Supporting Information

Photoinduced copper-catalyzed selective three-component 1,2-amino oxygenation of 1,3-dienes

Yonghong Liu,^a Huaipu Yan,^a Yuqing Chen,^a Erjun Hao,^{*b} and Lei Shi ^{*a}

- a. School of Chemistry, Dalian University of Technology, 116024, Dalian, China.
- b. Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, China.

Corresponding author: Lei Shi, E-mail: shilei17@dlut.edu.cn

Table of Contents

S1 General Information			
S2 Picture of Reaction Set – Up 4			
S3 Preparation of 3			
S4 Optimization of Reaction Conditions			
S4.1. The Effect of ligands6			
S4.2. The Effect of Copper Salts			
S4.3. The Effect of Light sources			
S4.4. The Effect of Solvents			
S5. Control Experiments			
S6 The Mechanism Studies 10			
6.1 UV-Vis Absorption Spectra 10			
6.2 Luminescence Experiments 11			
6.3 Lifetime Chromatogram of Cu(CH ₃ CN) ₄ PF ₆ /L413			
6.4 Cyclic Voltammetry of Cu(CH ₃ CN) ₄ PF ₆ /L414			
6.5 Radical Trapping Experiment15			
S7 Photoinduced copper-catalyzed asymmetric 1,2-amino oxygenation of 1,3-dienes 16			
S8 Synthetic Application of the Reaction 19			
S8.1 Gram-Scale Reaction			
S8.2 Reduction of 4a 19			
S8.3 Epoxidation of 9 20			
S9 General Procedure and Characterization Data 20			
S10 NMR Spectra			

S1 General Information

Unless otherwise noted, all reactions of substrates preparation were conducted in flame - dried glassware under a nitrogen atmosphere using anhydrous solvent passed through an activated alumina column (Innovative Technology). Commercially available reagents were used without further purification. Thin layer chromatography (TLC) was performed using Huanghai TLC silica gel plates HSG F254 and visualized using UV light, anisaldehyde or potassium permanganate. The photocatalytic reactions were performed on WATTCAS Parallel Light Reactor (WP - TEC - 1020L) with 10W LED. HP 8453 spectrometer was used as the light source for the UV-Vis data. The fluorescence emission spectra were collected on an Edinburgh Instruments (FLS1000). Cyclic voltammetry (CV) was taken using a CHI760E potentiostation. ¹H and ¹³C NMR spectra were recorded in CDCl₃ on a Bruker 400M spectrometer. Chemical shifts in ¹H NMR spectra were reported in parts per million (ppm) on the δ scale from an internal standard of residual CDCl₃ (7.26 ppm). Data for ¹H NMR were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant in Hertz (Hz) and integration. Data for ¹³C NMR spectra were reported in terms of chemical shift in ppm from the central peak of CDCl₃ (77.00 ppm). High performance liquid chromatography (HPLC) was carried out with Agress 1100 HPLC gradient system on a D1100 UV spectrophotometric detector (ELITE).

S2 Picture of Reaction Set – Up

The photocatalytic reactions were performed on WATTCAS Parallel Light Reactor (WP - TEC - 1020L).

Picture of the photoreactor

Emission spectra of the 10 W blue LED lamp (maximum emission at $\lambda = 402$ nm). Wave length: 395 nm-405 nm Quartz glass was used as reaction vessel. Distance between light source and quartz tube was approximately 0.5 cm and no filter was used for the reaction.

A round bottom flask equipped with a magnetic stir bar was charged with the raw material 1-aminopyridinium (20.0 mmol, 1.0 equiv.) and tosyl chloride (20.0 mmol, 1.1 equiv.) was added DCM (100 mL) and triethylamine (44.0 mmol, 2.2 equiv) at room temperature. The reaction mixture was stirred at room temperature for overnight. The resulting mixture was extracted with dichloromethane and water for three times, and washed with water. The combined organic layers were dried over magnessium sulfate, filtered and concentrated in vacuum. The resulting mixture was purified by flash column chromatography on silica gel (CH₂Cl₂ : MeOH = 20 : 1) to obtain *N*-tosyl 1-aminopyridinium ylides. Then, to a solution of *N*-tosyl 1-aminopyridinium ylide (10.0 mmol, 1.0 equiv) in dichloromethane (50 mL) were added trimethyloxonium tetrafluoroborate (Meerwein's reagent, 12 mmol, 1.1 equiv) at room temperature. The reaction mixture was stirred at room temperature for 5 h. The resulting mixture was concentrated under reduced pressure. The product **3a** was obtained.

N-tosyl 1-aminopyridinium tetrafluoroborate salts (3), ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.27 – 8.95 (m, 3H), 8.26 (dd, *J* = 7.1, 1.5 Hz, 2H), 7.64 (d, *J* = 8.3 Hz, 2H), 7.57 (d, *J* = 8.2 Hz, 2H), 3.55 (s, 3H), 2.48 (s, 3H). (*J. Am. Chem. Soc.* 2020, 142, 26, 11370–11375)

S4 Optimization of Reaction Conditions

S4.1. The Effect of ligands

Entry ^a	[L]	yield of $4a \ (\%)^b$	4a:4a':4a"
1	L1	19	10:0:1
2	L2	trace	ND
3	L3	57	9:1:1
4	L4	85	21:1:2
5	L5	46	10:0:1
6	L6	24	10:0:1
7	L7	trace	ND
8	L8	trace	ND

[a] Reaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), **3** (0.3 mmol), $Cu(CH_3CN)_4PF_6$ (5 mol%), **L** (6 mol%) in DCM (0.1 M) under 400 nm LEDs reaction for 3 h. [b] Yields were determined by ¹H NMR analysis with 1,3,5-trimethoxybenzene as the internal standard.

S4.2. The Effect of Copper Salts

[a] Reaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), **3** (0.3 mmol), Cu (5 mol%), **L4** (6 mol%) in DCM (0.1 M) under 400 nm LEDs reaction for 3 h. [b] Yields were determined by ¹H NMR analysis with 1,3,5-trimethoxybenzene as the internal standard.

S4.3. The Effect of Light sources

[a] Reaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), **3** (0.3 mmol), Cu(CH₃CN)₄PF₆ (5 mol%), **L4** (6 mol%) in solvents (0.1 M) under LEDs reaction for 3 h. [b] Yields were determined by ¹H NMR analysis with 1,3,5-trimethoxybenzene as the internal standard.

S4.4. The Effect of Solvents

[a] Reaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), **3** (0.3 mmol), $Cu(CH_3CN)_4PF_6$ (5 mol%), **L4** (6 mol%) in solvents (0.1 M) under 400 nm LEDs reaction for 3 h. [b] Yields were determined by ¹H NMR analysis with 1,3,5-trimethoxybenzene as the internal standard.

S5. Control Experiments

[a] Reaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), **3** (0.3 mmol), Cu(CH₃CN)₄PF₆ (5 mol%), **L4** (6 mol%) in solvents (0.1 M) under 400 nm LEDs reaction for 3 h. [b] Yields were determined by ¹H NMR analysis with 1,3,5-trimethoxybenzene as the internal standard.[c] Isolated yield.

S6 The Mechanism Studies

6.1 UV-Vis Absorption Spectra

Figure S1 UV-vis spectrum of the $Cu(CH_3CN)_4PF_6$ in DCM, L4 in DCM, PhCOOH in DCM, $Cu(CH_3CN)_4PF_6 + L4$ in DCM and $Cu(CH_3CN)_4PF_6 + L4$ +PhCOOH in DCM, the peak at 458 nm.

6.2 Luminescence Experiments

Figure S2 Excitation and emission wavelengths of Cu(CH₃CN)₄PF₆/L4

Fluorescence spectra was collected on Edinburgh Instruments (FLS1000) for all experiments. All solutions were excited at 349 nm and the emission intensity was collected at 355 nm, slit is 3 nm. The concentration of $Cu(CH_3CN)_4PF_6/L4$ was 0.0002 M. The results revealed that the maximum excitation and emission peaks of $Cu(CH_3CN)_4PF_6/L4$ complex were found at 349 nm and 392 nm, and the cross peak was found at 366 nm.

Fluorescence spectra was collected on Edinburgh Instruments (FLS1000) for all experiments. All solutions were excited at 360 nm and the emission intensity was collected at 400 nm, slit is 4 nm. The

concentration of 3 was 0.1 M. The results suggest that 3 had obvious fluorescence at the 430 nm emission peak.

All solutions were excited at 349 nm and the emission intensity was collected at 392 nm, slit is 3 nm. The concentration of $Cu(CH_3CN)_4PF_6/L4$ was 0.0002 M. The significant decrease of [Cu]/L4 luminescence could be observed in the presence of substrate **3**.

6.3 Lifetime Chromatogram of Cu(CH₃CN)₄PF₆/L4

Figure S5 Lifetime chromatogram of $Cu(CH_3CN)_4PF_6/L4$ excited at 405 nm EPL, 0.0002 M solution in CH₃CN (recorded on an Edinburgh Instrument FLS1000).

Lifetime: $\tau = 13.33$ ns.

6.4 Cyclic Voltammetry of Cu(CH₃CN)₄PF₆/L4

Figure S6 Cyclic voltammograms of Cu(CH₃CN)₄PF₆/L4 (generated in situ by stirring a 1:1 mixture of Cu(CH₃CN)₄PF₆ and ligand L4) in CH₃CN.

Cyclic voltammetry (CV) was taken using a CHI760E potentiostation. CV measurement was carried out in 0.1 M of nBu₄NPF₆/CH₃CN at a scan rate of 100 mV/s with the protection of Ar. The working electrode was a glassy carbon, the counter electrode was a Pt wire, and the reference electrode was Ag/AgCl. The results were as follow: Cu(CH₃CN)₄PF₆/L4 ($E_{p/2} = 0.36$ V vs SCE in CH₃CN).

6.5 Radical Trapping Experiment

In a flame-dried 10 mL reaction tube equipped with a magnetic stirrer bar was charged sequentially with $Cu(CH_3CN)_4PF_6$ (0.05 equiv), L4 (0.06 equiv), 1a (0.2 mmol, 1.0 equiv). The Schlenk flask was transferred to an argon-filled glovebox and followed by the addition of dry CH_3CN (0.1 M). Then the mixture was stirred at room temperature for 30 min. To the resulting mixture were added 2a (0.6 mmol, 3.0 equiv), 3 (0.26 mmol, 1.3 equiv) and TEMPO (0.4 mmol, 2.0 equiv). Next, the resulting mixture was removed out the glovebox. At last, the reaction mixture was stirred at room temperature with irradiation of 10 W 400 nm LED for 3 h. (the reaction solution was detected by ¹H NMR and HRMS analysis and the 4a was not found, 11 was detected by HRMS)

HRMS of **11**: Calc'd for $C_{22}H_{37}N_2O_3S$, $[M+H]^+$ 409.2519 (100.0%), 410.2553 (23.8%), 411.2477 (4.5%); Found 409.2506, 410.2539, 411.2452.

S7 Photoinduced copper-catalyzed asymmetric 1,2-amino oxygenation of 1,3-dienes

In a flame-dried 10 mL reaction tube equipped with a magnetic stirrer bar was charged sequentially with $Cu(CH_3CN)_4PF_6$ (0.05 equiv), **L** (0.06 equiv). The Schlenk flask was transferred to an argon-filled glovebox and followed by the addition of dry CH₃CN (2 mL). Then the mixture was stirred at room temperature for 30 min. To the resulting mixture were added **1** (0.2 mmol, 1.0 equiv), **2** (0.6 mmol, 3.0 equiv) and **3** (0.26 mmol, 1.3 equiv). Next, the resulting mixture was removed out the glovebox. At last, the reaction mixture was stirred at room temperature with irradiation of 10 W 400 nm LED for 3 h. After completion of the reaction, the solvent was evaporated in vacuo and the crude material was purified by flash column chromatography to furnish the desired product.

HPLC analysis (Chiralpak AD-H column, n-hexane and i-PrOH, 98:2 v/v, flow rate 1.0 mL/min, $\lambda = 254$ nm, 25 °C), t_R (major) = 42.24 min, t_R (minor) = 57.50 min

HPLC analysis (Chiralpak AD-H column, n-hexane and i-PrOH, 98:2 v/v, flow rate 1.0 mL/min, $\lambda = 254$ nm, 25 °C), t_R (major) = 41.73 min, t_R (minor) = 56.95 min

HPLC analysis (Chiralpak AD-H column, n-hexane and i-PrOH, 98:2 v/v, flow rate 1.0 mL/min, $\lambda = 254$ nm, 25 °C), t_R (major) = 41.73 min, t_R (minor) = 56.95 min

L11

HPLC analysis (Chiralpak AD-H column, n-hexane and i-PrOH, 98:2 v/v, flow rate 1.0 mL/min, $\lambda = 254$ nm, 25 °C), t_R (major) = 41.73 min, t_R (minor) = 56.95 min

S8 Synthetic Application of the Reaction

S8.1 Gram-Scale Reaction

In a flame-dried 25 mL reaction tube equipped with a magnetic stirrer bar was charged sequentially with $Cu(CH_3CN)_4PF_6$ (0.05 equiv), L4 (0.06 equiv), 1a (3.0 mmol, 1.0 equiv). The Schlenk flask was transferred to an argon-filled glovebox and followed by the addition of dry CH_3CN (15 mL). Then the mixture was stirred at room temperature for 30 min. To the resulting mixture were added 2a (9.0 mmol, 3.0 equiv) and 3 (3.9 mmol, 1.3 equiv). Next, the resulting mixture was removed out the glovebox. At last, the reaction mixture was stirred at room temperature with irradiation of 10 W 400 nm LED for 3 h. After completion of the reaction, the solvent was evaporated in vacuo and the crude material was purified by flash column chromatography to furnish the desired product 4a (88%, 1.31 g).

S8.2 Reduction of 4a

To a solution of **4a** (0.5 mmol, 1.0 equiv) in EtOH (5 mL) was added NaOH (1.5 mmol, 3.0 equiv) in H₂O (5 mL) and the reaction mixture was stirred for overnight at 70 °C. After completion of the reaction (TLC), the reaction was cooled to room temperature and DCM (5 mL) was aedded. The layers were separated and the aqueous layer extracted with DCM (50 mL x 3). The combined organic layers were washed with brine (20 mL), dried with Na₂SO₄, and concentrated in *vacuo* to yield the crude material. The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 6:1) to provide the β -amino alcohol compound **9** as a colorless oil in 98% yield (132 mg). Rf = 0.33 (PE:EA = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 7.9 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 5.91 (dd, *J* = 17.2, 10.7 Hz, 1H), 5.36 (dd, *J* = 17.3, 1.3 Hz, 1H), 5.14 (dd, *J* = 10.8, 1.3 Hz, 1H), 3.14 (d, *J* = 14.4 Hz, 1H), 2.86 (d, *J* = 14.4 Hz, 1H), 2.84 (s, 3H), 2.54 (s, 1H), 2.42 (s, 3H), 1.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.57, 142.59, 134.17, 129.71, 127.40, 113.79, 73.32, 59.76, 38.44, 25.76, 21.46. HRMS: Calc'd for C₁₃H₁₉NNaO₃S, [M+Na] ⁺ 292.0983; found 292.0965.

S8.3 Epoxidation of 9

A solution of **9** (0.5 mmol, 1.0 equiv) in DCM (10 mL) was cooled by an ice bath and *m*-CPBA (2.0 mmol, 4 equiv) was added portion wise. The reaction mixture was allowed to warm to r.t. slowly and stirred vigorously overnight at r.t., then the reaction was quenched with saturated Na₂S₂O₃ solution and extracted with DCM. The concentrated organic layer was dried over anhydrous Na₂SO₄. The organic layer was then concentrated under reduced pressure and the crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 4:1) to provide the **10** as a white soild in 93% yield (133 mg). Rf = 0.2 and 0.21 (PE:EA = 2:1).. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (dd,*J* = 8.2, 8.3 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 3.17 (d, *J* = 12 Hz, 1H), 3.10 – 3.00 (m, 2H), 2.87 (s, 3H), 2.79 – 2.71 (m, 1H), 2.41 (s, 3H), 2.35 (d, *J* = 16.2 Hz, 1H), 1.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.56, 134.28, 129.71, 127.42, 70.78, 58.68, 56.16, 44.46, 38.28, 24.22, 21.44. (Another Diastereomeric, ¹H NMR (400 MHz, CDCl₃) δ 7.66 (dd,*J* = 8.2, 8.3 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 2.85 (s, 3H), 2.79 – 2.71 (m, 1H), 3.10 – 3.00 (m, 2H), 2.85 (s, 3H), 2.79 – 2.71 (m, 1H), 2.41 (s, 3H), 2.35 (d, *J* = 16.2 Hz, 1H), 1.28 (s, 1Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 3.16 (d, *J* = 16 Hz, 1H), 3.10 – 3.00 (m, 2H), 2.85 (s, 3H), 2.79 – 2.71 (m, 1H), 2.41 (s, 3H), 2.35 (d, *J* = 16.2 Hz, 1H), 1.27 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.52, 134.12, 129.71, 127.25, 70.14, 56.73, 56.07, 43.14, 37.91, 21.57, 21.44.) HRMS: Calc'd for C₁₃H₂₀NO₄S, [M+H] ⁺ 286.1108; found 286.1104.

S9 General Procedure and Characterization Data

In a flame-dried 10 mL reaction tube equipped with a magnetic stirrer bar was charged sequentially with $Cu(CH_3CN)_4PF_6$ (0.05 equiv), L4 (0.06 equiv). The Schlenk flask was transferred to an argon-filled glovebox and followed by the addition of dry CH_3CN (2 mL). Then the mixture was stirred at room temperature for 30 min. To the resulting mixture were added 1 (0.2 mmol, 1.0 equiv), 2 (0.6 mmol, 3.0 equiv) and 3 (0.26 mmol, 1.3 equiv). Specification when alcohols were used (alcohols (5 equiv), 2a (3 equiv), 3 (0.2 mmol, 1 equiv), stirred for 12 h). Next, the resulting mixture was removed out the glovebox. At last, the reaction mixture was stirred at room temperature with irradiation of 10 W 400 nm LED for 3 h. After completion of the reaction (TLC), the solvent was evaporated in vacuo and the crude material was purified by flash column chromatography to furnish the desired product.

1-((N,4-dimethylphenyl)sulfonamido)-2-methylbut-3-en-2-yl benzoate, Rf = 0.5 (PE:EA = 4:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc =

10:1) to provide the title compound as a colorless oil in 87% yield (65 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.06 – 7.93 (m, 2H), 7.73 – 7.61 (m, 2H), 7.58 – 7.50 (m, 1H), 7.42 (dd, *J* = 8.4, 7.1 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 6.16 (dd, *J* = 17.5, 11.0 Hz, 1H), 5.44 – 5.21 (m, 2H), 3.59 (d, *J* = 14.5 Hz, 1H), 3.45 (d, *J* = 14.5 Hz, 1H), 2.85 (s, 3H), 2.42 (s, 3H), 1.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.24, 143.44, 139.38, 134.69, 132.92, 130.90, 129.70, 129.41, 128.35, 127.30, 115.23, 83.78, 57.50, 37.45, 22.05, 21.43. HRMS: Calc'd for C₂₀H₂₄NO₄S, [M+H] ⁺ 374.1421; found 374.1413.

Rf = 0.46 (PE:EA = 4:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 10:1) to provide the title compound as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.06 – 7.99 (m, 2H), 7.70 – 7.66 (m, 2H), 7.61 – 7.54 (m, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 5.49 (tq, *J* = 7.0, 1.4 Hz, 1H), 4.69 (s, 2H), 3.72 (d, *J* = 7.0 Hz, 2H), 2.68 (s, 3H), 2.41 (s, 3H), 1.73 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.14, 143.39, 135.49, 134.34, 133.09, 129.95, 129.65, 129.58, 128.41, 127.50, 121.75, 68.98, 47.24, 34.33, 21.49, 14.05.

Rf = 0.48 (PE:EA = 4:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 10:1) to provide the title compound as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 (dd, *J* = 8.2, 1.4 Hz, 2H), 7.66 (d, *J* = 8.2 Hz, 2H), 7.61 – 7.51 (m, 1H), 7.45 (dd, *J* = 8.4, 7.1 Hz, 2H), 7.33 – 7.12 (m, 2H), 5.57 (dd, *J* = 8.1, 4.3 Hz, 1H), 5.15 – 5.08 (m, 1H), 5.08 – 4.98 (m, 1H), 3.48 (dd, *J* = 14.1, 8.1 Hz, 1H), 3.28 (dd, *J* = 14.1, 4.4 Hz, 1H), 2.84 (s, 3H), 2.39 (s, 3H), 1.87 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.46, 143.41, 140.76, 134.73, 133.13, 129.88, 129.67, 128.41, 127.31, 114.37, 75.03, 52.13, 35.82, 21.45, 18.54.

1-((N,4-dimethylphenyl)sulfonamido)-2-methylbut-3-en-2-yl 4-methoxybenzoate, Rf = 0.3 (PE:EA = 4:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 6:1) to provide the title compound as a colorless oil in 94% yield (76 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.06 – 7.86 (m, 2H), 7.80 – 7.59 (m, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.01 – 6.80 (m, 2H), 6.16 (dd, *J* = 17.5, 11.0 Hz, 1H), 5.48 – 5.18 (m, 2H), 3.84 (s, 3H), 3.58 (d, *J* = 14.5 Hz, 1H), 3.44 (d, *J* = 14.5 Hz, 1H), 2.83 (s, 3H), 2.42 (s, 3H), 1.79 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.06, 163.35, 143.42, 139.66, 134.74, 131.49, 129.70, 127.31, 123.28, 115.00, 113.60, 83.38, 57.45, 55.38, 37.39, 22.22, 21.44. HRMS: Calc'd for C_{21H25}NNaO₅S, [M+Na] ⁺ 426.1351; found 426.1333.

1-((N,4-dimethylphenyl)sulfonamido)-2-methylbut-3-en-2-yl 4-(tert-butyl)benzoate, Rf = 5 (PE:EA = 4:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 10:1) to provide the title compound as a colorless oil in 91% yield (78 mg). ¹H **NMR** (400 MHz, CDCl₃) δ 8.00 – 7.79 (m, 2H), 7.67 (d, *J* = 8.2 Hz, 2H), 7.44 (d, *J* = 8.5 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 6.15 (dd, *J* = 17.5, 11.0 Hz, 1H), 5.46 – 5.11 (m, 2H), 3.58 (s, 1H), 3.46 (s, 1H), 2.85 (s, 3H), 2.43 (s, 3H), 1.80 (s, 3H), 1.32 (s, 9H). ¹³C **NMR** (101 MHz, CDCl₃) δ 165.30, 156.63, 143.42, 139.53, 134.75, 129.71, 129.68, 129.34, 129.31, 128.13, 127.32, 127.30, 125.36, 125.33, 115.09, 83.57, 57.48, 37.41, 37.38, 35.02, 31.04, 31.02, 22.16, 21.45, 21.43. **HRMS**: Calc'd for C₂₄H₃₁NNaO₄S, [M+Na] + 452.1871; found 452.1853.

1-((N,4-dimethylphenyl)sulfonamido)-2-methylbut-3-en-2-yl 4-chlorobenzoate, Rf = 0.5 (PE:EA = 4:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 10:1) to provide the title compound as a colorless oil in 88% yield (72 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.6 Hz, 2H), 7.66 (d, *J* = 8.3 Hz, 2H), 7.38 (d, *J* = 8.6 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 6.15 (dd, *J* = 17.5, 11.0 Hz, 1H), 5.43 – 5.21 (m, 2H), 3.57 (d, *J* = 14.5 Hz, 1H), 3.43 (d, *J* = 14.6 Hz, 1H), 2.82 (s, 3H), 2.42 (s, 3H), 1.80 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.39, 143.49, 139.35, 139.18, 134.62, 130.85, 129.72, 129.37, 128.69, 127.31, 115.43, 84.01, 57.57, 37.60, 21.97, 21.43. HRMS: Calc'd for C₂₀H₂₃CINO4S, [M+H] ⁺ 408.1031; found 408.1017.

1-((N,4-dimethylphenyl)sulfonamido)-2-methylbut-3-en-2-yl 4-(trifluoromethyl)benzoate, Rf = 0.4 (PE:EA = 4:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 10:1) to provide the title compound as a colorless oil in 87% yield (77 mg). ¹H **NMR** (400 MHz, CDCl₃) δ 8.12 (d, J = 8.1 Hz, 2H), 7.67 (dd, J = 8.3, 6.5 Hz, 4H), 7.32 (d, J = 8.1 Hz, 2H), 6.16 (dd, J = 17.6, 11.0 Hz, 1H), 5.44 – 5.23 (m, 2H), 3.59 (d, J = 14.6 Hz, 1H), 3.44 (d, J = 14.6 Hz, 1H), 2.84 (s, 3H), 2.42 (s, 3H), 1.82 (s, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 164.06, 143.57, 138.98, 134.59, 134.34 (q, $J_{C-F} = 32.1$ Hz), 134.22, 129.88, 129.75, 127.34, 125.40 (q, $J_{C-F} = 3.9$ Hz), 123.56 (d, $J_{C-F} = 272.6$ Hz), 115.67, 84.36, 77.32, 77.00, 76.68, 57.68, 37.74, 21.88, 21.43. ¹⁹F **NMR** (377 MHz, CDCl₃) δ -63.12. **HRMS**: Calc'd for C₂₁H₂₂F₃NNaO₄S, [M+Na] ⁺ 464.1119; found 464.1102.

1-((N,4-dimethylphenyl)sulfonamido)-2-methylbut-3-en-2-yl 4-nitrobenzoate, Rf = 0.4 (PE:EA = 4:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 10:1) to provide the title compound as a pale-yellow oil in 69% yield (58 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.27 (dd, J = 8.8, 2.1 Hz, 2H), 8.23 – 8.12 (m, 2H), 7.76 – 7.61 (m, 2H), 7.33 (d, J = 8.0 Hz, 2H), 6.16 (dd, J = 17.5, 11.0 Hz, 1H), 5.42 – 5.27 (m, 2H), 3.58 (d, J = 14.7 Hz,

1H), 3.44 (d, J = 14.7 Hz, 1H), 2.84 (s, 15H), 2.44 (s, 3H), 1.83 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.45, 150.46, 143.65, 138.77, 136.43, 134.52, 130.66, 129.80, 127.39, 123.54, 115.98, 84.70, 57.79, 38.01, 21.81, 21.49. HRMS: Calc'd for C₂₀H₂₃N₂O₆S, [M+H] ⁺ 419.1271; found 419.1262.

1-((N,4-dimethylphenyl)sulfonamido)-2-methylbut-3-en-2-yl 3-methylbenzoate, Rf = 0.5 (PE:EA = 4:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 3:1) to provide the title compound as a colorless oil in 90% yield (70 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.72 (m, 2H), 7.71 – 7.62 (m, 2H), 7.43 – 7.18 (m, 4H), 6.16 (dd, *J* = 17.5, 11.0 Hz, 1H), 5.52 – 5.19 (m, 2H), 3.60 (d, *J* = 14.5 Hz, 1H), 3.46 (d, *J* = 14.5 Hz, 1H), 2.84 (s, 3H), 2.42 (s, 3H), 2.37 (s, 3H), 1.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.42, 143.42, 139.42, 138.13, 134.69, 133.67, 130.82, 129.99, 129.68, 128.24, 127.29, 126.51, 115.16, 83.68, 57.39, 37.40, 22.11, 21.42, 21.20. HRMS: Calc'd for C₂₁H₂₆NO₄S, [M+Na] + 388.1577; found 388.1571.

1-((N,4-dimethylphenyl)sulfonamido)-2-methylbut-3-en-2-yl 3-hydroxybenzoate, Rf = 0.33 (PE:EA = 2:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 4:1) to provide the title compound as a colorless oil in 63% yield (49 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 7.9 Hz, 2H), 7.60 – 7.48 (m, 2H), 7.41 – 7.20 (m, 3H), 7.10 – 6.98 (m, 1H), 6.32 – 5.92 (m, 2H), 5.45 – 5.12 (m, 2H), 3.57 (d, *J* = 14.6 Hz, 1H), 3.40 (d, *J* = 14.5 Hz, 1H), 2.84 (s, 3H), 2.42 (s, 3H), 1.79 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.27, 155.98, 143.62, 139.23, 134.55, 132.21, 129.79, 129.66, 127.34, 121.66, 120.31, 116.27, 115.46, 83.88, 57.75, 37.61, 21.97, 21.48. HRMS: Calc'd for C₂₀H₂₃NNaO₅S, [M+Na] + 412.1195; found 412.1178.

1-((N,4-dimethylphenyl)sulfonamido)-2-methylbut-3-en-2-yl 3-methoxybenzoate, Rf = 0.3 (PE:EA = 4:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 5:1) to provide the title compound as a colorless oil in 90% yield (83 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.63 (m, 2H), 7.60 – 7.52 (m, 2H), 7.38 – 7.27 (m, 3H), 7.08 (ddd, *J* = 8.3, 2.7, 1.1 Hz, 1H), 6.15 (dd, *J* = 17.6, 11.0 Hz, 1H), 5.42 – 5.23 (m, 2H), 3.82 (s, 3H), 3.58 (d, *J* = 14.5 Hz, 1H), 3.42 (d, *J* = 14.5 Hz, 1H), 2.85 (s, 3H), 2.42 (s, 3H), 1.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.12, 159.54, 143.46, 139.35, 134.70, 132.21, 129.71, 129.36, 127.32, 121.77, 119.41, 115.28, 114.01, 83.77, 57.72, 55.38, 37.53, 21.95, 21.44. HRMS: Calc'd for C₂₁H₂₅NNaO₅S, [M+Na] + 426.1351; found 426.1337.

1-((N,4-dimethylphenyl)sulfonamido)-2-methylbut-3-en-2-yl 3-chlorobenzoate, Rf = 4 (PE:EA = 4:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 10:1) to provide the title compound as a colorless oil in 91% yield (74 mg). ¹H **NMR** (400 MHz, CDCl₃) δ 7.95 (d, *J* = 1.9 Hz, 1H), 7.88 (d, *J* = 7.8 Hz, 1H), 7.67 (d, *J* = 8.3 Hz, 2H), 7.51 (ddd, *J* = 8.1, 2.2, 1.1 Hz, 1H), 7.40 – 7.29 (m, 3H), 6.15 (dd, *J* = 17.5, 11.0 Hz, 1H), 5.42 – 5.17 (m, 2H), 3.58 (d, *J* = 14.6 Hz, 1H), 3.44 (d, *J* = 14.6 Hz, 1H), 2.83 (s, 3H), 2.43 (s, 3H), 1.81 (s, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 164.03, 143.52, 139.05, 134.64, 134.51, 132.94, 132.70, 129.74, 129.72, 129.53, 127.60, 127.34, 115.60, 84.30, 57.53, 37.62, 21.96, 21.46. **HRMS**: Calc'd for C₂₀H₂₂ClNNaO₄S, [M+Na] + 430.0856; found 430.0839.

1-((N,4-dimethylphenyl)sulfonamido)-2-methylbut-3-en-2-yl 3-(trifluoromethyl)benzoate, Rf = 0.4 (PE:EA = 4:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 10:1) to provide the title compound as a colorless oil in 94% yield (83 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, 1H), 8.20 (d, J = 7.9 Hz, 1H), 7.80 (d, J = 7.9 Hz, 1H), 7.67 (d, J = 8.4 Hz, 2H), 7.57 (t, J = 7.8 Hz, 1H), 7.33 (t, J = 5.4 Hz, 2H), 6.16 (dd, J = 17.6, 11.0 Hz, 1H), 5.52 – 5.22 (m, 2H), 3.59 (d, J = 14.6 Hz, 1H), 3.45 (d, J = 14.6 Hz, 1H), 2.85 (d, J = 3.4 Hz, 3H), 2.43 (d, J = 3.4 Hz, 3H), 1.83 (d, J = 3.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.94, 143.57, 138.95, 134.62, 132.70, 131.03 (q, $J_{C-F} = 33.2$ Hz), 130.54, 129.76, 129.44, 129.42 (d, $J_{C-F} = 3.6$ Hz), 127.36, 126.36 (d, $J_{C-F} = 4.2$ Hz), 123.59 (d, $J_{C-F} = 272.2$ Hz), 115.74, 84.46, 57.73, 37.73, 21.85, 21.45. ¹⁹F NMR (377 MHz, CDCl₃) δ -62.84. HRMS: Calc'd for C₂₁H₂₂F₃NNaO₄S, [M+Na] + 464.1119; found 464.1099.

1-((N,4-dimethylphenyl)sulfonamido)-2-methylbut-3-en-2-yl 2-methylbenzoate, Rf = 0.35 (PE:EA = 4:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 10:1) to provide the title compound as a colorless oil in 92% yield (71 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (dd, *J* = 8.1, 1.5 Hz, 1H), 7.66 (d, *J* = 8.3 Hz, 2H), 7.38 (td, *J* = 7.5, 1.5 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.22 (d, *J* = 7.4 Hz, 2H), 6.18 (dd, *J* = 17.6, 11.0 Hz, 1H), 5.43 – 5.22 (m, 2H), 3.57 (d, *J* = 14.5 Hz, 1H), 3.44 (d, *J* = 14.5 Hz, 1H), 2.83 (s, 3H), 2.56 (s, 3H), 2.43 (s, 3H), 1.82 (s, 3H. ¹³C NMR (101 MHz, CDCl₃) δ 166.29, 143.44, 140.05, 139.60, 134.69, 131.82, 131.71, 130.38, 130.11, 129.71, 127.35, 125.69, 115.23, 83.71, 57.53, 37.55, 22.10, 21.55, 21.46. HRMS: Calc'd for C₂₁H₂₆NO₄S, [M+H] ⁺ 388.1577; found 388.1566.

1-((N,4-dimethylphenyl)sulfonamido)-2-methylbut-3-en-2-yl 2-fluorobenzoate, Rf = 0.4 (PE:EA = 4:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 10:1) to provide the title compound as a colorless oil in 93% yield (73 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (td, J = 7.6, 1.9 Hz, 1H), 7.70 – 7.62 (m, 2H), 7.53 – 7.45 (m, 1H),

7.31 (d, J = 8.0 Hz, 2H), 7.18 (td, J = 7.6, 1.2 Hz, 1H), 7.09 (ddd, J = 11.0, 8.3, 1.1 Hz, 1H), 6.13 (dd, J = 17.5, 11.0 Hz, 1H), 5.50 – 5.14 (m, 2H), 3.56 (d, J = 14.6 Hz, 1H), 3.37 (d, J = 14.5 Hz, 1H), 2.84 (s, 3H), 2.42 (s, 3H), 1.83 (s, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 163.05 (d, $J_{C-F} = 3.6$ Hz), 161.62 (d, $J_{C-F} = 258.7$ Hz), 143.42, 139.07, 134.69, 134.38 (d, $J_{C-F} = 9.2$ Hz), 132.05, 129.69, 127.32, 124.01 (d, $J_{C-F} = 3.8$ Hz), 119.52 (d, $J_{C-F} = 10.2$ Hz), 116.89 (d, $J_{C-F} = 22.6$ Hz), 115.55, 84.69, 57.78, 37.32, 37.29, 21.83, 21.44. ¹⁹**F** NMR (377 MHz, CDCl₃) δ -109.38. **HRMS**: Calc'd for C₂₀H₂₃FNO₄S, [M+H] ⁺ 392.1326; found 392.1313.

1-((N,4-dimethylphenyl)sulfonamido)-2-methylbut-3-en-2-yl 2-(trifluoromethyl)benzoate, Rf = 0.5 (PE:EA = 4:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 10:1) to provide the title compound as a colorless oil in 91% yield (80 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.68 (m, 2H), 7.68 – 7.62 (m, 2H), 7.62 – 7.53 (m, 2H), 7.30 (d, J = 8.0 Hz, 2H), 6.17 (dd, J = 17.6, 11.0 Hz, 1H), 5.45 – 5.26 (m, 2H), 3.50 (d, J = 14.6 Hz, 1H), 3.38 (d, J = 14.6 Hz, 1H), 2.76 (s, 3H), 2.42 (s, 3H), 1.83 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.32, 143.50, 138.48, 134.54, 132.13, 131.81, 130.87, 129.83, 129.72, 128.11 (d, J_{C-F} = 32.1 Hz), 127.34, 126.56 (d, J_{C-F} = 5.7 Hz), 123.37 (d, J_{C-F} = 273.3 Hz) 85.32, 77.32, 77.00, 76.68, 57.68, 37.65, 21.43, 21.12. ¹⁹F NMR (377 MHz, CDCl₃) δ -58.78. HRMS: Calc'd for C₂₁H₂₃F₃NO₄S, [M+H] ⁺ 442.1294; found 442.1283.

1-((N,4-dimethylphenyl)sulfonamido)-2-methylbut-3-en-2-yl 2,6-dimethylbenzoate, Rf = 5 (PE:EA = 4:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 10:1) to provide the title compound as a colorless oil in 91% yield (73 mg). ¹H **NMR** (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.3 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.16 (t, *J* = 7.6, 7.6 Hz, 1H), 7.00 (d, *J* = 7.6 Hz, 2H), 6.21 (dd, *J* = 17.6, 11.0 Hz, 1H), 5.46 – 5.28 (m, 2H), 3.40 (d, *J* = 14.4 Hz, 1H), 3.22 (d, *J* = 14.3 Hz, 1H), 2.76 (s, 3H), 2.42 (s, 3H), 2.32 (s, 6H), 1.91 (s, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 168.27, 143.46, 139.20, 134.49, 134.36, 134.17, 129.68, 129.06, 127.54, 127.33, 116.16, 84.33, 58.81, 37.75, 21.42, 20.74, 19.49. **HRMS**: Calc'd for C₂₂H₂₈NO₄S, [M+H] ⁺ 402.1734; found 402.1721.

5a

1-((N,4-dimethylphenyl)sulfonamido)-2-methylbut-3-en-2-yl 3-phenylpropanoate, Rf = 0.4 (PE:EA = 4:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 10:1) to provide the title compound as a colorless oil in 92% yield (74 mg). ¹H **NMR** (400 MHz, CDCl₃) δ 7.76 - 7.57 (m, 2H), 7.34 - 7.24 (m, 4H), 7.22 - 7.15 (m, 3H), 5.97 (dd, *J* = 17.8, 10.8 Hz, 1H), 5.33 - 5.12 (m, 2H), 3.36 (d, *J* = 14.5 Hz, 1H), 3.17 (d, *J* = 14.4 Hz, 1H), 2.91 (t, *J* = 7.7 Hz, 2H), 2.72 (s, 3H), 2.59 (dd, *J* = 8.3, 7.2 Hz, 2H), 2.43 (s, 3H), 1.65 (s, 3H). ¹³C **NMR** (101

MHz, CDCl₃) δ 171.41, 143.39, 140.27, 139.20, 134.65, 129.67, 128.41, 128.26, 127.30, 126.23, 115.17, 83.25, 57.64, 37.44, 36.77, 30.77, 21.52, 21.43. **HRMS**: Calc'd for C₂₂H₂₈NO₄S, [M+H] ⁺ 402.1734; found 402.1723.

1-((N,4-dimethylphenyl)sulfonamido)-2-methylbut-3-en-2-yl 3-(4-bromophenyl)propanoate, Rf = 0.4 (PE:EA = 4:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 10:1) to provide the title compound as a colorless oil in 94% yield (90 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.56 (m, 2H), 7.37 (d, *J* = 8.4 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.13 – 7.00 (m, 2H), 5.96 (dd, *J* = 17.4, 11.2 Hz, 1H), 5.29 – 5.09 (m, 2H), 3.36 (d, *J* = 14.5 Hz, 1H), 3.17 (d, *J* = 14.5 Hz, 1H), 2.85 (t, *J* = 7.6 Hz, 2H), 2.73 (s, 3H), 2.56 (t, *J* = 7.6 Hz, 2H), 2.42 (s, 3H), 1.64 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.11, 143.42, 139.31, 139.14, 134.57, 131.43, 130.08, 129.69, 127.29, 119.98, 115.24, 83.30, 57.57, 37.56, 36.44, 30.10, 21.56, 21.43. HRMS: Calc'd for C₂₂H₂₇BrNO₄S, [M+H] ⁺ 480.0839; found 480.0822.

1-((N,4-dimethylphenyl)sulfonamido)-2-methylbut-3-en-2-yl

2,3-dihydro-1H-indene-2-carboxylate, Rf = 0.4 (PE:EA = 4:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 10:1) to provide the title compound as a colorless oil in 88% yield (73 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 8.3 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.23 – 7.08 (m, 4H), 6.04 (dd, *J* = 17.5, 11.0 Hz, 1H), 5.32 – 5.17 (m, 2H), 3.43 (d, *J* = 14.5 Hz, 1H), 3.36 – 3.09 (m, 6H), 2.79 (s, 3H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.69, 143.43, 141.34, 139.28, 134.63, 129.70, 127.32, 126.58, 124.26, 115.24, 83.31, 57.85, 44.36, 37.52, 36.01, 35.97, 21.52, 21.44. HRMS: Calc'd for C₂₃H₂₈NO₄S, [M+H] ⁺ 414.1734; found 414.1720.

5d

1-((N,4-dimethylphenyl)sulfonamido)-2-methylbut-3-en-2-yl 2-(thiophen-3-yl)acetate, Rf = 0.35 (PE:EA = 4:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 10:1) to provide the title compound as a colorless oil in 65% yield (51 mg). ¹H **NMR** (400 MHz, CDCl₃) δ 7.74 – 7.52 (m, 2H), 7.40 – 7.20 (m, 3H), 7.10 (dd, *J* = 2.9, 1.2 Hz, 1H), 7.00 (dd, *J* = 4.9, 1.3 Hz, 1H), 5.99 (dd, *J* = 17.6, 10.9 Hz, 1H), 5.33 – 5.09 (m, 2H), 3.61 (s, 2H), 3.39 (d, *J* = 14.5 Hz, 1H), 3.16 (d, *J* = 14.5 Hz, 1H), 2.65 (s, 3H), 2.42 (s, 3H), 1.68 (s, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 169.55, 143.41, 138.98, 134.63, 133.49, 129.68, 128.37, 127.29, 125.79, 122.84, 115.35, 83.73, 57.62, 37.26, 36.93, 21.51, 21.44. **HRMS**: Calc'd for C₁₉H₂₄NO₄S₂, [M+H] ⁺ 394.1141; found 394.1133.

1-((N,4-dimethylphenyl)sulfonamido)-2-methylbut-3-en-2-yl tetrahydrofuran-2-carboxylate, Rf = 0.3 (PE:EA = 3:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 4:1) to provide the title compound as a colorless oil in 79% yield (58 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.3 Hz, 2H), 7.30 (d, *J* = 8.1 Hz, 2H), 6.01 (ddd, *J* = 17.5, 11.0, 4.1 Hz, 1H), 5.35 – 5.07 (m, 2H), 4.34 (ddd, *J* = 8.5, 5.2, 2.0 Hz, 1H), 3.99 – 3.80 (m, 2H), 3.40 (dd, *J* = 19.7, 14.5 Hz, 1H), 3.20 (dd, *J* = 14.5, 13.1 Hz, 1H), 2.82 (s, 3H), 2.41 (s, 3H), 2.18 (ddd, *J* = 10.9, 6.2, 3.2 Hz, 1H), 2.05 – 1.79 (m, 3H), 1.69 (d, *J* = 2.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.82, 143.43, 138.77, 134.53, 129.68, 127.29, 115.54, 83.84, 69.22, 57.84, 57.73, 37.49, 29.94, 29.90, 25.19, 21.41. HRMS: Calc'd for C18H26NO5S, [M+H] + 368.1526; found 368.1515.

1-benzyl 4-(1-((N,4-dimethylphenyl)sulfonamido)-2-methylbut-3-en-2-yl) piperidine-1,4-dicarboxylate, Rf = 0.4 (PE:EA = 2:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 5:1) to provide the title compound as a pale yellow oil in 92% yield (95 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.3 Hz, 2H), 7.40 – 7.27 (m, 7H), 5.99 (dd, *J* = 17.5, 11.0 Hz, 1H), 5.34 – 5.18 (m, 2H), 5.11 (s, 2H), 4.09 (d, *J* = 12.9 Hz, 2H), 3.41 (d, *J* = 14.6 Hz, 1H), 3.22 (d, *J* = 14.6 Hz, 1H), 2.89 (t, *J* = 12.2 Hz, 2H), 2.79 (s, 3H),2.46 – 2.38 (m, 4H), 1.87 (d, *J* = 13.5 Hz, 2H), 1.66 (s, 3H), 1.64 – 1.51 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 172.91, 155.04, 143.44, 139.20, 136.63, 134.49, 129.67, 128.39, 127.90, 127.77, 127.27, 115.22, 83.14, 67.01, 57.55, 43.12, 41.66, 37.74, 27.76, 21.64, 21.40. HRMS: Calc'd for C₂₇H₃₅N₂O₆S, [M+H] ⁺ 515.2210; found 515.2168.

1-((N,4-dimethylphenyl)sulfonamido)-2-methylbut-3-en-2-yl adamantane-1-carboxylate, Rf = 0.55 (PE:EA = 4:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 10:1) to provide the title compound as a colorless oil in 88% yield (76 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.3 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 5.97 (dd, *J* = 17.5, 11.0 Hz, 1H), 5.40 – 5.03 (m, 2H), 3.43 (d, *J* = 14.4 Hz, 1H), 3.21 (d, *J* = 14.5 Hz, 1H), 2.81 (s, 3H), 2.41 (s, 3H), 2.06 – 1.90 (m, 3H), 1.83 (d, *J* = 2.9 Hz, 6H), 1.79 – 1.56 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 176.24, 143.36, 139.73, 134.67, 129.66, 127.28, 114.68, 82.57, 57.65, 41.06, 38.75, 37.44, 36.37, 27.83, 21.77, 21.42. HRMS: Calc'd for C₂₄H₃₄NO₄S, [M+H] ⁺ 432.2203; found 432.2190.

1-((N,4-dimethylphenyl)sulfonamido)-2-methylbut-3-en-2-yl cyclohexanecarboxylate, Rf = 0.55 (PE:EA = 4:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 10:1) to provide the title compound as a colorless oil in 90% yield (68 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.3 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 6.00 (dd, *J* = 17.5, 11.0 Hz, 1H), 5.37 – 5.16 (m, 2H), 3.41 (d, *J* = 14.4 Hz, 1H), 3.21 (d, *J* = 14.4 Hz, 1H), 2.81 (s, 3H), 2.43 (s, 3H), 2.21 (tt, *J* = 11.3, 3.6 Hz, 1H), 1.93 – 1.80 (m, 2H), 1.77 – 1.69 (m, 2H), 1.67 – 1.58 (m, 4H), 1.44 – 1.32 (m, 2H), 1.31 – 1.12 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.70, 143.41, 139.60, 134.73, 129.70, 127.35, 114.94, 82.75, 57.72, 43.97, 37.50, 28.93, 25.70, 25.38, 21.73, 21.48. HRMS: Calc'd for C₂₀H₃₀NO₄S, [M+H] ⁺ 380.1890; found 380.1882.

1-((N,4-dimethylphenyl)sulfonamido)-2-methylbut-3-en-2-yl pivalate, Rf = 0.55 (PE:EA = 4:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 10:1) to provide the title compound as a colorless oil in 64% yield (45 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.3 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 5.99 (dd, *J* = 17.5, 11.0 Hz, 1H), 5.33 – 5.16 (m, 2H), 3.43 (d, *J* = 14.4 Hz, 1H), 3.21 (d, *J* = 14.5 Hz, 1H), 2.82 (s, 3H), 2.42 (s, 3H), 1.66 (s, 3H), 1.16 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 177.05, 143.42, 139.64, 134.70, 129.70, 127.33, 114.83, 82.79, 57.88, 39.15, 37.45, 27.08, 21.55, 21.46. HRMS: Calc'd for C₁₈H₂₈NO₄S, [M+H] ⁺ 354.1734; found 354.1724.

1-((N,4-dimethylphenyl)sulfonamido)-2-methylbut-3-en-2-yl

2,2,3,3-tetramethylcyclopropane-1-carboxylate, Rf = 0.6 (PE:EA = 4:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 10:1) to provide the title compound as a white solid in 92% yield (73 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.3 Hz, 2H), 7.30 (d, *J* = 8.1 Hz, 2H), 6.02 (dd, *J* = 17.6, 11.0 Hz, 1H), 5.35 – 4.98 (m, 2H), 3.38 (d, *J* = 14.3 Hz, 1H), 3.21 (d, *J* = 14.3 Hz, 1H), 2.82 (s, 3H), 2.41 (s, 3H), 1.64 (s, 3H), 1.18 (s, 3H), 1.16 (s, 3H), 1.14 (s, 3H), 1.13 (s, 3H), 1.07 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 170.72, 143.31, 140.12, 134.69, 129.64, 127.26, 114.45, 82.53, 57.59, 37.32, 36.13, 29.97, 23.48, 23.46, 21.93, 21.41, 16.42, 16.34. HRMS: Calc'd for C₂₁H₃₂NO₄S, [M+H] + 394.2047; found 394.2036.

1-((N,4-dimethylphenyl)sulfonamido)-2-methylbut-3-en-2-yl

2-(4-chlorophenoxy)-2-methylpropanoate, Rf = 0.5 (PE:EA = 4:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 10:1) to provide the title compound as a colorless oil in 90% yield (84 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.44 (m, 2H), 7.30 (d, *J* = 8.1 Hz, 2H), 7.16 (d, *J* = 9.0 Hz, 2H), 6.72 (d, *J* = 8.9 Hz, 2H), 5.96 (dd, *J* = 17.6, 10.9 Hz, 1H), 5.26 (dd, *J* = 14.3, 3.2 Hz, 2H), 3.30 (d, *J* = 14.5 Hz, 1H), 2.97 (d, *J* = 14.5 Hz, 1H), 2.71 (s, 3H), 1.26 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 172.27, 153.92, 143.49,

138.36, 134.51, 129.71, 129.09, 127.35, 126.88, 119.69, 116.15, 84.52, 79.46, 58.60, 37.41, 25.21, 25.09, 21.46, 20.34. **HRMS**: Calc'd for C₂₃H₂₉CINO₅S, [M+H] ⁺ 466.1449; found 466.1438.

1-((N,4-dimethylphenyl)sulfonamido)-2-methylbut-3-en-2-yl 4-(4-bromophenyl)-4-oxobutanoate, Rf = 0.27 (PE:EA = 4:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 7:1) to provide the title compound as a colorless oil in 89% yield (90 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.6 Hz, 2H), 7.64 (d, J = 8.3 Hz, 2H), 7.58 (d, J = 8.5 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 6.01 (dd, J = 17.6, 11.0 Hz, 1H), 5.34 – 5.13 (m, 2H), 3.40 (d, J = 14.5 Hz, 1H), 3.32 – 3.13 (m, 3H), 2.84 (s, 3H), 2.71 (td, J = 6.4, 3.9 Hz, 2H), 2.42 (s, 3H), 1.67 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.05, 171.34, 143.42, 139.16, 135.17, 134.62, 131.86, 129.70, 129.49, 128.33, 127.32, 127.28, 115.22, 83.50, 57.61, 37.65, 33.12, 28.99, 21.61, 21.46. HRMS: Calc'd for C₂₃H₂₇BrNO₅S, [M+H] + 508.0788; found 508.0771.

3-(((N,4-dimethylphenyl)sulfonamido)methyl)-7-methylocta-1,6-dien-3-yl 3-methoxybenzoate, Rf = 0.4 (PE:EA = 5:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 10:1) to provide the title compound as a colorless oil in 77% yield (73 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.62 (dd, J = 14.7, 7.8 Hz, 3H), 7.53 (s, 1H), 7.39 – 7.27 (m, 3H), 7.10 (dd, J = 8.3, 2.6 Hz, 1H), 6.01 (dd, J = 17.5, 11.1 Hz, 1H), 5.51 – 5.31 (m, 2H), 5.11 (t, J = 7.2 Hz, 1H), 3.83 (s, 3H), 3.78 (d, J = 14.6 Hz, 1H), 3.66 (d, J = 14.6 Hz, 1H), 2.72 (s, 3H), 2.51 – 2.31 (m, 4H), 2.18 – 1.92 (m, 2H), 1.86 (ddd, J = 13.7, 11.1, 5.0 Hz, 1H), 1.62 (s, 3H), 1.55 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.25, 159.55, 143.41, 138.43, 134.63, 132.15, 132.12, 129.70, 129.46, 127.31, 123.39, 121.85, 119.42, 115.22, 114.08, 86.31, 55.37, 54.75, 37.08, 35.28, 25.60, 21.67, 21.46, 17.59. HRMS: Calc'd for C₂₆H₃₃NNaO₅S, [M+Na] + 494.1977; found 494.1953.

3-(((N,4-dimethylphenyl)sulfonamido)methyl)-7-methylocta-1,6-dien-3-yl 5-bromopentanoate, Rf = 0.4 (PE:EA = 5:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 10:1) to provide the title compound as a colorless oil in 67% yield (67 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.2 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 5.98 – 5.74 (m, 1H), 5.37 – 5.20 (m, 2H), 5.07 (t, *J* = 1.5 Hz, 1H), 3.61 (d, *J* = 14.7 Hz, 1H), 3.48 – 3.33 (m, 3H), 2.73 (s, 3H), 2.42 (s, 3H), 2.35 (t, *J* = 7.3 Hz, 2H), 2.27 (ddd, *J* = 13.6, 11.5, 5.3 Hz, 1H), 1.99 (qd, *J* = 11.7, 10.6, 5.2 Hz, 1H), 1.94 – 1.83 (m, 3H), 1.80 – 1.70 (m, 3H), 1.66 (s, 3H), 1.58 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.03, 143.43, 138.27, 134.45, 132.11, 129.70, 127.35, 123.31, 115.26, 85.35, 54.84, 37.62, 34.92, 34.16, 33.06, 31.90, 25.66, 23.29, 21.63, 21.47, 17.61. HRMS: Calc'd for C₂₃H₃₅BrNO₄S, [M+H] ⁺ 500.1465; found 500.1270.

1-((N,4-dimethylphenyl)sulfonamido)-2,3-dimethylbut-3-en-2-yl 3-(4-bromophenyl)propanoate, Rf = 0.4 (PE:EA = 5:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 10:1) to provide the title compound as a colorless oil in 92% yield (91 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.2 Hz, 2H), 7.38 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.06 (d, *J* = 8.3 Hz, 2H), 5.06 – 4.91 (m, 1H), 4.88 (s, 1H), 3.32 (d, *J* = 14.4 Hz, 1H), 3.06 (d, *J* = 14.4 Hz, 1H), 2.86 (t, *J* = 7.6 Hz, 2H), 2.76 (s, 3H), 2.56 (t, *J* = 7.3 Hz, 2H), 2.43 (s, 3H), 1.71 (s, 3H), 1.69 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.75, 145.07, 143.47, 139.31, 134.57, 131.49, 130.10, 129.73, 127.34, 120.04, 112.65, 85.36, 57.77, 37.48, 36.35, 30.09, 21.49, 21.04, 19.26. HRMS: Calc'd for C₂₃H₂₉BrNO₄S, [M+H] + 494.0995; found 494.0983.

(E)-1-((N,4-dimethylphenyl)sulfonamido)-4-phenylbut-3-en-2-yl benzoate, Rf = 0.5 (PE:EA = 5:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 10:1) to provide the title compound as a colorless oil in 47% yield (41 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.13 – 8.05 (m, 2H), 7.71 – 7.64 (m, 2H), 7.61 – 7.55 (m, 1H), 7.47 – 7.42 (m, 2H), 7.39 (d, J = 7.1 Hz, 2H), 7.35 – 7.29 (m, 2H), 7.29 – 7.22 (m, 3H), 6.77 (d, J = 16.0 Hz, 1H), 6.26 (dd, J = 16.0, 7.1 Hz, 1H), 5.86 (td, J = 7.3, 4.7 Hz, 1H), 3.59 (dd, J = 14.1, 7.6 Hz, 1H), 3.33 (dd, J = 14.1, 4.7 Hz, 1H), 2.88 (s, 3H), 2.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.63, 143.44, 135.87, 134.84, 134.39, 133.16, 129.95, 129.74, 129.71, 128.58, 128.42, 128.37, 128.26, 127.34, 126.75, 124.26, 72.59, 53.35, 36.19, 21.47. HRMS: Calc'd for C₂₅H₂₅NO₄SNa, [M+Na] + 458.1402; found 458.1396.

(E)-4-(4-chlorophenyl)-1-((N,4-dimethylphenyl)sulfonamido)but-3-en-2-yl benzoate, Rf = 0.5 (PE:EA = 5:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 10:1) to provide the title c ompound as a colorless oil in 44% yield (41 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.10 – 8.03 (m, 2H), 7.70 – 7.64 (m, 2H), 7.60 – 7.55 (m, 1H), 7.48 – 7.42 (m, 2H), 7.29 (ddd, *J* = 16.6, 9.0, 4.9 Hz, 6H), 6.72 (d, *J* = 15.9 Hz, 1H), 6.25 (dd, *J* = 16.0, 6.9 Hz, 1H), 5.94 – 5.81 (m, 1H), 3.56 (dd, *J* = 14.1, 7.4 Hz, 1H), 3.34 (dd, *J* = 14.1, 4.9 Hz, 1H), 2.88 (s, 3H), 2.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.57, 143.49, 134.74, 134.40, 133.89, 133.23, 132.98, 129.80, 129.71, 128.86, 128.74, 128.44, 128.35, 127.96, 127.59, 127.40, 127.29, 125.02, 72.47, 53.26, 36.25, 21.45. HRMS: Calc'd for C₂₅H₂₅ClNO₄S, [M+H] ⁺ 470.1187; found 470.1185.

(E)-1-((N,4-dimethylphenyl)sulfonamido)-4-(p-tolyl)but-3-en-2-yl benzoate, Rf = 0.5 (PE:EA = 5:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 10:1) to provide the title compound as a colorless oil in 58% yield (52 mg).¹H

NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 7.0 Hz, 2H), 7.67 (d, J = 8.1 Hz, 2H), 7.60 – 7.54 (m, 1H), 7.48 – 7.42 (m, 2H), 7.33 – 7.21 (m, 4H), 7.12 (d, J = 7.9 Hz, 2H), 6.73 (d, J = 15.9 Hz, 1H), 6.20 (dd, J = 15.9, 7.2 Hz, 1H), 5.85 (td, J = 7.3, 4.4 Hz, 1H), 3.59 (dd, J = 14.1, 7.7 Hz, 1H), 3.31 (dd, J = 14.1, 4.6 Hz, 1H), 2.88 (s, 3H), 2.39 (s, 3H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.63, 143.40, 138.19, 134.85, 134.35, 133.10, 133.06, 129.99, 129.72, 129.68, 129.26, 128.39, 128.31, 127.32, 126.65, 123.14, 72.68, 53.38, 36.15, 21.45, 21.20. HRMS: Calc'd for C₂₆H₂₇NO₄SNa, [M+Na] + 472.1558; found 472.1552.

(E)-4-(2-bromophenyl)-1-((N,4-dimethylphenyl)sulfonamido)but-3-en-2-yl benzoate, Rf = 0.5 (PE:EA = 5:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 10:1) to provide the title compound as a colorless oil in 36% yield (37 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 6.9 Hz, 2H), 7.67 (d, *J* = 8.1 Hz, 2H), 7.56 (dddd, *J* = 13.5, 7.8, 6.3, 1.3 Hz, 3H), 7.49 – 7.43 (m, 2H), 7.34 – 7.20 (m, 3H), 7.19 – 7.03 (m, 2H), 6.26 (dd, *J* = 15.9, 6.6 Hz, 1H), 5.88 (dtd, *J* = 7.4, 5.8, 5.4, 2.7 Hz, 1H), 3.58 (dd, *J* = 14.1, 7.0 Hz, 1H), 3.37 (dd, *J* = 14.0, 5.0 Hz, 1H), 2.90 (s, 3H), 2.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.55, 143.49, 135.93, 134.79, 133.24, 132.89, 132.64, 129.76, 129.73, 129.43, 128.46, 127.58, 127.41, 127.32, 123.85, 72.23, 53.21, 36.22, 21.48. HRMS: Calc'd for C₂₅H₂₅BrNO₄S, [M+H] + 514.0682; found 514.0679.

MeO Me Ts N M Ta

N-(2-methoxy-2-methylbut-3-en-1-yl)-N,4-dimethylbenzenesulfonamide, Rf = 0.6 (PE:EA = 5:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 10:1) to provide the title compound as a colorless oil in 41% yield (23 mg). ¹H **NMR** (400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.3 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 5.74 (dd, *J* = 17.6, 10.9 Hz, 1H), 5.35 – 5.14 (m, 2H), 3.16 –3.08 (m, 4H), 2.91 – 2.81 (m, 4H), 1.38 (s, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 143.14, 139.98, 134.86, 129.59, 127.35, 116.79, 78.83, 58.83, 50.07, 37.52, 21.46, 18.37. **HRMS**: Calc'd for C₁₄H₂₂NO₃S, [M+H] ⁺ 284.1315; found 284.1314.

EtO Me Ts N Me

N-(2-ethoxy-2-methylbut-3-en-1-yl)-N,4-dimethylbenzenesulfonamide, Rf = 0.6 (PE:EA = 5:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 10:1) to provide the title compound as a colorless oil in 37% yield (22 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.3 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 5.87 – 5.65 (m, 1H), 5.32 – 5.16 (m, 2H), 3.39 – 3.22 (m, 2H), 3.12 (d, *J* = 13.8 Hz, 1H), 2.91 – 2.81 (m, 4H), 2.42 (s, 3H), 1.39 (s, 3H), 1.10 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.09, 140.62, 134.89, 129.58, 127.36, 116.18, 78.54, 59.09, 57.66, 37.52, 21.46, 19.12, 15.87. HRMS: Calc'd for C₁₅H₂₄NO₃S, [M+H] ⁺ 298.1471; found 298.1470.

1-((N,4-dimethylphenyl)sulfonamido)-2-methylbut-3-en-2-yl 4-(N,N-dipropylsulfamoyl)benzoate, Rf = 0.4 (PE:EA = 3:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 6:1) to provide the title compound as a colorless oil in 85% yield (91 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.25 – 8.00 (m, 2H), 7.84 (d, *J* = 8.1 Hz, 2H), 7.74 – 7.59 (m, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 6.14 (ddd, *J* = 17.6, 11.0, 1.0 Hz, 1H), 5.46 – 5.18 (m, 2H), 3.56 (d, *J* = 14.6 Hz, 1H), 3.40 (d, *J* = 14.6 Hz, 1H), 3.15 – 2.99 (m, 4H), 2.83 (s, 3H), 2.42 (s, 3H), 1.81 (s, 3H), 1.53 (q, *J* = 7.8 Hz, 4H), 0.85 (td, *J* = 7.3, 1.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 163.93, 144.07, 143.60, 138.88, 134.40, 134.19, 130.11, 129.76, 127.32, 126.97, 115.78, 84.37, 57.79, 49.94, 37.87, 21.92, 21.73, 21.47, 11.10. HRMS: Calc'd for C₂₆H₃₇N₂O₆S₂, [M+H] + 537.2088; found 537.2070.

1-((N,4-dimethylphenyl)sulfonamido)-2-methylbut-3-en-2-yl

2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-carboxylate, Rf = 0.33 (PE:EA = 3:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 5:1) to provide the title compound as a white solid in 73% yield (83 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 2.3 Hz, 1H), 8.07 (dd, *J* = 8.8, 2.3 Hz, 1H), 7.66 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.1 Hz, 2H), 6.99 (d, *J* = 8.9 Hz, 1H), 6.13 (dd, *J* = 17.5, 11.0 Hz, 1H), 5.50 – 5.07 (m, 2H), 3.88 (d, *J* = 6.5 Hz, 2H), 3.54 (d, *J* = 14.6 Hz, 1H), 3.35 (d, *J* = 14.6 Hz, 1H), 2.87 (s, 3H), 2.71 (s, 3H), 2.42 (s, 3H), 2.18 (dt, *J* = 13.3, 6.7 Hz, 1H), 1.80 (s, 3H), 1.08 (s, 3H), 1.06 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.91, 162.46, 161.76, 160.55, 143.53, 138.90, 134.55, 132.51, 132.01, 129.74, 127.29, 125.75, 121.57, 115.68, 115.31, 112.58, 102.82, 84.97, 77.20, 75.60, 57.62, 37.66, 28.06, 21.91, 21.45, 18.96, 17.37. HRMS: Calc'd for C₂₉H₃₄N₃O₅S₂, [M+H] + 568.1934; found 568.1921.

1-((N,4-dimethylphenyl)sulfonamido)-2-methylbut-3-en-2-yl

2-(4-(2-(4-chlorobenzamido)ethyl)phenoxy)-2-methylpropanoate, Rf = 0.2 (PE:EA = 2:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 2:1) to provide the title compound as a white solid in 67% yield (82 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.2 Hz, 2H), 7.50 (d, *J* = 7.9 Hz, 2H), 7.34 (d, *J* = 8.2 Hz, 2H), 7.27 (d, *J* = 7.7 Hz, 2H), 7.06 (d, *J* = 8.1 Hz, 2H), 6.75 (d, *J* = 6.0 Hz, 1H), 6.69 (d, *J* = 8.1 Hz, 2H), 5.94 (dd, *J* = 17.6, 10.9 Hz, 1H), 5.41 – 5.17 (m, 2H), 3.67 (dt, *J* = 12.5, 6.4 Hz, 1H), 3.57 (dt, *J* = 13.2, 6.4 Hz, 1H), 3.25 (d, *J* = 14.5 Hz, 1H), 2.88 (td, *J* = 14.0, 7.8 Hz, 3H), 2.53 (s, 3H), 2.40 (s, 3H), 1.68 (s, 3H), 1.58 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 172.70, 166.62, 153.82, 143.56, 138.37, 137.30, 134.15, 133.04, 132.43,

129.69, 129.64, 128.61, 128.49, 127.17, 117.43, 116.06, 84.33, 78.55, 59.09, 41.85, 37.36, 34.48, 26.31, 23.97, 21.44, 19.77. **HRMS**: Calc'd for C₃₂H₃₈ClN₂O₆S, [M+H] ⁺ 613.2134; found 613.2116.

1-((N,4-dimethylphenyl)sulfonamido)-2-methylbut-3-en-2-yl

3-(4,5-diphenyloxazol-2-yl)propanoate, Rf = 0.25 (PE:EA = 4:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 5:1) to provide the title compound as a yellow solid in 82% yield (89 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.58 (m, 4H), 7.57 – 7.52 (m, 2H), 7.40 – 7.26 (m, 8H), 6.02 (dd, *J* = 17.5, 11.0 Hz, 1H), 5.34 – 5.16 (m, 2H), 3.39 (d, *J* = 14.5 Hz, 1H), 3.20 (d, *J* = 14.6 Hz, 1H), 3.14 (t, *J* = 7.1 Hz, 2H), 2.88 (t, *J* = 7.0 Hz, 2H), 2.79 (s, 3H), 2.41 (s, 3H), 1.70 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.56, 161.65, 145.36, 143.37, 139.04, 134.94, 134.54, 132.28, 129.66, 128.80, 128.56, 128.47, 128.41, 127.99, 127.76, 127.27, 126.40, 115.35, 83.69, 57.52, 37.61, 31.87, 23.27, 21.57, 21.43. HRMS: Calc'd for C₃₁H₃₃N₂O₅S, [M+H] + 545.2105; found 545.2093.

1-((N,4-dimethylphenyl)sulfonamido)-2-methylbut-3-en-2-yl

2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate, Rf = 0.46 (PE:EA = 2:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 2:1) to provide the title compound as a yellow oil in 77% yield (94 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.61 (dd, *J* = 12.6, 8.4 Hz, 4H), 7.52 – 7.41 (m, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 6.93 (d, *J* = 2.5 Hz, 1H), 6.85 (d, *J* = 9.0 Hz, 1H), 6.65 (dd, *J* = 9.0, 2.6 Hz, 1H), 5.99 (dd, *J* = 17.5, 10.9 Hz, 1H), 5.19 (dd, *J* = 14.3, 3.2 Hz, 2H), 3.80 (s, 3H), 3.64 (s, 2H), 3.37 (d, *J* = 14.6 Hz, 1H), 3.15 (d, *J* = 14.6 Hz, 1H), 2.62 (s, 3H), 2.41 (s, 3H), 2.35 (s, 2H), 1.66 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.40, 168.18, 155.95, 143.46, 139.20, 138.97, 135.65, 134.40, 133.72, 131.08, 130.62, 130.49, 129.69, 129.61, 129.05, 129.02, 127.26, 127.16, 115.35, 114.87, 112.53, 111.78, 100.96, 83.75, 57.45, 55.59, 37.38, 31.38, 21.60, 21.43, 13.29. HRMS: Calc'd for C₃₂H₃₄ClN₂O₆S, [M+H] + 609.1821; found 609.1806.

1-((N,4-dimethylphenyl)sulfonamido)-2-methylbut-3-en-2-yl

(4R)-4-((3R,5R,8R,9S,10S,13R,14S,17R)-3-hydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta [a]phenanthren-17-yl)pentanoate, Rf = 0.23 (PE:EA = 3:1). The crude material was purified by flash column chromatography (using petroleum ether/EtOAc = 5:1) to provide the title compound as a colorless oil in 69% yield (87 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.48 (m, 2H), 7.35 – 7.22 (m, 2H), 6.00 (ddd, *J* = 17.5, 11.0, 2.2 Hz, 1H), 5.35 – 5.10 (m, 2H), 3.66 – 3.49 (m, 1H), 3.37 (dd, J = 14.5, 2.5 Hz, 1H), 3.18 (dd, J = 14.4, 4.7 Hz, 1H), 2.81 (s, 3H), 2.42 (s, 3H), 2.28 (dddd, J = 15.4, 10.2, 5.3, 1.7 Hz, 1H), 2.18 – 2.10 (m, 1H), 1.92 (dt, J = 12.3, 2.9 Hz, 1H), 1.85 – 1.62 (m, 10H), 1.58 – 1.45 (m, 2H), 1.41 – 1.31 (m, 6H), 1.28 – 1.17 (m, 4H), 1.14 – 0.97 (m, 6H), 0.91 – 0.81 (m, 7H), 0.61 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.84, 143.40, 139.37, 134.56, 129.68, 127.31, 115.11, 82.92, 71.74, 57.73, 56.38, 55.82, 42.63, 41.98, 40.30, 40.06, 37.53, 36.32, 35.74, 35.25, 35.18, 34.48, 32.18, 30.80, 30.42, 28.12, 27.10, 26.33, 24.11, 23.30, 21.50, 21.47, 20.72, 18.19, 11.96. HRMS: Calc'd for C₃₇H₅₈NO₅S, [M+H] ⁺ 628.4030; found 628.4013.

S10 NMR Spectra

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)


```
<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)
```


¹³C NMR (101 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)


```
<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)
```


42

¹³C NMR (101 MHz, CDCl₃)


```
<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)
```


20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

¹³C NMR (101 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 fl (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)


```
<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)
```



```
<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)
```


190 180 170 180 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)


```
<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)
```



```
<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)
```



```
<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)
```



```
<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)
```


160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 f1 (ppm)

^{160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10} f1 (ppm)


```
<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)
```


¹³C NMR (101 MHz, CDCl₃)

83

