Fused Metallacyclopropenes from Alkynylphenols

Bingjie Fu, ${ }^{\text {a }}$ Wei Bai, *a Yue Zhao, ${ }^{\text {a }}$ Yang Li, ${ }^{\text {b }}$ Wenfeng Jiang *a
${ }^{1}$ School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China.
${ }^{2}$ School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China.

supporting Information

Table of Contents

1. Experimental details S2-S3
2. Computational studies S4
3. X-ray crystallographic study of complexes $1 \mathrm{a}, \mathbf{3 a}$, 3b, and 4a S5-S6
4. NMR spectra, EPR spectra and HRMS data S7-S19
5. The Calculated Cartesian Coordinates with Electronic Energies S20-S21

Reference S22

1. Experimental details

General information. All manipulations were carried out under a nitrogen atmosphere using standard Schlenk techniques unless otherwise stated. Solvents were purged with a nitrogen flow before use. $\mathrm{OsCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3},{ }^{1}$ 2-ethynylphenol, ${ }^{2}$ 2-ethynyl-4-methylphenol, ${ }^{2}$ 2-ethynyl-4-fluorophenol, ${ }^{3}$ 2-(1-hexyn-1yl)phenol, ${ }^{4}$ 2-(1-octyn-1-yl)phenol ${ }^{5}$ were prepared according to literature methods. Other reagents were used as purchased. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectra were collected on a Bruker Avance II (400 MHz) or a Bruker Avance III (500 MHz). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR shifts are relative to TMS, and ${ }^{31} \mathrm{P}$ chemical shifts relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$. Electron spin resonance (EPR) spectrum was collected on a Bruker E500. A Synapt G2-Si was used to measure high-resolution mass (HRMS). Element Vario EL cube elemental analyzer was used for elemental analyses (EA).

Synthesis of complex 1a. A mixture of 2-ethynylphenol ($0.019 \mathrm{~g}, 0.161 \mathrm{mmol}$) and $\mathrm{OsCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}(0.100$ $\mathrm{g}, 0.095 \mathrm{mmol})$ in toluene $(5 \mathrm{~mL})$ was stirred at room temperature for 4 h , producing a dark green solution. The volume was concentrated to about 1 mL and n-hexane $(10 \mathrm{~mL})$ was added to precipitate a yellowish-green solid, which was filtered and washed with ether ($5 \mathrm{~mL} \times 2$). The resulting yellowishgreen solid was further purified by column chromatography (eluent: DCM). The green band was collected and dried under vacuum. Yield: $40.2 \mathrm{mg}, 46.6 \% .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162.0 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=$ 15.4. ${ }^{1} \mathrm{H}$ NMR ($400.1 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=7.57-7.53(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ph}), 7.35-7.24(\mathrm{~m}, 18 \mathrm{H}, \mathrm{Ph}), 7.02(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 6.81(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 6.55(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 6.33(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph})$, $4.19\left(\mathrm{t}, J=3.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125.0 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=266.6\left(\mathrm{t},{ }^{1} J(\mathrm{PC})=3.8 \mathrm{~Hz}, \mathrm{Os}=\mathrm{C}\right)$, 191.9 (s, C-O), 137.6-117.7 (multiple ${ }^{13} \mathrm{C}$ signals of Ar), $37.7\left(\mathrm{CH}_{2}\right)$. Anal. Calcd. For $\mathrm{C}_{44} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{OOsP}_{2}$: C, 58.47; H, 4.01. Found: C, 58.57; H, 4.11.

Synthesis of complex 1b. A mixture of 4-methyl-2-ethynylphenol ($0.0378 \mathrm{~g}, 0.286 \mathrm{mmol}$) and $\mathrm{OsCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}(0.200 \mathrm{~g}, 0.191 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$ was stirred at room temperature for 4 h , producing a dark green solution. The volume was concentrated to about 1 mL and n-hexane (10 mL) was added to it to precipitate a green solid, which was filtered and washed with ether ($5 \mathrm{~mL} \times 3$). The resulting green solid was further purified by column chromatography (eluent: DCM). The green band was collected and dried under vacuum. Yield: $73.3 \mathrm{mg}, 41.8 \% .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162.0 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=-$ 15.2. ${ }^{1} \mathrm{H}$ NMR ($400.1 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta=7.54-7.24(\mathrm{~m}, 30 \mathrm{H}, \mathrm{Ph}), 6.77(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}), 6.69(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ph}), 6.22(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 4.15\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.22(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125.0 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=264.1\left(\mathrm{t},{ }^{1} J(\mathrm{PC})=6.3 \mathrm{~Hz}, \mathrm{Os}=\mathrm{C}\right.$), $191.4(\mathrm{~s}, \mathrm{C}-\mathrm{O}), 140.0-120.0$ (multiple ${ }^{13} \mathrm{C}$ signals of Ar), $37.5\left(\mathrm{CH}_{2}\right), 20.5(\mathrm{~s}, \mathrm{Me})$. Anal. Calcd. For $\mathrm{C}_{45} \mathrm{H}_{38} \mathrm{Cl}_{2} \mathrm{OOs} \mathrm{P}_{2} \cdot 0.35 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, 57.48; H, 4.12. Found: C, 57.23; H, 4.48.

Synthesis of complex 1c. A mixture of 4-fluoro-2-ethynylphenol ($0.0584 \mathrm{~g}, 0.429 \mathrm{mmol}$) and $\mathrm{OsCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}(0.300 \mathrm{~g}, 0.286 \mathrm{mmol})$ in toluene $(15 \mathrm{~mL})$ was stirred at room temperature for 4 h , producing a dark green solution. The volume was concentrated to about 1 mL and n-hexane (10 mL) was added to precipitate a yellowish-green solid, which was washed ether ($5 \mathrm{~mL} \times 3$). The resulting yellowishgreen solid was further purified by column chromatography (eluent: DCM). The green band was collected and dried under vacuum. Yield: $142.2 \mathrm{mg}, 53.9 \%$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162.0 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=-$ 15.6. ${ }^{1} \mathrm{H}$ NMR $\left(400.1 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=7.56-7.51\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{PPh}_{3}\right), 7.35-7.24\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{PPh}_{3}\right), 6.74-6.67$ $(\mathrm{m}, 2 \mathrm{H}, \mathrm{Ph}), 6.25(\mathrm{dd}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 4.27\left(\mathrm{t}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(125.0 \mathrm{MHz}$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=264.1$ ($\mathrm{m}, \mathrm{Os}=\mathrm{C}$), 188.8 ($\mathrm{s}, \mathrm{C}-\mathrm{O}$), $156.0-107.6$ (multiple ${ }^{13} \mathrm{C}$ signals of Ar), $38.1\left(\mathrm{CH}_{2}\right)$. Anal. Calcd. For $\mathrm{C}_{45} \mathrm{H}_{35} \mathrm{Cl}_{2} \mathrm{FOOsP}_{2} \cdot 0.45 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, 55.61 ; H, 3.77. Found: C, 55.32; H, 3.96.

Synthesis of complex 2a. A mixture of 2-(1-hexyn-1-yl)phenol ($0.0499 \mathrm{~g}, 0.287 \mathrm{mmol}$) and $\mathrm{OsCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}(0.200 \mathrm{~g}, 0.191 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$ was stirred at room temperature for 24 h , producing a dark green solution. The volume was concentrated to about 1 mL and n-hexane (10 mL) was added to precipitate a dark green solid, which was washed with ether $(5 \mathrm{~mL} \times 3)$ and dried under vacuum. Yield: $84.6 \mathrm{mg}, 47.9 \%$. HRMS (ESI, m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{48} \mathrm{H}_{43} \mathrm{Cl}_{2} \mathrm{OOsP}{ }_{2} \mathrm{Na}, 982.1655$; found, 982.1642.

Synthesis of complex 2b. A mixture of 2-(1-octyn-1-yl)phenol ($0.087 \mathrm{~g}, 0.429 \mathrm{mmol}$) and $\mathrm{OsCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ $(0.300 \mathrm{~g}, 0.286 \mathrm{mmol})$ in toluene $(15 \mathrm{~mL})$ was stirred at room temperature for 24 h , producing a dark green solution. The volume was concentrated to about 1 mL and n-hexane (10 mL) was added to precipitate a dark green solid, which was washed with ether ($5 \mathrm{~mL} \times 3$) and dried under vacuum. Yield: $148.3 \mathrm{mg}, 52.4 \%$. HRMS (ESI, m/z): [M-Cl] ${ }^{+}$calcd for $\mathrm{C}_{50} \mathrm{H}_{48} \mathrm{ClOOsP}_{2}, 952.2390$; found, 952.2403.
Synthesis of complex 3a. Complex 2a ($0.100 \mathrm{~g}, 0.104 \mathrm{mmol}$) in DCM (10 mL) was stirred at room temperature under air for 2 h , producing a yellowish-brown solution. The volume was concentrated to about 1 mL and n-hexane $(10 \mathrm{~mL})$ was added to it to precipitate a yellowish-brown solid, which was washed with ether ($5 \mathrm{~mL} \times 3$). The resulting yellowish-brown solid was further purified by column chromatography (eluent: DCM). The green band was collected and dried under vacuum. Yield: 82.6 mg , $82.6 \% .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-15.4 .{ }^{1} \mathrm{H}$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.50-7.48(\mathrm{~m}$, $12 \mathrm{H}, \mathrm{Ph}), 7.26-7.16(\mathrm{~m}, 18 \mathrm{H}, \mathrm{Ph}), 7.01(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 6.57-6.51(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ph}), 5.05(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Os}-\mathrm{C}=\mathrm{CH}), 2.04\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H},=\mathrm{CHCH}_{2}\right), 1.18-1.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $0.79\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=230.4\left(\mathrm{br} \mathrm{t},{ }^{1} J(\mathrm{PC})=3.8 \mathrm{~Hz}\right.$, $\mathrm{Os}=\mathrm{C}$), 190.3 ($\mathrm{s}, \mathrm{C}-\mathrm{O}$), 137.2-116.0 (multiple ${ }^{13} \mathrm{C}$ signals of Ar and $\mathrm{C}=\mathrm{C}$), 39.2 (s), 21.6 (s), 13.9 (s). HRMS (ESI, m/z): [M-Cl] ${ }^{+}$calcd for $\mathrm{C}_{48} \mathrm{H}_{42} \mathrm{ClOOsP}_{2}, 923.2001$; found, 923.1983.

Synthesis of complex 3b. Complex $\mathbf{2 b}(0.0500 \mathrm{~g}, 0.051 \mathrm{mmol})$ in DCM $(5 \mathrm{~mL})$ was stirred at $40^{\circ} \mathrm{C}$ under air for 2 h , producing a yellowish-brown solution. The volume was concentrated to about 1 mL and n-hexane $(10 \mathrm{~mL})$ was added to it to precipitate a yellowish-brown solid, which was washed with ether ($5 \mathrm{~mL} \times 3$). The resulting yellowish-brown solid was further purified by column chromatography (eluent: DCM). The yellowish-brown band was collected and dried under vacuum. Yield: $38.6 \mathrm{mg}, 77.4$ $\% .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-15.3 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.50-7.48(\mathrm{~m}, 12 \mathrm{H}$, Ph), 7.24-7.16 (m, 18H, Ph), $7.02(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 6.54(\mathrm{t}, J=12.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ph}), 5.04(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Os}-\mathrm{C}=\mathrm{CH}), 2.03\left(\mathrm{br} \mathrm{q}, 2 \mathrm{H},=\mathrm{CHCH}_{2}\right), 1.29-1.13\left(\mathrm{~m}, 6 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{3}\right), 0.91$ $\left(\mathrm{t}, J=8.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=230.5(\mathrm{br} \mathrm{m}, \mathrm{Os}=\mathrm{C}), 190.5(\mathrm{~s}, \mathrm{C}-\mathrm{O})$, 137.7-116.2 (multiple ${ }^{13} \mathrm{C}$ signals of Ar and $\mathrm{C}=\mathrm{C}$), 37.3 (s), 31.9 (s), 28.2 (s), 22.7 (s), 14.3 (s). HRMS (ESI, m/z): [M-Cl] $]^{+}$calcd for $\mathrm{C}_{50} \mathrm{H}_{46} \mathrm{ClOOsP}_{2}, 951.2314$; found, 951.2322 .
Synthesis of complex $4 \mathbf{a}$. Complex $\mathbf{2 a}(0.050 \mathrm{~g}, 0.052 \mathrm{mmol})$ was placed in a flask and stirred at $100^{\circ} \mathrm{C}$ under air for 24 h , producing a dark solid. The solid was then purified by flash column chromatography (eluent: DCM). The brownish red band was collected and dried under vacuum. Yield: $26.8 \mathrm{mg}, 51.9 \%$. HRMS (ESI, m/z): [M-Cl] calcd for $\mathrm{C}_{48} \mathrm{H}_{43} \mathrm{ClO}_{3} \mathrm{OsP}_{2}, 956.1977$; found, 956.1976.
Synthesis of complex $\mathbf{4 b}$. Complex $\mathbf{2 b}(0.050 \mathrm{~g}, 0.051 \mathrm{mmol})$ was placed in a flask and stirred at 100 ${ }^{\circ} \mathrm{C}$ under air for 72 h , producing a dark solid. The solid was then purified by flash column chromatography (eluent: DCM). The brownish red band was collected and dried under vacuum. Yield: $7.8 \mathrm{mg}, 15.2 \%$. HRMS (ESI, m/z): [M-Cl] ${ }^{+}$calcd for $\mathrm{C}_{50} \mathrm{H}_{47} \mathrm{ClO}_{3} \mathrm{OsP}_{2}, 984.2291$; found, 984.2292.

2. Computational studies.

Computational details. The optimizations were performed with the Gaussian 16 software package ${ }^{6}$ at the B3LYP level of density functional theory (DFT). ${ }^{7}$ DFT/GENECP level had been done by implementing def2-TZVP basis set for Os atom. ${ }^{8}$ The $6-311 \mathrm{G}(2 \mathrm{~d}, \mathrm{p})$ basis set had been used for the rest of atoms. ${ }^{9}$ Nucleus-independent chemical shift (NICS) values were calculated at the B3LYP//6$311 \mathrm{G}(2 \mathrm{~d}, \mathrm{p}) /$ def2-TZVP level. ${ }^{10}$ The anisotropy of the current density was calculated with the AICD 2.0 program computing the NMR properties using the CSGT method with the geometries previously obtained for $\mathbf{1 a} \mathbf{a}^{\prime}$ and $\mathbf{3 a} \mathbf{a}^{\prime}$. ${ }^{11}$

Figure S1. AICD plots of $\mathbf{1 a}$ ' separated into the (left) π contributions and (right) σ contributions with an isosurface value of 0.03 . For AICD maps, the magnetic field vector is orthogonal with respect to the monocyclic ring plane and points downward (anti-clockwise currents are diatropic).

Figure S2. AICD plots of 3a' separated into the (left) π contributions and (right) σ contributions with an isosurface value of 0.03 . For AICD maps, the magnetic field vector is orthogonal with respect to the
monocyclic ring plane and points downward (anti-clockwise currents are diatropic).

3. X-ray crystallographic study

Single crystals of complexes 1a (CCDC No.2225150), 3a (CCDC No. 2225151), 3b (CCDC No. 2288691), and $\mathbf{4 a}$ (CCDC No.2264254) suitable for X-ray diffraction were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution layered with n-hexane. Intensity data of $\mathbf{1 a}$ and $\mathbf{4 a}$ were collected on a Bruker Smart APEXII diffractometer using $\mathrm{Cu}-\mathrm{K} \alpha$ radiation $(\lambda=1.54184 \AA)$, and that of $\mathbf{3 a}$ and $\mathbf{3 b}$ were collected on a Bruker Smart APEXII diffractometer using Mo-K α radiation $(\lambda=0.71073 \AA)$. Unit cell indexing was refined using SAINT, Absorption correction was applied by using multi-scan program SADABS. The structure was solved with OLEX2 software, and the SHELXT structure solution program using combined direct method. ${ }^{12-13}$ The crystal structure was refined by least squares using SHELXL. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms bonded to carbon atoms were placed at calculated positions and refined using a riding model approximation, with $\mathrm{C}-\mathrm{H}=0.95$ (aromatic CH) and with $\operatorname{Uiso}(\mathrm{H})=1.2 \operatorname{Ueq}(\mathrm{C}), \mathrm{C}-\mathrm{H}=1.00(-\mathrm{CH})$ and with $\operatorname{Uiso}(\mathrm{H})=1.2 \mathrm{Ueq}(\mathrm{C}), \mathrm{C}-\mathrm{H}=0.99\left(-\mathrm{CH}_{2}\right)$ and with $\operatorname{Uiso}(\mathrm{H})=1.2 \mathrm{Ueq}(\mathrm{C}), \mathrm{C}-\mathrm{H}=0.98 \AA\left(-\mathrm{CH}_{3}\right)$ and with $\operatorname{Uiso}(\mathrm{H})=1.5 \mathrm{Ueq}(\mathrm{C})$. The crystal data are listed in Table S1.

Table S1. Crystallographic data and refinement details of 1a, 3a, 3b, 4a.

	1 a	3a	3b	4 a
Empirical formula	$\mathrm{C}_{44} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{OOsP}_{2}$	$\begin{gathered} \mathrm{C}_{48} \mathrm{H}_{42} \mathrm{Cl}_{2} \mathrm{OOsP}_{2} . \\ \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{gathered}$	$\mathrm{C}_{50} \mathrm{H}_{46} \mathrm{Cl}_{2} \mathrm{OOsP}{ }_{2}$	$\begin{gathered} \mathrm{C}_{48} \mathrm{H}_{43} \mathrm{Cl}_{2} \mathrm{O}_{3} \mathrm{OsP}_{2} \\ \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{gathered}$
Color \& habit	brown, block	brown yellow, block	brown yellow, block	brownish red, block
Crystal size (mm^{3})	$0.15 \times 0.13 \times 0.11$	$0.20 \times 0.20 \times 0.10$	$0.15 \times 0.13 \times 0.12$	$0.15 \times 0.13 \times 0.12$
Temperature (K)	100	150	100	150
Crystal system	monoclinic	orthorhombic	monoclinic	monoclinic
Space group	$P 2{ }_{1}$	$P 2{ }_{1} 2_{1} 2_{1}$	$P 2_{1} / \mathrm{n}$	$P 2_{1} / \mathrm{c}$
a (\AA)	9.57540 (10)	10.9207(2)	19.4318(6)	21.5392(5)
b (\AA)	$16.40830(10)$	12.9359(2)	10.3039(2)	13.2966(3)
c (\AA)	$11.88330(10)$	30.7710(6)	$22.3306(6)$	30.5699(8)
$\alpha\left(^{\circ}\right) \alpha\left(^{\circ}\right)$	90	90	90	90
$\beta\left({ }^{\circ}\right) \beta\left({ }^{\circ}\right)$	97.4020(10)	90	109.332(3)	99.7310(10)
$\gamma\left({ }^{\circ}\right) \gamma\left({ }^{\circ}\right)$	90	90	90	90
$\mathrm{V}\left(\AA^{3}\right), \mathrm{Z}$	1851.50(3), 2	4346.99(13), 4	4219.0(2), 4	8629.2(4), 4
$\mathrm{D}_{\text {cal }}\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	1.621	1.593	1.552	1.591
Abs. coeff.(mm^{-1})	8.914	3.290	3.263	8.323
2θ range for data	5.386 to 153.254	4.882 to 52.778	4.4 to 50.054	4.162 to 133.176
Reflections collected	24556	45361	41333	80741
Indep. Reflection,	10109, 0.0257	8846,0.0324	7456,0.0460	15233,0.0460
Completeness(\%) of	95	99.8	99.9	99.9
Data/ restraints/	10109/15/902	8846/0/515	7456/1128/506	15233/2003/1038
Goodness-of-fit on F^{2}	1.074	1.010	1.016	1.083
${ }^{*} \mathrm{R}_{1}[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})], \mathrm{wR}_{2}$	0.0196, 0.0491	$0.0208,0.0447$	$0.0269,0.0586$	$0.0534,0.1401$
${ }^{*} \mathrm{R}_{1}$ (all data), wR ${ }_{2}$	0.0198, 0.0492	0.0238, 0.0458	0.0370, 0.0633	0.0551, 0.1426

Figure S3. ORTEP drawing of complex 3b with thermal ellipsoids set 50% probability (phenyl groups in PPh 3 are omitted for clarity). Selected bond distances (\AA) and angles $\left(^{\circ}\right)$: Os1-C1 2.112(4), Os1-C2 1.982(4), Os1-O1 2.071(2), Os1-P1 2.4184(9), Os1-P2 2.4177(9), Os1-Cl1 2.4218(9), Os1-Cl2 $2.4249(9), \mathrm{C} 1-\mathrm{C} 21.339(6), \mathrm{C} 2-\mathrm{C} 31.380(6), \mathrm{C} 3-\mathrm{C} 41.414(6), \mathrm{C} 4-\mathrm{O} 11.299(5), \mathrm{C} 4-\mathrm{C} 51.416(6), \mathrm{C} 5-\mathrm{C} 6$ 1.382(6), C6-C7 1.405(6), C7-C8 1.363(6), C8-C3 1.434(6), C1-C9 1.338(6), Os1-C1-C2 65.7(2), Os1-C2-C1 76.3(3), C1-Os1-C2 38.01(17), Os1-C2-C3 120.9(3), C2-C3-C4 109.8(4), C3-C4-O1 117.1(4), C4-O1-Os1 116.9(2), O1-Os1-C2 75.28(14), P1-Os1-P2 175.36(3).
4. NMR spectra, EPR spectra and HRMS data

Figure S4. The ${ }^{1} \mathrm{H}$ NMR spectrum of complex $\mathbf{1 a}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 400.1 MHz .

Figure S5. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex 1a in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 162.0 MHz .

Figure S6. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex 1a in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 125.0 MHz .

Figure S7. The ${ }^{1} \mathrm{H}$ NMR spectrum of complex $\mathbf{1 b}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 400.1 MHz .

Figure S8. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex $\mathbf{1 b}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 162.0 MHz .

Figure S9. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex $\mathbf{1 b}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 125.0 MHz .

Figure S10. The ${ }^{1} \mathrm{H}$ NMR spectrum of complex $\mathbf{1 c}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 400.1 MHz .

Figure S11. The ${ }^{31} \mathrm{P}\left\{{ }^{\{ } \mathrm{H}\right\}$ NMR spectrum of complex $\mathbf{1 c}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 162.0 MHz .

Figure S12. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex $\mathbf{1 c}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 125.0 MHz .

Figure S13. The ${ }^{1} \mathrm{H}$ NMR spectrum of complex $\mathbf{2 a}$ in CDCl_{3} at 400.1 MHz .

Figure S14. The ${ }^{1} \mathrm{H}$ NMR spectrum of complex $\mathbf{3 a}$ in CDCl_{3} at 400.1 MHz .

Figure S15. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex $\mathbf{3 a}$ in CDCl_{3} at 162.0 MHz .

Figure S16. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex $\mathbf{3 a}$ in CDCl_{3} at 125.0 MHz .

Figure S17. The ${ }^{13} \mathrm{C}$ DEPT-135 NMR spectrum of complex 3a in CDCl_{3} at 125.0 MHz .

Figure S18. The ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC and expanded NMR spectrum of complex $\mathbf{3 a}$ in CDCl_{3} at 125.0 MHz .

Figure S19.The ${ }^{1} \mathrm{H}$ NMR spectrum of complex $\mathbf{3 b}$ in CDCl_{3} at 400.1 MHz .

Figure S20. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex $\mathbf{3 b}$ in CDCl_{3} at 162.0 MHz .

Figure S21. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex $\mathbf{3 b}$ in CDCl_{3} at 125.0 MHz .

Figure S22. The EPR spectrum of complex 2a (powder) at room temperature.

Figure S23. The EPR spectrum of complex $\mathbf{4 a}$ (powder) at room temperature.

Figure S24. Positive ion ESI-HRMS data of [2a-CI] ${ }^{+}\left[\mathrm{C}_{48} \mathrm{H}_{43} \mathrm{ClOOsP}_{2}\right]^{+}$measured in DCM.

Figure S25. Positive ion ESI-HRMS data of [2b-Cl] ${ }^{+}\left[\mathrm{C}_{50} \mathrm{H}_{48} \mathrm{ClOOsP}_{2}\right]^{+}$measured in DCM.

Figure S26. Positive ion ESI-HRMS data of $[\mathbf{3 a - C l}]^{+}\left[\mathrm{C}_{48} \mathrm{H}_{42} \mathrm{ClOOsP}_{2}\right]^{+}$measured in DCM.

Figure S27. Positive ion ESI-HRMS data of [3b-CI] ${ }^{+}\left[\mathrm{C}_{50} \mathrm{H}_{46} \mathrm{ClOOsP}_{2}\right]^{+}$measured in DCM.

Figure S28. Positive ion ESI-HRMS data of $[\mathbf{4 a - C l}]^{+}\left[\mathrm{C}_{48} \mathrm{H}_{43} \mathrm{ClO}_{3} \mathrm{OsP}_{2}\right]^{+}$measured in DCM.

Figure S29. Positive ion ESI-HRMS data of $[\mathbf{4 b - C I}]^{+}\left[\mathrm{C}_{50} \mathrm{H}_{47} \mathrm{ClO}_{3} \mathrm{OsP}_{2}\right]^{+}$measured in DCM.

5. The Calculated Cartesian Coordinates with Electronic Energies

$$
[\mathrm{Os}]^{\prime}=\mathrm{OsCl}_{2}\left(\mathrm{PH}_{3}\right)_{2}
$$

$\mathrm{E}=-2081.282678$ a.u.

Os	-0.60800000	0.00200000	-0.06500000
O	1.04800000	-0.03300000	1.26700000
C	0.00500000	0.05600000	-2.18200000
H	-0.24000000	-0.84000000	-2.74400000
H	-0.24100000	0.97900000	-2.69700000
C	2.21800000	-0.01900000	0.72600000
C	3.52000000	0.03700000	-1.38700000
H	3.54100000	0.06500000	-2.47000000
C	4.67200000	0.01800000	-0.65100000

H	5.63700000	0.03000000	-1.14100000
C	4.61400000	-0.02000000	0.77000000
H	5.54600000	-0.03400000	1.32400000
C	2.27300000	0.01900000	-0.70700000
C	3.43000000	-0.03800000	1.46200000
H	3.39500000	-0.06600000	2.54300000
C	0.98900000	0.03200000	-1.21000000
Cl	-2.83000000	0.03000000	-1.12200000
Cl	-1.81300000	-0.05400000	2.07000000
P	-0.85100000	-2.36000000	0.01300000
H	-2.15300000	-2.79300000	0.29800000
H	-0.56700000	-3.13400000	-1.13200000
H	-0.10900000	-3.07400000	0.97300000
P	-0.85200000	2.35600000	0.13300000
H	-0.10500000	3.02300000	1.12200000
H	-0.57600000	3.18700000	-0.97400000
H	-2.15300000	2.77200000	0.44700000

$[\mathrm{Os}]^{\prime}=\mathrm{OsCl}_{2}\left(\mathrm{PH}_{3}\right)_{2}$

3a'
$\mathrm{E}=-2158.671828$ a.u.

Os	-0.61800000	-0.19300000	0.00000000
Cl	-1.85300000	-2.31100000	0.00000000
Cl	-2.84000000	0.86100000	0.00100000
O	1.01700000	-1.54500000	0.00000000
C	4.59500000	-1.13800000	0.00000000
H	5.51200000	-1.71700000	0.00000000
C	2.20000000	-1.02700000	0.00000000
C	4.69000000	0.28100000	0.00000000
H	5.66800000	0.74700000	0.00000000
C	2.29300000	0.40200000	0.00000000
C	1.01900000	0.94800000	0.00000000
C	3.39200000	-1.79500000	0.00000000
H	3.32600000	-2.87600000	0.00000000
C	3.55700000	1.04600000	0.00000000
H	3.60900000	2.12800000	0.00000000

C	0.02200000	1.84300000	0.00000000
C	-0.40800000	3.10200000	-0.00100000
H	-1.48100000	3.26900000	-0.00100000
P	-0.85300000	-0.31400000	-2.36300000
H	-0.15400000	-1.32300000	-3.05200000
H	-2.16500000	-0.55100000	-2.79700000
H	-0.51300000	0.80300000	-3.15500000
P	-0.85200000	-0.31400000	2.36400000
H	-2.16300000	-0.55300000	2.79700000
H	-0.15100000	-1.32100000	3.05300000
H	-0.51500000	0.80400000	3.15400000
C	0.48200000	4.30700000	-0.00100000
H	0.28300000	4.93200000	-0.87800000
H	0.28300000	4.93200000	0.87600000
H	1.53900000	4.03900000	-0.00100000

Reference

1. P. R. Hoffmann and K. G. Caulton, J. Am. Chem. Soc., 1975, 97, 4221-4228.
2. J. Bucher, T. Wurm, K. S. Nalivela, M. Rudolph, F. Rominger and A. S. K. Hashmiet, Angew. Chem., Int. Ed., 2014, 53, 3854-3858.
3. Z. Rong, W. Hu, N. Dai and G. Qian, Org. Lett., 2020, 22, 3286-3290.
4. S. Ohno, R. F. Avena, H. Aoyama, H. Fujioka and M. Arisawa, Green Chem., 2020, 22, 1220-1228.
5. Martínez, C., R. Álvarez and J.M. Aurrecoechea, Org. Lett., 2009, 11, 1083-1086.
6. Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
7. a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652; b) B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 1989, 157, 200-206; c) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B. 1988, 37, 785-789. 8. a) F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305; b) F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057-1065.
8. P. J. Hay and W. R. Wadt, J. Chem. Phys. 1985, 82, 299-310.
9. a) P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao and N. J. R. v. E. Hommes, J. Am. Chem. Soc. 1996, 118, 6317-6318; b) Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta and P. v. R. Schleyer, Chem. Rev. 2005, 105, 3842-3888; c) H. Fallah-Bagher-Shaidaei, C. S. Wannere, C. Corminboeuf, R. Puchta and P. v. R. Schleyer, Org. Lett. 2006, 8, 863-866.
10. a) R. Herges and D. Geuenich, J. Phys. Chem. A 2001, 105, 3214-3220; b) D. Geuenich, K. Hess, F. Kçhler and R. Herges, Chem. Rev. 2005, 105, 3758-3772.
11. G. M. Sheldrick, Acta Cryst., 2008, A64, 112-122.
12. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. J. Puschmann, $A p$ pl. Cryst., 2009, 42, 339-341.
