Supporting Information

The Electrochemically Enabled α-C(sp³)–H Azolation of Ketones

Songlin Fang,^{b,†} Kaihui Zhong,^{a,†} Shaogao Zeng,^b Xinwei Hu,^{a,*} Pinghua Sun,^{b,*} Zhixiong Ruan^{a,*}

^aKey Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R.China Email: <u>zruan@gzhmu.edu.cn</u>; xinweihu@gzhmu.edu.cn

^bInternational Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, P.R. China

Email: pinghuasunny@163.com

[†]S.F. and K. Z. contributed equally to this work

Table of Contents

General Remarks	3
Optimization Studies	5
General Procedures for Electrochemical Reactions	6
Characterization Data of Products 3a-3z, 3aa-3va and 3ab-3aj	7
Gram-scale Synthesis and Control Experiments for the Mechanism Studies	35
Crystallographic description of 3a and 3n	37
References	49
NMR Spectra	50

General Remarks

Electrochemical reactions were conducted using an MYWAVE MPD-3003S potentiostat in a constant current mode using undivided cell equipped with graphite plate (1.0 cm \times 1.0 cm \times 0.2 cm) as the anode and platinum plate (1.0 cm \times 1.0 cm \times 0.01 cm) as the cathode under air. Acetonitrile(MeCN), tetrabutylammonium iodide(TBAI), graphite plates, platinum(Pt) electrodes, chemicals were obtained from commercial sources and were used without further purification.Graphite plates are from Bei Jing Jinglong Special Carbon Technology Co., Ltd, platinum electrodes are from Tian Jin Aida (China). Yields refer to isolated compounds, estimated to be >95% pure as determined by ¹H-NMR. TLC: Macherey-Nagel, TLC plates Alugram®Sil G/UV254. Detection under UV light at 254 nm.Chromatography separations were carried out on silica gel 60H (300-400 mesh) manufactured by Qingdao Haiyang Chemical Group Co. (China). High resolution mass spectrometry (HRMS) was measured on Agilent 6210 LC/MSD TOF mass spectrometer. NMR spectra were recorded on Bruker, AVANCE III HD 400 MHz (¹H 400 MHz; ¹³C 100 MHz) in CDCl₃. If not otherwise specified, chemical shifts (δ) are given in ppm. Melting point were recorded on JHX-5Plus.

Figure S1. The set up of electrochemical reaction. (a) Equipment of standard reaction;(b) Equipment of gram-scale reaction.

Optimization Studies

H H	$HN^{-N} \longrightarrow graphite Pt \qquad O \\ TBAI (1.0 equiv) \qquad O$	N=N N_N
1a	MeCN, 80 °C, 13 mA, air 2a	3a
entry	deviation from standard conditions	yield (%) ^b
1	None	85
2	No TBAI	0
3	NH4I instead of TBAI	trace
4	<i>n</i> -Bu ₄ NHSO ₄ instead of TBAI	0
5	<i>n</i> -Bu ₄ NBF ₄ instead of TBAI	0
6	<i>n</i> -Bu ₄ NPF ₆ instead of TBAI	0
7	0.5 equiv TBAI instead of 1.0 equiv TBAI	66
8	0.1 equiv TBAI instead of 1.0 equiv TBAI	24
9	r.t. instead of 80 °C	trace
10	DCE as solvent	0
11	MeOH as solvent	0
12	12 h	72
13	16 mA	81
14	No current	0

Table S1. Optimization of Electrochemical Reaction Conditions^a

^{*a*} Reaction conditions: Undivided cell, graphite anode (1 cm × 1 cm × 0.2 cm), Pt cathode (1 cm × 1 cm × 0.01 cm), **1a** (1.5 mmol), **2a** (0.50 mmol), TBAI (0.50 mmol), MeCN (8.0 mL), constant current = 13.0 mA, 16 h (15.5 *F*), 80 °C, under air. ^{*b*} Yields of isolated product.

General Procedure for Electrochemical Reactions

General Procedure: In an undivided cell (15 mL) equipped with a stirring bar, a mixture of substrates **1a** (1.5 mmol), **2a** (0.50 mmol), *n*-Bu₄NI (0.50 mmol) and MeCN (8.0 ml) were added. The cell was equipped with graphite plate (1 cm \times 1 cm \times 0.2 cm) as the anode and platinum plate (1 cm \times 1 cm \times 0.01 cm) as the cathode connected to an MYWAVE MPD-3003S DC regulated power supply. The reaction mixture was stirred and electrolyzed at a constant current of 13 mA at 80 °C by heating mantle for 16 h. Upon completion, the solvent was removed directly under reduced pressure to afford the crude product, which was further purified by flash column chromatography to afford the desired products **3a-3z**, **3aa-3va** and **3ab-3aj**.

Unsuccessful examples

2-methyl-1-phenylpropan-1-one

1*H*-pyrazole

1H-benzo[d][1,2,3]triazole

Characterization Data of Products 3a-3z, 3aa-3va and 3ab-3aj.

1-Phenyl-2-(5-phenyl-2*H***-tetrazol-2-yl)ethan-1-one (3a):** The general procedure was followed using substrate acetophenone **1a** (1.50 mmol, 180 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: 20/1→10/1) yielded **3a** (112 mg, 85%) as a white solid. R_f = 0.33 (10:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ = 8.17 (d, *J* = 4.8 Hz, 2H), 8.01 (d, *J* = 7.5 Hz, 2H), 7.68 (dd, *J* = 7.3, 7.3 Hz, 1H), 7.55 (dd, *J* = 7.4, 7.4 Hz, 2H), 7.49 (d, *J* = 4.9 Hz, 3H), 6.14 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 188.9, 165.7, 134.7, 133.8, 130.4, 129.2, 128.9, 128.2, 127.2, 127.0, 58.2. HR-MS (ESI) *m/z* calcd for C₁₅H₁₃N₄O [M+H]⁺ 265.1084, found 265.1082. Analytical data for compound **3a** is consistent with literature report.^[1]

1-(2-Fluorophenyl)-2-(5-phenyl-2*H***-tetrazol-2-yl)ethan-1-one (3b):** The general procedure was followed using substrate 1-(2-fluorophenyl)ethan-1-one **1a** (1.5 mmol, 207 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: 15/1→8/1) yielded **3b** (96 mg, 68%) as a white solid. m.p: 115.0-116.8°C. R_f = 0.30 (8:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 3.5 Hz, 2H), 8.03 (dd, *J* = 7.4, 7.4 Hz, 1H), 7.72 – 7.62 (m, 1H), 7.49 (s, 3H), 7.38 – 7.27 (m, 2H), 6.09 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 187.2, 165.6, 162.6 (d, ¹*J* c-F= 254.3 Hz), 136.6 (d, ³*JC*-*F* = 9.3 Hz), 131.2, 131.2, 130.4, 128.9, 127.3, 125.3, 125.3, 122.0 (d, ³*JC*-*F* = 13.4 Hz), 116.8 (d, ²*JC*-*F* = 23.5 Hz), 61.6. HR-MS (ESI) *m*/*z* calcd for C₁₅H₁₂FN4O [M+H]⁺ 283.0990, found 283.0981. IR (KBr): 3062, 3008, 2963, 1837, 1699, 1606, 1450, 1342, 1277, 1515, 1041, 849, 782, 698, 626 cm⁻¹.

1-(2-Chlorophenyl)-2-(5-phenyl-2*H***-tetrazol-2-yl)ethan-1-one (3c):** The general procedure was followed using substrate 1-(2-chlorophenyl)ethan-1-one **1a** (1.5 mmol, 231 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: 15/1→8/1) yielded **3c** (121 mg, 81%) as a white solid. m.p: 133.9-135.2°C. R_f = 0.30 (8:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 5.5 Hz, 2H), 7.76 (d, *J* = 7.5 Hz, 1H), 7.50 (d, *J* = 12.0 Hz, 5H), 7.42 (s, 1H), 6.15 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 191.1, 165.6, 134.9, 133.8, 132.1, 131.1, 130.7, 130.5, 128.9, 127.5, 127.2, 127.0, 60.9. HR-MS (ESI) *m*/*z* calcd for C₁₅H₁₂ClN₄O [M+H]⁺299.0694, found 299.0688. IR (KBr): 3081, 2956, 1719, 1588, 1448, 1329, 1211, 1039, 838, 759, 658 cm⁻¹.

1-(2-Bromophenyl)-2-(5-phenyl-2*H***-tetrazol-2-yl)ethan-1-one (3d):** The general procedure was followed using substrate 1-(2-bromophenyl)ethan-1-one **1a** (1.5 mmol, 298 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: 13/1→6/1) yielded **3d** (141 mg, 82%) as a white solid. m.p: 130.7-132.8°C. R_f = 0.30 (6:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (dd, J = 6.4, 2.8 Hz, 2H), 7.70 (d, J = 7.9 Hz, 1H), 7.62 (dd, J = 7.5, 1.8 Hz, 1H), 7.49 (dd, J = 5.1, 1.7 Hz, 3H), 7.46 – 7.38 (m, 2H), 6.11 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 192.2, 165.6, 137.3, 134.3, 133.4, 130.5, 129.9, 128.9, 127.9, 127.2, 127.0, 119.6, 60.2. HR-MS (ESI) *m*/*z* calcd for C₁₅H₁₂BrN4O [M+H]⁺ 343.0189, found 343.0181. IR (KBr): 3082, 2954, 1714, 1583, 1469, 1331, 1206, 1041, 983, 836, 737, 696 cm⁻¹.

2-(5-Phenyl-2*H***-tetrazol-2-yl)-1-[2-(trifluoromethyl)phenyl]ethan-1-one (3e):** The general procedure was followed using substrate 1-(2-(trifluoromethyl)phenyl)-ethan-1-one **1a** (1.5 mmol, 282 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: $12/1 \rightarrow 4/1$) yielded **3e** (114 mg, 68%) as a white solid. m.p: 87.5-89.3°C. R_f = 0.30 (4:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.18 – 8.13 (m, 2H), 7.80 (d, *J* = 6.8 Hz, 1H), 7.68 (s, 2H), 7.62 (s, 1H), 7.49 (d, *J* = 5.1 Hz, 3H), 5.91 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 193.0, 165.8, 135.5 (q, ⁴*J* _{C-F} = 3.6 Hz), 132.2, 131.7, 130.5, 128.9,127.9 (dd, ²*J*_{C-F} = 32.8, 4.2 Hz), 127.5, 127.2 (q, ⁴*J*_{C-F} = 4.9 Hz), 127.0, 127.0, 123.3 (d, ¹*J* _{C-F} = 273.9 Hz), 60.4. HR-MS (ESI) *m*/*z* calcd for C₁₆H₁₂F₃N₄O [M+H]⁺ 333.0958, found 333.0954. IR (KBr): 3082, 2990, 2882, 1711, 1592, 1520, 1496, 1483, 1308, 1243, 1178, 1113, 1089, 987, 813, 757 cm⁻¹.

1-(2-Nitrophenyl)-2-(5-phenyl-2*H*-tetrazol-2-yl)ethan-1-one (3f): The general procedure was followed using substrate 1-(2-nitrophenyl)ethan-1-one **1a** (1.5 mmol, 247 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: 12/1→4/1) yielded **3f** (97 mg, 63%) as a pink solid. m.p:140.7-142.7°C. R_f = 0.30 (4:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 8.2 Hz, 1H), 8.10 – 8.05 (m, 2H), 7.73 (dd, *J* = 7.5, 7.5 Hz, 1H), 7.62 (dd, *J* = 7.8, 7.8 Hz, 1H), 7.50 – 7.42 (m, 4H), 5.89 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 193.1, 165.7, 145.5, 134.8, 133.8, 131.7, 130.6, 128.9, 128.0, 126.9, 126.8, 124.4, 60.1. HR-MS (ESI) *m*/*z* calcd for C₁₅H₁₂N₅O₃ [M+H]⁺ 310.0935, found 310.0929. IR (KBr): 2948, 1729, 1533, 1451, 1344, 1256, 1005, 996, 710, 692 cm⁻¹.

2-(5-Phenyl-2*H*-tetrazol-2-yl)-1-(*o*-tolyl)ethan-1-one (3g): The general procedure was followed using substrate 1-(*o*-tolyl)ethan-1-one 1a (1.5 mmol, 201 mg) and 5-phenyltetrazole 2a (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: $13/1 \rightarrow 10/1$) yielded 3g (65 mg, 47%) as a white solid. m.p: 166.5-168.4°C. R_f = 0.30 (8:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.21 – 8.13 (m, 2H), 7.79 (d, *J* = 7.6 Hz, 1H), 7.55 – 7.44 (m, 4H), 7.40 – 7.31 (m, 2H), 6.06 (s, 2H), 2.57 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.3, 165.6, 140.5, 133.2, 132.8, 130.4, 128.9, 128.7, 127.3, 127.0, 127.0, 126.2, 59.5, 21.7. HR-MS (ESI) *m*/z calcd for C₁₆H₁₅N₄O [M+H]⁺ 279.1240, found 279.1242.

1-(2-Methoxyphenyl)-2-(5-phenyl-2*H***-tetrazol-2-yl)ethan-1-one (3h):** The general procedure was followed using substrate 1-(2-methoxyphenyl)ethan-1-one **1a** (1.5 mmol, 225 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column ch- romatography (PE/EtOAc: $13/1 \rightarrow 6/1$) yielded **3h** (68 mg, 51%) as a white solid. m.p:153.0-155.0°C. R_f = 0.30 (6:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.17 (s, 2H), 7.98 (d, *J* = 9.4 Hz, 1H), 7.60 (d, *J* = 8.4 Hz, 1H), 7.48 (s, 3H), 7.14 – 7.01 (m, 2H), 6.11 (s, 2H), 4.05 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.7, 165.3, 159.7, 135.8, 131.5, 130.3, 128.8, 127.5, 127.0, 123.8, 121.4, 111.7, 62.5, 55.8. HR-MS (ESI) *m/z* calcd for C₁₆H₁₅N₄O₂ [M+H]⁺ 295.1190, found 295.1183. IR (KBr): 3074, 2952, 1679, 1595, 1486, 1287, 1204, 1023, 772, 634 cm⁻¹.

1-(2-Hydroxyphenyl)-2-(5-phenyl-2*H***-tetrazol-2-yl)ethan-1-one (3i):** The general procedure was followed using substrate 1-(2-hydroxyphenyl)ethan-1-one **1a** (1.5 mmol, 208 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: 13/1→8/1) yielded **3i** (41 mg, 29%) as a white solid. m.p: 205.4-207.0°C. R_f = 0.30 (6:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 11.34 (s, 1H), 8.26 – 8.13 (m, 2H), 7.79 – 7.71 (m, 1H), 7.64 – 7.45 (m, 4H), 7.05 (dd, *J* = 15.0, 8.0 Hz, 2H), 6.19 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 193.9, 165.8, 162.7, 137.9, 130.6, 128.9, 128.5, 127.1, 127.0, 119.8, 119.3, 117.1, 57.4. HR-MS (ESI) *m*/*z* calcd for C₁₅H₁₃N₄O₂ [M+H]⁺281.1033, found 281.1025. IR (KBr): 3139, 2992, 2952, 1665, 1450, 1346, 1280, 1204, 1043, 842, 790, 698 cm⁻¹.

1-(3-Fluorophenyl)-2-(5-phenyl-2*H***-tetrazol-2-yl)ethan-1-one (3j):** The general procedure was followed using substrate 1-(3-fluorophenyl)ethan-1-one **1a** (1.5 mmol, 207 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: 15/1→10/1) yielded **3j** (97 mg, 68%) as a white solid. m.p: 149.3-151.5°C. R_f = 0.30 (6:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 4.8 Hz, 2H), 7.79 (d, *J* = 7.7 Hz, 1H), 7.70 (d, *J* = 8.9 Hz, 1H), 7.56 (dd, *J* = 6.8, 6.8 Hz, 1H), 7.49 (s, 3H), 7.40 (dd, *J* = 7.8, 7.8 Hz, 1H), 6.12 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 188.0, 165.7, 163.0 (d, ¹*JC*-*F* = 250.1 Hz), 135.7, 131.0 (d, ⁴*JC*-*F* = 7.7 Hz), 130.5, 128.9, 127.1, 127.0, 123.9, 121.8 (d, ³*J C*-*F* = 21.5 Hz), 115.0 (d, ²*JC*-*F* = 22.7 Hz), 58.2. HR-MS (ESI) *m*/*z* calcd for C₁₅H₁₂FN4O [M+H]⁺ 283.0990, found 283.0986. IR (KBr): 3072, 2983, 2939, 2853, 1696, 1593, 1452, 1351, 1252, 1048, 876, 791, 730 cm⁻¹.

3-[2-(5-Phenyl-2*H***-tetrazol-2-yl)acetyl]benzonitrile (3k):** The general procedure was followed using substrate 3-acetylbenzonitrile **1a** (1.5 mmol, 218 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: 11/1 → 6/1) yielded **3k** (138 mg, 95%) as a yellow solid. m.p: 168.5-170.6°C. R_f = 0.30 (6:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) 8.30 (s, 1H), 8.22 (d, *J* = 8.0 Hz, 1H), 8.18 – 8.13 (m, 2H), 7.96 (d, *J* = 7.8 Hz, 1H), 7.71 (dd, *J* = 7.9, 7.9 Hz, 1H), 7.53 – 7.46 (m, 3H), 6.14 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 187.4, 165.9, 137.4, 134.6, 132.0, 131.8, 130.6, 130.3, 129.0, 127.0, 126.9, 117.3, 114.0, 58.1. HR-MS (ESI) *m/z* calcd for C₁₆H₁₂N₅O [M+H]⁺ 290.1036, found 290.1033. IR (KBr): 3073, 2970, 2933, 1708, 1656, 1249, 1188, 1037, 822, 732 cm⁻¹.

2-(5-Phenyl-2*H***-tetrazol-2-yl)-1-(3-(trifluoromethyl)phenyl)ethan-1-one (31):** The general procedure was followed using substrate 1-(3-(trifluoromethyl)phenyl)ethan-1-one **1a** (1.5 mmol, 282 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: $15/1 \rightarrow 8/1$) yielded **3l** (128 mg, 77%) as a white solid. m.p: $134.5-136.3^{\circ}$ C. R_f = 0.30 (6:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 8.22 – 8.15 (m, 3H), 7.95 (d, *J* = 7.8 Hz, 1H), 7.72 (dd, *J* = 7.8, 7.8 Hz, 1H), 7.50 (dd, *J* = 5.1, 1.9 Hz, 3H), 6.17 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 188.0, 165.8, 134.3, 131.9 (d, ²*J*_{C-F} = 33.4 Hz), 131.3,131.1 (q, ⁴*J*_{C-F} = 3.5 Hz), 130.6, 130.0, 128.9, 127.1, 127.0, 125.1 (q, ⁴*J*_{C-F} = 3.4 Hz),123.3 (d, ¹*J*_{C-F} = 272.8 Hz), 58.1. HR-MS (ESI) *m*/*z* calcd for C₁₆H₁₂F₃N₄O [M+H]⁺ 333.0958, found 333.0955. IR (KBr): 3081, 2979, 2941, 1710, 1615, 1455, 1329, 1218, 1073, 908, 804, 732, 662 cm⁻¹.

1-(3-Methoxyphenyl)-2-(5-phenyl-2*H***-tetrazol-2-yl)ethan-1-one (3m):** The general procedure was followed using substrate 1-(3-methoxyphenyl)ethan-1-one **1a** (1.5 mmol, 225 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: $15/1 \rightarrow 6/1$) yielded **3m** (120 mg, 81%) as a white solid. m.p: 109.8-111.6°C. R_f = 0.32 (6:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.22 – 8.14 (m, 2H), 7.57 (d, *J* = 7.6 Hz, 1H), 7.53 – 7.42 (m, 5H), 7.22 (d, *J* = 8.2 Hz, 1H), 6.12 (s, 2H), 3.87 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 188.9, 165.6, 160.2, 135.1, 130.4, 130.2, 128.9, 127.3, 127.0, 121.2, 120.5, 112.5, 58.3, 55.6. HR-MS (ESI) *m*/*z* calcd for C₁₆H₁₅N₄O₂ [M+H]⁺ 295.1190, found 295.1185. IR (KBr): 3079, 2988, 2947, 1702, 1597, 1450, 1344, 1263, 1204, 1039, 793, 733 cm⁻¹.

1-([1,1'-Biphenyl]-3-yl)-2-(5-phenyl-2*H***-tetrazol-2-yl)ethan-1-one (3n): The general procedure was followed using substrate 1-([1,1'-biphenyl]-3-yl)ethan-1-one 1a** (1.5 mmol, 294 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: 30/1→10/1) yielded **3n** (129 mg, 76%) as a white solid. m.p: 123.1-124.7°C. R_f = 0.32 (6:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.23 – 8.16 (m, 3H), 7.97 (d, *J* = 7.8 Hz, 1H), 7.89 (s, 1H), 7.63 (dd, *J* = 10.0, 7.8 Hz, 3H), 7.52 – 7.46 (m, 5H), 7.42 (dd, *J* = 7.3, 7.3 Hz, 1H), 6.19 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 189.0, 165.7, 142.5, 139.6, 134.4, 133.3, 130.5, 129.7, 129.1, 128.9, 128.2, 127.2, 127.0, 126.9, 58.3. HR-MS (ESI) *m*/*z* calcd for C₂₁H₁₇N₄O [M+H]⁺ 341.1397, found 341.1392. IR (KBr): 3084, 2961, 2912, 1808, 1452, 1347, 1214, 1128, 1113, 1004, 827, 793, 695 cm⁻¹.

2-(5-Phenyl-2*H***-tetrazol-2-yl)-1-(***p***-tolyl)ethan-1-one (30): The general procedure was followed using substrate 1-(***p***-tolyl)ethan-1-one 1a** (1.5 mmol, 201 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: $15/1 \rightarrow 10/1$) yielded **3o** (118 mg, 85%) as a white solid. m.p: 119.6-121.4°C. R_f = 0.32 (8:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 5.2 Hz, 2H), 7.89 (d, *J* = 6.8 Hz, 2H), 7.47 (s, 3H), 7.34 (d, *J* = 6.9 Hz, 2H), 6.11 (s, 2H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 188.5, 145.9, 130.4, 129.9, 129.2, 128.9, 128.4, 128.3, 127.3, 127.0, 58.1, 21.9. HR-MS (ESI) *m/z* calcd for C₁₆H₁₅N₄O [M+H]⁺279.1240, found 279.1236. IR (KBr): 3058, 2981, 2947, 1694, 1604, 1530, 1451, 1348, 1233, 1039, 810, 726, 695 cm⁻¹.

1-(4-Methoxyphenyl)-2-(5-phenyl-2*H***-tetrazol-2-yl)ethan-1-one (3p):** The general procedure was followed using substrate 1-(4-methoxyphenyl)ethan-1-one **1a** (1.5 mmol, 225 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: 15/1→8/1) yielded **3p** (145 mg, 98%) as a white solid. R_f = 0.33 (8:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.17 (m, 2H), 7.98 (dd, J = 9.0, 2.4 Hz, 2H), 7.48 (dd, J = 4.5, 2.8 Hz, 3H), 7.01 (dd, J = 9.0, 2.4 Hz, 2H), 3.91 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 187.3, 165.6, 164.7, 130.6, 130.4, 128.9, 127.3, 127.0, 126.8, 114.4, 57.9, 55.7. HR-MS (ESI) *m/z* calcd for C₁₆H₁₅N₄O₂ [M+H]⁺ 295.1190, found 295.1180. Analytical data for compound **3p** is consistent with literature report.^[2]

1-(4-Ethoxyphenyl)-2-(5-phenyl-2*H***-tetrazol-2-yl)ethan-1-one (3q):** The general procedure was followed using substrate 1-(4-ethoxyphenyl)ethan-1-one **1a** (1.5 mmol, 246 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: $15/1 \rightarrow 8/1$) yielded **3q** (97 mg, 63%) as a white solid. m.p: 133.0-134.8°C. R_f = 0.33 (8:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.23 – 8.14 (m, 2H), 7.97 (d, *J* = 7.0 Hz, 2H), 7.58 – 7.44 (m, 3H), 7.04 – 6.94 (m, 2H), 6.08 (s, 2H), 4.18 – 4.10 (m, 2H), 1.47 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 187.3, 165.6, 164.1, 130.6, 130.4, 128.9, 127.3, 127.0, 126.6, 114.8, 64.0, 57.9, 14.6. HR-MS (ESI) *m*/*z* calcd for C₁₇H₁₇N4O₂ [M+H]⁺ 309.1346, found 309.1341. IR (KBr): 3053, 2992, 2949, 1675, 1601, 1448, 1346, 1249, 1186, 921, 842, 729, 669 cm⁻¹.

1-[4-(*tert***-Butyl)phenyl]-2-(5-phenyl-2***H***-tetrazol-2-yl)ethan-1-one (3r): The general procedure was followed using substrate 1-[4-(tert-butyl)phenyl]ethan-1-one 1a** (1.5 mmol, 264 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: 13/1→8/1) yielded **3r** (146 mg, 91%) as a white solid. m.p: 147.2-149.1°C. R_f = 0.30 (8:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.20 – 8.15 (m, 2H), 7.95 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 8.4 Hz, 2H), 7.49 (dd, *J* = 5.1, 2.2 Hz, 3H), 6.12 (s, 2H), 1.37 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 188.5, 165.6, 158.8, 131.3, 130.4, 128.9, 128.2, 127.3, 127.0, 126.2, 58.1, 35.4, 31.0. HR-MS (ESI) *m*/*z* calcd for C₁₉H₂₁N₄O [M+H]⁺ 321.1710, found 321.1707. IR (KBr): 3433, 3076, 2966, 1689, 1604, 1448, 1344, 1235, 1107, 996, 831, 729, 691 cm⁻¹.

1-([1,1'-Biphenyl]-4-yl)-2-(5-phenyl-2*H***-tetrazol-2-yl)ethan-1-one (3s): The general procedure was followed using substrate 1-([1,1'-biphenyl]-4-yl)ethan-1-one 1a** (1.5 mmol, 294 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: $30/1 \rightarrow 10/1$) yielded **3s** (84 mg, 50%) as a white solid. m.p: $130.1-131.8^{\circ}$ C. R_f = 0.30 (8:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.23 – 8.14 (m, 2H), 8.07 (d, *J* = 5.8 Hz, 2H), 7.81 – 7.72 (m, 2H), 7.65 (d, *J* = 6.3 Hz, 3H), 7.54 – 7.46 (m, 5H), 6.17 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 188.5, 165.7, 147.4, 139.3, 132.5, 130.4, 129.1, 128.9, 128.8, 128.7, 127.8, 127.3, 127.0, 58.2. HR-MS (ESI) *m*/*z* calcd for C₂₁H₁₇N₄O [M+H]⁺ 341.1397, found 341.1393. IR (KBr): 3000, 2950, 1699, 1602, 1450, 1339, 1231, 994, 730, 693 cm⁻¹.

1-(4-Fluorophenyl)-2-(5-phenyl-2*H***-tetrazol-2-yl)ethan-1-one (3t):** The general procedure was followed using substrate 1-(4-fluorophenyl)ethan-1-one **1a** (1.5 mmol, 207 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: $15/1 \rightarrow 10/1$) yielded **3t** (98 mg, 69%) as a white solid. m.p: 141.0-142.4°C. R_f = 0.30 (8:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.15 (dd, *J* = 6.2, 3.3 Hz, 2H), 8.03 (dd, *J* = 8.7, 5.0 Hz, 2H), 7.48 (d, *J* = 4.9 Hz, 3H), 7.25 – 7.17 (m, 2H), 6.10 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 187.5, 166.8 (d, ¹*JC*-*F* = 258.6 Hz), 165.7,131.0 (d, ³*JC*-*F* = 9.7 Hz), 130.5, 130.3 (d, ⁴*JC*-*F* = 2.9 Hz), 128.9, 127.1, 127.0, 116.5 (d, ²*JC*-*F* = 22.2 Hz), 58.0. HR-MS (ESI) *m*/*z* calcd for C₁₅H₁₂FN₄O [M+H]⁺ 283.0990, found 283.0986. IR (KBr): 3072, 2980, 2933, 1694, 1596, 1454, 1353, 1235, 1156, 997, 830, 729, 591 cm⁻¹.

1-(4-Chlorophenyl)-2-(5-phenyl-2*H***-tetrazol-2-yl)ethan-1-one (3u):** The general procedure was followed using substrate 1-(4-chlorophenyl)ethan-1-one **1a** (1.5 mmol, 232 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: 20/1→10/1) yielded **3u** (109 mg, 73%) as a white solid. R_f = 0.30 (8:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (dd, J = 4.5, 3.3 Hz, 2H), 7.94 (d, J = 8.6 Hz, 2H), 7.56 – 7.43 (m, 5H), 6.10 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 187.9, 165.7, 141.4, 132.1, 130.5, 129.6, 129.6, 128.9, 127.1, 127.0, 58.1. HR-MS (ESI) *m*/*z* calcd for C₁₅H₁₂ClN₄O [M+H]⁺ 299.0694, found 299.0684. Analytical data for compound **3u** is consistent with literature report.^[2]

1-(Benzo[d][1,3]dioxol-5-yl)-2-(5-phenyl-2*H***-tetrazol-2-yl)ethan-1-one (3v): The general procedure was followed using substrate 1-(benzo[d][1,3]dioxol-5-yl)- ethan-1-one 1a** (1.5 mmol, 246 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: 20/1→8/1) yielded **3v** (76 mg, 49%) as a white solid. m.p: 122.9-124.7°C. R_f = 0.32 (6:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 2H), 7.59 (d, *J* = 8.1 Hz, 1H), 7.46 (d, *J* = 9.7 Hz, 4H), 6.93 (d, *J* = 8.1 Hz, 1H), 6.10 (s, 2H), 6.06 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 186.9, 165.6, 153.2, 148.8, 130.4, 128.9, 128.5, 127.3, 127.0, 124.7, 108.4, 107.8, 102.3, 57.9. HR-MS (ESI) *m*/*z* calcd for C₁₆H₁₃N₄O₃ [M+H]⁺ 309.0982, found 309.0977. IR (KBr): 3072, 2986, 2945, 2900, 1679, 1602, 1504, 1450, 1344, 1256, 1106, 1041, 937, 892, 811, 734 cm⁻¹.

1-(4-Morpholinophenyl)-2-(5-phenyl-2*H***-tetrazol-2-yl)ethan-1-one (3w):** The general procedure was followed using substrate 1-(4-morpholinophenyl)ethan-1-one **1a** (1.0 mmol, 205 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: 13/1→6/1) yielded **3w** (33 mg, 20%) as a light yellow solid. m.p: 176.4-179.0°C. R_f = 0.32 (6:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 2H), 7.91 (d, *J* = 7.9 Hz, 2H), 7.47 (s, 3H), 6.91 (d, *J* = 7.9 Hz, 2H), 6.06 (s, 2H), 3.86 (s, 4H), 3.37 (s, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 186.7, 165.5, 155.0, 130.4, 130.3, 128.9, 127.3, 127.0, 124.0, 113.3, 66.5, 57.8, 47.1. HR-MS (ESI) *m*/*z* calcd for C₁₉H₂₀N₅O₂ [M+H]⁺ 350.1612, found 350.1608. IR (KBr): 3080, 2911, 2863, 1662, 1599, 1430, 1235, 1103, 1022, 979, 876, 751, 667 cm⁻¹.

(*E*)-4-Phenyl-1-(5-phenyl-2*H*-tetrazol-2-yl)but-3-en-2-one (3x): The general procedure was followed using substrate (*E*)-4-phenylbut-3-en-2-one 1a (1.5 mmol, 150 mg) and 5-phenyltetrazole 2a (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: $22/1 \rightarrow 10/1$) yielded 3x (36 mg, 36%) as a light yellow solid. m.p: 139.2-140.9°C. R_f = 0.32 (6:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 4.7 Hz, 2H), 7.77 (d, *J* = 16.1 Hz, 1H), 7.60 – 7.37 (m, 8H), 6.76 (d, *J* = 16.1 Hz, 1H), 5.74 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 188.7, 165.7, 146.2, 133.6, 131.6, 130.5, 129.2, 128.9, 128.8, 127.2, 127.0, 121.1, 59.6. HR-MS (ESI) *m*/*z* calcd for C₁₇H₁₅N4O [M+H]⁺291.1240, found 291.1230. IR (KBr): 3060, 2954, 1689, 1610, 1452, 1342, 1192, 1039, 978, 741, 698 cm⁻¹.

2-(5-Phenyl-2*H***-tetrazol-2-yl)-2,3-dihydro-1***H***-inden-1-one (3**y): The general procedure was followed using substrate 2,3-dihydro-1*H*-inden-1-one **1a** (1.5 mmol, 198 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: $16/1 \rightarrow 8/1$) yielded **3y** (68 mg, 49%) as a yellow liquid. R_f = 0.30 (6:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.12 (dd, J = 6.5, 2.8 Hz, 2H), 7.90 (d, J = 7.7 Hz, 1H), 7.76 (dd, J = 7.5, 7.5 Hz, 1H), 7.59 (d, J = 7.7 Hz, 1H), 7.52 (dd, J = 7.5, 7.5 Hz, 1H), 7.49 – 7.44 (m, 3H), 5.89 (dd, J = 8.5, 5.5 Hz, 1H), 3.95 (dd, J = 17.1, 8.6 Hz, 1H), 3.82 (dd, J = 17.1, 5.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 196.3, 165.7, 150.8, 136.6, 133.7, 130.4, 128.8, 128.8, 127.2, 127.0, 126.7, 125.3, 65.7, 33.5. HR-MS (ESI) *m*/z calcd for C₁₆H₁₃N₄O [M+H]⁺ 277.1084, found 277.1082. IR (KBr): 2961, 2917, 2848, 1723, 1608, 1461, 1267, 1208, 1016, 790, 736, 698 cm⁻¹.

2-(5-Phenyl-2*H***-tetrazol-2-yl)-1-(***p***-tolyl)propan-1-one (3z): The general procedure was followed using substrate 1-(p-tolyl)propan-1-one 1a** (1.5 mmol, 222 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: $30/1 \rightarrow 10/1$) yielded **3z** (101 mg, 69%) as a white solid. m.p: 121.3-123.1°C. R_f = 0.30 (6:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.17 – 8.09 (m, 2H), 7.87 (d, *J* = 7.8 Hz, 2H), 7.45 (s, 3H), 7.28 (s, 2H), 6.53 (q, *J* = 7.0 Hz, 1H), 2.41 (s, 3H), 2.04 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.8, 165.2, 145.3, 131.3, 131.2, 130.3, 129.8, 128.8, 127.32, 127.0, 63.0, 21.7, 17.0. HR-MS (ESI) *m*/*z* calcd for C₁₇H₁₇N₄O [M+H]⁺ 293.1397, found 293.1395. IR (KBr): 3090, 2991, 1802, 1604, 1445, 1256, 1143, 1055, 989, 977, 856, 752, 647 cm⁻¹.

1-Phenyl-2-(5-phenyl-2*H***-tetrazol-2-yl)pentan-1-one (3aa):** The general procedure was followed using substrate 1-phenylpentan-1-one **1a** (1.5 mmol, 243 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: 20/1→10/1) yielded **3aa** (130 mg, 85%) as a yellow liquid. R_f = 0.32 (6:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 2H), 7.98 (d, *J* = 7.6 Hz, 2H), 7.60 (dd, *J* = 7.2, 7.2 Hz, 1H), 7.52 – 7.41 (m, 5H), 6.46 (dd, *J* = 9.9, 3.0 Hz, 1H), 2.69 – 2.19 (m, 2H), 1.48 – 1.33 (m, 2H), 1.01 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 192.0, 165.3, 134.3, 134.2, 130.4, 129.1, 128.8, 128.6, 127.3, 127.0, 67.3, 32.8, 19.3, 13.5. HR-MS (ESI) *m*/*z* calcd for C₁₈H₁₉N₄O [M+H]⁺ 307.1553, found 307.1553. Analytical data for compound **3aa** is consistent with literature report.^[3]

1-(Naphthalen-2-yl)-2-(5-phenyl-2*H***-tetrazol-2-yl)ethan-1-one (3ba):** The general procedure was followed using substrate 1-(naphthalen-2-yl)ethan-1-one **1a** (1.5 mmol, 255 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: $15/1 \rightarrow 10/1$) yielded **3ba** (139 mg, 88%) as a white solid. m.p: 203.1-205.1°C. R_f = 0.33 (6:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.54 (s, 1H), 8.19 (d, *J* = 7.0 Hz, 2H), 8.08 – 7.89 (m, 4H), 7.66 (dd, *J* = 16.3, 7.4 Hz, 2H), 7.49 (d, *J* = 2.3 Hz, 3H), 6.28 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 188.9, 165.7, 136.2, 132.4, 131.2, 130.4, 130.2, 129.7, 129.4, 129.3, 128.9, 128.0, 127.4, 127.3, 127.0, 123.3, 58.2. HR-MS (ESI) *m/z* calcd for C_{19H15}N4O [M+H]⁺ 315.1240, found 315.1235. IR (KBr): 3036, 2956, 1696, 1627, 1450, 1353, 1277, 1193, 1043, 861, 818, 737 cm⁻¹.

1-(1*H***-indol-2-yl)-2-(5-phenyl-2***H***-tetrazol-2-yl)ethan-1-one (3ca): The general procedure was followed using substrate 1-(1***H***-indol-2-yl)ethan-1-one 1a** (1.5 mmol, 234 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: 15/1→8/1) yielded **3ca** (39 mg, 25%) as a white solid. R_f = 0.33 (4:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 9.21 (s, 1H), 8.18 (d, *J* = 4.6 Hz, 2H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.57 – 7.32 (m, 6H), 7.20 (dd, *J* = 8.0, 8.0 Hz, 1H), 6.10 (s, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 183.5, 164.8, 138.8, 132.8, 131.2, 129.8, 127.2, 126.9, 126.9, 123.5, 121.2, 113.4, 111.8, 100.0, 58.4. HR-MS (ESI) *m*/*z* calcd for C₁₇H₁₄N₅O [M+H]⁺ 304.1193, found 304.1187. IR (KBr): 3324, 2962, 2928, 2849, 1667, 1525, 1383, 1262, 1093, 807, 738, 688 cm⁻¹.

1-(Furan-2-yl)-2-(5-phenyl-2*H***-tetrazol-2-yl)butan-1-one (3da):** The general procedure was followed using substrate 1-(furan-2-yl)butan-1-one **1a** (1.5 mmol, 207 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: 22/1→10/1) yielded **3da** (105 mg, 74%) as a white liquid. R_f = 0.30 (6:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.23 – 8.10 (m, 2H), 7.62 (s, 1H), 7.46 (s, 3H), 7.31 (s, 1H), 6.57 (s, 1H), 6.13 (dd, J = 8.7, 5.2 Hz, 1H), 2.53 (dq, J = 22.5, 7.1 Hz, 2H), 1.05 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 180.5, 165.3, 150.4, 147.6, 130.4, 128.8, 127.3, 127.0, 119.7, 113.0, 69.1, 24.1, 10.6. HR-MS (ESI) *m*/*z* calcd for C₁₅H₁₅N₄O₂ [M+H]⁺ 283.1190, found 283.1189. IR (KBr): 3107, 2974, 2880, 1667, 1563, 1469, 1465, 1317, 1240, 1160, 1054, 998, 926, 797, 689 cm⁻¹.

2-(5-Phenyl-2*H***-tetrazol-2-yl)-1-(thiophen-2-yl)ethan-1-one (3ea):** The general procedure was followed using substrate 1-(thiophen-2-yl)ethan-1-one **1a** (1.5 mmol, 189 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: $18/1 \rightarrow 10/1$) yielded **3ea** (54 mg, 59%) as a white solid. m.p: 120.9-122.5°C. R_f = 0.30 (6:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 5.2 Hz, 2H), 7.82 (dd, *J* = 14.1, 4.3 Hz, 2H), 7.49 (d, *J* = 5.0 Hz, 3H), 7.25 – 7.20 (m, 1H), 6.04 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 181.7, 165.7, 140.1, 135.8, 133.0, 130.5, 128.9, 128.7, 127.1, 127.0, 58.0. HR-MS (ESI) *m/z* calcd for C₁₃H₁₁N₄OS [M+H]⁺ 271.0648, found 271.0640. IR (KBr): 3079, 2954, 1692, 1516, 1469, 1405, 1240, 1043, 937, 797, 742 cm⁻¹.

1-(Benzo[b]thiophen-2-yl)-2-(5-phenyl-2H-tetrazol-2-yl)ethan-1-one (**3fa**): The general procedure was followed using substrate 1-(benzo[b]thiophen-2-yl)ethan-1-one **1a** (1.5 mmol, 264 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: 18/1→10/1) yielded **3fa** (150 mg, 93%) as a yellow solid. m.p: 171.8-173.7°C. $R_f = 0.30$ (6:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.21 – 8.15 (m, 2H), 8.11 (s, 1H), 7.94 (dd, J = 19.3, 8.1 Hz, 2H), 7.58 – 7.44 (m, 5H), 6.15 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 183.2, 165.8, 142.9, 139.4, 138.7, 130.5, 130.4, 128.9, 128.5, 127.1, 127.0, 126.4, 125.6, 123.1, 58.0. HR-MS (ESI) *m*/*z* calcd for C₁₇H₁₃N₄OS [M+H]⁺ 321.0805, found 321.0798. IR (KBr): 2973, 2891, 1683, 1593, 1513, 1469, 1450, 1341, 1233, 1176, 1041, 839, 738, 700 cm⁻¹.

2-(5-Phenyl-2*H***-tetrazol-2-yl)-1-(thiazol-2-yl)ethan-1-one (3ga):** The general procedure was followed using substrate 1-(thiazol-2-yl)ethan-1-one **1a** (1.5 mmol, 191 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: $12/1 \rightarrow 8/1$) yielded **3ga** (93 mg, 68%) as a light yellow solid. m.p: 97.2-99.4°C. R_f = 0.30 (6:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.24 – 8.10 (m, 3H), 7.90 – 7.83 (m, 1H), 7.55 – 7.45 (m, 3H), 6.34 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 182.9, 165.7, 162.9, 145.5, 130.5, 128.9, 127.9, 127.2, 127.0, 58.0. HR-MS (ESI) *m/z* calcd for C₁₂H₁₀N₅OS [M+H]⁺272.0601, found 272.0595. IR (KBr): 3041, 3122, 3090, 2985, 2954, 1702, 1527, 1248, 1154, 1047, 950, 834, 734, 695 cm⁻¹.

1-(Benzo[d]thiazol-2-yl)-2-(5-phenyl-2*H***-tetrazol-2-yl)ethan-1-one (3ha): The general procedure was followed using substrate 1-(benzo[d]thiazol-2-yl)ethan-1-one 1a** (1.5 mmol, 265 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: $20/1 \rightarrow 8/1$) yielded **3ha** (78 mg, 40%) as a light yellow solid. m.p: 186.8-188.9°C. R_f = 0.32 (6:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 7.6 Hz, 1H), 8.19 (s, 2H), 8.04 (d, *J* = 7.8 Hz, 1H), 7.70 – 7.56 (m, 2H), 7.49 (s, 3H), 6.46 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 184.5, 165.8, 162.3, 153.3, 137.39, 130.5, 128.9, 128.7, 127.6, 127.2, 127.0, 125.8, 122.6, 58.1. HR-MS (ESI) *m*/*z* calcd for C₁₆H₁₂N₅OS [M+H]⁺ 322.0757, found 322.0750. IR (KBr): 3081, 3001, 2959, 1718, 1450, 1346, 1043, 949, 836, 734, 689 cm⁻¹.

1-Phenyl-1-(5-phenyl-2*H***-tetrazol-2-yl)butan-2-one (3ia):** The general procedure was followed using substrate 1-phenylbutan-2-one **1a** (1.5 mmol, 222 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: $20/1 \rightarrow 10/1$) yielded **3ia** (143 mg, 91%) as a yellow liquid. R_f = 0.32 (6:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 2H), 7.53 (d, *J* = 51.7 Hz, 8H), 6.66 (s, 1H), 2.60 – 2.44 (m, 2H), 1.10 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.4, 165.2, 131.3, 130.4, 130.0, 129.9, 129.3, 128.8, 127.3, 127.0, 75.2, 33.4, 7.7. HR-MS (ESI) *m*/*z* calcd for C₁₇H₁₇N₄O [M+H]⁺ 293.1397, found 293.1397. IR (KBr): 3060, 2954, 1734, 1450, 1355, 1204, 1102, 1050, 928, 815 733, 693 cm⁻¹.

1-(5-Phenyl-2*H*-tetrazol-2-yl)propan-2-one (3ja): The general procedure was followed using substrate propan-2-one 1a (1.5 mmol, 87 mg) and 5-phenyltetrazole 2a (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: $15/1 \rightarrow 10/1$) yielded 3ja (47 mg, 48%) as a white solid. R_f = 0.33 (6:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (dd, *J* = 6.6, 3.1 Hz, 2H), 7.53 – 7.47 (m, 3H), 5.48 (s, 2H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.8, 165.8, 130.6, 128.9, 127.0, 127.0, 61.0, 27.1. HR-MS (ESI) *m*/*z* calcd for C₁₀H₁₁N₄O [M+H]⁺ 203.0927, found 203.0925. Analytical data for compound 3ja is consistent with literature report.^[3]

3-Methyl-1-(5-phenyl-2*H***-tetrazol-2-yl)butan-2-one (3ka):** The general procedure was followed using substrate 3-methylbutan-2-one **1a** (1.5 mmol, 129 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: $15/1 \rightarrow 10/1$) yielded **3ka** (39 mg, 34%) as a white solid. m.p: 99.6-100.9°C. R_f = 0.33 (8:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 6.9 Hz, 2H), 7.49 (d, *J* = 4.7 Hz, 3H), 5.56 (s, 2H), 2.75 (p, *J* = 6.8 Hz, 1H), 1.23 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 203.4, 165.6, 130.5, 128.9, 127.1, 127.0, 58.8, 38.7, 17.9. HR-MS (ESI) *m*/*z* calcd for C₁₂H₁₅N₄O [M+H]⁺ 231.1240, found 231.1242. IR (KBr): 2997, 2979, 2877, 1721, 1529, 1469, 1346, 1200, 1050, 829, 730, 693 cm⁻¹.

3,3-Dimethyl-1-(5-phenyl-2*H***-tetrazol-2-yl)butan-2-one (3la):** The general procedure was followed using substrate 3,3-dimethylbutan-2-one **1a** (1.5 mmol, 150 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: $15/1 \rightarrow 10/1$) yielded **3la** (32 mg, 25%) as a white solid. R_f = 0.33 (8:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 2H), 7.47 (s, 3H), 5.67 (s, 2H), 1.32 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 204.4, 165.5, 130.4, 128.9, 127.3, 127.0, 56.4, 43.7, 26.2. HR-MS (ESI) *m/z* calcd for C₁₃H₁₇N₄O [M+H]⁺ 245.1397, found 245.1394. Analytical data for compound **3la** is consistent with literature report.^[4]

1-(5-Phenyl-2*H*-tetrazol-2-yl)pentan-2-one (3ma): The general procedure was followed using substrate pentan-2-one 1a (1.5 mmol,129 mg) and 5-phenyltetrazole

2a (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: $30/1 \rightarrow 10/1$) yielded **3ma** (26 mg, 24%) as a white solid. m.p: 86.6-88.5°C. R_f = 0.33 (8:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.20 – 8.13 (m, 2H), 7.49 (s, 3H), 5.46 (s, 2H), 2.46 (t, *J* = 7.2 Hz, 2H), 1.69 (q, *J* = 7.3 Hz, 2H), 0.95 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 200.2, 165.7, 130.5, 128.9, 127.1, 127.0, 60.5, 41.7, 16.6, 13.5. HR-MS (ESI) *m*/*z* calcd for C_{12H15}N4O [M+H]⁺ 231.1240, found 231.1232. IR (KBr): 3074, 2963, 2877, 1728, 1529, 1464, 1407, 1265, 1127, 1048, 923, 791 cm⁻¹.

3-(2-(5-Phenyl-2*H*-tetrazol-2-yl)acetyl)phenyl-2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1*H*-indol-3-yl)acetate (3na): The general procedure was followed using substrate 3-acetylphenyl-2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1*H*-indol-3-yl)acetate 1a (0.4 mmol, 190 mg) and 5-phenyltetrazole 2a (1.2 mmol, 175 mg). Isolation by column chromatography (PE/EtOAc: 7/1→5/1) yielded 3na (120 mg, 48%) as a light yellow solid. m.p: 128.3-130.1°C. R_f = 0.30 (3:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.22 – 8.09 (m, 2H), 7.86 (d, *J* = 7.7 Hz, 1H), 7.75 – 7.64 (m, 3H), 7.61 – 7.44 (m, 6H), 7.40 (d, *J* = 8.0 Hz, 1H), 7.05 (s, 1H), 6.88 (d, *J* = 9.0 Hz, 1H), 6.70 (d, *J* = 10.6 Hz, 1H), 6.09 (s, 2H), 3.95 (s, 2H), 3.84 (s, 3H), 2.47 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 188.0, 169.0, 168.3, 165.7, 156.2, 151.3, 139.5, 136.4, 135.1, 133.7, 131.2, 130.9, 130.5, 130.4, 129.2, 128.9, 127.9, 127.1, 127.0, 125.6, 121.3, 115.1, 111.7, 111.5, 101.3, 58.2, 55.8, 30.5, 13.5. HR-MS (ESI) *m*/*z* calcd for C₃₄H₂₇CIN₅O₅ [M+H]⁺ 620.1695, found 620.1695. IR (KBr): 2932, 1758, 1671, 1608, 1362, 1241, 1166, 1068, 734, 693 cm⁻¹.

3-[2-(5-Phenyl-2*H***-tetrazol-2-yl)acetyl]phenyl(***R***)-2-(6-methoxynaphthalen-2-yl)propanoate (3oa**): The general procedure was followed using substrate 3-acetylphenyl-(*R*)-2-(6-methoxynaphthalen-2-yl)propanoate **1a** (0.4 mmol, 139 mg) and 5-phenyltetrazole **2a** (1.2 mmol, 175 mg). Isolation by column chromatography (PE/EtOAc: 11/1 → 5/1) yielded **3oa** (66 mg, 33%) as a white solid. m.p: 130.2-132.7°C. R_f = 0.33 (3:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (dd, *J* = 6.5, 3.1 Hz, 2H), 7.82 (d, *J* = 7.7 Hz, 1H), 7.79 – 7.72 (m, 3H), 7.66 – 7.59 (m, 1H), 7.56 – 7.43 (m, 5H), 7.35 – 7.28 (m, 1H), 7.21 – 7.08 (m, 2H), 6.06 (s, 2H), 4.13 (q, *J* = 7.1 Hz, 1H), 3.92 (s, 3H), 1.72 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 188.1, 172.9, 165.7, 157.9, 151.4, 135.0, 134.6, 133.9, 130.5, 130.3, 129.3, 129.0, 128.9, 127.9, 127.6, 127.2, 127.0, 126.3, 125.9, 125.4, 121.3, 119.3, 105.7, 58.1, 55.4, 45.6, 18.4. HR-MS (ESI) *m*/z calcd for C₂₉H₂₅N₄O₄ [M+H]⁺ 493.1870, found 493.1870. IR (KBr): 3060, 2990, 2945, 2830, 1755, 1604, 1445, 1256, 1143, 1055, 989, 977, 856, 752, 647 cm⁻¹.

3-[2-(5-Phenyl-2H-tetrazol-2-yl)acetyl]phenyl-2-(4-isobutylphenyl)propanoate

(**3pa**): The general procedure was followed using substrate 3-acetylphenyl 2-(4-isobutylphenyl)propanoate **1a** (0.4 mmol, 160 mg) and 5-phenyltetrazole **2a** (1.2 mmol, 175 mg). Isolation by column chromatography (PE/EtOAc: 7/1→5/1) yielded **3pa** (67 mg, 28%) as a white solid. m.p: 107.7-110.0°C. R_f = 0.31 (3:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.22 – 8.12 (m, 2H), 7.82 (d, *J* = 7.8 Hz, 1H), 7.68 – 7.60 (m, 1H), 7.57 – 7.44 (m, 4H), 7.37 – 7.27 (m, 3H), 7.16 (d, *J* = 8.0 Hz, 2H), 6.08 (s, 2H), 3.97 (q, *J* = 7.1 Hz, 1H), 2.48 (d, *J* = 7.2 Hz, 2H), 1.92 – 1.82 (m, 1H), 1.63 (d, *J* = 7.1 Hz, 3H), 0.91 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 188.1, 173.0, 165.7, 151.5, 141.1, 136.8, 135.0, 130.5, 130.2, 129.7, 129.4, 128.9, 128.0, 127.2, 127.0, 125.4, 121.3, 58.2, 45.3, 45.1, 30.2, 22.4, 18.5. HR-MS (ESI) *m/z* calcd for C₂₈H₂₉N₄O₃ [M+H]⁺ 469.2234, found 469.2234. IR (KBr): 2990, 2952, 2869, 1753, 1698, 1448, 1244, 1159, 1068, 920, 734, 673 cm⁻¹.

3-[2-(5-Phenyl-2*H***-tetrazol-2-yl)acetyl]phenyl-3-(4,5-diphenyloxazol-2-yl)propan oate (3qa):** The general procedure was followed using substrate 3-acetylphenyl 3-(4,5-diphenyloxazol-2-yl)propanoate **1a** (0.4 mmol, 160 mg) and 5-phenyltetrazole **2a** (1.2 mmol, 175 mg). Isolation by column chromatography (PE/EtOAc: 7/1→5/1) yielded **3qa** (111 mg, 49%) as a white solid. m.p: 108.6-110.0°C. R_f = 0.30 (3:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 4.9 Hz, 2H), 7.87 (d, *J* = 7.6 Hz, 1H), 7.72 – 7.62 (m, 3H), 7.61 – 7.39 (m, 8H), 7.34 (q, *J* = 7.1 Hz, 5H), 5.85 (s, 2H), 3.34 (t, *J* = 6.8 Hz, 2H), 3.20 (t, *J* = 6.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 188.1, 170.5, 165.6, 161.3, 151.2, 145.8, 135.1, 135.1, 132.3, 130.5, 130.4, 128.9, 128.8, 128.7, 128.7, 128.3, 128.0, 127.9, 127.2, 127.0, 126.5, 125.8, 125.6, 121.5, 57.9, 31.2, 23.6. HR-MS (ESI) *m/z* calcd for C₃₃H₂₆N₅O₄ [M+H]⁺ 556.1979, found 556.1980. IR (KBr): 3056, 2992, 1764, 1698, 1606, 1447, 1346, 1136, 1028, 957, 732, 691 cm⁻¹.

1-[6-(*tert*-Butyl)-1,1-dimethyl-2,3-dihydro-1*H*-inden-4-yl]-2-(5-phenyl-2*H*-tetrazo 1-2-yl)ethan-1-one (3ra): The general procedure was followed using substrate 1-(6-(*tert*-butyl)-1,1-dimethyl-2,3-dihydro-1*H*-inden-4-yl)ethan-1-one 1a (1.5 mmol,

366 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: 12/1→8/1) yielded **3ra** (93 mg, 48%) as a white solid. m.p: 160.4-162.6°C. R_f = 0.33 (4:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.18 (dd, J = 7.4, 2.2 Hz, 2H), 7.72 (d, J = 1.5 Hz, 1H), 7.53 – 7.46 (m, 3H), 7.44 (d, J = 1.4 Hz, 1H), 6.12 (s, 2H), 3.18 (t, J = 7.3 Hz, 2H), 1.96 (t, J = 7.3 Hz, 2H), 1.39 (s, 9H), 1.27 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 190.2, 165.6, 155.3, 150.6, 142.6, 130.3, 129.9, 128.9, 127.3, 127.0, 125.0, 123.5, 59.2, 43.6, 41.3, 34.9, 31.5, 30.8, 28.7. HR-MS (ESI) *m*/*z* calcd for C₂₄H₂₉N₄O [M+H]⁺ 389.2336, found 389.2333. IR (KBr): 3062, 2955, 2864, 1578, 1464, 1346, 1220, 1046, 834, 731, 669 cm⁻¹.

(*1S*,*2R*,*5S*)-2-Isopropyl-5-methylcyclohexyl-3-[2-(5-phenyl-2*H*-tetrazol-2-yl)acety **I]benzoate** (**3sa**): The general procedure was followed using substrate (*1S*,*2R*,*5S*)-2-isopropyl-5-methylcyclohexyl 3-acetylbenzoate **1a** (0.50 mmol, 150 mg) and 5-phenyltetrazole **2a** (1.5 mmol, 220 mg). Isolation by column chromatography (PE/EtOAc: 12/1 → 8/1) yielded **3sa** (115 mg, 51%) as a white solid. m.p: 110.1-111.8°C. R_f = 0.33 (4:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.63 (s, 1H), 8.35 (d, *J* = 7.8 Hz, 1H), 8.24 – 8.14 (m, 3H), 7.66 (dd, *J* = 7.8, 7.8 Hz, 1H), 7.49 (dd, *J* = 5.3, 1.7 Hz, 3H), 6.19 (s, 2H), 5.00 (td, *J* = 10.9, 4.4 Hz, 1H), 2.13 (d, *J* = 12.0 Hz, 1H), 1.97 – 1.90 (m, 1H), 1.79 – 1.69 (m, 2H), 1.42 (s, 2H), 1.15 (q, *J* = 11.7 Hz, 2H), 0.96 – 0.92 (m, 6H), 0.87 (dd, *J* = 6.4, 4.8 Hz, 1H), 0.81 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 188.5, 165.7, 164.8, 135.4, 134.0, 132.1, 132.0, 130.5, 129.5, 129.1, 128.9, 127.2, 127.0, 75.8, 58.2, 47.2, 40.9, 34.2, 31.5, 26.6, 23.6, 22.0, 20.8, 16.6. HR-MS (ESI) *m*/*z* calcd for C₂₆H₃₁N4O₃ [M+H]⁺ 447.2391, found 447.2391. IR (KBr): 3069, 2957, 2871, 1718, 1604, 1451, 1346, 1213, 1122, 960, 738, 696, 641 cm⁻¹.

1,2-Bis(4-methoxyphenyl)ethane-1,2-dione (3ta): The general procedure was followed using substrate 1,2-bis(4-methoxyphenyl)ethan-1-one **1a** (1.2 mmol, 308 mg) and 5-phenyltetrazole **2a** (0.4 mmol, 58 mg). Isolation by column chromatography (PE/EtOAc: $10/1 \rightarrow 7/1$) yielded **3ta** (101 mg, 31%) as a yellow solid. R_f = 0.33 (4:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.90 (m, 4H), 6.99 – 6.93 (m, 4H), 3.87 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 193.5, 164.9, 132.4, 126.3, 114.3, 55.6. Analytical data for compound **3ta** is consistent with literature report.^[5]

(3*S*,5*S*,8*R*,9*S*,10*S*,13*S*,14*S*)-10,13-Dimethyl-17-oxohexadecahydro-1*H*-cyclopenta[a]phenanthren-3-yl-3-[2-(5-phenyl-2*H*-tetrazol-2-yl)acetyl]benzoate (3ua): The general procedure was followed using substrate (3*S*,5*S*,9*S*,10*S*,13*S*,14*S*)-10,13-dimethyl-17-oxohexadecahydro-1*H*-cyclopenta[a]phenanthren-3-yl-3-acetylbenzoate **1a** (1.0 mmol, 400 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg). Isolation by column chromatography (PE/EtOAc: 8/1→5/1) yielded **3ua** (44 mg, 20%) as a white solid. m.p: 196.4-198.5°C. R_f = 0.31 (4:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.62 (s, 1H), 8.34 (d, *J* = 7.5 Hz, 1H), 8.18 (dd, *J* = 6.7, 6.7 Hz, 3H), 7.65 (dd, *J* = 7.7, 7.7 Hz, 1H), 7.49 (s, 3H), 6.19 (s, 2H), 5.00 (m, 1H), 2.44 (dd, *J* = 19.2, 8.8 Hz, 1H), 2.14 – 2.03 (m, 1H), 2.02 – 1.89 (m, 2H), 1.80 (t, *J* = 13.4 Hz, 4H), 1.69 (d, *J* = 12.9 Hz, 2H), 1.52 – 1.47 (m, 1H), 1.31 (dd, *J* = 30.9, 18.0 Hz, 8H), 1.17 – 1.00 (m, 2H), 0.92 (s, 3H), 0.87 (s, 3H), 0.76 (t, *J* = 11.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 188.5, 165.7, 164.7, 135.4, 134.0, 132.1, 132.0, 130.5, 129.5, 129.1, 128.91, 127.2, 127.0, 75.1, 58.3, 54.3, 51.4, 47.8, 44.7, 36.7, 35.9, 35.7, 35.1, 34.0, 31.5, 30.8, 28.3, 27.5, 21.8, 20.5, 13.8, 12.3. HR-MS (ESI) *m*/*z* calcd for C₃₅H₄₁N₄O₄ [M+H]⁺ 581.3122, found 581.3123. IR (KBr): 3069, 2939, 2844, 1737, 1713, 1604, 1449, 1287, 1216, 1129, 1008, 824, 734, 693 cm⁻¹.

2-(2-Methyl-5-nitro-1*H***-imidazol-1-yl)ethyl-3-[2-(5-phenyl-2***H***-tetrazol-2-yl)acetyl]benzoate (3va): The general procedure was followed using substrate 2-(2-methyl-5-nitro-1***H***-imidazol-1-yl)ethyl 3-acetylbenzoate 1a** (0.4 mmol, 127 mg) and 5-phenyltetrazole **2a** (1.2 mmol, 175 mg). Isolation by column chromatography (PE/EtOAc: 4/1→1/1) yielded **3va** (55 mg, 30%) as a colorless oil. R_f = 0.30 (2:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.52 (s, 1H), 8.26 – 8.19 (m, 2H), 8.16 (dd, J = 6.5, 2.8 Hz, 2H), 7.97 (s, 1H), 7.66 (dd, J = 7.8, 7.8 Hz, 1H), 7.52 – 7.48 (m, 3H), 6.21 (s, 2H), 4.78 (t, J = 5.1 Hz, 2H), 4.71 (t, J = 5.0 Hz, 2H), 2.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 188.3, 165.7, 164.7, 150.6, 135.2, 134.3, 133.3, 132.9, 130.5, 130.2, 129.9, 129.0, 128.9, 127.1, 127.0, 63.5, 58.3, 44.9, 14.4. HR-MS (ESI) *m*/*z* calcd for C₂₂H₁₉N₇O₅Na [M+Na]⁺ 484.1340, found 484.1330. IR (KBr): 3134, 2996, 2952, 2855, 1716, 1601, 1536, 1472, 1362, 1211, 1100, 827, 729, 675 cm⁻¹.

1-Phenyl-2-(2*H***-tetrazol-2-yl)ethan-1-one (3ab):** The general procedure was followed using substrate acetophenone **1a** (1.5 mmol, 180 mg) and 2*H*-tetrazole **2a** (0.50 mmol, 35 mg). Isolation by column chromatography (PE/EtOAc: $15/1 \rightarrow 10/1$) yielded **3ab** (54 mg, 56%) as a white solid. m.p: $100.4-102.3^{\circ}$ C. R_f = 0.33 (8:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.63 (s, 1H), 7.99 (d, *J* = 7.9 Hz, 2H), 7.69 (dd, *J* = 7.4, 7.4 Hz, 1H), 7.56 (dd, *J* = 7.7, 7.7 Hz, 2H), 6.15 (s,

2H). ¹³C NMR (100 MHz, CDCl₃) δ 188.8, 153.4, 134.8, 133.7, 129.2, 128.1, 58.1. HR-MS (ESI) *m/z* calcd for C₉H₉N₄O [M+H]⁺ 189.0771, found 189.0768. IR (KBr): 3062, 2967, 1709, 1599, 1455, 1342, 1231, 1129, 1034, 869, 756, 686 cm⁻¹.

2-(5-Methyl-2*H***-tetrazol-2-yl)-1-phenylethan-1-one (3ac):** The general procedure was followed using substrate acetophenone **1a** (1.5 mmol, 180 mg) and 5-methyl-2*H*-tetrazole **2a** (0.8 mmol, 67 mg). Isolation by column chromatography (PE/EtOAc: $14/1 \rightarrow 10/1$) yielded **3ac** (117 mg, 71%) as a white solid. m.p: 82.9-83.9 °C. R_f = 0.33 (8:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 7.7 Hz, 2H), 7.68 (dd, *J* = 7.4, 7.4 Hz, 1H), 7.54 (dd, *J* = 7.6, 7.6 Hz, 2H), 6.04 (s, 2H), 2.59 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.2, 163.5, 134.7, 133.8, 129.2, 128.1, 57.9, 11.0. HR-MS (ESI) *m/z* calcd for C₁₀H₁₁N₄O [M+H]⁺ 203.0927, found 203.0925. IR (KBr): 3062, 2992, 2945, 1700, 1594, 1450, 1348, 1231, 1138, 1034, 996, 757, 686 cm⁻¹.

1-Phenyl-2-(5-(*p***-tolyl)-2***H***-tetrazol-2-yl)ethan-1-one (3ad): The general procedure was followed using substrate acetophenone 1a** (1.5 mmol, 180 mg) and 5-(*p*-tolyl)-2*H*-tetrazole **2a** (0.50 mmol, 80 mg). Isolation by column chromatography (PE/EtOAc: 20/1 → 10/1) yielded **3ad** (57 mg, 41%) as a white solid. m.p: 139.8-141.7°C. R_f = 0.30 (6:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (dd, *J* = 20.2, 8.2 Hz, 4H), 7.69 (dd, *J* = 7.3, 7.3 Hz, 1H), 7.56 (m, *J* = 7.6, 7.6 Hz, 2H), 7.30 (d, *J* = 7.8 Hz, 2H), 6.13 (s, 2H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.0, 165.8, 140.6, 134.7, 133.9, 129.6, 129.2, 128.2, 126.9, 124.4, 58.1, 21.5. HR-MS (ESI) *m*/*z* calcd for C₁₆H₁₅N₄O [M+H]⁺ 279.1240, found 279.1230. IR (KBr): 2959, 1706, 1463, 1346, 1226, 1047, 834, 755, 683 cm⁻¹.

1-Phenyl-2-(5-(*o***-tolyl)-2***H***-tetrazol-2-yl)ethan-1-one (3ae): The general procedure was followed using substrate acetophenone 1a** (1.5 mmol, 180 mg) and 5-(*o*-tolyl)-2*H*-tetrazole **2a** (0.50 mmol, 80 mg). Isolation by column chromatography (PE/EtOAc: $30/1 \rightarrow 10/1$) yielded **3ae** (125 mg, 90%) as a white solid. m.p: 107.9-109.6°C. R_f = 0.30 (6:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.09 – 7.97 (m, 3H), 7.68 (d, *J* = 4.0 Hz, 1H), 7.55 (d, *J* = 4.1 Hz, 2H), 7.34 (dd, *J* = 17.0, 6.5 Hz, 3H), 6.16 (s, 2H), 2.63 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.0, 166.0, 137.6, 134.7, 133.8, 131.3, 130.0, 129.6, 129.2, 128.2, 126.4, 126.0, 58.2, 21.7. HR-MS (ESI) *m*/*z* calcd for C₁₆H₁₅N₄O [M+H]⁺ 279.1240, found 279.1236. IR (KBr): 2986, 1706, 1581, 1477, 1448, 1339, 1225, 1035, 748, 682, 637 cm⁻¹.

2-(5-(4-Methoxyphenyl)-2*H***-tetrazol-2-yl)-1-phenylethan-1-one (3af):** The general procedure was followed using substrate acetophenone **1a** (1.5 mmol, 180 mg) and 5-(4-methoxyphenyl)-2*H*-tetrazole **2a** (0.50 mmol, 88 mg). Isolation by column chromatography (PE/EtOAc: 12/1→8/1) yielded **3af** (141 mg, 95%) as a white solid. m.p: 155.3-156.5°C. R_f = 0.30 (6:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 8.9 Hz, 2H), 8.01 (d, *J* = 8.5 Hz, 2H), 7.69 (dd, *J* = 7.4, 7.4 Hz, 1H), 7.56 (dd, *J* = 7.7, 7.7 Hz, 2H), 7.01 (d, *J* = 8.9 Hz, 2H), 6.12 (s, 2H), 3.87 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.0, 165.6, 161.3, 134.7, 133.9, 129.2, 128.5, 128.2, 119.8, 114.3, 58.1, 55.4. HR-MS (ESI) *m/z* calcd for C₁₆H₁₅N4O₂

[M+H]⁺ 295.1190, found 295.1184. IR (KBr): 3019, 2942, 2841, 1702, 1613, 1458, 1342, 1256, 1027, 837, 763, 684 cm⁻¹.

2-[5-(4-Chlorophenyl)-2*H***-tetrazol-2-yl]-1-phenylethan-1-one (3ag):** The general procedure was followed using substrate acetophenone **1a** (1.5 mmol, 180 mg) and 5-(4-chlorophenyl)-2*H*-tetrazole **2a** (0.50 mmol, 90 mg). Isolation by column chromatography (PE/EtOAc: $14/1 \rightarrow 10/1$) yielded **3ag** (98 mg, 66%) as a white solid. m.p: $151.9-153.6^{\circ}$ C. R_f = 0.30 (6:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.14 – 8.07 (m, 2H), 8.01 (d, *J* = 7.1 Hz, 2H), 7.69 (d, *J* = 7.4 Hz, 1H), 7.58 (d, *J* = 7.9 Hz, 2H), 7.51 – 7.43 (m, 2H), 6.14 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 188.8, 164.8, 136.5, 134.8, 133.7, 129.3, 129.2, 128.3, 128.2, 125.8, 58.2. HR-MS (ESI) *m*/*z* calcd for C₁₅H₁₂ClN₄O [M+H]⁺ 299.0694, found 299.0691. IR (KBr): 3079, 2948, 2848, 1696, 1597, 1452, 1337, 1227, 1087, 849, 755, 685 cm⁻¹.

2-(5-(2-Bromophenyl)-2*H***-tetrazol-2-yl)-1-phenylethan-1-one (3ah):** The general procedure was followed using substrate acetophenone **1a** (1.5 mmol, 180 mg) and 5-(2-bromophenyl)-2*H*-tetrazole **2a** (0.50 mmol, 112 mg). Isolation by column chromatography (PE/EtOAc: $15/1 \rightarrow 10/1$) yielded **3ah** (106 mg, 62%) as a white solid. m.p: 118.3-120.1°C. R_f = 0.30 (6:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.04 – 7.97 (m, 2H), 7.92 (d, *J* = 7.7 Hz, 1H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.69 (dd, *J* = 7.2, 7.2 Hz, 1H), 7.56 (dd, *J* = 7.5, 7.5 Hz, 2H), 7.45 (dd, *J* = 7.5, 7.5 Hz, 1H), 7.34 (dd, *J* = 7.7, 7.7 Hz, 1H), 6.20 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 188.8, 164.6, 134.7, 134.1, 133.8, 131.9, 131.4, 129.2, 128.4, 128.2, 127.5, 122.2,

58.4. HR-MS (ESI) *m*/*z* calcd for C₁₅H₁₂BrN₄O [M+H]⁺ 343.0189, found 343.0185. IR (KBr): 3088, 2994, 2946, 1701, 1588, 1463, 1451, 1411, 1265, 998, 815, 716 cm⁻¹.

2-[5-(4-Bromophenyl)-2*H***-tetrazol-2-yl]-1-phenylethan-1-one (3ai):** The general procedure was followed using substrate acetophenone **1a** (1.5 mmol, 180 mg) and 5-(4-bromophenyl)-2H-tetrazole **2a** (0.50 mmol, 112 mg). Isolation by column chromatography (PE/EtOAc: $15/1 \rightarrow 10/1$) yielded **3ai** (118 mg, 69%) as a white solid. m.p: 162.4-164.4°C. R_f = 0.30 (6:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (dd, *J* = 14.9, 8.1 Hz, 4H), 7.69 (dd, *J* = 7.2, 7.2 Hz,1H), 7.63 (d, *J* = 8.3 Hz, 2H), 7.56 (dd, *J* = 7.5, 7.5 Hz, 2H), 6.14 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 188.8, 164.9, 134.7, 133.8, 132.2, 129.2, 128.5, 128.2, 126.2, 124.8, 58.2. HR-MS (ESI) *m*/*z* calcd for C₁₅H₁₂BrN₄O [M+H]⁺ 343.0189, found 343.0186. IR (KBr): 3079, 2996, 1706, 1598, 1454, 1343, 1228, 1066, 758, 684 cm⁻¹.

1-Phenyl-2-(5-(pyridin-2-yl)-2*H***-tetrazol-2-yl)ethan-1-one (3aj):** The general procedure was followed using substrate acetophenone **1a** (1.5 mmol, 180 mg) and 2-(2*H*-tetrazol-5-yl)pyridine **2a** (0.50 mmol, 74 mg). Isolation by column chromatography (PE/EtOAc: $15/1 \rightarrow 8/1$) yielded **3aj** (38 mg, 28%) as a yellow liquid. R_f = 0.33 (4:1 petroleum ether: ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 8.45 – 8.32 (m, 2H), 7.99 (d, *J* = 6.8 Hz, 2H), 7.85 (dd, *J* = 7.6, 7.6 Hz, 1H), 7.66 (d, *J* = 7.0 Hz, 1H), 7.55 (dd, *J* = 6.9, 6.9 Hz, 2H), 7.31 (s, 1H), 6.46 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 189.9, 152.4, 149.1, 144.5, 137.6, 134.3, 134.3, 129.1, 128.1, 125.4, 124.1, 55.7. HR-MS (ESI) *m/z* calcd for C₁₄H₁₂N₅O [M+H]⁺ 266.1036, found 266.1031.

Gram-scale Synthesis and Control Experiments for the Mechanism Studies

(a) Gram-scale Synthesis

In an undivided cell (250 mL) equipped with a stirring bar, a mixture of substrates **1a** (24.0 mmol, 2.88 g), **2a** (8.0 mmol, 1.17 g), TBAI (8.0 mmol, 2.95 g) and MeCN (100 mL) were added. The cell was equipped with graphite ($3 \text{ cm} \times 3 \text{ cm} \times 0.6 \text{ cm}$) as the anode and platinum plate ($3 \text{ cm} \times 3 \text{ cm} \times 0.01 \text{ cm}$) as the cathode and connected to a DC regulated power supply. The reaction mixture was stirred and electrolyzed at a constant current of 25 mA at 80°C in oil bath for 90 h. Upon completion, the solvent was further removed directly under reduced pressure to afford the crude product, which was purified by flash column chromatography (PE/EtOAc: $25/1 \rightarrow 15/1$) yielded **3a** (1.14 g, 61%) as a white solid.

(b) Radical Scavenger Experiments with BHT

In an undivided cell (15 mL) equipped with a stirring bar, a mixture of substrates **1a** (1.5 mmol, 180 mg), BHT (2.0 mmol, 440 mg), **2a** (0.50 mmol, 73 mg), *n*-Bu₄NI (0.50 mmol, 185 mg) and MeCN (8.0 mL) were added. The cell was equipped with graphite as the anode and platinum plate as the cathode connected to an AXIOMET AX-3003P DC regulated power supply. The reaction mixture was stirred and electrolyzed at a constant current of 13 mA at 80°C by heating mantle for 16 h. Upon completion, the reaction does not give the expected product.

(c) The reaction of 2aa with 2a without current
$$\begin{array}{c} O \\ Ph \\ \hline 2aa \end{array} + \begin{array}{c} Ph \\ \hline N \\ \hline N \\ 2aa \end{array} + \begin{array}{c} Ph \\ \hline N \\ \hline N \\ 2a \end{array} + \begin{array}{c} Ph \\ \hline N \\ \hline$$

In a round bottom flask (25 mL) equipped with a stirring bar, a mixture of substrates **2aa** (1.0 mmol, 245 mg) and 5-phenyltetrazole **2a** (0.50 mmol, 73 mg), and MeCN (8 mL) were added. The reaction mixture was stirred and refluxed at 80°C by oil bath for 16 h without electricity under air. Upon completion, the reaction does not give the expected product.

Then, in a round bottom flask (25 mL) equipped with a stirring bar, a mixture of substrates **2aa** (1.0 mmol, 245 mg), **2a** (0.50 mmol, 73 mg), TBAI (0.50 mmol, 185 mg) and MeCN (8.0 mL) were added. The reaction mixture was stirred at 80°C time for 16 h under air. Upon completion, the solvent was removed directly under reduced pressure to afford the crude product, which was further purified by flash column chromatography on silica gel (PE/EtOAc: $20/1 \rightarrow 10/1$) to give a white solid **3a** (119 mg, 90%).

Crystallographic description of 3a and 3n

(i) Crystallographic description of 1-phenyl-2-(5-phenyl-2*H*-tetrazol-2-yl)ethan-1-one (3a).

The compound (**3a**) was crystallized from a supersaturated solution of dichloromethane by the slow evaporation method. Suitable single crystal was picked from the mother liquor and covered with perfluorinated polyether oil on a microscope slide. Compound **3a** was collected at 180.00 K on a Rigaku Oxford Diffraction Supernova Dual Source, Cu at Zero equipped with an AtlasS2 CCD using Cu Ka radiation. Data reduction was carried out with the diffractometer's software^[6]. The structure was solved by direct methods using Olex2 software^[7], and the non-hydrogen atoms were located from the trial structure and then refined anisotropically with SHELXL-2018^[8] using a full-matrix least squares procedure based on F^2 . The weighted *R* factor, *wR* and goodness-of-fit *S* values were obtained based on F^2 . The

hydrogen atom positions were fixed geometrically at the calculated distances and allowed to ride on their parent atoms. Crystallographic data has been deposited with the Cambridge Crystallographic Centre and allocated with the deposition numbers: CCDC 2180990. Copies of the data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

Crystal structure determination of 3a

Crystal Data for C₁₅H₁₂N₄O (M =264.29 g/mol): monoclinic, space group P21/c (no. 14), a = 12.6720(9) Å, b = 11.9871(7) Å, c = 9.0695(8) Å, β = 110.184(9)°, V = 1293.07(18) Å³, Z = 4, T = 180.00(10) K, μ (MoK α) = 0.090 mm⁻¹, D_{calc} = 1.358 g/cm³, 9622 reflections measured (4.824° ≤ 2 Θ ≤ 58.84°), 3185 unique (Rint = 0.0275, Rsigma = 0.0332) which were used in all calculations. The final R₁ was 0.0433 (I > 2 σ (I)) and wR₂ was 0.1030 (all data).

Table 1 Crystal data and structure refinement for 3a.

Identification code	3 a
Empirical formula	$C_{15}H_{12}N_4O$
Formula weight	264.29
Temperature/K	180.00(10)
Crystal system	monoclinic
Space group	P21/c
a/Å	12.6720(9)
b/Å	11.9871(7)
c/Å	9.0695(8)
α/°	90
β/°	110.184(9)
$\gamma/^{\circ}$	90
Volume/Å ³	1293.07(18)
Z	4
$\rho_{calc}g/cm^3$	1.358

μ/mm^{-1}	0.090
F(000)	552.0
Crystal size/mm ³	$0.15 \times 0.13 \times 0.12$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.824 to 58.84
Index ranges	$-16 \le h \le 17, -16 \le k \le 16, -8 \le l \le 11$
Reflections collected	9622
Independent reflections	3185 [Rint = 0.0275, Rsigma = 0.0332]
Data/restraints/parameters	3185/0/182
Goodness-of-fit on F ²	1.031
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0433, wR_2 = 0.0925$
Final R indexes [all data]	$R_1 = 0.0608, wR_2 = 0.1030$
Largest diff. peak/hole / e Å ⁻³	0.20/-0.18

Table 2 Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters(Å2 $\times 10^3$) for 3a. Ueq is defined as 1/3 of of the trace of the orthogonalised UIJ tensor.

Х	У	Z	U(eq)
3356.2(8)	514.5(9)	5004.4(12)	42.0(3)
648.5(9)	759.9(9)	3906.3(13)	28.5(3)
3193.9(10)	255.3(11)	6200.6(16)	28.5(3)
1422.5(8)	1267.0(9)	5099.9(13)	29.7(3)
-562.6(10)	1463.0(11)	1322.3(16)	27.8(3)
3980.1(10)	-465.6(10)	7424.2(15)	26.5(3)
315.3(10)	1585.4(10)	2868.5(16)	27.2(3)
1584.1(9)	2328.4(9)	4838.0(15)	37.0(3)
3756.9(10)	-817.3(11)	8749.1(16)	29.9(3)
876.4(10)	2547.6(9)	3415.6(15)	35.4(3)
2132.9(11)	673.0(11)	6469.6(16	31.2(3)
4963.8(11)	-824.7(11)	7197.2(17)) 32.5(3)
	x 3356.2(8) 648.5(9) 3193.9(10) 1422.5(8) -562.6(10) 3980.1(10) 315.3(10) 1584.1(9) 3756.9(10) 876.4(10) 2132.9(11) 4963.8(11)	xy3356.2(8)514.5(9)648.5(9)759.9(9)3193.9(10)255.3(11)1422.5(8)1267.0(9)-562.6(10)1463.0(11)3980.1(10)-465.6(10)315.3(10)1585.4(10)1584.1(9)2328.4(9)3756.9(10)-817.3(11)876.4(10)2547.6(9)2132.9(11)673.0(11)4963.8(11)-824.7(11)	xyz $3356.2(8)$ $514.5(9)$ $5004.4(12)$ $648.5(9)$ $759.9(9)$ $3906.3(13)$ $3193.9(10)$ $255.3(11)$ $6200.6(16)$ $1422.5(8)$ $1267.0(9)$ $5099.9(13)$ $-562.6(10)$ $1463.0(11)$ $1322.3(16)$ $3980.1(10)$ $-465.6(10)$ $7424.2(15)$ $315.3(10)$ $1585.4(10)$ $2868.5(16)$ $1584.1(9)$ $2328.4(9)$ $4838.0(15)$ $3756.9(10)$ $-817.3(11)$ $8749.1(16)$ $876.4(10)$ $2547.6(9)$ $3415.6(15)$ $2132.9(11)$ $673.0(11)$ $6469.6(16)$ $4963.8(11)$ $-824.7(11)$ $7197.2(17)$

C10	-916.3(10)	406.1(11)	710.0(17)	30.6(3)
C4	4486.0(11)	-1537.3(12)	9813.4(17)	35.2(3)
C2	5692.8(11)	-1533.6(12)	8273.6(18)	36.7(3)
C14	-1047.6(11)	2403.0(11)	442.1(17)	35.3(3)
C11	-1730.4(11)	291.6(13)	-762.1(18)	37.8(3)
C3	5453.0(11)	-1901.6(12)	9567.1(18)	37.1(3)
C12	-2201.9(12)	1221.9(14)	-1630.9(18)	43.2(4)
C13	-1857.6(13)	2273.6(14)	-1026.0(19)	43.4(4)

Table 3 Anisotropic Displacement Parameters (Å2×10³) for 3a. The Anisotropicdisplacement factor exponent takes the form: $-2\pi 2[h2a*2U11+2hka*b*U12+...]$.

Atom	U11	U22	U33	U23	U13	U12
01	42.2(6)	53.0(6)	38.3(6)	11.8(5)	23.4(5)	8.6(5)
N1	28.7(5)	26.5(5)	31.9(6)	2.2(5)	12.7(5)	0.7(4)
C7	28.5(6)	29.2(7)	29.6(7)	-2.6(6)	12.4(5)	-3.6(5)
N2	28.2(6)	28.0(6)	34.1(7)	0.8(5)	12.5(5)	1.0(4)
C9	25.4(6)	29.9(6)	32.2(7)	3.4(5)	15.3(5)	2.3(5)
C6	24.9(6)	26.3(6)	28.5(7)	-5.3(5)	9.3(5)	-2.8(5)
C15	27.0(6)	23.1(6)	35.8(8)	2.4(5)	16.4(5)	2.3(5)
N3	35.3(6)	29.0(6)	44.3(8)	1.7(5)	10.5(5)	-2.0(5)
C5	25.5(6)	34.4(7)	31.1(7)	-4.3(6)	11.5(5)	-1.5(5)
N4	35.4(6)	27.4(6)	41.3(7)	3.1(5)	10.4(5)	-2.4(5)
C8	31.0(7)	34.4(7)	29.3(7)	3.7(6)	12.0(5)	5.0(6)
C1	30.4(6)	36.7(7)	33.3(8)	-4.2(6)	14.7(6)	-0.3(6)
C10	28.1(6)	30.2(7)	38.9(8)	2.4(6)	18.4(6)	2.7(5)
C4	35.4(7)	40.4(8)	28.7(8)	1.0(6)	9.4(6)	-1.1(6)
C2	27.7(7)	40.8(8)	41.6(9)	-6.4(7)	11.8(6)	5.1(6)
C14	36.9(7)	29.8(7)	40.4(9)	5.8(6)	14.9(6)	3.5(6)
C11	31.3(7)	43.9(8)	41.7(9)	-9.2(7)	17.1(6)	-3.5(6)
C3	34.0(7)	35.6(7)	35.7(8)	-1.7(6)	4.3(6)	4.5(6)

40

C12	31.8(7)	61.9(10)	34.8(9)	-1.8(7)	10.3(6)	3.5(7)
C13	41.1(8)	47.6(9)	40.7(9)	12.8(7)	13.1(7)	11.7(7)

Table 4 Bond Lengths for 3a.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	C7	1.2124(16)	C6	C1	1.3997(18)
N1	N2	1.3307(15)	C15	N4	1.3559(16)
N1	C15	1.3302(16)	N3	N4	1.3188(16)
C7	C6	1.4859(18)	C5	C4	1.3838(19)
C7	C8	1.5311(18)	C1	C2	1.3806(19)
N2	N3	1.3232(15)	C10	C11	1.384(2)
N2	C8	1.4453(16)	C4	C3	1.390(2)
C9	C15	1.4660(19)	C2	C3	1.382(2)
C9	C10	1.3937(18)	C14	C13	1.381(2)
C9	C14	1.3950(18)	C11	C12	1.377(2)
C6	C5	1.3914(18)	C12	C13	1.384(2)

Table 5 Bond Angles for 3a.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C15	N1	N2	101.58(10)	N4	C15	C9	124.35(11)
01	C7	C6	122.71(12)	N4	N3	N2	105.79(10)
01	C7	C8	119.23(12)	C4	C5	C6	120.37(12)
C6	C7	C8	118.07(11)	N3	N4	C15	106.39(11)
N1	N2	C8	122.68(11)	N2	C8	C7	110.18(11)
N3	N2	N1	114.18(11)	C2	C1	C6	119.86(13)
N3	N2	C8	122.61(11)	C11	C10	C9	120.31(13)
C10	C9	C15	120.38(12)	C5	C4	C3	119.83(14)
C10	C9	C14	119.25(13)	C1	C2	C3	120.49(12)
C14	C9	C15	120.37(12)	C13	C14	C9	119.68(13)
C5	C6	C7	122.52(11)	C12	C11	C10	120.24(14)

C5	C6	C1	119.38(12)	C2	C3	C4	120.04(13)
C1	C6	C7	118.08(12)	C11	C12	C13	119.71(14)
N1	C15	C9	123.59(11)	C14	C13	C12	120.81(14)
N1	C15	N4	112.06(12)				

Table 6 Torsion Angles for 3a.

A	В	С	D	Angle/°	A	В	С	D	Angle/°
01	C7	C6	C5	-175.95(13)	C15	C9	C10	C11	-178.81(12)
01	C7	C6	C1	2.16(19)	C15	C9	C14	C13	178.69(12)
01	C7	C8	N2	4.94(17)	N3	N2	C8	C7	-82.82(15)
N1	N2	N3	N4	0.92(15)	C5	C6	C1	C2	0.89(19)
N1	N2	C8	C7	88.26(14)	C5	C4	C3	C2	0.9(2)
N1	C15	N4	N3	-0.02(15)	C8	C7	C6	C5	3.46(18)
C7	C6	C5	C4	176.49(12)	C8	C7	C6	C1	-178.43(11)
C7	C6	C1	C2	-177.28(12)	C8	N2	N3	N4	172.70(11)
N2	N1	C15	C9	-179.01(11)	C1	C6	C5	C4	-1.59(19)
N2	N1	C15	N4	0.53(13)	C1	C2	C3	C4	-1.6(2)
N2	N3	N4	C15	-0.51(14)	C10	C9	C15	N1	-15.01(19)
C9	C15	N4	N3	179.52(11)	C10	C9	C15	N4	165.51(12)
C9	C10	C11	C12	2 -0.3(2)	C10	C9	C14	C13	-0.8(2)
C9	C14	C13	C12	2 0.6(2)	C10	C11	C12	C13	0.0(2)
C6	C7	C8	N2	-174.50(10)	C14	C9	C15	N1	165.48(12)
C6	C5	C4	C3	0.7(2)	C14	C9	C15	N4	-14.0(2)
C6	C1	C2	C3	0.7(2)	C14	C9	C10	C11	0.71(19)
C15	N1	N2	N3	-0.90(13)	C11	C12	2 C13	C14	-0.2(2)
C15	N1	N2	C8	-172.66(11)					

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å2×10³) for 3a.

Atom	X	У	Z	U(eq)
			42	

H5	3114.14	-567	8920.38	36
H8A	1724.2	44.76	6681.3	37
H8B	2341.33	1163.92	7375.17	37
H1	5126.17	-586.34	6323.15	39
H10	-603.65	-225.2	1293.45	37
H4	4329.28	-1776.84	10691.28	42
H2	6350.06	-1765.11	8126.99	44
H14	-826.6	3113.3	842.03	42
H11	-1959.95	-416.03	-1166.05	45
H3	5939.1	-2393.46	10273.21	44
H12	-2749.18	1143.75	-2619.71	52
H13	-2175.53	2900.91	-1615.37	52

Figure S2. ORTEP view of 1-phenyl-2-(5-phenyl-2*H*-tetrazol-2-yl)ethan-1-one (**3a**) with ellipsoids at 50% probability.

(ii) Crystallographic description of 1-([1,1'-biphenyl]-3-yl)-2-(5-phenyl-2*H*-tetrazol-2-yl)ethan-1-one(3n).

The compound (**3n**) was crystallized from a supersaturated solution of dichloromethane by the slow evaporation method. Suitable single crystal was picked from the mother liquor and covered with perfluorinated polyether oil on a microscope slide. Compound **3n** was collected at 179.99 K on a Rigaku Oxford Diffraction Supernova Dual Source, Cu at Zero equipped with an AtlasS2 CCD using Cu Ka radiation. Data reduction was carried out with the diffractometer's software^[5]. The structure was solved by direct methods using Olex2 software^[6], and the non-hydrogen atoms were located from the trial structure and then refined anisotropically with SHELXL-2018^[7] using a full-matrix least squares procedure based on F^2 . The weighted *R* factor, *wR* and goodness-of-fit *S* values were obtained based on F^2 . The hydrogen atom positions were fixed geometrically at the calculated distances and allowed to ride on their parent atoms. Crystallographic data has been deposited with the Cambridge Crystallographic Centre and allocated with the deposition numbers: CCDC 2180989. Copies of the data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

Crystal structure determination of 3n

Crystal Data for C₂₁H₁₆N₄O (M =340.38 g/mol): monoclinic, space group C2/c (no. 15), a = 32.257(5) Å, b = 6.2874(5) Å, c = 17.439(2) Å, β = 103.904(14)°, V = 3433.2(8) Å³, Z = 8, T = 179.99(10) K, μ (CuK α) = 0.674 mm⁻¹, D_{calc} = 1.317 g/cm3, 11406 reflections measured (5.644° ≤ 2 Θ ≤ 148.14°), 3400 unique (Rint = 0.0600, Rsigma = 0.0622) which were used in all calculations. The final R₁ was 0.0555 (I > 2 σ (I)) and wR₂ was 0.1543 (all data).

Table 8 Crystal data and structure refinement for 3n.

3n
$C_{21}H_{16}N_4O$
340.38
179.99(10)
monoclinic
C2/c
32.257(5)
6.2874(5)

c/Å	17.439(2)
$\alpha/^{\circ}$	90
β/°	103.904(14)
γ/°	90
Volume/Å ³	3433.2(8)
Z	8
$\rho_{calc}g/cm^3$	1.317
μ/mm^{-1}	0.674
F(000)	1424.0
Crystal size/mm ³	0.14 imes 0.12 imes 0.09
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/°	5.644 to 148.14
Index ranges	$-39 \le h \le 39, -7 \le k \le 6, -20 \le l \le 21$
Reflections collected	11406
Independent reflections	3400 [Rint = 0.0600, Rsigma = 0.0622]
Data/restraints/parameters	3400/0/236
Goodness-of-fit on F ²	1.105
Final R indexes $[I \ge 2\sigma(I)]$	R1 = 0.0555, wR2 = 0.1351
Final R indexes [all data]	R1 = 0.0947, wR2 = 0.1543
Largest diff. peak/hole / e Å ⁻³	0.32/-0.20

Table 9 Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters (Å2 $\times 10^3$) for 3n. Ueq is defined as 1/3 of of the trace of the orthogonalised UIJ tensor.

Atom	Х	У	Ζ	U(eq)
01	1066.8(6)	1583(3)	298.7(11)	56.5(5)
N2	1795.5(6)	2320(3)	-128.5(11)	39.7(5)
N1	2095.4(6)	2154(3)	538.8(11)	40.0(5)
C7	598.9(7)	-4263(4)	-1459.7(13)	40.9(6)
N4	1987.4(7)	5495(3)	117.9(12)	48.2(5)
C12	899.1(7)	-2729(3)	-1120.4(13)	39.8(5)
C13	1129.7(7)	383(4)	-207.2(14)	40.3(5)
C21	2213.3(7)	4180(3)	677.9(13)	37.0(5)
C19	3036.5(7)	7585(4)	2006.7(15)	45.4(6)
C8	215.9(8)	-4346(4)	-1223.7(14)	46.9(6)
N3	1722.2(7)	4287(3)	-392.8(12)	49.9(5)
C20	2708.5(7)	6959(4)	1379.1(14)	41.4(6)
С9	134.5(8)	-2941(4)	-669.3(15)	52.0(7)
C6	680.5(8)	-5725(4)	-2079.4(14)	44.6(6)
C15	2554.8(7)	4879(4)	1347.8(13)	38.3(5)
C10	430.2(8)	-1415(4)	-341.7(15)	47.8(6)
C11	818.9(7)	-1306(4)	-563.6(13)	39.5(5)
C16	2728.3(7)	3476(4)	1957.4(15)	45.3(6)
C14	1537.4(7)	545(4)	-499.5(14)	42.1(6)

C1	890.7(8)	-5017(5)	-2636.7(15)	51.6(7)
C17	3050.2(8)	4147(4)	2583.5(15)	50.2(7)
C5	528.7(8)	-7792(4)	-2128.0(16)	52.5(7)
C18	3205.5(8)	6200(4)	2607.4(15)	49.1(6)
C2	947.4(9)	-6346(5)	-3237.1(17)	63.3(8)
C4	589.9(10)	-9129(4)	-2725.7(18)	63.5(8)
C3	798.6(10)	-8406(5)	-3274.5(19)	67.6(9)

Table 10 Anisotropic Displacement Parameters (Å2×103) for 3n. The Anisotropic displacement factor exponent takes the form: $-2\pi 2[h2a*2U11+2hka*b*U12+...]$.

Atom	U11	U22	U33	U23	U13	U12
01	56.8(11)	56.4(11)	62.0(12)	-19.0(9)	25.5(9)	-11.7(9)
N2	37.8(11)	35.9(11)	44.6(11)	0.8(9)	8.5(9)	-1.4(8)
N1	38.4(11)	36.2(11)	44.1(11)	1.4(9)	7.4(8)	-1.2(8)
C7	37.9(13)	40.8(13)	40.2(13)	-0.2(10)	2.0(10)	1.6(10)
N4	47.9(12)	38.4(11)	53.8(13)	4.6(10)	3.4(10)	-2.7(9)
C12	35.0(12)	40.8(13)	42.6(13)	0.3(10)	7.4(10)	-0.7(10)
C13	40.1(13)	40.0(13)	40.7(13)	-1.2(10)	9.7(10)	0.1(10)
C21	37.2(12)	35.5(12)	40.8(13)	2.2(10)	14.4(10)	1.2(9)
C19	39.0(13)	37.3(13)	60.2(16)	-5.9(11)	12.9(11)	-3.2(10)
C8	37.7(13)	51.7(15)	48.2(14)	-2.8(12)	4.5(11)	-6.5(11)
N3	51.6(13)	38.8(12)	53.8(13)	6.0(10)	1.8(10)	-3.2(9)
C20	38.2(12)	39.1(13)	47.8(14)	-0.3(11)	11.8(10)	-1.5(10)
C9	39.6(14)	65.3(17)	52.4(16)	-4.4(13)	13.5(11)	-7.5(12)
C6	35.6(12)	47.0(15)	44.9(14)	-6.3(11)	-3.1(10)	3.0(10)
C15	34.9(12)	37.7(12)	44.3(13)	0.3(10)	13.6(10)	-0.2(9)
C10	41.5(14)	55.5(16)	47.5(14)	-7.6(12)	12.9(11)	-2.5(11)
C11	36.9(12)	41.0(13)	39.7(13)	-1.9(10)	7.4(10)	-0.5(10)
C16	38.7(13)	39.3(13)	57.9(16)	6.9(11)	11.3(12)	-1.3(10)
C14	38.4(13)	38.2(13)	48.8(14)	-5.6(11)	8.6(10)	-2.7(10)
C1	38.8(13)	58.1(16)	56.2(16)	-10.5(13)	8.2(12)	4.8(12)
C17	36.5(13)	56.6(16)	54.6(15)	12.2(13)	5.4(11)	-0.8(11)
C5	50.3(16)	43.6(15)	53.6(16)	-1.4(12)	-7.3(12)	5.5(11)
C18	36.1(13)	57.4(16)	52.0(15)	-3.5(12)	7.3(11)	-1.3(11)
C2	48.3(16)	78(2)	61.5(18)	-16.4(16)	9.6(14)	12.6(14)
C4	61.9(19)	47.1(16)	67(2)	-13.3(14)	-12.2(15)	11.0(13)
C3	54.3(18)	74(2)	64.3(19)	-24.7(16)	-5.5(15)	24.9(15)

Table 11 Bond Lengths for 3n.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	C13	1.214(3)	C19	C18	1.370(3)
N2	N1	1.327(3)	C8	C9	1.381(3)
N2	N3	1.321(2)	C20	C15	1.395(3)
N2	C14	1.449(3)	C9	C10	1.376(3)

384(3)
201(2)
391(3)
400(3)
380(3)
386(3)
382(3)
89(4)
77(4)
73(4)

Table 12 Bond Angles for 3n.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
N1	N2	C14	123.44(18)	C1	C6	C7	120.8(2)
N3	N2	N1	114.28(18)	C5	C6	C7	120.2(2)
N3	N2	C14	122.00(19)	C5	C6	C1	119.0(2)
N2	N1	C21	101.56(17)	C20	C15	C21	120.3(2)
C12	C7	C6	120.6(2)	C16	C15	C21	120.4(2)
C8	C7	C12	118.4(2)	C16	C15	C20	119.4(2)
C8	C7	C6	121.0(2)	С9	C10	C11	119.8(2)
N3	N4	C21	106.60(18)	C12	C11	C13	122.1(2)
C11	C12	C7	121.0(2)	C12	C11	C10	119.4(2)
01	C13	C11	122.2(2)	C10	C11	C13	118.5(2)
01	C13	C14	120.7(2)	C17	C16	C15	119.9(2)
C11	C13	C14	117.15(19)	N2	C14	C13	110.58(18)
N1	C21	N4	111.8(2)	C6	C1	C2	120.8(3)
N1	C21	C15	123.9(2)	C16	C17	C18	120.5(2)
N4	C21	C15	124.3(2)	C6	C5	C4	120.1(3)
C18	C19	C20	120.8(2)	C19	C18	C17	119.7(2)
C9	C8	C7	120.9(2)	C3	C2	C1	119.7(3)
N4	N3	N2	105.72(19)	C3	C4	C5	120.3(3)
C19	C20	C15	119.6(2)	C4	C3	C2	120.1(3)
C10	C9	C8	120.5(2)				

Table 13 Torsion Angles for 3n.

A	В	С	D	Angle/°	А	В	С	D	Angle/°
01	C13	C11	C12	-177.5(2)	C8	C9	C10	C11	-0.9(4)
01	C13	C11	C10	4.2(4)	N3	N2	N1	C21	-0.7(2)
01	C13	C14	N2	-3.3(3)	N3	N2	C14	C13	-82.5(3)
N2	N1	C21	N4	0.7(2)	N3	N4	C21	N1	-0.5(3)
N2	N1	C21	C15	-177.8(2)	N3	N4	C21	C15	178.0(2)
N1	N2	N3	N4	0.5(3)	C20	C19	C18	C17	0.7(4)
N1	N2	C14	C13	91.0(2)	C20	C15	C16	C17	-0.2(3)

N1	C21	C15	C20	169.0(2)	C9	C10	C11	C12	0.7(4)
N1	C21	C15	C16	-11.0(3)	C9	C10	C11	C13	179.1(2)
C7	C12	C11	C13	-178.4(2)	C6	C7	C12	C11	177.6(2)
C7	C12	C11	C10	-0.1(3)	C6	C7	C8	C9	-177.7(2)
C7	C8	C9	C10	0.4(4)	C6	C1	C2	C3	-0.9(4)
C7	C6	C1	C2	-176.7(2)	C6	C5	C4	C3	-0.4(4)
C7	C6	C5	C4	177.4(2)	C1	5 C16	C17	C18	-0.6(4)
N4	C21	C15	C20	-9.4(3)	C1	1 C13	C14	N2	177.12(19)
N4	C21	C15	C16	170.6(2)	C1	6 C17	C18	C19	0.4(4)
C12	C7	C8	C9	0.2(4)	C1	4 N2	N1	C21	-174.7(2)
C12	C7	C6	C1	-36.7(3)	C	14 N2	N3	N4	174.5(2)
C12	C7	C6	C5	146.3(2)	C1	4 C13	C11	C12	2.1(3)
C21	N4	N3	N2	0.0(3)	C1	4 C13	C11	C10	-176.3(2)
C21	C15	C16	C17	179.8(2)	С	1 C6	C5	C4	0.4(3)
C19	C20	C15	C21	-178.7(2)	C	1 C2	C3	C4	0.9(4)
C19	C20	C15	C16	1.3(3)	С	5 C6	C1	C2	0.3(4)
C8	C7	C12	C11	-0.4(3)	C.	5 C4	C3	C2	-0.2(4)
C8	C7	C6	C1	141.2(2)	C1	8 C19	C20	C15	-1.5(4)
C8	C7	C6	C5	-35.8(3)					

Table 14 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å2×10³) for 3n.

Atom	X	У	Z	U(eq)
H12	1157.05	-2657.42	-1268.83	48
H19	3143.43	8961.34	2021.05	54
H8	12.38	-5361.98	-1442.73	56
H20	2591.21	7919.48	980.4	50
H9	-122.02	-3025.63	-516.06	62
H10	371.91	-459.75	25.85	57
H16	2627.36	2087.67	1942.92	54
H14A	1699.51	-763.26	-378.83	50
H14B	1464.82	732.91	-1068.27	50
H1	995	-3632.87	-2607.59	62
H17	3163.65	3209.21	2992.64	60
H5	385.48	-8287.02	-1759.93	63
H18	3423.75	6640.12	3029.39	59
H2	1085.31	-5850.02	-3613	76
H4	489.12	-10519.17	-2754.13	76
H3	839.5	-9309.06	-3672.25	81

Datablock 184 - ellipsoid plot

Figure S3. ORTEP view of 1-([1,1'-biphenyl]-3-yl)-2-(5-phenyl-2*H*-tetrazol-2-yl)ethan-1-one (**3n**) with ellipsoids at 50% probability.

References

- [1] Umemoto, H.; Maegawa, T. Synlett., 2015, 26, 205-208.
- [2] Kanakaraju, S.; Suresh, L. RSC Adv., 2015, 5, 29325–29334.
- [3] Venkataramani, S.; Patel, B. K. Chem. Sci., 2021, 12, 15318–15328.
- [4] Gilbert, I. H.; Wyatt, P. G. ChemMedChem., 2012, 7, 95 106.
- [5] Shinichi K.; Higashikawa G. RSC Adv., 2021, 11, 32837-32840.
- [6] Dolomanov, O. V.; Bourhis, L. J. J. Appl. Cryst., 2009, 42, 339-341.
- [7] Bourhis, L.J.; Puschmann, H. Acta Cryst., 2015, A71, 59-75.
- [8] Sheldrick, G.M.; Acta Cryst., 2015, C71, 3-8.

NMR Spectra

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

N=N / N-,!/ 0 N

3b, ¹H NMR CDCl₃, 400MHz

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

N=N / N-,!/ CF₃ O

3e, ¹H NMR CDCl₃, 400MHz

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

3j, ¹³C NMR CDCl₃, 100MHz

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

3I, ¹³C NMR CDCI₃, 100MHz

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

- 2.45 - 2.45 - 2.45 - 0.00

3o, ¹H NMR CDCl₃, 400MHz

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

8.18 8.16 8.16 7.7.97 7.7.96 7.7.49 7.7.49 6.99 6.99 6.99 6.08 7.15 6.99 7.115 6.113 7.115 6.113 7.115 6.113 7.115 6.113 7.115 6.113 7.126 6.113 7.126 6.113 7.126 6.117 7.126

3q, ¹H NMR CDCl₃, 400MHz

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

3s, ¹H NMR CDCl₃, 400MHz

Ph

- 58.19

-- 0.08

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 f1 (ppm) 50 40 30 20 10 0 -10

N=N .N-N O ∐ F

---0.00

$\begin{array}{c} 8.17\\ 8.16\\ 8.16\\ 7.59\\ 7.52\\ 7.749\\ 7.749\\ 7.749\\ 7.749\\ -6.10\\ -1.60\\ -1.60\\ -0.00\\ \end{array}$

N=N .N-___ 0 Ň CI

3u, ¹H NMR CDCl₃, 400MHz

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

-0.00 = -0.00 = -0.00

N=N N 0 Ń

3v, ¹H NMR CDCl₃, 400MHz

$\int_{-1}^{1} \frac{8.16}{7.92}$ $\int_{-1}^{1} \frac{7.92}{7.90}$ $\int_{-1}^{1} \frac{7.47}{7.26}$ -6.06 -3.386 -3.37 -1.60 -1.60

3w, ¹H NMR CDCl₃, 400MHz

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

8.14 8.13 8.112 8.112 7.589 7.7.760 7.5760 7.5760 7.561 7.561 7.562 7.56

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

N=N / N_./ 0 || Ń

3ba, ¹H NMR $\mathsf{CDCI}_3\text{, }400\text{ MHz}$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

,N≈Ņ Ν Ò

3ca, ¹H NMR CDCl₃, 400MHz

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

 $\begin{array}{c} 8.16\\ 8.15\\ 7.46\\ 7.31\\ 6.57\\ 6.13\\ 6.12\\ 6.12\\ 6.12\\ 6.12\\ 6.12\\ 6.12\\ 6.12\\ 6.12\\ 6.12\\ 6.12\\ 6.11\\ 6.11\\ 0.12\\ 1.05$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

- 0.07

N=N, 0 II

3ga, ¹H NMR CDCl₃, 400MHz

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

8.27 8.25 8.19 8.05 8.05 8.03 8.03 8.03 7.64 7.64 7.62 7.62 7.726 6.46 - 1.60 - 0.07

N=N / N...// 0 Ń

3ha, ¹H NMR CDCl₃, 400MHz

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

- 0.07 - 0.07

N=N N...! 0 Me

3ja, ¹H NMR CDCl₃, 400MHz

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

8,15 8,15 8,15 7,7,26 7,7,26 2,46 2,46 2,46 1,17 1,166 0,95 1,157 0,095 0,095

N=N 0 Me[^]

3ma, ¹H NMR CDCl₃, 400MHz

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

3na, ¹H NMR CDCl₃, 400MHz

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

3ac, ¹H NMR CDCl₃, 400MHz

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

6.46 6.46 6.46 6.46 7.87 7.87 7.87 7.87 7.55

- 0.07

N=N 0

3aj, ¹H NMR CDCl₃, 400MHz

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)