Supporting Information

Organocatalytic (3+3)-cycloaddition of ortho-substituted phenyl nitrones with aryl cyclopropane carbaldehydes: A facile access towards the synthesis of enantioenriched 1,2-oxazinanes
 Arijit Hazra, Asit Ghosh, Neeraj Yadav, and Prabal Banerjee*

Lab no-406, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab-140001, India E-mail: prabal@iitrpr.ac.in

Contents

1. General information S3
2. General procedure for preparation of cyclopropane carbaldehydes S3
3. General procedure for preparation of 2-sustituted nitrones S6
4. Optimization Table S9
5. Representative procedure and substrate scope for the (3+3)-cycloaddition
between cyclopropane carbaldehydes and 2-substituted Nitrones S9
6. Chemical transformation S17
7. NMR, Mass and HPLC spectra of compounds S18
8. X-ray data of 5aa S76
9. Control experiments S78
10. Rearrangement reaction for the production of aryl aldehydes S79
11. References S80

1. General Information

All reactions were carried out under inert atmosphere with oven-dried glasswares. All solvents and reagents were obtained from commercial sources and were purified following the standard procedure prior to use. Powdered molecular sieves ($4 \AA$ MS) were dried at $200{ }^{\circ} \mathrm{C}$ under vacuum prior to use. Thin-layer chromatography was performed on Merck precoated silica gel 60 F254 aluminum sheets with detection under UV light at 254 nm and charring with p anisaldehyde solution. Chromatographic purifications were performed with silica gel (230-400 mesh) and melting points were taken on Stuart digital melting point apparatus. Nuclear magnetic resonance (NMR) spectroscopy was performed using JEOL 400 MHz and HRMS was recorded on Waters Xevo G2-XS (Q-TOF). The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3}. Chemical shifts of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are expressed in parts per million (ppm). All coupling constants are absolute values and are expressed in Hertz. The description of the signals includes the following: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ doublet of doublet, $\mathrm{t}=$ triplet, $\mathrm{dt}=$ doublet of triplet, $\mathrm{q}=$ quartet, $\mathrm{dq}=$ doublet of quartet, $\mathrm{br}=$ broad, and $\mathrm{m}=$ multiplet. Optical rotations were measured on a Anton Paar MCP 200, $[\alpha]^{\mathrm{D}}$ values are given in deg. $\mathrm{cm}^{3} \cdot \mathrm{~g}^{-1} \cdot \mathrm{dm}^{-1}$; concentration (c) in $\mathrm{g}(100 \mathrm{~mL})^{-1}$. The enantiomeric excess (ee) values of the products were determined by High Performance Liquid Chromatography (Waters modular system) using Daicel Chiralpak IC, and ASH columns as chiral stationary phase.

2. General procedure for the preparation of trans-2-Arylcyclopropanecarbaldehydes (1) ${ }^{1}$

1) To a mixture of triethyl phosphonoacetate (1.1 equiv.), DBU (0.035 equiv.), and finely ground $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv.) was added ArCHO (1 equiv.) and the resulting mixture was stirred using a magnetic stirrer for 4 h at room temperature under argon atmosphere. Ethyl acetate was added to the crude mixture and the solid was filtered off. The solid was rinsed with ethyl acetate and the combined filtrate was concentrated. The resulting oil was distilled under reduced pressure using a bulb-to-bulb apparatus ($10 \mathrm{~mm} \mathrm{Hg} / 240{ }^{\circ} \mathrm{C}$) to give corresponding alkene (yield 84%) ($\mathrm{E}: \mathrm{Z}=99: 1$).
2) A suspension of TMSOI (1.2 equiv.) and NaH (1.5 equiv.) in anhydrous DMSO (15 mL) was stirred for 1 h . A DMSO solution (14 mL) of alkene ($14 \mathrm{mmol}, 1$ equiv) was added at 0 ${ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $55{ }^{\circ} \mathrm{C}$ for 24 h . Another suspension of TMSOI (0.3 equiv.) and NaH (0.3 equiv.) in DMSO (10 mL) was added to the reaction mixture and reaction was stirred at $65{ }^{\circ} \mathrm{C}$ for 84 h . The solution was poured into a brine solution and extracted with
ethyl acetate. Combined organic layer was washed with water and dried over MgSO_{4}, concentrated and purified by silica gel column to afford corresponding cyclopropane derivative as a white solid (60-80\% yield).
3) To a stirred solution of LAH (1.5 equiv.) in 7 mL diethyl ether was added dropwise a solution of cyclopropane ester (0.90 mmol , lequiv.) in 3 mL diethyl ether under N_{2} atmosphere. After addition was completed the reaction mixture was refluxed for another 6 h . The reaction mixture was then cooled to rt , and the excess LAH was destroyed by water. 15 mL of $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and 8 mL of ether was added and the aqueous layer was extracted several times with diethyl ether. The combined organic layer was washed with water and $5 \% \mathrm{NaHCO}_{3}$, dried over MgSO_{4} and concentrated in a rotary evaporator ($90-95 \%$ yield). Without any further purification, the crude material (a colorless oil) was used for next step.
4) To a solution of cyclopropane alcohol ($6.8 \mathrm{mmol}, 1$ equiv.) in dry DCM (14 mL), PCC (2 equiv.) was added in a portion-wise manner through a solid addition tube under N_{2} atmosphere. After 3 h reaction mixture was filtered through a small plug of celite and concentrated in vacuo. The crude mixture was purified by silica gel column chromatography using ethyl acetate in hexane as an eluent. Starting from aryl aldehyde the 2-arylcyclopropanecarbaldehydes was obtained in 40-55\% overall yield.

trans-2-(4-methoxyphenyl)cyclopropane-1-carbaldehyde (1a)

${ }^{1} \mathbf{H}$ NMR (400 MHz): $\delta 9.30(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) 2.63-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.45(\mathrm{~m}, 1 \mathrm{H})$

trans-2-(4-(benzyloxy)phenyl)cyclopropanecarbaldehyde (1b)

${ }^{1} \mathbf{H}$ NMR (400 MHz): $\delta 9.30(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.90(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 2.62-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.67(\mathrm{~m}, 1 \mathrm{H})$, $1.51-1.45(\mathrm{~m}, 1 \mathrm{H})$
trans-2-(3,4-dimethoxyphenyl)cyclopropanecarbaldehyde (1c)

${ }^{1}$ H NMR (400 MHz): $\delta 9.28$ (d, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.77 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), $6.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.62-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.51-$ 1.46 (m, 1H)
trans-2-(3-ethoxy-4-methoxyphenyl)cyclopropanecarbaldehyde (1d)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l} 3$) $\delta 9.29$ (d, J = $4.8 \mathrm{~Hz}, 1 \mathrm{H}$), $6.78(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.63$ $(\mathrm{m}, 2 \mathrm{H}), 4.07(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.61-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.05(\mathrm{~m}, 1 \mathrm{H})$, $1.72-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$
trans-2-(benzo[d][1,3]dioxol-5-yl)cyclopropanecarbaldehyde (1e)

${ }^{1} H$ NMR (400 MHz): $\delta 9.30(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 2 \mathrm{H}), 2.60-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.49-$ 1.43 (m, 1H)
trans-2-(3,4,5-trimethoxyphenyl)cyclopropanecarbaldehyde (1f)

${ }^{1} \mathbf{H}$ NMR (400 MHz): $\delta 9.31(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 6 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.62-$ $2.56(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.47(\mathrm{~m}, 1 \mathrm{H})$
trans-2-(furan-2-yl)cyclopropane-1-carbaldehyde (1g)

${ }^{1} \mathbf{H}$ NMR (400 MHz): $\delta 9.36(\mathrm{~d}, \mathrm{~J}=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.30-6.28(\mathrm{~m}, 1 \mathrm{H}), 6.10$ $(\mathrm{d}, \mathrm{J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.56(\mathrm{~m}$, $1 \mathrm{H})$.
trans-2-(thiophen-2-yl)cyclopropane-1-carbaldehyde (1h)

${ }^{1} \mathbf{H}$ NMR (400 MHz): $\delta 9.38(\mathrm{~d}, \mathrm{~J}=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.85-$ $6.84(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.50(\mathrm{~m}, 1 \mathrm{H})$.

3. General procedure for the preparation of $\mathbf{2}$-sustituted nitrones (2) ${ }^{\mathbf{2}}$

Aldehyde (1.0 equiv), N-methylhydroxylamine hydrochloride (2.0 equiv), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (2.2 equiv), and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (0.5 equiv) were added to a mortar and ground until completion. $\mathrm{Et}_{2} \mathrm{O}$ was added, the mixture filtered, and concentrated in vacuo.
(E)- N -(2-methylbenzylidene)methanamine oxide (2a)

${ }^{1} \mathrm{H}$ NMR ($\left.\mathbf{4 0 0} \mathbf{~ M H z}\right): \delta 9.08-9.05(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.13(\mathrm{~m}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$, 2.32 ($\mathrm{s}, 3 \mathrm{H}$)
(E)-N-(2-methoxybenzylidene)methanamine oxide (2b)

${ }^{1} \mathbf{H}$ NMR (400 MHz): $\delta 9.21-9.21(\mathrm{~m}, 1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.02-6.99(\mathrm{~m}$, $1 \mathrm{H}), 6.87-6.85(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$
(\boldsymbol{E})- N -(2-fluorobenzylidne)methanamine oxide (2c)

${ }^{1}$ H NMR ($\mathbf{4 0 0} \mathbf{~ M H z) : ~} \delta$ 9.24-9.20 (m, 1H), 7.66 ($\mathrm{s}, 1 \mathrm{H}$), 7.40-7.35 (m, 1H), 7.23-7.20 (m, $1 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 1 \mathrm{H}), 3.91$ ($\mathrm{s}, 3 \mathrm{H}$)
(E)- N-(2-bromobenzylidene)methanamine oxide (2d)

${ }^{1}$ H NMR ($\mathbf{4 0 0} \mathbf{~ M H z) : ~} \delta$ 9.29-9.27 (m, 1H), $7.85(\mathrm{~s}, 1 \mathrm{H}), 7.63-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}$, $1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H})$
(E)-N-(2-((tert-butyldimethylsilyl)oxy)benzylidene)methanamine oxide (2e)

${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z) : ~} \delta 9.15-9.13(\mathrm{~m}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.00-6.97(\mathrm{~m}$, 1 H), 6.78 (d, J=8.2 Hz, 1H), 3.83 (s, 3H), 0.98 (s, 9H), 0.20 ($\mathrm{s}, 6 \mathrm{H}$)
(E)-N-(2-hydroxybenzylidene)methanamine oxide (3a)

${ }^{1}$ H NMR (400 MHz): $\delta 12.35(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~S}, 1 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{dd}, \mathrm{J}=7.7 \mathrm{~Hz}$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.81(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$
(E)-N-(2-hydroxy-5-methylbenzylidene)methanamine oxide (3b)

${ }^{1} \mathbf{H}$ NMR (400 MHz): $\delta 12.10(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~S}, 1 \mathrm{H}), 7.18(\mathrm{dd}, \mathrm{J}=8.2 \mathrm{~Hz}, 2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}$, $\mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.79(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H})$
(E)- N-(5-chloro-2-hydroxybenzylidene)methanamine oxide (3c)

${ }^{1} \mathbf{H}$ NMR (400 MHz): $\delta 12.15(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~S}, 1 \mathrm{H}), 7.32(\mathrm{dd}, \mathrm{J}=8.7 \mathrm{~Hz}, 2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}$, $\mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H})$
(\boldsymbol{E})- N -(5-bromo-2-hydroxybenzylidene)methanamine oxide (3d)

${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$): $\delta 12.24(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}$, $\mathrm{J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$
(E)- N-(2-hydroxy-4-methoxybenzylidene)methanamine oxide (3e)

${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{4 0 0} \mathbf{~ M H z}\right): \delta 13.42(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.44-6.39(\mathrm{~m}$, 2 H), 3.81 ($\mathrm{s}, 3 \mathrm{H}$), 3.80 ($\mathrm{s}, 3 \mathrm{H}$)
(E)-N-(2-hydroxy-3-methoxybenzylidene)methanamine oxide (3f)

${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$): $\delta 12.49(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.76(\mathrm{~m}$, 1 H), 6.66 ($\mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.86 ($\mathrm{s}, 3 \mathrm{H}$), 3.85 ($\mathrm{s}, 3 \mathrm{H}$)

4. Optimization Study

Table S1: Optimization of the reaction conditions

${ }^{a}$ Unless otherwise all the reactions were carried out with 1 equiv. of $1 \mathrm{a}, 1.5$ equiv. of $2 \mathrm{a}, 40 \mathrm{~mol} \%$ of catalyst in the presence of $4 \AA$ molecular sieves at refluxing condition for 10 h ; bisolated yield by column chromatography; ${ }^{\mathrm{c}}$ determined by chiral HPLC analysis; ${ }^{\mathrm{d}}$ determined from crude nmr ; ${ }^{e}$ no reaction; ${ }^{\mathrm{f}}$ complex mixture; ${ }^{\text {g reaction performed at room temperature for } 6}$ d; ${ }^{\text {h }} 30 \mathrm{~mol} \%$ catalyst taken; ${ }^{\text {i }} 50 \mathrm{~mol} \%$ catalyst taken, ${ }^{\mathrm{j}}$ unsubstituted nitrone was used.

5. Representative procedure and substrate scope for the (3+3)-cycloaddition

between cyclopropane carbaldehydes and 2-substituted nitrones

To a round-bottom flask equipped with a magnetic stir bar was charged with cyclopropane carbaldehyde (1 equiv.), 2 -substituted nitrone (1.5 equiv.), activated $4 \AA$ MS ($200 \mathrm{~mol} \%$), and Jørgensen-Hayashi Catalyst I (0.4 equiv.) under nitrogen atmosphere. CCl_{4} was added as a
solvent to the reaction mixture and was stirred under reflux conditions for 10-12 hours. After the completion of the reaction (as monitored by TLC), the reaction mixture was passed through a small pad of Celite, and the solvent was removed under reduced pressure by a rotary evaporator. Then the crude product was further purified by column chromatography on silica gel with EtOAc/hexane as eluent.

Racemic products were prepared according to the representative procedure 5 by using the racemic catalyst.
(6R)-6-(4-methoxyphenyl)-2-methyl-3-(o-tolyl)-1,2-oxazinane-4-carbaldehyde (4aa)

Prepared accoding to GP 3. 1a $(0.044 \mathrm{~g}, 0.25 \mathrm{mmol})$, 2a ($0.036 \mathrm{~g}, 0.37 \mathrm{mmol}$), 4aa ($0.036 \mathrm{~g}, 0.11 \mathrm{mmol}$); Yellowish sticky liquid, 44% overall yield; $[\alpha]_{\mathrm{D}}{ }^{25}=-86.07$ ($\mathrm{c}=0.7$, CHCl_{3}); 75:25 er of major diastereomer was determined by chiral HPLC analysis, [Chiralpak IC, hexane/i- $\mathrm{PrOH}=90 / 10$, $0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}($ minor $)=9.36 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $\left.)=11.49 \mathrm{~min}\right]$;
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z) : ~} \delta 9.40(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=$
$7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.17$ (m, 1H), 6.91 $(\mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.00(\mathrm{dd}, J=11.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~m}, 1 \mathrm{H})$, 3.34-3.28 (m, 1H), $2.43(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.18-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.89(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta 201.7,159.6,136.8,136.6,132.2,130.8,128.1,128.0,127.8,127.3$, 127.0, 114.0, 79.3, 65.7, 55.8, 55.4, 43.2, 31.9, 20.5; HRMS (ESI, Q-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{3} 326.1756$, Found 326.1751
(6R)-6-(4-(benzyloxy)phenyl)-2-methyl-3-(o-tolyl)-1,2-oxazinane-4-carbaldehyde (4ba)

Prepared accoding to GP 3. 1a ($0.063 \mathrm{~g}, 0.25 \mathrm{mmol}$), 2a ($0.056 \mathrm{~g}, 0.37 \mathrm{mmol}), 4$ ba ($0.036 \mathrm{~g}, 0.09 \mathrm{mmol}$); Yellowish sticky liquid, 36% overall yield; $[\alpha]_{D}{ }^{25}=-49.43$ (c $=0.7$, CHCl_{3}); 73.5:26.5 er of major diastereomer was determined by chiral HPLC analysis, [Chiralpak IC, hexane/i-PrOH = $90 / 10,0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}($ minor $)=17.60 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=$ $18.24 \mathrm{~min}]$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z) : ~} \delta 9.39(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.50-7.49 (m, 1H) 7.43-7.35 (m, 8H), 7.19-7.16 (m, 2H), 6.98 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 4.99(\mathrm{dd}, J=11.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.33-3.27 (m, 1H), 2.42 (s, 3H), 2.40 (s, 3H), 2.18-2.13 (m, 1H), 1.98-1.89 (m, 1H); ${ }^{13} \mathbf{C}$ NMR (100 MHz): $\delta 201.7,158.8,136.9,136.8,136.5,132.4,130.7,128.7,128.1,128.0$, $127.9,127.5,127.2,127.0,114.9,79.3,70.0,65.7,55.8,43.1,31.8,20.5$; HRMS (ESI, QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NO}_{3} 402.2069$, Found 402.2068

(6R)-6-(3,4-dimethoxyphenyl)-2-methyl-3-(o-tolyl)-1,2-oxazinane-4-carbaldehyde (4ca)

Prepared accoding to GP 3. 1c $(0.052 \mathrm{~g}, 0.25 \mathrm{mmol}), \mathbf{2 a}(0.056 \mathrm{~g}, 0.37 \mathrm{mmol}), \mathbf{4 c a}(0.048 \mathrm{~g}$, $0.13 \mathrm{mmol})$; Yellowish sticky liquid, 54% overall yield; $[\alpha]_{\mathrm{D}}{ }^{25}=-60.25\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; 79.5:20.5 er of major diastereomer was determined by chiral HPLC analysis, [Chiralpak IC,

hexane $/ \mathrm{i}-\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}$ (major) $=28.98 \mathrm{~min}$, $\mathrm{t}_{\mathrm{R}}($ minor $\left.)=36.04 \mathrm{~min}\right] ;{ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z) : ~} \delta 9.41(\mathrm{~d}, J=$ $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.17$ (m, 4H), 6.996.97 (m, 2H), 6.88-6.86 (m, 1H), 4.99 (dd, $J=11.5,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.95(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.35-3.28(\mathrm{~m}$, $1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.20-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.91$ (m, 1H); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z) : ~} \delta$ 201.8, 149.0, 136.8, 136.5, $132.4,130.8,128.0,127.2,127.0,119.2,111.0,110.0,79.6,65.7,56.0,56.0,55.8,43.2,31.8$, 20.5; HRMS (ESI, Q-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{4} 356.1862$, Found 356.1858
(6R)-6-(benzo[d][1,3]dioxol-5-yl)-2-methyl-3-(o-tolyl)-1,2-oxazinane-4-carbaldehyde (4ea)

Prepared accoding to GP 3. 1d ($0.048 \mathrm{~g}, 0.25 \mathrm{mmol}$), 2a ($0.056 \mathrm{~g}, 0.37 \mathrm{mmol}$), 4da ($0.024 \mathrm{~g}, 0.07 \mathrm{mmol}$); Yellowish sticky liquid, 28% overall yield; $[\alpha]_{\mathrm{D}}{ }^{25}=-52.48$ ($\mathrm{c}=0.7$, CHCl_{3}); 62.5:37.5 er of major diastereomer was determined by chiral HPLC analysis, [Chiralpak IC, hexane/i-PrOH = $90 / 10,0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}($ minor $)=16.89 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=18.63$ min]; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z) : ~} \delta 9.39(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.94-6.93(\mathrm{~m}, 1 \mathrm{H})$, 6.90-6.88 (m, 1H), 6.81-6.79 (m, 1H), 5.96-5.93 (m, 2H), $4.95(\mathrm{dd}, J=11.4,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.91(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.32-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.12(\mathrm{~m}, 1 \mathrm{H})$, 1.94-1.84 (m, 1H); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z) : ~} \delta 201.7$, 147.9, 147.6, 136.7, 136.6, 133.9, 130.8, 128.0, 127.3, 127.0, 120.3, 108.3, 107.4, 101.2, 79.5, 65.7, 55.8, 43.2, 32.1, 20.5; HRMS (ESI, Q-TOF) m/z: [M+H] ${ }^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{4} 340.1549$, Found 340.1545
(6R)-6-(3-ethoxy-4-methoxyphenyl)-2-methyl-3-(o-tolyl)-1,2-oxazinane-4-carbaldehyde (4da)

Prepared accoding to GP 3. 1e ($0.055 \mathrm{~g}, 0.25 \mathrm{mmol}$), 2a ($0.056 \mathrm{~g}, 0.37 \mathrm{mmol}$), 4ea ($0.032 \mathrm{~g}, 0.08 \mathrm{mmol}$); Yellowish sticky liquid, 35% overall yield; $[\alpha]_{\mathrm{D}}{ }^{25}=-84.16$ ($\mathrm{c}=0.4$, CHCl_{3}); 82.5:17.5 er of major diastereomer was determined by chiral HPLC analysis, [Chiralpak IC, hexane/i-PrOH = $80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}($ major $)=17.88 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=23.56$ min]; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z) : ~} \delta 9.40(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.98-6.96(\mathrm{~m}, 2 \mathrm{H})$, 6.87-6.85 (m, 1H), 4.97 (dd, $J=11.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.93$ (d, $J=10.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.87 (s, 3H), 3.33-3.28 (m, 1H), 2.43 (s, 3H), 2.41 (s, 3H), 2.19-2.14 (m, 1H), 1.99$1.89(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z) : ~} \delta 201.9,149.3,148.4,136.8$, 136.6, 132.4, 130.8, 128.0, 127.2, 127.0, 119.2, 111.4, 111.3, 79.6, 65.7, 64.4, 56.1, 55.8, 43.2, 31.8, 20.5, 14.9; HRMS (ESI, Q-TOF) m/z: [M+H] ${ }^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{2} \mathrm{NO}_{4}$ 370.2018, Found 370.2010

Prepared accoding to GP 3. 1f ($0.060 \mathrm{~g}, 0.25 \mathrm{mmol}$), 2a (0.056 $\mathrm{g}, 0.37 \mathrm{mmol}), 4 \mathbf{4 a}(0.036 \mathrm{~g}, 0.09 \mathrm{mmol})$; Yellowish sticky liquid, 37% overall yield; $[\alpha]_{D}{ }^{25}=-109.54\left(c=0.4, \mathrm{CHCl}_{3}\right)$; 62.5:37.5 er of major diastereomer was determined by chiral HPLC analysis, [Chiralpak IC, hexane/i-PrOH $=60 / 40,1.0$ $\mathrm{mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}($ minor $)=10.74 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $\left.)=21.22 \mathrm{~min}\right] ;{ }^{1} \mathbf{H}$ NMR (400 MHz): $\delta 9.40(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.28-7.18$ (m, 3H), 6.65 (s, 2H), 4.98 (dd, $J=11.5$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.95 (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.90(\mathrm{~s}, 6 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.35-3.28(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~s}$, $3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.20-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.89(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z) : ~} \delta 201.8$, $153.4,137.9,136.7,136.5,135.5,130.8,128.0,127.2,127.0,103.8,80.0,65.7,60.9,56.2$, 55.7, 43.2, 32.0, 20.5; HRMS (ESI, Q-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{5}$ 386.1967, Found 386.1964
(6R)-6-(furan-2-yl)-2-methyl-3-(o-tolyl)-1,2-oxazinane-4-carbaldehyde (4ka)

Prepared accoding to GP 3. $\mathbf{1 g}(0.034 \mathrm{~g}, 0.25 \mathrm{mmol}), \mathbf{2 a}(0.056 \mathrm{~g}$, $0.37 \mathrm{mmol}), \mathbf{4 g a}(0.036 \mathrm{~g}, 0.12 \mathrm{mmol})$;Yellowish sticky liquid, 45\% overall yield; Yellowish sticky liquid, 45% overall yield; $[\alpha]_{\mathrm{D}}{ }^{25}=-45.86\left(\mathrm{c}=0.6, \mathrm{CHCl}_{3}\right) ; 60.5: 39.5$ er of major diastereomer was determined by chiral HPLC analysis, [Chiracel ASH, hexane/i$\operatorname{PrOH}=90 / 10,0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}($ major $)=6.93 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=$ $8.16 \mathrm{~min}] ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z) : ~} \delta 9.37(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.43-$ $6.42(\mathrm{~m}, 1 \mathrm{H}), 6.38-6.37(\mathrm{~m}, 1 \mathrm{H}), 5.12-5.09(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.23(\mathrm{~m}$, $1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.15(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$): $\delta 201.5,152.4$, $142.9,136.5,130.8,128.1,127.2,127.0,110.4,108.4,73.0,65.7,55.4,43.1,28.7,20.5$; HRMS (ESI, Q-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{3}$ 286.1443, Found 286.1437

(6R)-2-methyl-6-(thiophen-2-yl)-3-(o-tolyl)-1,2-oxazinane-4-carbaldehyde (4la)

4ha

Prepared accoding to GP 3. 1h ($0.038 \mathrm{~g}, 0.25 \mathrm{mmol}$), 2a (0.056 g , $0.37 \mathrm{mmol})$, 4ha ($0.025 \mathrm{~g}, 0.08 \mathrm{mmol}$); Yellowish sticky liquid, 28% overall yield; $[\alpha]_{\mathrm{D}}{ }^{25}=-46.49\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right) ; 79: 21 \mathrm{er}$ of major diastereomer was determined by chiral HPLC analysis, [Chiracel ASH, hexane/i-PrOH $=90 / 10,0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $7.01 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=8.07 \mathrm{~min}\right] ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$): $\delta 9.38(\mathrm{~d}$, $J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.24-$ 7.17 (m, 3H), 7.12-7.11 (m, 1H), 7.02-7.00 (m, 1H), 5.28 (dd, $J=$ $11.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.33-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$, 2.35-2.30 (m, 1H), 2.08-1.99 (m, 1H); ${ }^{13}$ C NMR ($100 \mathbf{~ M H z) : ~} \delta 201.5,142.5,136.6,130.8$, 128.1, 127.2, 127.0, 126.7, 125.7, 125.3, 75.3, 65.7, 55.6, 43.1, 32.4, 20.5; HRMS (ESI, QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~S} 302.1215$, Found 302.1211
(6R)-3-(2-methoxyphenyl)-6-(4-methoxyphenyl)-2-methyl-1,2-oxazinane-4-carbaldehyde (4ab)

Prepared accoding to GP 3. 1a $(0.044 \mathrm{~g}, 0.25 \mathrm{mmol})$, 2b ($0.061 \mathrm{~g}, 0.37 \mathrm{mmol}), 4 \mathbf{4 b}(0.029 \mathrm{~g}, 0.08 \mathrm{mmol})$; Yellowish sticky liquid, 34% overall yield; $[\alpha]_{\mathrm{D}}{ }^{25}=-19.50$ ($\mathrm{c}=0.6$, CHCl_{3}); 62:38 er of major diastereomer was determined by chiral HPLC analysis, [Chiralpak IC, hexane/i $-\mathrm{PrOH}=95 / 5$, $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}($ minor $)=14.93 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $\left.)=16.06 \mathrm{~min}\right]$;
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z) : ~} \delta 9.37$ (d, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.48-7.47
(m, 1H), 7.36 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.03-$ $6.99(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.89(\mathrm{~m}, 3 \mathrm{H}), 4.96(\mathrm{dd}, J=11.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.84(\mathrm{~m}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.09-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.12-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.92(\mathrm{~m}$, 1H); ${ }^{13}$ C NMR ($\mathbf{1 0 0} \mathbf{~ M H z) : ~} \delta$ 202.3, 159.6, 157.1, 132.3, 129.2, 128.1, 121.5, 114.0, 110.8, 79.2, 61.7, 55.6, 55.4, 43.6, 31.8; HRMS (ESI, Q-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{4} 342.1705$, Found 342.1705
(6R)-3-(2-fluorophenyl)-6-(4-methoxyphenyl)-2-methyl-1,2-oxazinane-4-carbaldehyde (4ac)

Prepared accoding to GP 3. 1a ($0.044 \mathrm{~g}, 0.25 \mathrm{mmol})$, 2c (0.057 $\mathrm{g}, 0.37 \mathrm{mmol}), 4 \mathrm{ac}(0.027 \mathrm{~g}, 0.08 \mathrm{mmol})$; Yellowish sticky liquid, 32% overall yield; $[\alpha]_{\mathrm{D}}{ }^{25}=-96.18\left(\mathrm{c}=0.3, \mathrm{CHCl}_{3}\right)$; 78.5:21.5 er of major diastereomer was determined by chiral HPLC analysis, [Chiralpak IC, hexane/i- $\mathrm{PrOH}=90 / 10,0.5$ $\mathrm{mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}($ minor $)=17.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $\left.)=19.2 \mathrm{~min}\right] ;{ }^{1} \mathbf{H}$ NMR (400 MHz): $\delta 9.46(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.46$ (m, $1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.91$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.98(\mathrm{dd}, J=11.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{bs}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.32-3.16(\mathrm{~m}$, $1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.88(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$): $\delta 201.1$, 162.2, 159.7, 159.5, 132.0, 130.1, 130.0, 128.1, 125.0, 114.0, 55.4, 43.9, 31.9; HRMS (ESI, Q-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~F} 330.1505$, Found 330.1500
(6R)-3-(2-bromophenyl)-6-(4-methoxyphenyl)-2-methyl-1,2-oxazinane-4-carbaldehyde (4ad)

Prepared accoding to GP 3. 1a ($0.044 \mathrm{~g}, 0.25 \mathrm{mmol}$), 2d $(0.079 \mathrm{~g}, 0.37 \mathrm{mmol}), 4 \mathbf{a d}(0.027 \mathrm{~g}, 0.07 \mathrm{mmol})$; Yellowish sticky liquid, 27% overall yield; $[\alpha]_{D}{ }^{25}=-46.62(c=1.0$, CHCl_{3}); 84:16 er of major diastereomer was determined by chiral HPLC analysis, [Chiralpak IC, hexane/i- $\operatorname{PrOH}=90 / 10$, $0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}($ minor $)=18.93 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $\left.)=20.87 \mathrm{~min}\right]$; ${ }^{1}$ H NMR (400 MHz): $\delta 9.47(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=$ $8.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.34(\mathrm{~m}$,
$3 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.97(\mathrm{dd}, J=11.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=$ $10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.15-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.16-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.95(\mathrm{~m}$, 1H); ${ }^{13}$ C NMR ($100 \mathbf{~ M H z) : ~} \delta 201.1,159.7,137.8,133.3,131.9,129.8,129.5,128.5,128.1$, 125.1, 114.0, 79.3, 68.4, 56.1, 55.4, 43.4, 31.6; HRMS (ESI, Q-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$
calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{Br} 390.0705$, Found 390.0700
(6R)-3-(2-((tert-butyldimethylsilyl)oxy)phenyl)-6-(4-methoxyphenyl)-2-methyl-1,2-oxazinane-4-carbaldehyde (4ae)

Prepared accoding to GP 3. 1a ($0.044 \mathrm{~g}, 0.25 \mathrm{mmol}$), 2e ($0.098 \mathrm{~g}, 0.37 \mathrm{mmol}$), 4ae ($0.022 \mathrm{~g}, 0.05 \mathrm{mmol}$); Yellowish sticky liquid, 20% overall yield; $[\alpha]_{\mathrm{D}}{ }^{25}=79.26$ ($\mathrm{c}=0.8$, CHCl_{3}); 78:22 er of major diastereomer was determined by chiral HPLC analysis, [Chiracel ASH, hexane/i-PrOH = 90/10, $0.2 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}($ minor $)=12.90 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $\left.)=17.74 \mathrm{~min}\right]$; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z) : ~} \delta 9.38(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.47$ (m, 1H), 7.36 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.02-$ $6.98(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.84-6.82(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{dd}, J=11.5,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.19(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.10-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.10(\mathrm{~m}, 1 \mathrm{H})$, $1.97-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 0.28(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 0} \mathbf{~ M H z}\right): \delta 202.2,159.6,153.6$, 132.2, 128.9, 128.7, 128.5, 128.2, 121.9, 118.3, 114.0, 79.0, 62.6, 55.5, 55.4, 43.5, 31.6, 26.0, 18.4, -3.8; HRMS (ESI, Q-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{NO}_{4} \mathrm{Si} 442.2414$, Found 442.2411
(3R)-3-(4-methoxyphenyl)-1-methyl-1,3,4,10a-tetrahydrochromeno[2,3-c][1,2]oxazine (5aa)

Prepared accoding to GP 3. 1a ($0.044 \mathrm{~g}, 0.25 \mathrm{mmol}$), 3a ($0.056 \mathrm{~g}, 0.37 \mathrm{mmol}$), 5aa ($0.020 \mathrm{~g}, 0.06 \mathrm{mmol}$); White solid; 26% overall yield; Melting point: $118-121{ }^{\circ} \mathrm{C}[\alpha]_{\mathrm{D}}{ }^{25}=$ 256.04 ($\mathrm{c}=0.3 \mathrm{CHCl}_{3}$); 74:26 er of major diastereomer was determined by chiral HPLC analysis, [Chiralpak IC, hexane $/ \mathrm{i}-\mathrm{PrOH}=90 / 10,0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}($ major $)=$ $14.61 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=15.47 \mathrm{~min}\right] ;{ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$): δ $7.33(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.96-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.88-6.86(\mathrm{~m}, 1 \mathrm{H})$, $6.80-6.78(\mathrm{~m}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 4.92(\mathrm{dd}, J=9.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $2.81(\mathrm{~s}, 3 \mathrm{H}), 2.76-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.69(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz): $\delta 159.7,151.6$, 131.8, 129.8, 128.9, 128.2, 127.9, 126.3, 121.7, 120.1, 119.3, 115.2, 114.0, 92.8, 80.9, 55.4, 41.7, 40.1; HRMS (ESI, Q-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{3} 310.1443$, Found 310.1434
(3R)-3-(4-methoxyphenyl)-1,7-dimethyl-1,3,4,10a-tetrahydrochromeno[2,3$c][1,2]$ oxazine (5ab)

5ab

Prepared accoding to GP 3. 1a $(0.044 \mathrm{~g}, 0.25 \mathrm{mmol})$, 3b ($0.061 \mathrm{~g}, 0.37 \mathrm{mmol}$), $5 \mathbf{5 a b}(0.019 \mathrm{~g}, 0.06 \mathrm{mmol})$; Colourless sticky liquid, 23% overall yield; $[\alpha]_{\mathrm{D}}{ }^{25}=75.25$ ($\mathrm{c}=0.9, \mathrm{CHCl}_{3}$); 60:40 er of major diastereomer was determined by chiral HPLC analysis, [Chiralpak IC, hexane $/ \mathrm{i}-\mathrm{PrOH}=90 / 10,0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}($ major $)=$ $14.61 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=15.47 \mathrm{~min}\right] ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0}$
MHz): $\delta 7.33$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.91-6.87(\mathrm{~m}, 3 \mathrm{H}), 6.76(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{dd}, J=9.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{~s}$, $3 \mathrm{H}), 2.76-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.69(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z) : ~} \delta 159.6,149.5,131.9$, $130.8,129.8,129.3,127.9,126.7,119.9,119.4,114.9,92.8,80.9,55.4,41.8,40.1,20.6$;
HRMS (ESI, Q-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{3} 324.1600$, Found 324.1617
(3R)-7-chloro-3-(4-methoxyphenyl)-1-methyl-1,3,4,10a-tetrahydrochromeno[2,3$c][1,2]$ oxazine (5ac)

Prepared accoding to GP 3. 1a $(0.044 \mathrm{~g}, 0.25 \mathrm{mmol})$, 3c ($0.068 \mathrm{~g}, 0.37 \mathrm{mmol}$), 5ac ($0.018 \mathrm{~g}, 0.05 \mathrm{mmol}$); Colourless sticky liquid, 20% overall yield; $[\alpha]_{\mathrm{D}}{ }^{25}=$ 80.98 ($\mathrm{c}=0.8, \mathrm{CHCl}_{3}$); 67.5:32.5 er of major diastereomer was determined by chiral HPLC analysis, [Chiralpak IC, hexane/i-PrOH $=90 / 10,0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}$ $($ major $)=13.18 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=14.45 \mathrm{~min}\right] ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}$ (400 MHz): $\delta 7.32(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{dd}, J=8.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.73$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 4.91$ (dd, J $=9.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}), 2.77-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.70(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$
NMR (100 MHz): $\delta 159.7,150.1,131.5,131.2,128.4,127.9,126.3,125.8,121.5,118.4$, 116.5, 114.0, 92.8, 80.8, 55.4, 41.7, 40.0; HRMS (ESI, Q-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Cl} 344.1053$, Found 344.1080
(3R)-7-bromo-3-(4-methoxyphenyl)-1-methyl-1,3,4,10a-tetrahydrochromeno[2,3$c][1,2]$ oxazine (5ad)

Prepared accoding to GP 3. 1a ($0.044 \mathrm{~g}, 0.25 \mathrm{mmol}$), $\mathbf{3 d}(0.085 \mathrm{~g}, 0.37 \mathrm{mmol}), 5 \mathbf{5 d}(0.026 \mathrm{~g}, 0.06 \mathrm{mmol})$; Colourless sticky liquid, 27% overall yield; $[\alpha]_{\mathrm{D}}{ }^{25}=$ $102.64\left(\mathrm{c}=0.6, \mathrm{CHCl}_{3}\right) ; 65.5: 34.5$ er of major diastereomer was determined by chiral HPLC analysis, [Chiralpak IC, hexane/i- $\mathrm{PrOH}=90 / 10,0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}$ $($ major $)=12.75 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=13.74 \mathrm{~min}\right] ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$
(400 MHz): $\delta 7.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{dd}, J$ $=9.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}), 2.77-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.70(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$
NMR ($\mathbf{1 0 0} \mathbf{~ M H z) : ~} \delta 159.5,150.5,131.2,131.0,128.5,127.8,121.9,118.1,116.8,113.8$,
113.4, 92.6, 80.7, 55.3, 41.6, 39.8; HRMS (ESI, Q-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Br} 388.0548$, Found 388.0563
(3R)-8-methoxy-3-(4-methoxyphenyl)-1-methyl-1,3,4,10a-tetrahydrochromeno[2,3$c][1,2]$ oxazine (5ae)

Prepared accoding to GP 3. 1a ($0.044 \mathrm{~g}, 0.25 \mathrm{mmol}$), 3e ($0.067 \mathrm{~g}, 0.37 \mathrm{mmol}$), 5ae ($0.022 \mathrm{~g}, 0.06 \mathrm{mmol}$); Colourless sticky liquid, 26% overall yield; $[\alpha]_{\mathrm{D}}{ }^{25}=$ 59.82 ($\mathrm{c}=0.9, \mathrm{CHCl}_{3}$); 70.5:29.5 er of major
diastereomer was determined by chiral HPLC analysis,
[Chiralpak IC, hexane/i- $\mathrm{PrOH}=90 / 10,0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}$
$($ minor $)=22.29 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $\left.)=22.29 \mathrm{~min}\right] ;{ }^{1} \mathbf{H} \mathbf{N M R}$
$(400 \mathrm{MHz}): \delta 7.32(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.43 (dd, $J=8.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 4.90$ (dd, J $=10.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}), 2.74-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.67(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z) : ~} \delta 160.4,159.6,152.7,131.8,128.2,127.9,126.8,126.7,118.9$, 113.9, 113.3, 107.3, 101.3, 92.8, 80.0, 55.5, 53.4, 41.7, 39.9; HRMS (ESI, Q-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{4} 340.1549$, Found 340.1549
(3R)-9-methoxy-3-(4-methoxyphenyl)-1-methyl-1,3,4,10a-tetrahydrochromeno[2,3c][1,2]oxazine (5af)

Prepared accoding to GP 3. 1a $(0.044 \mathrm{~g}, 0.25 \mathrm{mmol})$, 3f ($0.067 \mathrm{~g}, 0.37 \mathrm{mmol}$), $\mathbf{5 a f}(0.021 \mathrm{~g}, 0.06 \mathrm{mmol})$; Colourless sticky liquid, 25% overall yield; $[\alpha]_{\mathrm{D}}{ }^{25}=125.24$ ($\mathrm{c}=0.4$, CHCl_{3}); 68:32 er of major diastereomer was determined by chiral HPLC analysis, [Chiralpak IC, hexane/i-PrOH $=$ $90 / 10,0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}($ minor $)=22.29 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=$ $22.29 \mathrm{~min}]$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z) : ~} \delta 7.33(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.91-6.87(\mathrm{~m}, 3 \mathrm{H}), 6.76(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 5.14$ $(\mathrm{s}, 1 \mathrm{H}), 4.92(\mathrm{dd}, J=10.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{~s}, 3 \mathrm{H}), 2.76-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.70-$ $2.69(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z) : ~} \delta 159.6,149.4,131.8,130.8,129.8,129.3$, 127.9, 126.7, 119.8, 119.4, 114.9, 114.0, 92.8, 80.9, 55.4, 41.8, 40.0, 20.6; HRMS (ESI, QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{4} 340.1549$, Found 340.1552

6. Chemical transformations

((6R)-6-(4-methoxyphenyl)-2-methyl-3-(o-tolyl)-1,2-oxazinan-4-yl)methanol (6a) ${ }^{3}$

Prepared accoding to the literature procedure. ${ }^{3} \mathbf{4 a a}(0.022 \mathrm{~g}$,

6a $0.06 \mathrm{mmol}), \mathrm{NaBH}_{4}(0.005 \mathrm{~g}, 0.12 \mathrm{mmol}), \mathbf{6 a}(0.015 \mathrm{~g}, 0.04$ $\mathrm{mmol})$; Colourless liquid, 67% yield; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z) : ~} \delta$ 7.45 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.24-7.19 $(\mathrm{m}, 1 \mathrm{H}), 7.18-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.01(\mathrm{dd}$, $J=11.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.44 (dd, $J=10.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=10.7,6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.38-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.12$ $(\mathrm{m}, 1 \mathrm{H}), 1.86-1.77(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z) : ~} \delta 159.2,138.1,136.7,132.8,130.3$, 128.0, 127.3, 127.0, 126.7, 113.7, 79.7, 67.8, 64.1, 55.2, 45.2, 43.6, 34.9, 29.6, 20.3; HRMS (ESI, Q-TOF) m/z: [M+H] ${ }^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{3} 328.1913$, Found 328.1911
(E)-ethyl 3-((6R)-6-(4-methoxyphenyl)-2-methyl-3-(o-tolyl)-1,2-oxazinan-4-yl)acrylate (6b) ${ }^{4}$

> Prepared accoding to the literature procedure. ${ }^{4}$ 4aa $(0.020 \mathrm{~g}, 0.06 \mathrm{mmol}) ; \mathbf{6 b}(0.018 \mathrm{~g}, 0.04 \mathrm{mmol}), 74 \%$ yield; ${ }^{\mathbf{1}} \mathrm{H}$ NMR $(\mathbf{4 0 0} \mathbf{~ M H z}): \delta 7.44(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.37(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.16$ $(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{dd}, J=16.0,7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.61(\mathrm{dd}, J=16.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{dd}, J=$ $11.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.06(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.66$ $(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.03-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$, $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.09-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0}$ MHz): $\delta 166.3,159.5,147.8,137.6,136.5,132.5,130.5,128.1,127.5,126.9,126.7,122.2$, 114.0, 79.4, 69.4, 60.3, 55.4, 46.3, 43.9, 36.8, 20.4, 14.2; HRMS (ESI, Q-TOF) m/z:
$[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NO}_{4} 396.2175$, Found 396.2179
O-((1R)-2-(chroman-3-yl)-1-(4-methoxyphenyl)ethyl)-N-methylhydroxylamine (7a) ${ }^{5}$

Prepared accoding to the literature procedure. ${ }^{5}$ 5aa (0.025 $\mathrm{g}, 0.08 \mathrm{mmol}), 7 \mathrm{a}(0.018 \mathrm{~g}, 0.05 \mathrm{mmol})$, colorless liquid, 71% yield, ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z) : ~} \delta 8.32$ (bs, 1 H), 7.33 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.85(\mathrm{~m}, 4 \mathrm{H})$, 5.29 (dd, $J=11.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.80 (s, 3H), 3.36-3.29 (m, 1 H), 2.68 (dd, $J=13.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 2.58$ (d, $J=2.3, \mathrm{~Hz}, 2 \mathrm{H}), 2.30-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.98(\mathrm{~m}, 1 \mathrm{H})$, 1.80-1.77 (m, 1H); ${ }^{13}$ C NMR ($\mathbf{1 0 0} \mathbf{~ M H z) : ~} \delta 159.6,155.8$, 132.5, 130.7, 128.2, 128.1, 126.6, 120.6, 117.4, 114.0, 76.5, 58.3, 55.4, 46.4, 35.9, 34.0, 31.4; HRMS (ESI, Q-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{3} 314.1756$, Found 314.1754

7. NMR, Mass spectra and HPLC data of the compounds

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of $\mathbf{1 a}$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of $\mathbf{1 b}$

童
期鲸
㪯

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of $\mathbf{1 c}$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of 1 e

${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of $\mathbf{1 i}$

${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of $\mathbf{1 j}$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of $\mathbf{2 a}$

${ }^{\mathbf{1}} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of $\mathbf{2 b}$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of $\mathbf{2 d}$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of 2 e

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of 3 a

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of 3 b

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of $\mathbf{3 d}$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of 3 e

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of 3 f

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of 4 aa

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of 4 aa

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of 4 aa ZOOM

Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance $=5.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT = 2
Monoisotopic Mass, Even Electron Ions
61 formula(e) evaluated with 1 results within limits (up to 1 closest results for each mass)
Elements Used:
$\begin{array}{lllll}\mathrm{C}: ~ 1-50 & \mathrm{H}: ~ 1-100 & \mathrm{~N}: ~ 1-1 & \mathrm{O}: 1-10 & 79 \mathrm{Br}: ~ 0-1\end{array}$

HPLC spectra of racemic 4aa

Peak Results					
	Name	RT	Area	\% Area	
1		9.369	8137460	50.34	
2		11.497	8026886	49.66	

Peak Results				
	Name	RT	Area	\% Area
1		9.366	1744152	25.21
2		11.494	5174913	74.79

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of $\mathbf{4 b a}$

${ }^{13} \mathrm{C}$-NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of 4 ba

HRMS of 4ba

Elemental Composition Report

Page 1
Single Mass Analysis
Tolerance $=5.0$ PPM $/$ DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT = 2
Monoisotopic Mass, Even Electron Ions
79 formula(e) evaluated with 1 results within limits (up to 1 closest results for each mass)
Elements Used:
$\begin{array}{lllll}\text { C. 1-50 } & \text { H: 1-100 } & \text { N: 1-1 } & \text { O: 1-10 } & 79 \mathrm{Br}: 0-1\end{array}$

HPLC spectra of racemic 4ba

Peak Results				
	Name	RT	Area	\% Area
1		17.454	6537031	50.05
2		18.185	6523167	49.95

HPLC spectra of chiral 4ba

Peak Results				
	Name	RT	Area	\% Area
1		17.605	3052717	26.59
2		18.247	8429311	73.41

${ }^{1} \mathrm{H}$-NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of 4 ca

Elemental Composition Report

Single Mass Analysis

Tolerance $=5.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT = 2
Monoisotopic Mass, Even Electron Ions
96 formula(e) evaluated with 1 results within limits (up to 1 closest results for each mass)
Elements Used:
$\begin{array}{llll}\text { C: 1-22 } & \mathrm{H}: 1-100 & \mathrm{~N}: 0-5 & \mathrm{O}: 1-5\end{array}$
Sample Name : 25_02_288 IITRPR XEVO G2-XS QTOF
Test Name
080822_25_02_288 11 (0.134)
1: TOF MS ES+ $4.21 \mathrm{e}+007$

Minimum: -1.5
$\begin{array}{lll}\text { Maximum: } & 2.0 \quad 5.0 \quad 50.0\end{array}$
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(\%) Formula

HPLC spectra of racemic 4ca

Peak Results				
	Name	RT	Area	\% Area
1		28.862	12434799	49.55
2		35.930	12660008	50.45

Peak Results				
	Name	RT	Area	\% Area
1		28.989	3129184	79.65
2		36.040	799360	20.35

${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(\mathbf{C D C l}_{3}, \mathbf{4 0 0 M H z}\right)$ of $\mathbf{4 d a}$

HRMS of 4da

Elemental Composition Report

Single Mass Analysis

Tolerance $=5.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=2$
Monoisotopic Mass, Odd and Even Electron Ions
34 formula(e) evaluated with 1 results within limits (up to 1 closest results for each mass)
Elements Used:
C: 22-22 $\quad \mathrm{H}: ~ 1-100 \quad$ N: 0-5 \quad O: 0-5
Sample Name: 25_02_291 IITRPR XEVO G2-XS QTOF
Test Name
080822_25_02 291 $22(0.240) \quad 1:$ TOF MS ESt

Peak Results				
	Name	RT	Area	\% Area
1		17.245	2688440	49.39
2		22.643	2754392	50.61

HPLC spectra of chiral 4da

Peak Results				
	Name	RT	Area	\% Area
1		17.885	4516387	82.34
2		23.564	968732	17.66

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of 4ea

Single Mass Analysis

Tolerance $=5.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT = 2
Monoisotopic Mass, Even Electron Ions
64 formula(e) evaluated with 1 results within limits (up to 1 closest results for each mass)
Elements Used:
$\begin{array}{lllll}\text { C: } 1-50 & \text { H: 1-100 } & \text { N: 1-1 } & \text { O: 1-10 } & 79 \mathrm{Br}: ~ 0-1\end{array}$

HPLC spectra of racemic 4ea

Peak Results				
	Name	RT	Area	\% Area
1		16.972	3172593	51.51
2		18.722	2987108	48.49

Peak Results				
	Name	RT	Area	\% Area
1		16.898	868034	37.44
2		18.630	1450514	62.56

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of $\mathbf{4 f a}$

Single Mass Analysis
Tolerance $=5.0 \mathrm{PPM} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=2$
Monoisotopic Mass, Even Electron Ions
76 formula(e) evaluated with 1 results within limits (up to 1 closest results for each mass)
Elements Used:
$\begin{array}{lllll}\text { C: } 1-50 & \mathrm{H}: ~ 1-100 & \mathrm{~N}: ~ 1-1 & \mathrm{O}: 1-10 & 79 B r \\ \text { 0 } & 0-1\end{array}$

Minimum:				-1.5				
Maximum:		2.0	5.0	50.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf((\%) Formula	
386.1964	386.1967	-0.3	-0.8	9.5	530.1	n/a	n/a	C22 H28 N 05

Peak Results				
	Name	RT	Area	\% Area
$\mathbf{1}$		10.679	6637235	50.63
2		21.078	6471619	49.37

HPLC spectra of chiral 4fa

Peak Results					
	Name	RT	Area	\% Area	
1		10.745	1151929	20.89	
2		21.224	4362202	79.11	

${ }^{13} \mathrm{C}$-NMR $\left(\mathrm{CDCl}_{3}, \mathbf{1 0 0 M H z}\right)$ of 4 ga

Single Mass Analysis

Tolerance $=5.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=2$
Monoisotopic Mass, Even Electron Ions
51 formula(e) evaluated with 1 results within limits (up to 1 closest results for each mass)
Elements Used:
$\begin{array}{lllll}\text { C: } 1-50 & \text { H: 1-100 } & \mathrm{N}: ~ 1-1 & \mathrm{O}: ~ 1-10 & 79 \mathrm{Br}: ~ 0-1\end{array}$

Peak Results					
	Name	RT	Area	\% Area	
1		6.881	6863940	49.50	
2		8.031	7003882	50.50	

HPLC spectra of chiral 4ga

Peak Results				
	Name	RT	Area	\% Area
$\mathbf{1}$		6.938	5999199	60.60
2		8.165	3899658	39.40

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of 4ha

${ }^{13} \mathrm{C}$-NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of 4 ha

HRMS of 4ha

Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance $=5.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=2$
Monoisotopic Mass, Even Electron Ions
27 formula(e) evaluated with 1 results within limits (up to 1 closest results for each mass)
Elements Used:
$\begin{array}{lllll}\text { C: } 1-50 & \text { H: 1-100 } & \text { N: 1-1 } & \text { O: 1-10 } & \text { S: 1-1 }\end{array}$

Sample Name : 25_02_329
Test Name
110822_25_02_329 $12(0.143) \quad$ 1: TOF MS ES+

HPLC spectra of racemic 4ha

Peak Results				
	Name	RT	Area	\% Area
1		7.010	1519581	51.22
2		8.053	1447373	48.78

HPLC spectra of chiral 4ha

Peak Results

Peak Results				
	Name	RT	Area	\% Area
1		7.014	1344097	79.01
2		8.074	356979	20.99

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of $\mathbf{4 a b}$

Single Mass Analysis

Tolerance $=5.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT = 2
Monoisotopic Mass, Even Electron Ions
64 formula(e) evaluated with 1 results within limits (up to 1 closest results for each mass)
Elements Used:
$\begin{array}{lllll}\text { C: } 1-50 & \text { H: 1-100 } & \mathrm{N}: ~ 1-1 & \mathrm{O}: 1-10 & 79 \mathrm{Br}: ~ 0-1\end{array}$

HPLC spectra of racemic 4ab

Peak Results				
	Name	RT	Area	\% Area
1		13.980	9249099	49.91
2		15.088	9281271	50.09

HPLC spectra of chiral 4ab

Peak Results				
Name RT Area \% Area 1 14.936 9810358 37.87 2 16.062 16093781 62.13				

${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of 4 ac

Single Mass Analysis

Tolerance $=5.0$ PPM $/$ DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT = 2
Monoisotopic Mass, Even Electron Ions
110 formula(e) evaluated with 1 results within limits (up to 1 closest results for each mass)
Elements Used:
$\begin{array}{lllll}\text { C: 1-22 } & \mathrm{H}: 1-100 & \mathrm{~N}: ~ 0-5 & \mathrm{O}: 1-5 & \mathrm{~F}: ~ 1-1\end{array}$
Sample Name : 25_02_284
Test Name
080822_25_02_284 21 (0.231)
IITRPR
XEVO G2-XS QTOF
1: TOF MS ES+

Peak Results				
	Name	RT	Area	\% Area
1		17.241	2054329	49.55
2		19.221	2091329	50.45

HPLC spectra of chiral 4ac

Peak Results				
	Name	RT	Area	\% Area
1		17.224	329205	21.52
2		19.227	1200389	78.48

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of 4 ad

${ }^{13} \mathrm{C}$-NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of 4 ad

Single Mass Analysis

Tolerance $=5.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT = 2
Monoisotopic Mass, Even Electron Ions
76 formula(e) evaluated with 1 results within limits (up to 1 closest results for each mass)
Elements Used:
$\begin{array}{lllll}\text { C: } 1-50 & \mathrm{H}: ~ 1-100 & \mathrm{~N}: ~ 1-1 & \mathrm{O}: 1-10 & 79 \mathrm{Br}: 0-1\end{array}$
Sample Name : 25_02_320 IITRPR XEVO G2-XS QTO
Test Name :
110822_25_02_320 20 (0.223) 1:TOF MS ES+
$2.16 \mathrm{e}+006$

HPLC spectra of racemic 4ad

Peak Results				
	Name	RT	Area	\% Area
1		18.859	6668118	48.17
2		20.794	7174643	51.83

Peak Results				
	Name	RT	Area	\% Area
1		18.930	2091214	16.22
2		20.874	10801903	83.78

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of 4ae

HRMS of 4ae

Elemental Composition Report

Page 1
Single Mass Analysis
Tolerance $=5.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
127 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 0-25 H: 0-50 N: 0-4 \quad O: 0-4 \quad Si: 0-2
050423_25_03_14 20 (0.223) IITRPR XEVO G2-XS QTOF
Test Name
050423_25_03_14
1: TOF MS ES+
$5.17 e+006$

Peak Results				
	Name	RT	Area	\% Area
1		12.924	2758075	51.22
2		17.712	2626177	48.78

HPLC spectra of chiral 4ae

Peak Results				
	Name	RT	Area	\% Area
1		12.908	2385729	21.77
2		17.748	8575536	78.23

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of 5 aa

Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance $=5.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT = 3
Monoisotopic Mass, Even Electron Ions
15 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
C: 0-19 $\quad \mathrm{H}: 0-40 \quad \mathrm{~N}: 0-2$
O: 0-3

281222_25_02_373 18 (0.205) IITRPR
Test Name
1: TOF MS ES+

Minimum:		-1.5						
		5.0	10.0	50.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf (\%)	Formula
310.1434	310.1443	-0.9	-2.9	10.5	1179.9	n/a	n / a	C19 H20 N O3

HPLC spectra of racemic 5aa

Peak Results				
	Name	RT	Area	\% Area
1		14.504	5478043	48.91
2		15.338	5722825	51.09

Peak Results				
	Name	RT	Area	\% Area
1		14.614	12404132	74.06
2		15.472	4345400	25.94

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of 5 ab

Elemental Composition Report

Page 1
Single Mass Analysis
Tolerance $=5.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
76 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 0-21 H: 0-50 $\quad \mathrm{N}: 0-4 \quad \mathrm{O}: 0-4$
130123_25_02_38571(0.729) IITRPR XEVO G2-XS QTOF
Test Name
1: TOF MS ES+
130123_25_02_385

| $2.86 e+005$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Minimum:				-1.5				
Maximum:		5.0	10.0	50.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(8) Formula	
324.1617	324.1600	1.7	5.2	10.5	687.4	n / a	n / a	C 20 H 22 N

Peak Results				
	Name	RT	Area	\% Area
1		14.789	264946	50.77
2		16.038	256866	49.23

HPLC spectra of chiral 5ab

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of 5 ac

${ }^{13} \mathrm{C}$-NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of 5 ac

Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance $=5.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
16 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 0-19 $\begin{array}{lllll}\mathrm{H}: ~ 0-40 & \mathrm{~N}: ~ 0-1 & \mathrm{O}: 0-3 & \mathrm{Cl}: 0-1\end{array}$
090123_25_02_380 20 (0.223) IITRPR XEVO G2-XS QTOF
Test Name ${ }^{-}$-
1: TOF MS ES+
$2.79 \mathrm{e}+006$

HPLC spectra of racemic 5ac

Peak Results				
	Name	RT	Area	\% Area
1		13.262	3769812	54.53
2		14.547	3144090	45.47

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of 5 ad

HRMS of 5ad

Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance $=5.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
71 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 0-19 H: 0-50 N: 0-2 $\quad \mathrm{O}: 0-3 \quad \mathrm{Br}: 0-2$

HPLC spectra of chiral 5ad

Peak Results				
	Name	RT	Area	\% Area
1		12.752	3314501	65.37
2		13.748	1755519	34.63

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of 5 ae

Elemental Composition Report

Single Mass Analysis

Tolerance $=5.0 \mathrm{mDa} / \quad$ DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT = 3
Monoisotopic Mass, Even Electron Ions
38 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
$\begin{array}{llll}\text { C: } 0-20 & \mathrm{H}: ~ 0-100 & \text { N: 0-3 } & \text { O: 0-4 }\end{array}$
130223_25_03_0753(0.551) IITRPR XEVO G2-XS QTOF
Test Name 130223_25_03_07
1: TOF MS ES +
$6.73 \mathrm{e}+006$

Minimum: $\quad-1.5$

Maximum:	5.0	10.0	50.0

Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(8) Formula
$340.1549 \quad 340.1549 \quad 0.0 \quad 0.0 \quad 10.5 \quad 1038.2 \mathrm{n} / \mathrm{a} \quad \mathrm{n} / \mathrm{a} \quad \mathrm{C} 20 \mathrm{H} 22 \mathrm{~N}$ O4

HPLC spectra of racemic 5ae

Peak Results				
	Name	RT	Area	\% Area
1		22.099	5972657	50.40
2		28.063	5876945	49.60

Peak Results				
	Name	RT	Area	\% Area
1		22.295	2215293	29.65
2		28.297	5255553	70.35

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of 5 af

Single Mass Analysis

Tolerance $=5.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT = 3
Monoisotopic Mass, Even Electron Ions
38 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
$\begin{array}{llll}\text { C: } 0-20 & \text { H: 0-100 } & \text { N: 0-3 } & \text { O: 0-4 }\end{array}$
130223_25_03_0851(0.534) IITRPR XEVO G2-XS QTOF
Test Name
1: TOF MS ES+

Minimum:				-1.5				
Maximum:		5.0	10.0	50.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf (\%)	Formula
340.1552	340.1549	0.3	0.9	10.5	1092.8	n / a	n / a	C20 H22

Peak Results				
	Name	RT	Area	\% Area
1		26.376	873597	49.82
2		32.850	879805	50.18

HPLC spectra of chiral 5af

Peak Results				
	Name	RT	Area	\% Area
$\mathbf{1}$		26.436	10929958	67.82
2		32.953	5186484	32.18

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of $\mathbf{6 a}$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of $\mathbf{6 a}$

HRMS of $\mathbf{6 a}$

Single Mass Analysis

Tolerance $=5.0 \mathrm{mDa} /$ DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT = 3
Monoisotopic Mass, Even Electron Ions
153 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
$\begin{array}{lllll}\text { C: } 0-23 & \mathrm{H}: 0-100 & \mathrm{~N}: ~ 0-3 & \mathrm{O}: 0-4 & \mathrm{Cl}: 0-1\end{array}$
240223_25_03_19 25 (0.277)
IITRPR
XEVO G2-XS QTOF
Test Name -
240223_25_03_19
1: TOF MS ES +
$2.80 \mathrm{e}+006$

Minimum:				-1.5				
Maximum:		5.0	10.0	50.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf (\%)	Formula
328.1911	328.1913	-0.2	-0.6	8.5	987.9	n / a	n / a	C20 H26 N O3

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of $\mathbf{6 b}$

HRMS of $\mathbf{6 b}$

Elemental Composition Report

Single Mass Analysis

Tolerance $=5.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
11 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 0-24 H: 0-30 \quad N: 0-2 \quad O: 0-4
100323_25_03_18 $26(0.285)$ IITRPR
Test Name
1: TOF MS ES+

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of $\mathbf{7 a}$

Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance $=20.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
74 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 0-26 H: 0-50 N: 0-2 O: 0-5
120423_25_03_22 20 (0.223) IITRPR XEVO G2-XS QTOF
Test Name
1: TOF MS ES+
$4.13 \mathrm{e}+006$

8. X-ray data of 5aa

For the determination of X-ray crystal structures of 5aa single crystal was selected and mounted with paratone oil on a glass fiber using gum. The data was collected at 293 K on a CMOS based Bruker D8 Venture PHOTON 100 diffractometer equipped with a INCOATEC micro-focus source with graphite monochromatic Mo K α radiation ($\lambda=0.71073 \AA$) operation at 50 kV and 30 mA . For the integration of diffraction profiles SAINT program ${ }^{6}$ was used. Absorption correction was done applying SADABS program. ${ }^{7}$ The crystal structure was solved by SIR 92^{8} and refined by full matrix least square method using SHELXL- 97^{9} WinGX system, Ver 1.70.01. ${ }^{10}$ All the non-hydrogen atoms in the structure were located the Fourier map and refined anisotropically. The hydrogen atoms were fixed by HFIX in their ideal positions and refined using riding model with isotropic thermal parameters. The crystal structure (excluding structure factor) has been deposited to Cambridge Crystallographic Data Centre and allocated deposition number: 5aa: CCDC 2237741.

Table S2. Crystal data and structure refinement for 5aa.

Ccdc no.	2237741
Empirical formula	$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3}$
Formula weight	309.35
Temperature/K	298.0
Crystal system	orthorhombic
Space group	$\mathrm{P} 2_{1} 2_{1} 2_{1}$
a / \AA	$5.8734(3)$
b / \AA	$15.4556(7)$
$\mathrm{c} / \AA \mathrm{A}$	$17.6587(7)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$1603.00(13)$
Z	4
pcalcg $^{\circ} / \mathrm{cm}^{3}$	1.282

μ / mm^{-1}	0.087
$\mathrm{~F}(000)$	656.0
Crystal size $/ \mathrm{mm}^{3}$	$0.35 \times 0.236 \times 0.123$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection $/{ }^{\circ}$	4.614 to 52.79
Index ranges	$-7 \leq \mathrm{h} \leq 7,-19 \leq \mathrm{k} \leq 19,-22 \leq 1 \leq 22$
Reflections collected	33944
Independent reflections	$3289\left[\mathrm{R}_{\text {int }}=0.0505, \mathrm{R}_{\text {sigma }}=0.0225\right]$
Data/restraints/parameters	$3289 / 0 / 210$
Goodness-of-fit on F^{2}	1.087
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0360, \mathrm{wR}_{2}=0.0859$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0444, \mathrm{wR}_{2}=0.0908$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$0.12 /-0.10$
Flack parameter	$0.2(5)$

Table S3: Selected bond lengths of 5aa

Atoms	Length/Å	Atoms	Length/Å
O2- N1	$1.475(2)$	C13- C12	$1.509(3)$
O2- C12	$1.435(3)$	C13- C19	$1.370(3)$
O1- C3	$1.377(3)$	C14- C15	$1.380(3)$
O1- C2	$1.417(3)$	C7- C6	$1.381(3)$
N1- C1	$1.455(3)$	C15- C16	$1.382(3)$
N1- C2	$1.481(3)$	C10- C2	$1.493(3)$
O3- C16	$1.366(3)$	C10- C11	$1.498(3)$
O3- C17	$1.418(4)$	C3- C4	$1.376(3)$
C8- C9	$1.453(3)$	C12- C11	$1.523(3)$
C8- C9	$1.390(3)$	C18- C16	$1.382(3)$
C8- C3	$1.390(3)$	C18- C19	$1.391(3)$
C9- C10	$1.320(3)$	C4- C5	$1.384(3)$
C13- C14	$1.393(3)$	C5- C6	$1.376(4)$

Table S4: Selected bond angles of 5aa

Atom	Angle ${ }^{\circ}$	Atom	Angle ${ }^{\circ}$
C12- O2- N1	$108.46(14)$	O1- C3- C8	$121.3(2)$
C3- O1- C2	$120.09(18)$	C4- C3- O1	$116.8(2)$
O2- N1- C2	$103.21(15)$	C4- C3- C8	$121.9(2)$
C1- N1- O2	$103.55(16)$	O2- C12- C13	$106.62(18)$
C1- N1- C2	$112.55(19)$	O2- C12- C11	$109.18(19)$
C16- O3- C17	$117.7(2)$	C13- C12- C11	$113.76(18)$

Atom	Angle $^{\circ}$	Atom	Angle ${ }^{\circ}$
C7- C8- C9	$123.9(2)$	C16- C18- C19	$119.3(2)$
C3- C8- C9	$118.3(2)$	O1- C2- N1	$108.86(18)$
C3- C8- C7	$117.7(2)$	O1- C2- C10	$115.90(18)$
C10- C9- C8	$121.2(2)$	N1- C2- C10	$105.93(19)$
C14- C13-	$121.0(2)$	C3- C4- C5	$119.2(2)$
C19- C12	$117.9(2)$	O3- C16- C15	$115.6(2)$
C19- C13- C12	$121.2(2)$	O3- C16- C18	$124.8(2)$
C15- C14- C13	$121.0(2)$	C15- C16- C18	$119.6(2)$
C6- C7- C8	$120.8(2)$	C13- C19-C18	$122.0(2)$
C14- C15- C16	$120.2(2)$	C10- C11- C12	$109.39(18)$
C9- C10- C2	$120.6(2)$	C6- C5- C4	$120.1(2)$
C9- C10- C11	$126.3(2)$	C5-C6-C7	$120.3(2)$
C2- C10- C11	$112.3(2)$		

9. Control experiments

To check whether the aryl migration was occurring under catalytic or non-catalytic conditions, some control experiments have been performed. First, the TBS-protected product 4ae was subjected to hydrolysis in both TBAF/THF condition and Oxone/water condition but the product got decomposed without forming neither the free OH -containing product nor the aryl migrated product (from the ${ }^{1} \mathrm{H}$ NMR study). Additionally the authors tried to get HRMS data of the crude reaction mixture at half completion time for the preparation of $\mathbf{5 a a}$ and the in situ generated intermediate \mathbf{B} was detected instead of intermediate \mathbf{C} prior to the aryl migration. Which indicates that the aryl migration occurs under catalytic conditions.

Scheme S1: Control experiments; (a) hydrolysis of 4ae, (b) trapping of intermediates

Figure S1: Mass traces of probable intermediates

10. Rearrangement reaction for the production of aryl aldehydes

Figure S2: Rearrangement pathway for the aryl aldehyde formation

Figure S3: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of isolated 1a' (4-methoxy benzaldehyde)

Figure S4: ${ }^{1} \mathrm{H}$-NMR of isolated $\mathbf{1 f}{ }^{\prime}$ (3,4,5-trimethoxy benzaldehyde)

11. References

1. (a) P. Kumar, R. Dey and P. Banerjee, Org. Lett. 2018, 20, 5163; (b) R. Dey, P. Kumar, and P. Banerjee, J. Org. Chem. 2018, 83, 5438.
2. Pernille H. Poulsen, Stefania Vergura, Alicia Monleon, Danny Kaare Bech Jørgensen and Karl Anker Jørgensen, J. Am. Chem. Soc. 2016, 138, 6412.
3. L. Blackburn and R. J. K. Taylor, Org. Lett., 2001, 3, 1637.
4. Kaori Ando and Kyohei Yamada, Green Chem., 2011, 13, 1143
5. K. Verma, P. Banerjee, Adv. Synth. Catal. 2016, 358, 2053.
6. Bruker, SAINT V7.68A, Bruker AXS Inc., Madison (WI, USA) 2005.
7. Sheldrick, G. M. SADABS 2008/2, Göttingen 2008.
8. A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, J. Appl. Cryst. 1993, 26, 343.
9. Sheldrick, G. M. SHELXL-97, Program for Crystal Structure Solution and Refinement, University of Göttingen, Göttingen, Germany 1997.
10. L. J. Farrugia, J. Appl. Cryst. 1999, 32, 837.
