Supporting Information

Gallium reactivates first and second generation quinolone antibiotics towards drug-resistant *Klebsiella pneumoniae*

Tania Sultana, Rebekah N. Duffin, Victoria L. Blair, and Philip C. Andrews*a

Table of contents

- 1. Experimental section: Page S3-S8
- 2. X-ray crystallography: Page S9-S16
- 3. Biological data: Page S17-S21
- 4. Other analytical data: Page S22
- 5. Characterisation of compounds (¹H NMR, ¹³C NMR and Mass spectra): Page S23-S30
- 6. Solution state stability data: Page S31-S32
- 7. ICP-MS Analysis: Page S33-S35
- 8. References for supporting information: Page S36

1. Experimental section

General Considerations

Reagents were purchased from Sigma Aldrich, Merck, Otsuka Pharmaceuticals and Thermo Fisher without the need for further purification. Solvents were purchased from Merck and where required dried using an MBRUAN SPS-800 solvent purification system and stored over 4 Å molecular sieves. All reactions requiring inert conditions were performed under an atmosphere of nitrogen, using over dried glassware and utilising a Schlenk manifold and techniques. ¹H and ¹³C NMR were recorded on a Bruker Ultrashield Plus 600 DRX600 spectrophotometer (600 MHz), chemical shifts were referenced to the appropriate protonated solvent, d₆-DMSO. Infrared Spectra were recorded on an Agilent Technologies Cary 630 FTIR spectrometer, using a range of 4000 – 500 cm⁻¹. Mass spectrometer, with an electrospray source and a cone voltage of 35 eV. Melting point analysis was conducted in open end capillary tubes, on a digital Stuart Scientific melting point apparatus SMP10. Elemental microanalysis was performed on a Perkin Elmer 2400 Series II CHNS/O Elemental Analyser from the School of Chemistry, Monash University.

X-ray crystallography: Crystallographic data was collected on an OXFORD XtaLAB Synergy, Dualflex, HyPix diffractometer equipped with an OXFORD Cryosystems 700 Cryostream and cooled to 173(2) K. Each compound was solved and refined using SHELXL-2014/7 utilising the graphical interface Olex2.¹ Unless otherwise indicated, all non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were placed in calculated positions using a riding model with C-H = 0.95 – 0.98 Å and U_{iso}(H) = xU_{iso} (C), x = 1.2 or 1.5 unless otherwise indicated. Complex **1B-3B**, **1A** were collected and refined by Dr. Craig Forsyth.

Biological testing

Bacteria preparation and Minimum inhibitory concentration MICs: Fluoroquinolone resistance reference strain Klebsiella pneumoniae 1074 was obtained from ATCC. Clinical isolate/multi-drug resistant strains KP-AJ289, KP-MKP103 and KP-RH201207 were obtained from the Alfred Hospital, Melbourne Victoria through collaboration with Professor Chris Greening and Professor Anton Parr. Bacteria from glycerol stocks were streaked onto LB agar and incubated overnight at 37 °C and subsequently a single colony was inoculated into 3 mL of RPMI-1640, without phenol red, supplemented with 10% Human serum purchased from Sigma-Alridch without further modification. The inoculum was incubated for 18 to 20 hours at 37 °C at 180 rpm to give turbid overnight cultures. Stock solutions were generated by solubilising complexes 1A - 3A at 5 mM and 1B - 3B at 10 mM, in biological grade DMSO purchased from Sigma-Aldrich. The stocks were then diluted in 96-well plates, to give a maximum concentration of 100 µM or 50 µM. This was serially diluted by a factor of two with a total of 100 µL/well. Overnight bacterial cultures were diluted to approximately 10^4 colony forming units/mL in RPMI-HS, before addition of 10 µL to each well and incubation at 37 °C

for 20 to 22 hours. At time a time point of ~ 20 hrs, 10 μ L of resazurin dye was added to each well to give a definitive colour change in regard to growth versus no growth. These were incubated for a further 1 to 2 hours. MIC were defined as the point in which no visual growth was observed. All analyses were done in triplicate.

Cell culture: L929 fibroblasts were cultured and maintained in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% Fetal Bovine Serum (FBS), 1% Pen-Strep and 1% GlutaMAXTM (purchased from GibcoTM) at 37 °C in a 5 % CO₂ incubator.

In vitro testing of L929 cells: Resazurin was used for the determination of the percentage viability of L929 fibroblast cells. Working stock solutions were generated by solubilising, complexes 1A-3A at 5mM and 1B-3B at 10 mM in biological grade DMSO. Stock solutions were then sequentially diluted out in the appropriate culture media to give a maximum concentration of 50-100 μ M. Volumes of 10⁵ L929/mL were seeded and adhered to 96-well plates 24 hours prior to compound addition. 20 hours after compound addition, 15 μ L of resazurin in PBS was added to each well, then incubated for a further 4 hours. All cell assays were measured spectroscopically using fluorescence excitation at 560 nm and emission at 590 nm. The compounds were compared to a positive control of no compound and the percent inhibition was calculated. Fluorescence measurements were conducted using a Thermo Scientific Varioskan LUX Multimode Microplate Reader (shaking: 15 s, 300 rpm, high force, single orbital). Experiments were conducted independently in triplicate, with values averaged between the experiments. IC₅₀ values were determined using GraphPad Prism 9.

Total iron concentration: 1 mL of RPMI-1640, RPMI-1640 + 10% HS and LB-broth was digested in 1 mL of concentrated nitric acid in triplicate. Each solution was made to a total volume of 5 mL with 2-3% HNO₃. Precipitates were filtered after digestion and prior to analysis through 0.22-micron syringe filters. The samples were analysed using ICP-MS Helium KED mode and the total iron content calculated against a calibration curve of Fe(57).

Media protein uptake analysis: 10 μ L of compounds **1A** and **1B** were added to 9990 μ L of RPMI-HS to a concentration of 200 μ M (the highest concentration of compound dissolved into media prior to serial dilution, see **Biological testing**). These solutions were then vortexed vigorously for approximately 60 seconds to allow completed homogenisation of the compound into the media. Studies were taken at initial time and 24 hours incubation at 37 °C. After the set time, 1000 μ L of acetonitrile was added to extract all proteins through precipitation. Samples were then centrifuged to pellet the proteins and the supernatant separated. The pellet was subjected to acid digestion by 70% nitric acid. Both the supernatant and acid digested pellet were then diluted at the appropriate theoretical concentration in 2 – 3 % nitric acid in ultrapure water. Samples were then run on a Perkin Elmer NexIon ICP-OES against a 5-point calibration curve. The gallium content in both the solid phase and aqueous phase was then calculated as a percentage obtain in both to determine the protein binding of the complex in bacterial media. All analyses were done in triplicate.

General procedures:

General procedure 1 (GP1)

Compounds 1A - 3A were synthesised via a slightly modified procedure from Mjos, K.D. *et al.*, 2016.² The synthesis involves two steps. First, the free quinolones **1-3** (3 mmol) were initially converted to their retrospective sodium salts via reaction with NaOH (3 mmol) in hot ethanol

and then isolated as solids and in the synthesis of the homoleptic gallium compounds 1A - 3A. The sodium salt of the respective quinolones (1.5 mmol) was dissolved into 25 mL of water (slight heat needed for 3) to produce a clear solution. This clear solution was then added onto solid gallium nitrate nonahydrate (0.5 mmol) dropwise and the pH was carefully monitored during the addition and maintained below <5 and allowed to stir cooling to room temperature. The product started forming immediately and precipitated as a solid. The final pH was adjusted to 7 via dropwise addition of sodium hydroxide solution (0.1 M) and the reaction mixture left to stir at room temperature overnight. The product was filtered, washed with water (20 mL) and methanol (20 mL) and air dried to affords the homoleptic gallium quinolonate compounds 1A-3A.

NAD-
$$H = 1$$
 $X_1 = CH, X_2 = N, X_3 = C, R_2 = CH_3, R_3 = C_2H_5, R_1 = R_4 = R_5 = H$ 1A = 52%OXO- $H = 2$ $X_1 = CH, X_2 = X_3 = C, R_2 = CH_2O_2, R_3 = C_2H_5, R_4 = R_5 = H$ 2A = 81%NOR- $H = 3$ $X_1 = CH, X_2 = X_3 = C, R_1 = F, R_2 = C_4H_{10}N_2, R_3 = C_2H_5, R_4 = R_5 = H$ 3A = 36%

Scheme 1. Schematic diagram to synthesise homoleptic gallium (III) quinolonate complexes **1A-3A**.

[Ga(NAD)₃], 1A: Compound **1A** was prepared in accordance with **GP1** using the odium salt of nalidixic acid (0.3798 g, 1.5 mmol) and gallium nitrate nonahydrate (0.2090 g, 0.5 mmol). The resulted compound was off-white powder. Yield: 52% (0.1975 g, 0.26 mmol). ¹H NMR (400 MHz, 298 K, d₆-DMSO): δ = 9.43 (s), 9.34 (s), 9.26 (s), 9.16 (s) (3 H, a), 8.63-8.61 (d), 8.43-8.31(d) (3 H, b), 7.56-7.54 (d, 3 H, c), 4.74-4.66 (d), 4.65-4.59 (m) (6H, d), 2.71-2.66 (d, 9H, e), 1.45-1.39 (t), 1.33-1.31 (d) (9H, f); FT-IR [cm⁻¹]: 3443(mb) 3026 (m), 2986 (m), 1678 (s), 1633 (s), 1611(s) 1557 (s), 1519 (s), 1494 (s), 1444 (s), 1382 (w), 1349 (m), 1320 (m), 1293 (m), 1259 (s), 1131 (s), 1111 (w), 1090 (m), 992 (w), 898 (m), 809 (s), 778 (s), 707 (w), 666 (m); HRMS (ESI+): m/z ([Ga(NAD)₃ + Na]⁺) for C₁₈H₂₂FGaN₃O₃Na calcd.: 785.1463, found 785.1465; Elemental analysis calcd. (%) for C₃₆H₃₃GaN₆O₉.3 H₂O: C 52.90, H 4.81, N 10.28; Found: C 53.04, H 4.42, N 10.24. CCDC: 2264988. Due to the very poor solubility of **1A**, ¹³C NMR spectrum could not be obtained.

[Ga(OXO)₃], 2A: Complex **2A** was prepared in accordance with **GP1** using sodium salt of oxolinic acid (0.4248 g, 1.5 mmol) and gallium nitrate nonahydrate (0.2089 g, 0.5 mmol). The resulted compound was off-white powder. Yield: 81% (0.2695 g, 0.32 mmol). ¹H NMR (400 MHz, 298 K, d₆-DMSO): δ = 9.11 (s), 9.03 (s), 9.00 (s), 8.95 (s) (3 H, a), 7.69-7.68 (d), 7.54 (s),

7.37 (s) 7.32-7.31 (d), 7.20 (s) (6 H b,c); 6.27-6.23 (d, 6H, d), 4.63 (q, 6 H, e) 1.43-1.23 (m, 9. H, f); FT-IR $[cm^{-1}]$: 3402 (mb), 2979 (w), 2005 (w), 1636 (s), 1603 (s), 1566 (m), 1541 (s), 1465(s), 1446 (s), 1384 (m), 1325 (m), 1284 (w), 1255 (s), 1192 (m), 1159 (w), 1127 (w), 1088 (w), 1029 (w), 933 (m), 902 (w), 880 (w), 847 (w), 811(s), 777 (s), 714 (w); HRMS (ESI+): m/z ([Ga(OXO)₃ + Na]⁺) for C₃₉H₃₀GaN₃O₁₅Na calcd.872.0830, found 872.0821; Elemental analysis calcd. (%) for C₃₉H₃₀GaN₃O₁₅.4.5 H₂O: C 50.29, H 4.22, N 4.51; Found: C 49.9, H 4.08, N 4.73. Due to the very poor solubility of **2A**, ¹³C NMR spectrum could not be obtained.

[Ga(NOR)₃**]**, **3A**: Complex **3A** was prepared in accordance with **GP1** using sodium salt of norfloxacin(0.5120 g, 1.5 mmol) and gallium nitrate nonahydrate (0.2089 g, 0.5 mmol). The resulted compound was pale yellow powder. Yield: 36% (0.1847 g, 0.18 mmol). ¹H NMR (400 MHz, 298 K, d₆-DMSO): δ = 9.19 (s), 9.09 (s), 9.07 (s), 8.9 (s) (3 H C a), 7.94(d), 7.77(d), 7.51 (t) (3 H, b), 7.27 (d), 7.17-7.19 (d) (3 H, c), 4.69-4.49 (m, 6H, d), 3.31-3.32 (m, overlaid with water 24H, e and f), 1.45-1.41 (m), 1.31(t, g); FT-IR [cm⁻¹]: 3391 (mb), 2976(w), 2653 (w), 1639 (s), 1552 (w), 1520 (m), 1474 (s), 1449 (s), 1375 (m), 1321(m), 1315 (s), 1287 (m), 1248 (sb), 1190 (m), 1131 (m), 1037 (m), 971 (w), 934(s), 889 (m), 804 (s), 811 (s), 787 (m), 770 (m), 750 (s), 702(w), 670(w); HRMS (ESI+): m/z ([Ga(NOR)₃ + Na]⁺) for C₄₈H₅₁F₃GaN₉O₉Na calcd.1046.2915, found 1046.2892. Due to the very poor solubility of **3A**, ¹³C NMR spectrum could not be obtained.

General procedure 2 (GP2)

The synthesis of three heteroleptic organometallic gallium (III) complexes, [GaMe₂(NAD)] **1B** [GaMe₂(OXO)] **2B**, and [GaMe₂(NOR)] **3B** involves two steps. First, GaMe₃ (1 mmol) was synthesised *in situ* following the salt metathesis route, where GaCl₃ (0.1765 g, 1 mmol) was dissolved into dry hexane (10 mL) and cooled to 0 °C before the dropwise addition of 1.1 mL of methyllithium (MeLi, 3.3 mmol, 3.1 M solution in diethoxymethane). A white solid formed immediately (LiCl, by product) and the soluble GaMe₃ was extracted by a filter cannula into another Schlenk. This freshly prepared GaMe₃ solution was used to synthesised compounds **1B-3B**. The respective quinolone (**1-3**) (1 mmol) was added in a Schlenk flask and dried under vacuum for 3 hours before use. Then, 10 mL of toluene was added to suspend the quinolone. GaMe₃ (1 mmol) was added by a filter cannula directly into the Schlenk containing the respective quinolones suspended in toluene at room temperature. The reaction mixture was stirred overnight, and the complexes precipitated from the reaction mixture and were isolated by gravity filtration. Synthesised complexes were washed with small amounts of diethyl ether and dried in air to give a yield of approximately 81-84%. All synthesised products were air stable.

NAD-H = 1 $X_1 = CH, X_2 = N, X_3 = C, R_2 = CH_3, R_3 = C_2H_5, R_1 = R_4 = R_5 = H$ **1B** = 84%OXO-H = 2 $X_1 = CH, X_2 = X_3 = C, R_2 = CH_2O_2, R_3 = C_2H_5, R_4 = R_5 = H$ **2B** = 81%NOR-H = 3 $X_1 = CH, X_2 = X_3 = C, R_1 = F, R_2 = C_4H_{10}N_2, R_3 = C_2H_5, R_4 = R_5 = H$ **3B** = 82%

Scheme 2. Schematic diagram to synthesise heteroleptic organometallic gallium (III) quinolonate complexes **1B-3B**.

[GaMe₂(NAD)], 1B: Compound **1B** was prepared in accordance with GP2 using nalidixic acid, **1** (0.230 g, 1 mmol) and *in situ* synthesised GaMe₃ (1 mmol). The resulted compound was an off- white powder. Yield: 84% (0.277g, 0.84 mmol). ¹H NMR (400 MHz, 298 K, d₆-DMSO): δ = 9.43 (s, 1H, a), 8.73-8.71 (d, 1H, b), 7.78-7.65 (d, 1H, c), 4.77-4.72 (q, 2H, d), 2.74 (s, 3H, e), 1.47 (t, 3H, f), -0.327 (s, 6H, g). ¹³C NMR (150 MHz, 298 K, d₆-DMSO): δ = 175.3 (C 1), 165.4 (C 2), 163.8 (C 3), 152.0 (C 4), 147.6 (C 5), 135.8 (C 6), 123.3 (C 7), 118.5 (C 8), 112.3 (C 9), 47.3 (C 10), 25.1 (C 11), 15.0 (C 12), -5.6 (C 13); FT-IR $[cm^{-1}]$: 3049 (w), 2970 (w), 1948 (w), 1639 (s), 1610 (s), 1557 (w), 1497 (s), 1442 (s), 1375 (w), 1347 (m), 1315 (m), 1287 (m), 1257 (s), 1132 (s), 1107 (w), 1037 (w), 961 (w), 896 (m), 804 (s), 749 (s), 689 (w); HRMS (ESI): m/z for C₁₄H₁₈GaN₂O₃ calcd.: 331.0573, found 331.0562; Elemental analysis calcd. (%): C 50.80, H 5.18, N 8.46; Found: C 50.89, H 4.92, N 8.44. CCDC: 2264986.

[GaMe₂(OXO)], 2B: Compound 2B was prepared in accordance with GP2 using oxolinic acid, 2 (0.2610 g, 1 mmol) and *in situ* synthesised GaMe₃ (1 mmol). The resulted compound was an off-white powder. Yield: 81% (0.2906 g, 0.81mmol). ¹H NMR (400 MHz, 298 K, d₆-DMSO): δ = 9.14 (s, 1 H, a); 7.73(s, 1 H, b); 7.69 (s, 1 H, c); 6.32 (s, 2 H, d); 4.64 (d, 2 H, e); 1.41 (t, 3 H, f); -0.360 (s, 6H, g); ¹³C NMR (150 MHz, 298 K, d₆-DMSO): δ = 175.1 (C 1), 165.4 (C 2), 154.7 (C 3), 149.7 (C 4), 148.3 (C 5), 137.4 (C 6), 122.2 (C 7), 111.6 (C 8), 104.0 (C 9), 102.0 (C 10), 97.3 (C 11), 50.7 (C 12), 15.1 (C 13), -5.5 (C 14); FT-IR [cm⁻¹]: 3058 (w), 2976 (w), 2005 (w), 1857 (w), 1648 (s), 1627 (s), 1570 (m), 1536 (s), 1507(w), 1470 (s), 1410 (w), 1361 (w), 1312 (m), 1266 (w), 1265 (s), 1196 (m), 1158 (w), 1009 (s), 947 (s), 904 (w), 861(s), 808 (s), 779 (s), 664 (w); HRMS (ESI): m/z for C₁₅H₁₇GaNO₅ calcd.: 360.0363, found 360.0349; m/z ([GaMe₂(OXO) + Na]⁺) for C₁₅H₁₆GaNO₅Na calcd.: 382.0182, found 382.0166; Elemental analysis calcd. (%): C 50.04, H 4.48, N 3.89; Found: C 49.86, H 4.45, N 3,91. CCDC: 2264991.

[GaMe₂(NOR)], 3B: Compound **3B** was prepared in accordance with GP2 using norfloxacin, **3** (0.2610 g, 1 mmol) and *in situ* synthesised GaMe₃ (10.319 g, 1 mmol). The resulted compound was pale yellow powder. Yield: 82% (0.341g, 0.81mmol). ¹H NMR (400 MHz, 298 K, d₆-DMSO): δ = 9.17 (s, 1 H, a); 7.98(d, 1 H b); 7.20 (d, 1 H, c); 4.70 (q, 2 H, d); 3.26 (dd, 4 H, e), 2.89 (dd, 4 H, f), 1.45 (t, 3 H, g); -0.360 (s, 6H, h); ¹³CNMR (150 MHz, 298 K, d₆-DMSO): δ = 173.5 (C 1), 164.4 (C 2), 154.6 (C 3), 153.0 (C 4), 151.2(C 5), 146.9 (C 6), 137.8 (C 7), 119.6 (C 8), 111.6 (C 9), 105.4 (C 10), 51.2 (C 11), 50.1 (C 12), 45.8 (C 13),14.8 (C 14) -5.4 (C 15); FT-IR [cm⁻¹]: 3049 (w), 2970(w), 2626 (w), 1948 (w), 1639 (s), 1610 (s), 1557 (m), 1497 (s), 1442 (s), 1375 (w), 1347(m), 1315 (s), 1257 (m), 1287 (m), 1257 (s), 1132 (m), 1107 (w), 1037 (w), 989 (w), 961(w), 896 (m), 804 (s), 749 (w), 689 (w); HRMS (ESI): m/z for C₁₈H₂₃FGaN₃O₃ calcd.: 418.1058, found 418.1041; m/z ([GaMe₂(NOR) + Na]⁺) for C₁₈H₂₂FGaN₃O₃Na calcd.: 440.0877, found 440.0863; Elemental analysis calcd. (%): C 51.71, H 5.54, N 10.05; Found: C 51.23, H 5.72, N 10.36. CCDC: 2264987.

2. X-ray crystallography

Table S1. Summary of crystallographic data for compounds 1A, [Ga(NAD) ₃], 1B,
[GaMe ₂ (NAD)], 2B, [GaMe ₂ (OXO)] and 3B, [GaMe ₂ (NOR)].

Identification code	1A	1B	2B	3B
Empirical formula	$C_{38}H_{39}GaN_6O_{10}S$	$C_{14}H_{17}GaN_2O_3$	$C_{15}H_{16}GaNO_5$	$C_{19}H_{24}FGaN_2O_3$
Formula weight	841.53	331.01	360.01	417.12
Temperature/K	123.15	123.15	123.15	123.15
Crystal system	triclinic	triclinic	monoclinic	triclinic
Space group	P-1	P-1	C2/c	P-1
a/Å	9.57906(15)	8.0986(6)	18.0209(6)	8.7432(6)
b/Å	12.08921(18)	8.7121(7)	13.5163(6)	9.9407(8)
c/Å	16.5051(2)	10.8649(8)	14.3466(6)	10.8377(7)
α/°	79.9703(12)	77.168(4)	90	94.228(4)
β/°	77.8647(13)	80.358(4)	121.773(2)	100.666(4)
γ/°	86.5916(12)	70.566(4)	90	102.337(4)
Volume/Å ³	1839.56(5)	701.19(9)	2970.8(2)	897.98(11)
Z	2	2	38	2
$\rho_{calc}g/cm^3$	1.519	1.568	1.610	1.543
µ/mm ⁻¹	2.140	1.970	1.875	1.564
F(000)	872.0	340.0	1472.0	432.0
Crystal size/mm ³	0.12 × 0.08 × 0.04	0.26 × 0.21 × 0.15	0.23 × 0.18 × 0.15	0.26 × 0.21 × 0.17
Radiation	Cu Kα (λ = 1.54184)	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)
20 range for data collection/°	7.428 to 160.88	3.864 to 51.356	4.236 to 55.836	4.874 to 57.392
Index ranges	-12 ≤ h ≤ 12, -14 ≤ k ≤ 15, -20 ≤ l ≤ 20	-9 ≤ h ≤ 9, -10 ≤ k ≤ 10, -12 ≤ l ≤ 13	$-21 \le h \le 23, -17$ $\le k \le 17, -18 \le 1$ ≤ 11	-11 ≤ h ≤ 11, -13 ≤ k ≤ 13, -14 ≤ l ≤ 14
Reflections collected	38980	6684	40104	36411
Independent reflections	7899 [R _{int} = 0.0534, R _{sigma} = 0.0402]	2632 [R _{int} = 0.0339, R _{sigma} = 0.0436]	3563 [R _{int} = 0.0601, R _{sigma} = 0.0303]	4643 [R _{int} = 0.0535, R _{sigma} = 0.0358]
Data/restraints/parameters	7899/0/513	2632/0/186	3563/0/202	4904/8/215
Goodness-of-fit on F ²	1.075	1.075	1.130	1.130
Final R indexes [I>=2σ (I)]	$R_1 = 0.0429,$ w $R_2 = 0.1142$	R ₁ = 0.0429, wR ₂ = 0.1142	$R_1 = 0.0396,$ w $R_2 = 0.0812$	R ₁ = 0.0396, wR ₂ = 0.0812
Final R indexes [all data]	$R_1 = 0.0477,$ $wR_2 = 0.1178$	R ₁ = 0.0477, wR ₂ = 0.1178	$R_1 = 0.0513,$ $wR_2 = 0.0855$	R ₁ = 0.0513, wR ₂ = 0.0855
Largest diff. peak/hole / e Å ⁻³	0.78/-0.89	0.78/-0.89	0.50/-0.69	0.50/-0.69

Figure S1. Single crystal x-ray structures of complex **1A**, **[Ga(NAD)**₃**]**, Thermal ellipsoids are at 50% probability and hydrogen atoms have been omitted for clarity. For full data on bond lengths and angles see **Tables S2 – S3**

Table	S2. Bond	l Lengths for 1A.			
Atom	Atom	Length/Å	Atom	Atom	Length/Å
Ga(1)	O(8)	2.0085(15)	C(24)	C(25)	1.508(3)
Ga(1)	O(5)	1.9692(15)	C(2)	C(1)	1.380(3)
Ga(1)	O(4)	1.9405(15)	C(5)	C(10)	1.399(3)
Ga(1)	O(7)	1.9315(16)	C(5)	N(2)	1.351(3)
Ga(1)	O(1)	1.9534(15)	C(29)	N(6)	1.346(3)
Ga(1)	O(2)	1.9563(15)	C(12)	C(13)	1.502(3)
O(8)	C(35)	1.272(3)	C(23)	C(13)	1.421(3)
O(5)	C(23)	1.277(3)	C(23)	C(22)	1.447(3)
O(4)	C(12)	1.284(3)	C(25)	C(26)	1.387(3)
O(7)	C(24)	1.290(3)	C(10)	C(9)	1.407(3)
O(1)	C(38)	1.290(3)	C(17)	N(4)	1.344(3)
O(2)	C(11)	1.275(3)	C(17)	C(22)	1.401(3)
C(38)	O(3)	1.233(3)	N(2)	C(6)	1.334(3)
C(38)	C(1)	1.503(3)	N(6)	C(30)	1.334(3)
O(9)	C(24)	1.222(3)	N(4)	C(18)	1.331(3)
O(6)	C(12)	1.227(3)	C(9)	C(8)	1.371(3)
N(5)	C(29)	1.392(3)	C(21)	C(20)	1.370(3)
N(5)	C(26)	1.339(3)	C(21)	C(22)	1.407(3)
N(5)	C(27)	1.486(3)	C(8)	C(6)	1.411(3)
N(3)	C(14)	1.337(3)	C(6)	C(7)	1.500(3)
N(3)	C(17)	1.387(3)	C(3)	C(4)	1.514(3)
N(3)	C(15)	1.486(3)	C(20)	C(18)	1.411(4)
C(35)	C(34)	1.454(3)	C(33)	C(32)	1.375(3)
C(35)	C(25)	1.408(3)	C(30)	C(32)	1.398(3)
C(14)	C(13)	1.381(3)	C(30)	C(31)	1.504(3)
C(34)	C(29)	1.407(3)	C(18)	C(19)	1.501(3)

C(34)	C(33)	1.402(3)	C(27)	C(28)	1.510(4)
C(11)	C(10)	1.450(3)	C(15)	C(16)	1.523(5)
C(11)	C(1)	1.418(3)	S(1)	O(10)	1.4951(19)
N(1)	C(2)	1.346(3)	S(1)	C(36)	1.780(3)
N(1)	C(5)	1.387(3)	S(1)	C(37)	1.791(3)
N(1)	C(3)	1.486(3)			

Table S3. Bond Angles for 1A_auto.										
Atom	Atom	Atom	Angle/°		Atom	Atom	Atom	Angle/°		
O(5)	Ga(1)	O(8)	92.15(6)		N(6)	C(29)	N(5)	116.43(19)		
O(4)	Ga(1)	O(8)	87.16(6)		N(6)	C(29)	C(34)	124.7(2)		
O(4)	Ga(1)	O(5)	90.83(6)		O(4)	C(12)	C(13)	118.27(18)		
O(4)	Ga(1)	O(1)	94.41(7)		O(6)	C(12)	O(4)	122.8(2)		
O(4)	Ga(1)	O(2)	86.75(7)		O(6)	C(12)	C(13)	119.0(2)		
O(7)	Ga(1)	O(8)	89.95(6)		O(5)	C(23)	C(13)	125.57(19)		
O(7)	Ga(1)	O(5)	90.03(7)		O(5)	C(23)	C(22)	118.31(19)		
O(7)	Ga(1)	O(4)	177.01(6)		C(13)	C(23)	C(22)	116.12(19)		
O(7)	Ga(1)	O(1)	88.46(7)		C(35)	C(25)	C(24)	124.89(19)		
O(7)	Ga(1)	O(2)	92.36(7)		C(26)	C(25)	C(35)	119.6(2)		
O(1)	Ga(1)	O(8)	177.93(7)		C(26)	C(25)	C(24)	115.25(19)		
O(1)	Ga(1)	O(5)	89.17(6)		C(5)	C(10)	C(11)	121.23(18)		
O(1)	Ga(1)	O(2)	91.52(6)		C(5)	C(10)	C(9)	117.32(19)		
O(2)	Ga(1)	O(8)	87.23(6)		C(9)	C(10)	C(11)	121.41(19)		
O(2)	Ga(1)	O(5)	177.53(7)		N(3)	C(17)	C(22)	119.15(19)		
C(35)	O(8)	Ga(1)	124.42(14)		N(4)	C(17)	N(3)	116.4(2)		
C(23)	O(5)	Ga(1)	124.97(13)		N(4)	C(17)	C(22)	124.5(2)		
C(12)	O(4)	Ga(1)	131.34(13)		N(5)	C(26)	C(25)	124.4(2)		
C(24)	O(7)	Ga(1)	130.44(15)		C(11)	C(1)	C(38)	124.2(2)		
C(38)	O(1)	Ga(1)	129.11(14)		C(2)	C(1)	C(38)	116.88(18)		
C(11)	O(2)	Ga(1)	126.00(13)		C(2)	C(1)	C(11)	118.91(19)		
O(1)	C(38)	C(1)	117.85(18)		C(14)	C(13)	C(12)	116.04(19)		
O(3)	C(38)	O(1)	122.80(19)		C(14)	C(13)	C(23)	119.13(19)		
O(3)	C(38)	C(1)	119.3(2)		C(23)	C(13)	C(12)	124.8(2)		
C(29)	N(5)	C(27)	120.77(19)		C(6)	N(2)	C(5)	117.14(19)		
C(26)	N(5)	C(29)	119.44(19)		C(30)	N(6)	C(29)	117.07(19)		
C(26)	N(5)	C(27)	119.76(19)		C(18)	N(4)	C(17)	117.1(2)		
C(14)	N(3)	C(17)	119.7(2)		C(8)	C(9)	C(10)	119.3(2)		
C(14)	N(3)	C(15)	118.6(2)		C(20)	C(21)	C(22)	119.4(2)		
C(17)	N(3)	C(15)	121.60(19)		C(9)	C(8)	C(6)	118.98(19)		
O(8)	C(35)	C(34)	118.29(19)		N(2)	C(6)	C(8)	123.13(19)		
O(8)	C(35)	C(25)	125.9(2)		N(2)	C(6)	C(7)	117.51(19)		
C(25)	C(35)	C(34)	115.83(19)		C(8)	C(6)	C(7)	119.36(19)		
N(3)	C(14)	C(13)	124.4(2)		N(1)	C(3)	C(4)	112.13(18)		
C(29)	C(34)	C(35)	121.62(19)		C(21)	C(20)	C(18)	118.9(2)		
C(33)	C(34)	C(35)	122.0(2)		C(17)	C(22)	C(23)	121.4(2)		
C(33)	C(34)	C(29)	116.4(2)		C(17)	C(22)	C(21)	116.9(2)		
O(2)	C(11)	C(10)	117.07(18)		C(21)	C(22)	C(23)	121.6(2)		
O(2)	C(11)	C(1)	126.46(19)		C(32)	C(33)	C(34)	119.4(2)		
C(1)	C(11)	C(10)	116.47(19)		N(6)	C(30)	C(32)	122.8(2)		
C(2)	N(1)	C(5)	119.34(18)		N(6)	C(30)	C(31)	116.0(2)		

C(2)	N(1)	C(3)	119.48(17)	C(32)	C(30)	C(31)	121.1(2)
C(5)	N(1)	C(3)	121.17(17)	C(33)	C(32)	C(30)	119.5(2)
O(7)	C(24)	C(25)	117.75(19)	N(4)	C(18)	C(20)	123.2(2)
O(9)	C(24)	O(7)	123.7(2)	N(4)	C(18)	C(19)	116.1(3)
O(9)	C(24)	C(25)	118.5(2)	C(20)	C(18)	C(19)	120.8(2)
N(1)	C(2)	C(1)	124.50(19)	N(5)	C(27)	C(28)	112.1(2)
N(1)	C(5)	C(10)	119.40(18)	N(3)	C(15)	C(16)	110.4(2)
N(2)	C(5)	N(1)	116.50(18)	O(10)	S(1)	C(36)	107.36(13)
N(2)	C(5)	C(10)	124.10(19)	O(10)	S(1)	C(37)	106.62(12)
N(5)	C(29)	C(34)	118.91(19)	C(36)	S(1)	C(37)	96.43(14)

Figure S2. Solid-state structure of complex **1B**, **[GaMe₂(NAD)]**. Thermal ellipsoids shown at 50% probability. Hydrogen atoms have been omitted for clarity. For full data on bond lengths and angles see **Tables S4 – S5**

Table S	Table S4. Bond Lengths for 1B.										
Atom	Atom	Length/Å	Atom	Atom	Length/Å						
Ga(1)	O(3)	1.984(4)	N(1)	C(8)	1.327(7)						
Ga(1)	O(2)	1.920(4)	C(3)	C(4)	1.501(7)						
Ga(1)	C(2)	1.942(6)	C(5)	C(6)	1.443(7)						
Ga(1)	C(1)	1.942(6)	C(5)	C(4)	1.425(7)						
O(3)	C(5)	1.275(6)	C(6)	C(9)	1.400(7)						
O(1)	C(3)	1.221(6)	C(6)	C(00C)	1.411(7)						
O(2)	C(3)	1.295(6)	C(4)	C(10)	1.380(7)						
N(2)	C(9)	1.385(7)	C(00C)	C(7)	1.363(8)						
N(2)	C(10)	1.329(7)	C(8)	C(7)	1.403(8)						
N(2)	C(13)	1.486(6)	C(8)	C(11)	1.492(7)						
N(1)	C(9)	1.337(7)	C(13)	C(14)	1.511(8)						

Table	Table S5. Bond Angles for 1B.											
Atom	Atom	Atom	Angle/°		Atom	Atom	Atom	Angle/°				
O(2)	Ga(1)	O(3)	92.96(15)		C(4)	C(5)	C(6)	116.9(4)				
O(2)	Ga(1)	C(2)	108.5(2)		C(9)	C(6)	C(5)	121.2(5)				
O(2)	Ga(1)	C(1)	108.3(2)		C(9)	C(6)	C(00C)	116.4(5)				
C(2)	Ga(1)	O(3)	102.4(2)		C(00C)	C(6)	C(5)	122.4(5)				
C(1)	Ga(1)	O(3)	106.7(2)		C(5)	C(4)	C(3)	126.2(5)				
C(1)	Ga(1)	C(2)	131.0(3)		C(10)	C(4)	C(3)	116.0(5)				
C(5)	O(3)	Ga(1)	123.9(3)		C(10)	C(4)	C(5)	117.7(5)				
C(3)	O(2)	Ga(1)	130.5(3)		N(2)	C(9)	C(6)	119.1(5)				
C(9)	N(2)	C(13)	119.9(4)		N(1)	C(9)	N(2)	116.4(5)				
C(10)	N(2)	C(9)	119.6(4)		N(1)	C(9)	C(6)	124.5(5)				
C(10)	N(2)	C(13)	120.5(4)		C(7)	C(00C)	C(6)	118.9(5)				
C(8)	N(1)	C(9)	118.1(5)		N(2)	C(10)	C(4)	125.4(5)				
O(1)	C(3)	O(2)	123.0(5)		N(1)	C(8)	C(7)	121.7(5)				
O(1)	C(3)	C(4)	118.7(5)		N(1)	C(8)	C(11)	116.4(5)				
O(2)	C(3)	C(4)	118.4(5)		C(7)	C(8)	C(11)	121.9(5)				
O(3)	C(5)	C(6)	118.1(4)		C(00C)	C(7)	C(8)	120.4(5)				
O(3)	C(5)	C(4)	125.0(5)		N(2)	C(13)	C(14)	110.4(4)				

Figure S3. Single crystal x-ray structures of complex **2B**, **[GaMe₂(OXO)]**. Thermal ellipsoids are at 50% probability and hydrogen atoms have been omitted for clarity. For full data on bond lengths and angles see **Tables S6 – S7**

Table	Table S6. Bond Lengths for 2B.										
Atom	Atom	Length/Å		Atom	Atom	Length/Å					
Ga(1)	O(2)	1.9423(15)		N(1)	C(12)	1.390(3)					
Ga(1)	O(1)	1.9120(17)		C(7)	C(6)	1.412(3)					
Ga(1)	C(1)	1.953(2)		C(7)	C(8)	1.354(3)					
Ga(1)	C(2)	1.951(2)		C(6)	C(5)	1.445(3)					
O(2)	C(5)	1.290(3)		C(6)	C(12)	1.411(3)					
O(1)	C(3)	1.294(3)		C(13)	C(14)	1.511(3)					

O(5)	C(10)	1.365(3)	C(8)	C(10)	1.398(3)
O(5)	C(9)	1.427(3)	C(10)	C(11)	1.357(3)
O(4)	C(8)	1.367(3)	C(5)	C(4)	1.414(3)
O(4)	C(9)	1.430(3)	C(11)	C(12)	1.417(3)
O(3)	C(3)	1.224(3)	C(15)	C(4)	1.375(3)
N(1)	C(13)	1.482(3)	C(3)	C(4)	1.502(3)
N(1)	C(15)	1.335(3)			

Table S7. Bond Angles for 2B.										
Atom	Atom	Atom	Angle/°		Atom	Atom	Atom	Angle/°		
O(2)	Ga(1)	C(1)	105.57(10)		C(7)	C(8)	C(10)	121.6(2)		
O(2)	Ga(1)	C(2)	108.36(9)		O(5)	C(10)	C(8)	109.3(2)		
O(1)	Ga(1)	O(2)	94.61(7)		C(11)	C(10)	O(5)	127.1(2)		
O(1)	Ga(1)	C(1)	107.17(10)		C(11)	C(10)	C(8)	123.6(2)		
O(1)	Ga(1)	C(2)	108.18(10)		O(2)	C(5)	C(6)	117.57(19)		
C(2)	Ga(1)	C(1)	127.90(11)		O(2)	C(5)	C(4)	125.29(19)		
C(5)	O(2)	Ga(1)	124.71(14)		C(4)	C(5)	C(6)	117.14(19)		
C(3)	O(1)	Ga(1)	128.88(15)		C(10)	C(11)	C(12)	115.8(2)		
C(10)	O(5)	C(9)	106.52(18)		N(1)	C(15)	C(4)	124.5(2)		
C(8)	O(4)	C(9)	105.97(18)		O(1)	C(3)	C(4)	118.6(2)		
C(15)	N(1)	C(13)	118.42(19)		O(3)	C(3)	O(1)	122.6(2)		
C(15)	N(1)	C(12)	120.11(19)		O(3)	C(3)	C(4)	118.8(2)		
C(12)	N(1)	C(13)	121.47(17)		N(1)	C(12)	C(6)	118.63(19)		
C(8)	C(7)	C(6)	117.6(2)		N(1)	C(12)	C(11)	120.01(19)		
C(7)	C(6)	C(5)	118.98(19)		C(6)	C(12)	C(11)	121.3(2)		
C(12)	C(6)	C(7)	120.18(19)		C(5)	C(4)	C(3)	126.0(2)		
C(12)	C(6)	C(5)	120.8(2)		C(15)	C(4)	C(5)	118.78(19)		
N(1)	C(13)	C(14)	111.80(18)		C(15)	C(4)	C(3)	115.1(2)		
O(4)	C(8)	C(10)	109.93(19)		O(5)	C(9)	O(4)	108.22(18)		
C(7)	C(8)	O(4)	128.5(2)							

Figure S4. Single crystal x-ray structures of complex **3B**, **[GaMe₂(NOR)]**. Thermal ellipsoids are at 50% probability and hydrogen atoms have been omitted for clarity. For full data on bond lengths and angles see **Tables S8 – S9**

Table	Table S8. Bond Lengths for 3B.										
Atom	Atom	Length/Å		Atom	Atom	Length/Å					
Ga(1)	O(1)	1.9078(14)		N(3)	C(16)	1.451(3)					
Ga(1)	O(3)	1.9374(14)		C(1)	C(2)	1.506(3)					
Ga(1)	C(18)	1.951(2)		C(2)	C(3)	1.408(3)					
Ga(1)	C(19)	1.950(2)		C(2)	C(10)	1.380(3)					
F(1)	C(6)	1.350(2)		C(3)	C(4)	1.440(3)					
O(1)	C(1)	1.292(2)		C(4)	C(5)	1.408(3)					
O(2)	C(1)	1.218(2)		C(4)	C(9)	1.402(2)					
O(3)	C(3)	1.283(2)		C(5)	C(6)	1.351(3)					
N(1)	C(9)	1.389(2)		C(6)	C(7)	1.419(3)					
N(1)	C(10)	1.328(2)		C(7)	C(8)	1.382(3)					
N(1)	C(12)	1.479(2)		C(8)	C(9)	1.395(3)					
N(2)	C(7)	1.391(2)		C(12)	C(13)	1.509(3)					
N(2)	C(14)	1.481(2)		C(14)	C(15)	1.510(3)					
N(2)	C(17)	1.463(2)		C(16)	C(17)	1.512(3)					
N(3)	C(15)	1.450(3)									

Table S9. Bond Angles for 3B.							
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
O(1)	Ga(1)	O(3)	93.56(6)	O(3)	C(3)	C(4)	118.13(17)
O(1)	Ga(1)	C(18)	107.86(9)	C(2)	C(3)	C(4)	116.53(16)
O(1)	Ga(1)	C(19)	109.04(8)	C(5)	C(4)	C(3)	120.39(16)
O(3)	Ga(1)	C(18)	107.71(9)	C(9)	C(4)	C(3)	121.50(17)
O(3)	Ga(1)	C(19)	106.62(8)	C(9)	C(4)	C(5)	118.04(17)
C(19)	Ga(1)	C(18)	126.92(9)	C(6)	C(5)	C(4)	120.18(17)
C(1)	O(1)	Ga(1)	128.30(13)	F(1)	C(6)	C(5)	118.22(16)
C(3)	O(3)	Ga(1)	121.53(13)	F(1)	C(6)	C(7)	118.58(16)
C(9)	N(1)	C(12)	120.91(15)	C(5)	C(6)	C(7)	123.13(17)
C(10)	N(1)	C(9)	120.14(16)	N(2)	C(7)	C(6)	120.50(16)
C(10)	N(1)	C(12)	118.93(16)	C(8)	C(7)	N(2)	123.11(17)
C(7)	N(2)	C(14)	113.87(15)	C(8)	C(7)	C(6)	116.37(17)
C(7)	N(2)	C(17)	116.07(15)	C(7)	C(8)	C(9)	121.66(17)
C(17)	N(2)	C(14)	111.93(15)	N(1)	C(9)	C(4)	118.31(17)
C(15)	N(3)	C(16)	108.52(16)	N(1)	C(9)	C(8)	121.10(16)
O(1)	C(1)	C(2)	118.36(17)	C(8)	C(9)	C(4)	120.58(17)
O(2)	C(1)	O(1)	122.72(18)	N(1)	C(10)	C(2)	124.29(17)
O(2)	C(1)	C(2)	118.92(17)	N(1)	C(12)	C(13)	111.49(16)
C(3)	C(2)	C(1)	124.92(17)	N(2)	C(14)	C(15)	110.82(16)
C(10)	C(2)	C(1)	116.04(16)	N(3)	C(15)	C(14)	109.04(16)
C(10)	C(2)	C(3)	119.01(17)	N(3)	C(16)	C(17)	108.70(16)
O(3)	C(3)	C(2)	125.34(17)	N(2)	C(17)	C(16)	110.57(16)

3. Biological data

Table S10. Minimum inhibitory concentration (MIC) of complexes 1A - 3A, 1B - 3B and quinolones, 1 - 3 in RPMI + 10% HS towards quinolone resistance *K. Pneumoniae*. All analyses were performed in triplicate.

Compound	ompound KP RH201207		KP AJ289	KP 1074	
NAD <i>H</i> (1)	> 100	> 100	> 100	> 100	
ОХОН (2)	> 100	> 100	> 100	> 100	
NOR <i>H</i> (3)	> 100	> 100	> 100	> 100	
[Ga(NAD) ₃] (1A)	0.781	0.195	0.781	0.781	
[Ga(OXO) ₃] (2A)	0.391	0.195	0.195	0.391	
[Ga(NOR) ₃] (3A)	0.781	0.195	0.391	0.391	
[GaMe ₂ (NAD)] (1B)	0.391	0.195	0.391	0.024	
[GaMe ₂ (OXO)] (2B)	0.098	0.024	0.049	0.098	
[GaMe ₂ (NOR)] (3B)	0.098	0.024	0.049	0.049	

Table S11. Minimum inhibitory concentration (MIC) of complexes 1A - 3A, 1B - 3B and quinolones, 1 - 3 in LB-broth towards quinolone resistance *K. Pneumoniae*. All analyses were performed in triplicate.

Compound	KP RH201207	КР МКР103	KP AJ289	KP 1074	
NAD <i>H</i> (1)	> 100	> 100 > 100		> 100	
ОХО <i>Н</i> (2)	> 100	> 100	> 100	> 100	
NOR <i>H</i> (3)	> 100	> 100	> 100	> 100	
[Ga(NAD) ₃] (1A)	> 50	> 50	> 50	> 50	
[Ga(OXO) ₃] (2A)	> 50	> 50	> 50	> 50	
[Ga(NOR) ₃] (3A)	> 50	> 50	> 50	> 50	
[GaMe ₂ (NAD)] (1B)	> 100	> 100	> 100	> 100	
[GaMe ₂ (OXO)] (2B)	> 100	> 100	> 100	> 100	
[GaMe ₂ (NOR)] (3B)	> 100	> 100	> 100	> 100	

L929 cell viability

Figure S5. Percentage cell viability after treatment with complexes **1A– 3A** against L292 fibroblast cells. Dose response curves were generated over a range of concentrations (24nm – 50 μ M) in the appropriate culture media from 5 mM DMSO stock solutions. All readings were compared spectroscopically to non-treated control and the percent growth inhibition calculated. All analyses were completed in triplicate.

Figure S6. Comparison of percentage cell viability after treatment with complexes 1B - 3B and free acids 1 - 3, against L292 fibroblast cells. Dose response curves were generated over a range of concentrations (48nm – 100 μ M) in the appropriate culture media from 10 mM DMSO stock solutions. All readings were compared spectroscopically to non-treated control and the percent growth inhibition calculated. All analyses were completed in triplicate.

L929 Cell viability assay

The method is same as the discussed in page number S4 under section *cell culture* and *In vitro testing of L929 cells*. The only change has been made is 10% human serum used instead of 10% Fetal Bovine Serum (FBS) as suggested by the reviewer. The results showed that the compounds are non-toxic against L929 cells with the highest tested concentration which is up to 100 μ M.

L929 cell viability

Figure S7. Percentage cell viability after treatment with complexes **1A– 3A** against L292 fibroblast cells. Dose response curves were generated over a range of concentrations (97 nm – 50 μ M) in the appropriate culture media from 5 mM DMSO stock solutions. All readings were compared spectroscopically to non-treated control and the percent growth inhibition calculated. All analyses were completed in triplicate.

L929 cell viability

Figure S8. Comparison of percentage cell viability after treatment with complexes 1B - 3B and free acids 1 - 3, against L292 fibroblast cells. Dose response curves were generated over a range of concentrations (193 nm – 100 μ M) in the appropriate culture media from 10 mM DMSO stock solutions. All readings were compared spectroscopically to non-treated control and the percent growth inhibition calculated. All analyses were completed in triplicate.

1. Other analytical data

Calibration curve of Gallium content via ICP-MS

Figure S9. Calibration curve of gallium concentration in ppb measured via ICP-MS. All analyses were completed in triplicate.

2. Characterisation

Compound 1A:

Figure S10: ¹H NMR (400 MHz, 298 K) of complex 1A in d₆-DMSO

Compound 2A:

Figure S11: ¹H NMR (400 MHz, 298 K) of complex 2A in d₆-DMSO

Compound 3A:

Figure S12: ¹H NMR (400 MHz, 298 K) of complex **3A** in d₆-DMSO

Compound 1B:

Figure S13: ¹H NMR (400 MHz, 298 K) of complex 1B in d₆-DMSO

Figure S14: ¹³C NMR (150 MHz, 298 K) of complex 1B in d₆-DMSO

Compound 2B:

Figure S15: ¹H NMR (400 MHz, 298 K) of complex 2B in d₆-DMSO

Figure S16: 13 C NMR (150 MHz, 298 K) of complex 2B in d₆-DMSO.

Compound 3B:

Figure S17: ¹H NMR (400 MHz, 298 K) of complex **3B** in d₆-DMSO

Figure S18: ¹³C NMR (150 MHz, 298 K) of complex **3B** in d₆-DMSO

HR-MS data

1A HR-MS:

2A HR-MS:

3A HR-MS:

1B HR-MS:

2B HR-MS:

3B HR-MS:

3. Solution state stability

Compound 1A:

Figure S19: A representative example of ¹H NMR (400 MHz, 298 K) of complex **1A** in d₆-DMSO at 0 timepoint (red color) and 24 hrs timepoint (blue color)

Compound 2B:

Figure S20: A representative example of ¹H NMR (400 MHz, 298 K) of complex **2B** in d₆-DMSO at 0 timepoint (red color) and 24 hrs timepoint (blue color)

Compound 1B:

Figure S21: ¹H NMR (400 MHz, 298 K) of complex **1B** in d₆-DMSO at 0 timepoint (red color) and 24 hrs timepoint (blue color)

4. ICP-MS analysis

Gallium recovered					Gallium recovered total				
total ppb Ohrs	1B - pellet	1B - Supp	1A - pellet	1A - supp	ppb 24hrs	1A - pellet	1A - Supp	1B - pellet	1B - supp
ppb	5867.1252	22641.8824	7737.4990	1547.4998		17615.1583	7600.3040	8247.4952	919.1654
Ppm	5.8671	22.6419	7.7375	1.5475		17.6152	7.6003	8.2475	0.9192
mg/mL	0.0059	0.0226	0.0077	0.0015		0.0176	0.0076	0.0082	0.0009
TOTAL Ga	0.0143		0.0093		TOTAL	0.0126		0.0092	
Total Ga recovered									
%	102.5%		66.8%		Total Ga recovered %	90.71%		65.95%	

Calculation example:

Gallium content in 200 μ M of complex **1B** = 22.16%, therefore at 200 μ M concentration of the complex **1B** in 1 mL of media at 303.0496 g/mol is 0.066 mg/mL. Therefore, there is 0.066 x (22.16/100) = 0.0139 mg/mL of total potential gallium.

At Ohrs, the total gallium in supernatant and pellet is 0.014mg/mL, therefore 102.5% gallium recovered. Errors associated with pipetting of sample may account for this. At 24 hrs for **1B** the total gallium recovered is 91%.

Complex **1A** had minor issues with precipitation after the protein digestion was completed, samples were filtered using 0.22-micron syringe filters prior to ICP-MS analysis to prevent blockage of the nebulizer. This may account for the ~30% loss of total gallium. All percentages were therefore normalised to the total gallium recovered.

Note: Product specification sheet does not list the total transferrin content however studies into healthy humans have determined that there is approximately 2.0 - 3.0g/L of transferrin in human serum. 1 mg of transferrin will bind approximately 1.4μ g of iron.³ The iron content in the human serum based on Sigma Aldrich's specification sheet is listed at 35 - 180 ug/dl. Please refer to Sigma Aldrich product code H4522-100ML for further details.

Figure S22. ICP-MS analysis of the total iron content in different cell media.

Figure S23. Calibration curve of Fe(57) measure via ICP-MS

Media type	Total iron content (μg/L)
RPMI-1640	19.26 <u>+</u> 7.160
RPMI-1640 + 10% human serum	284.5 <u>+</u> 38.23
LB-Broth	521.4 <u>+</u> 9.619

5. References for supporting information

1. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. Howard, H. Puschmann, *J. Appl. Crystallograph.* 2009, **42**, 339-341.

2. K. D. Mjos, J. F. Cawthray, E. Polishchuk, M. J. Abrams and C. Orvig, *Dalton Trans.*, 2016, 45, 13146-13160.

3. M. Worwood, A. M. May, B. J. Bain, in *Dacie and Lewis Practical Haematology (Twelfth Edition)* (Eds.: B. J. Bain, I. Bates, M. A. Laffan), Elsevier, **2017**, pp. 165-186.