMR spectrum of 4s.

Figure S132. ²⁹Si NMR spectrum of 4s.

Figure S134. ¹H NMR spectrum of 7.

Figure S135. ¹³C NMR spectrum of 7.

Figure S136. ¹H NMR spectrum of 8.

Figure S138. ²⁹Si NMR spectrum of 8.

Figure S142. ¹H NMR spectrum of **10**. * ≈ 10% of (*E*)-isomer.

Figure S144. ²⁹Si NMR spectrum of 10.

Figure S145. ¹¹B NMR spectrum of aqueous phase (D₂O) from deuterium labelling studies. (A) – pinB(OH)₂⁻ anion at 4.47 ppm. (B) – hydroxylated reaction product at 7.28 ppm.

7. References

- 1. M. Yamagishi, K. Nishigai, T. Hata and H. Urabe, *Organic Letters*, 2011, **13**, 4873-4875.
- C. D. Campbell, R. L. Greenaway, O. T. Holton , P. R. Walker, H. A. Chapman, C. A. Russell, G. Carr, A. L. Thomson and E. A. Anderson, *Chemistry – A European Journal*, 2015, 21, 12627-12639.
- 3. F. H. Lutter, L. Grokenberger, P. Spieß, J. M. Hammann, K. Karaghiosoff and P. Knochel, *Angewandte Chemie International Edition*, 2020, **59**, 5546-5550.
- 4. S. Porey, X. Zhang, S. Bhowmick, V. Kumar Singh, S. Guin, R. S. Paton and D. Maiti, *Journal of the American Chemical Society*, 2020, **142**, 3762-3774.
- 5. M. Arisawa, Y. Tagami and M. Yamaguchi, *Tetrahedron Letters*, 2008, **49**, 1593-1597.
- 6. J. Szyling, A. Szymańska, A. Franczyk and J. Walkowiak, *The Journal of Organic Chemistry*, 2022, **87**, 10651-10663.
- 7. M. Blangetti, A. Deagostino, H. Rosso, C. Prandi, C. Zavattaro and P. Venturello, *European Journal of Organic Chemistry*, 2007, **2007**, 5867-5874.
- 8. Z. Chen, H. Jiang, A. Wang and S. Yang, *The Journal of Organic Chemistry*, 2010, **75**, 6700-6703.
- 9. J. Schörgenhumer and M. Waser, Organic & Biomolecular chemistry, 2018, 16, 7561-7563.
- 10. K. Stefanowska, J. Szyling, J. d. Walkowiak and A. Franczyk, *Inorganic Chemistry*, 2021.
- 11. K. Takahashi, S. J. Geib, K. Maeda, D. P. Curran and T. Taniguchi, *Organic Letters*, 2021, 23, 1071-1075.
- 12. K. Kafuta, C. J. Rugen, T. Heilmann, T. Liu, C. Golz and M. Alcarazo, *European Journal of Organic Chemistry*, 2021, 2021, 4038-4048.
- 13. E. Negishi, N. Okukado, S. F. Lovich and F. T. Luo, *The Journal of Organic Chemistry*, 1984, **49**, 2629-2632.
- 14. A. B. Holmes and G. E. Jones, *Tetrahedron Letters*, 1980, **21**, 3111-3112.
- 15. M. P. Smela and T. R. Hoye, *Organic Letters*, 2018, **20**, 5502-5505.
- 16. W. B. Wan and M. M. Haley, *The Journal of Organic Chemistry*, 2001, 66, 3893-3901.
- 17. E. C. Stracker and G. Zweifel, *Tetrahedron Letters*, 1990, **31**, 6815-6818.
- 18. J. P. Marino and H. N. Nguyen, *The Journal of Organic Chemistry*, 2002, **67**, 6841-6844.
- 19. D. Li, Y. E. Kim and J. Yun, Organic Letters, 2015, 17, 860-863.
- 20. L. Ilies, T. Yoshida and E. Nakamura, *Synlett*, 2014, **25**, 527-530.
- 21. S. Ghosh, R. Chakrabortty, S. Kumar, A. Das and V. Ganesh, *ACS Catalysis*, 2022, **12**, 11660-11666.