Electronic Supplementary Information

Stannyl phosphaketene as a synthon for phosphorus analogues of β-lactams

Yong-an Luo,^{‡a} Zhao Zhao,^{‡a} Ting Chen,^a Yanguo Li,^a Yufen Zhao,^a Douglas W. Stephan,^{*ab} and Yile Wu^{*a}

^a Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China, <u>wuyile@nbu.edu.cn</u>

^b Department of Chemistry, University of Toronto, Toronto, 80 St. George Street, Ontario M5S 3H6, Canada, <u>dstephan@chem.utoronto.ca</u>

‡ These authors contributed equally.

General Information	4
Experimental Section	5
Synthesis of 1	5
Synthesis of 2	6
Synthesis of 3	7
Synthesis of 4	8
Synthesis of 5	9
Synthesis of 6	10
Synthesis of 7	12
X-ray Crystallography	13
Table S1. Crystal data and structure refinement details for compounds 1-4	13
Table S2. Crystal data and structure refinement details for compounds 5-7	14
Figure S1. Thermal ellipsoid plot for 1 with the anisotropic displacement parameters depicte	d at
the 50% probability level	15
Figure S2. Thermal ellipsoid plot for 2 with the anisotropic displacement parameters depicte	d at
the 50% probability level	15
Figure S3. Thermal ellipsoid plot for 3 with the anisotropic displacement parameters depicte	d at
the 50% probability level	16
Figure S4. Thermal ellipsoid plot for 4 with the anisotropic displacement parameters depicte	d at
the 50% probability level	16
Figure S5. Thermal ellipsoid plot for 5 with the anisotropic displacement parameters depicte	d at
the 50% probability level	17
Figure S6. Thermal ellipsoid plot for 6 with the anisotropic displacement parameters depicte	d at
the 50% probability level	17
Figure S7. Thermal ellipsoid plot for 7 with the anisotropic displacement parameters depicte	d at
the 50% probability level	18
NMR Spectra	19
Figure S8. ¹ H NMR spectrum of 1 in C ₆ D ₆	19
Figure S9. ¹³ C NMR spectrum of 1 in C ₆ D ₆	19
Figure S10. ³¹ P NMR spectrum of 1 in C_6D_6	20
Figure S11. ¹ H NMR spectrum of 2 in CDCl ₃	20
Figure S12. ¹³ C NMR spectrum of 2 in CDCl ₃	21
Figure S13. ³¹ P NMR spectrum of 2 in CDCl ₃	21
Figure S14. ¹⁹ F NMR spectrum of 2 in CDCl ₃	22
Figure S15. ¹¹ B NMR spectrum of 2 in CDCl ₃	22
Figure S16. ¹ H NMR spectrum of 3 in CD ₂ Cl ₂	23
Figure S17. ¹³ C NMR spectrum of 3 in CD ₂ Cl ₂	23
Figure S18. ³¹ P NMR spectrum of 3 in CD ₂ Cl ₂	24
Figure S19. ¹⁹ F NMR spectrum of 3 in CD ₂ Cl ₂	24
Figure S20. ¹¹ B NMR spectrum of 3 in CD ₂ Cl ₂	25
Figure S21. ¹ H NMR spectrum of 4 in CD ₂ Cl ₂	25
Figure S22. ¹³ C NMR spectrum of 4 in CD ₂ Cl ₂	26

Contents

Figure S23. ³¹ P NMR spectrum of 4 in CD ₂ Cl ₂	26
Figure S24. ¹⁹ F NMR spectrum of 4 in CD ₂ Cl ₂	27
Figure S25. ¹¹ B NMR spectrum of 4 in CD ₂ Cl ₂	27
Figure S26. ¹ H NMR spectrum of 5 in C ₆ D ₆	
Figure S27. ¹³ C NMR spectrum of 5 in C ₆ D ₆	
Figure S28. ³¹ P NMR spectrum of 5 in C_6D_6	29
Figure S29. ¹⁹ F NMR spectrum of 5 in C ₆ D ₆	29
Figure S30. ¹ H NMR spectrum of 6 in CD ₂ Cl ₂	
Figure S31. ¹³ C NMR spectrum of 6 in CD ₂ Cl ₂	
Figure S32. ³¹ P NMR spectrum of 6 in CD ₂ Cl ₂	
Figure S33. ¹⁹ F NMR spectrum of 6 in CD ₂ Cl ₂	
Figure S34. ¹¹ B NMR spectrum of 6 in CD ₂ Cl ₂	
Figure S35. ¹ H NMR spectrum of 7 in CD ₂ Cl ₂	
Figure S36. ¹³ C NMR spectrum of 7 in CD ₂ Cl ₂	
Figure S37. ³¹ P NMR spectrum of 7 in CD ₂ Cl ₂	
Figure S38. ¹⁹ F NMR spectrum of 7 in CD ₂ Cl ₂	
Figure S39. ¹¹ B NMR spectrum of 7 in CD ₂ Cl ₂	
Figure S40. ¹¹ H NMR spectrum (CDCl ₃) of the NacnacH isolated from the reaction	n of 1 and
dimethyl maleate at room temperature	
Figure S41. HRMS spectrum of 1	
Figure S42. HRMS spectrum of 2	
Figure S43. HRMS spectrum of 3	
Figure S44. HRMS spectrum of 5	
Figure S45. HRMS spectrum of 6	
Figure S46. HRMS spectrum of 7	
Reference	

General Information

All manipulations were carried out on a Schlenk line or in an argon atmosphere glovebox. Solvents were dried using a MBraun solvent purification system, and stored over 3 Å sieves. Unless otherwise stated, commercial reagents were used without further purification. CH{(CMe)(2,6-^{*i*}Pr₂C₆H₃N)}₂SnCl^[S1] and NaPCO(dioxane)^[S2] were synthesized according to the literature methods. ¹H, ¹⁹F, ³¹P, ¹¹B and ¹³C NMR spectra were recorded on a Bruker Ascend 500M or Bruker Advance 400M spectrometer. HRMS were recorded on a Thermo Scientific TM Q-Exactive PlusTM mass spectrometer. Single-crystal X-ray diffraction data were collected on a Bruker D8 QUEST diffractometer using Cu (60W, Diamond, $\mu K\alpha = 12.894$ mm⁻¹) micro-focus X-ray sources. Using Olex2,^[S3] the structure was solved with the XT^[S4] structure solution program using Intrinsic Phasing and refined with the XL^[S5] refinement package using Least Squares minimisation.

Experimental Section

Synthesis of 1:

Ar .. P=C=0

A mixture of NaPCO(dioxane)_x (4 mmol, 30.6% wt., 1071 mg) and toluene (10 mL) was added into a toluene solution (10 mL) of NacNacSnCl (4 mmol, 2287 mg). The resulting orange reaction mixture was stirred at room temperature overnight. After filtration, the solvent was removed under vacuum, and the residues were washed with hexane to give pale yellow powders of **1** (1970 mg, 83% yield). Colorless crystals were obtained by storage a solution of **1** in hexane/toluene at -30 °C overnight. ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.14-7.10 (m, 4H, Ar*H*), 7.07-7.04 (m, 2H, Ar*H*), 4.93 (s, 1H, γ -*H*), 3.91-3.85 (m, 2H, ArC*H*Me₂), 3.24-3.17 (m, 2H, ArC*H*Me₂), 1.53 (s, 6H, β -*Me*), 1.44 (d, *J* = 6.79 Hz, 6H, CH*Me*₂), 1.23-1.21 (m, 12H, CH*Me*₂, overlapped), 1.05 (d, *J* = 6.80 Hz, 6H, CH*Me*₂). ¹³C {¹H} NMR (125 MHz, C₆D₆, ppm): δ 189.4 (d, *J* = 91.10 Hz, PCO), 167.5 (CN), 146.0, 143.1, 141.5, 127.7, 125.4, 124.1 (Ar), 101.8 (γ -C), 29.3 (d, *J* = 6.83 Hz, β -*Me*), 28.5 (*C*HMe₂), 24.7, 23.9 (CH*Me*₂). ³¹P {¹H} NMR (202 MHz, C₆D₆, ppm) δ -316.8. HRMS (*m*/z): HRMS (m/z): [M+Na]⁺ Calcd. for C₃₀H₄₁SnN₂OPNa⁺: 619.1871; Found: 619.1893.

A mixture of **1** (0.1 mmol, 60 mg), B(C₆F₅)₃ (51 mg, 0.1 mmol) and toluene (5 mL) was stirred at ambient temperature for 2 h. The resulting yellow solution was storing at -30 °C overnight to afford orange crystals of **2**. The crystals were collected and wash with cool hexane and dry *in vacuo* for 2 hours (40 mg, 47%). ¹H NMR (500 MHz, CDCl₃, ppm): δ 7.32-7.30 (m, 4H, Ar*H*), 7.28-7.26 (m, 2H, Ar*H*), 5.33 (s, 1H, γ -*H*), 3.41 (br, 4H, C*H*Me₂), 1.89 (s, 6H, β -*Me*), 1.31 (d, *J* = 6.8 Hz, 12H, CH*Me*₂), 1.20 (d, *J* = 6.8 Hz, 12H, CH*Me*₂). ¹³C {¹H} NMR (126 MHz, CDCl₃, ppm): δ 189.0-187.43 (m, P-C-O), 167.2 (*C*N), 144.4, 144.0, 127.3, 124.6 (*Ar*), 101.5 (γ -CH), 29.0, 26.4, 24.3, 24.2 (*C*HMe₂, β -*Me*, CH*Me*₂). ³¹P {¹H} NMR (202 MHz, CDCl₃, ppm): δ -320.0. ¹⁹F {¹H} NMR (471 MHz, CDCl₃, ppm) δ -128.1 (6F, *o*-C₆*F*₅), -143.8 (3F, *p*-C₆*F*₅), -160.9 (6F, *m*-C₆*F*₅). ¹¹B {¹H} NMR (160 MHz, CDCl₃) δ 56.9. HRMS (*m*/*z*): [M - H]⁻ Calcd. for C₄₈H₄₀ON₂BF₁₅PSn⁻: 1107.1759; Found: 1107.1730.

Synthesis of **3**:

$$(C_6F_5)_3B$$

 $O \rightarrow SnNacnac
MeO_2C OMe$

At -30 °C, a toluene (3 mL) solution of B(C₆F₅)₃ (0.1 mmol, 51 mg) was added slowly into a toluene (3 mL) solution of 1 (0.1 mmol, 60 mg) and dimethyl fumarate (0.1 mmol, 14 mg). The reaction mixture was stirred at -30 °C for additional 2 hours, and the floccules were filtrated. The resulting brown solution was stored at -30 °C for 24 hours till colorless crystals of 3 (42 mg, 61%) were obtained and isolated. ¹H NMR (500 MHz, CD_2Cl_2 , ppm): δ 7.38 (t, J = 7.70Hz, 2H, ArH), 7.29 (d, J = 7.70 Hz, 4H, ArH), 5.85 (s, 1 H, γ -H), 4.72 (d, J = 5.60 Hz, 1H, P-CH-COOMe), 3.82 (s, 3H, O-Me), 3.72 (s, 3H, O-Me), 3.54 (s, 1H, CO-CH-CH-P), 2.72 (sept, J = 6.91 Hz, 4H, CHMe₂), 2.00 (s, 6 H, β -Me), 1.14 (t, J = 6.66 Hz, 24 H, CHMe₂). ¹³C{¹H} NMR (126 MHz, CD₂Cl₂, ppm): δ 184.5 (P-C=O-B), 171.9, 171.4 (C(O)OMe), 168.9 (CN), 163.9 (C(O)OMe), 149.6-147.7 (m, C₆F₅), 144.0 (Ar), 140.7 (br, C₆F₅), 139.0 (Ar), 138.1-136.3 (m, C_6F_5), 129.0 (Ar), 125.3 (Ar), 120.1 (br, C_6F_5), 104.2 (γ -C), 60.4, 56.0 (C(O)OMe), 52.8 (C(O)CP), 34.0 (C(O)CC=OB), 29.1, 25.8, 24.5, 24.1 (CHMe₂, β-Me, CHMe₂). ³¹P{¹H} NMR (202 MHz, CD₂Cl₂, ppm): δ 193.9. ¹⁹F{¹H} NMR (471 MHz, CD₂Cl₂, ppm) δ -134.8 (br, 6F, $o-C_6F_5$), -162.1 (br, 3F, $p-C_6F_5$), -166.9 (br, 6F, $m-C_6F_5$). ¹¹B{¹H} NMR (160 MHz, CD₂Cl₂), ppm) δ -2.0. HRMS (*m/z*): [M + H]⁺ Calcd. for C₅₄H₅₀SnN₂F₁₅BO₅P⁺: 1253.2328; Found: 1253.2310.

Synthesis of 4:

A solution of **1** (0.1 mmol, 60 mg), dimethyl fumarate (0.1 mmol, 14 mg) and B(C₆F₅)₃ (0.1 mmol, 51 mg) in toluene (10 mL) was sealed and stirred at 35 °C for 48 hours. The reaction mixture was filtrated, and the resulting brown solution was concentrated to about 5 mL. After storing the brown solution at room temperature for 2 hours, colorless crystals of **4** were obtained, collected and washed with cool toluene (35 mg, 42%). ¹H NMR (500 MHz, CD₂Cl₂, ppm): δ 3.94 (s, 6H, CH₃), 3.65 (s, 6H, CH₃), 3.33 (s, 2H, P-CH-CO). ¹³C{¹H} NMR (125 MHz, CD₂Cl₂, ppm): δ 180.8 (MeOC=O), 163.4 (d, *J* = 14.3 Hz, P-C=C-CO), 149.2-147.3, 138.3-136.5 (m, C₆F₅), 106.2-106.0 (d, *J* = 16.0 Hz, P-C-C-CO), 55.7, 53.4 (OMe), 36.2 (P-C-CO). ³¹P{¹H} NMR (202 MHz, CD₂Cl₂, ppm): 57.3. ¹⁹F{¹H} NMR (470 MHz, CD₂Cl₂, ppm) δ -131.0 (t, *J* = 20.0 Hz, 12F, *o*-C₆F₅), -157.6 (t, *J* = 20.2 Hz, 6F, *p*-C₆F₅), -163.8 (t, *J* = 18.7 Hz, 12F, *m*-C₆F₅). ¹¹B{¹H} NMR (160 MHz, CD₂Cl₂) δ -15.2.

Synthesis of 5:

A solution of Al(C₆F₅)₃·0.5Tol (0.1 mmol, 57 mg) in toluene (2 mL) was add dropwise into a solution of 1 (0.1 mmol, 60 mg) and diisopropyl fumarate (0.2 mmol, 34 mg) in toluene (5 mL) at ambient temperature. The resulting yellow reaction mixture was stirred overnight and became orange. The solvent was removed under vacuum to afford yellowish residues. The residues were further washed with hexane and recrystallized in toluene/n-hexane to give colorless crystals of 5 (67mg, 52%). ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.29 (q, J = 7.4 Hz, 2H, Ar), 7.04 (dd, J = 29.6, 7.6 Hz, 4H, Ar), 5.09-4.95 (m, 4H, OCHMe₂), 4.84 (s, 1H, γ -H), 3.38 (s, 1H, PCHC(O)O), 3.15-3.09 (m, 1H, C=CPCHC), 2.90-2.86 (m, 2H, CHMe), 2.77-2.71 (m, 1H, CHMe), 2.63 (d, J = 16.2 Hz, 2H, C=CPCCH₂), 2.60-2.55 (m, 1H, CHMe), 1.57 (d, J = 6.6 Hz, 3H, CHMe), 1.37 (d, J = 18.9 Hz, 6H, β-Me), 1.25-0.86 (m, 45H, CHMe). ¹³C{¹H} NMR (126 MHz, C₆D₆, ppm): δ 194.2 (P-C-O-Al), 171.6, 171.1, 170.7, 169.9 (C(O)OⁱPr), 167.0, 166.1 (CN), 162.8 (P-C=C), 144.4, 143.7, 142.3, 141.7, 125.4, 124.8, 124.7, 124.4 (Ar), 110.2 (y-C), 70.3, 69.1, 68.5, 68.1 (OCH(CH₃)₂), 49.1, 39.7 (P-C), 32.4 (P-C-C-C=O), 29.6, 28.6, 28.2, 26.5, 25.9, 24.5, 24.3, 23.7, 23.5, 23.3, 21.9, 21.8, 21.7, 21.6, 21.5, 21.4 (O-CHMe₂, β -Me, CHMe₂, CHMe₂). ³¹P{¹H} NMR (202 MHz, C₆D₆, ppm): δ 44.5. ¹⁹F{¹H} NMR (471 MHz, C₆D₆, ppm) δ -120.9 (br, 6F, *o*-C₆F₅), -153.4 (br, 3F, *p*-C₆F₅), -160.8 (br, 6F, *m*-C₆F₅). HRMS (m/z): $[M + H]^+$ Calcd. for C₆₈H₇₄AlF₁₅N₂O₉PSn:1525.3725; Found: 1525.3724.

Synthesis of 6:

A solution of $B(C_6F_5)_3$ (0.1 mmol, 51 mg) in toluene (2 mL) was add dropwise into a solution of 1 (0.1 mmol, 60 mg) and diethyl acetylenedicarboxylate (0.1 mmol, 17 mg) in toluene (5 mL) at -30 °C. The yellow reaction mixture was allowed to warm to ambient temperature and was stirred for further 2 hours. The resulting brown suspension was filtrated and the residues were washed with hexane to give light yellow powders of 6 (74 mg, 57%). ¹H NMR (500 MHz, CD₂Cl₂, ppm): δ 7.38 (q, *J* = 7.7 Hz, 2H, Ar*H*), 7.30 (ddd, *J* = 9.5, 7.9, 1.6 Hz, 2H, Ar*H*), 7.23 $(ddd, J = 9.0, 7.7, 1.6 Hz, 2H, ArH), 5.77 (d, J = 6.8 Hz, 1H, \gamma-H), 4.26-4.20 (m, 1H, OCH₂Me),$ 4.19-4.14 (m, 1H, OCH₂Me), 4.12-4.05 (m, 1H, OCH₂Me), 4.02-3.96 (m, 1H, OCH₂Me), 2.65-2.59 (m, 1H, CHMe₂), 2.55 (s, 3H, β-Me), 2.58-2.52 (m, 1H, CHMe₂), 2.4-2.36 (m, 1H, $CHMe_2$), 2.33 (s, 3H, β -Me), 2.08-2.04(m, 1H, CHMe_2), 1.35 (d, J = 6.1 Hz, 3H, CHMe_2), 1.28 $(d, J = 6.7 \text{ Hz}, 3H, CHMe_2), 1.23-1.17 (m, 12H, CHMe_2), 0.99 (t, J = 6.7 \text{ Hz}, 6H, OCH_2Me),$ 0.83 (d, J = 6.7 Hz, 3H, CHMe₂), 0.74 (d, J = 6.6 Hz, 3H, CHMe₂). ¹³C{¹H} NMR (126 MHz, CD₂Cl₂, ppm): δ 192.2 (P-C-O-BCF), 189.8 (C(O)OEt), 179.2, 179.0(CN), 176.6 (d, J = 5.3 Hz, C(O)OEt), 161.5(B-O-C=C-C(O)OEt), 150.0-148.0 (m, C₆F₅), 142.6, 141.6, 141.0, 140.4, 138.6, 137.3 (m, C₆F₅), 136.1 (br, C₆F₅), 130.0, 129.6, 126.7, 126.1, 126.0, 125.8 (Ar), 110.8 $(d, J = 15.4 \text{ Hz}, \text{P-C}=CC(O)\text{OEt}), 62.7, 61.8 (OCH_2Me), 59.8 (\gamma-CH), 48.9 (d, J = 18.3 \text{ Hz}, \text{P-}$ C-C(O)OEt), 30.3, 30.2, 30.1, 29.8, 29.4, 27.9, 27.8, 26.7, 26.2, 26.1, 26.0, 25.5, 24.8, 24.7, 24.3, 23.5, 14.2, 13.8 (OCH₂Me, β-Me, CHMe₂, CHMe₂). ³¹P{¹H} NMR (202 MHz, CD₂Cl₂, ppm): δ 34.1. ¹⁹F{¹H} NMR (471 MHz, CD₂Cl₂, ppm) δ -131.6 (br, 6F, *o*-C₆F₅), -160.2 (br, 3F, *p*-C₆*F*₅), -166.0 (br, 6F, *m*-C₆*F*₅). ¹¹B{¹H} NMR (160 MHz, CD₂Cl₂) δ -1.7. HRMS (*m*/*z*):

 $[M - H]^{-}$ Calcd. for $C_{56}H_{50}O_5N_2BF_{15}PSn^{-}$: 1277.2338; Found: 1277.2350.

Synthesis of 7:

A solution of B(C₆F₅)₃ (0.1 mmol, 51 mg) in toluene (2 mL) was add dropwise into a solution of **1** (0.1 mmol, 60 mg) and phenylacetylene (0.1 mmol, 10 mg) in in toluene (5 mL) at -30 °C. The pale-yellow reaction mixture was allowed to warm to ambient temperature and was stirred for further 2 hours. The resulting red suspension was filtrated and the residues were washed with hexane to give orange powders of **7** (53 mg, 42%). ¹H NMR (500 MHz, CD₂Cl₂, ppm): δ 8.06 (br, 1H, C=C-*H*), 7.47-7.32 (m, 6H, Ar*H*), 7.08-6.94 (m, 5H, Ar*H*), 4.17 (br, 1H, γ -*H*), 2.68-2.66 (m, 4H, C*H*Me₂), 2.28 (s, 6H, β -*Me*), 1.18-1.34 (m, 24H, CH*Me*₂, *overlapped*). ¹³C {¹H} NMR (150 MHz, CD₂Cl₂, ppm): δ 214.6 (P=CO), 174.0, 173.1 (CN), 149.4-147.6 (m, C₆F₅), 144.0, 140.4, 137.9, 130.2, 127.1, 126.9, 126.4., 125.2 (Ar), 111.0 (γ -C), 30.3, 28.1, 26.5, 24.7, 24.5 (β -*Me*, C*HMe*₂, CH*Me*₂). ³¹P {¹H} NMR (202 MHz, CD₂Cl₂, ppm): δ 109.6. ¹⁹F {¹H} NMR (470 MHz, CD₂Cl₂, ppm) δ -130.8 (br, 6F, *o*-C₆F₅), -164.2 (br, 3F, *p*-C₆F₅), -167.9 (br, 6F, *m*-C₆F₅). ¹¹B {¹H} NMR (160 MHz, CD₂Cl₂) δ -16.4. HRMS (*m*/z): [M + H]⁺ Calcd. For C₅₆H₄₈SnN₂F₁₅BOP⁺:1211.2375; Found: 1211.2378.

X-ray Crystallography

	1	2	3	4
CCDC	2195054	2263622	2263623	2263624
Empirical formula	$C_{30}H_{41}N_2OPSn$	C65H60BF15N2OPSn	C68.2H64.2BF15N2O5PSn	C32H15BF15O5PSn
Formula weight	595.31	1330.62	1437.28	924.91
Temperature, K	273	150	150	150
Crystal system	triclinic	monoclinic	triclinic	triclinic
Space group	P-1	$P2_1/n$	P-1	P-1
<i>a</i> , Å	9.076(11)	15.5036(7)	14.6414(9)	11.5863(5)
b, Å	11.89(2)	25.6431(12)	15.4756(10)	12.5598(6)
<i>c</i> , Å	14.910(14)	15.6976(7)	17.6749(14)	13.4404(6)
a, deg	96.70(9)	90	100.891(4)	99.900(3)
β , deg	98.19(9)	91.655(2)	108.982(4)	114.828(2)
γ, deg	110.74(12)	90	111.357(3)	103.138(2)
<i>V</i> , Å ³	1465(4)	6238.1(5)	3305.2(4)	1647.63(13)
Z	2	4	2	2
$D_{\text{calcd}}, \text{g/cm}^3$	1.350	1.417	1.444	1.864
µ/mm ⁻¹	0.951	4.266	4.117	7.817
F(000)	616.0	2708	1465	904
2θ range, deg	2.806-51.988	6.604 to 133.184	5.642 to 133.188	7.582 to 136.91
Index ranges	$-11 \le h \le 11$,	$-18 \le h \le 18$,	$-15 \le h \le 17$,	$-13 \le h \le 13$,
	$-14 \le k \le 14,$	$-30 \le k \le 30,$	$-18 \le k \le 18,$	$-15 \le k \le 15,$
	$-18 \le 1 \le 18$,	$-18 \le l \le 18$	$-21 \le l \le 21$	$-16 \le l \le 16$
Reflections collected	11230	150341	113680	61002
Independent reflections	5633	11017	11672	6035
	$[R_{int} = 0.0214,$	$[R_{int} = 0.0482,$	$[R_{int} = 0.0929,$	$[R_{int} = 0.0659,$
	$R_{sigma} = 0.0331$]	$R_{sigma} = 0.0187$]	$R_{sigma} = 0.0424$]	$R_{sigma} = 0.0287$]
Data/restraints/parameters	5633/0/326	11017/440/868	11672/232/896	6035/0/499
Goodness-of-fit on F ²	1.080	1.024	1.078	1.088
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0406,$	$R_1 = 0.0308,$	$R_1 = 0.0560,$	$R_1 = 0.0254,$
	$wR_2 = 0.1014$	$wR_2 = 0.0809$	$wR_2 = 0.1462$	$wR_2 = 0.0653$
Final R indexes [all data]	$R_1 = 0.0438,$	$R_1 = 0.0317,$	$R_1 = 0.0612,$	$R_1 = 0.0273,$
	$wR_2 = 0.1031$	$wR_2 = 0.0816$	$wR_2 = 0.1498$	$wR_2 = 0.0662$
Largest diff. peak/hole, e/Å-3	1.88/-0.54	0.71/-0.55	0.74/-1.33	0.86/-0.51

 Table S1. Crystal data and structure refinement details for compounds 1-4

	5	6	7
CCDC	2264168	2263625	2263626
Empirical formula	C68H73AlF15N2O9PSn	C58.6H56.2BCl3.7F15N2O5PSn	C56H47BF15N2OPSn
Formula weight	1523.92	1445.09	1209.42
Temperature, K	150	200	200
Crystal system	triclinic	monoclinic	triclinic
Space group	P-1	$P2_1/n$	P-1
<i>a</i> , Å	12.7892(4)	13.9857(3)	11.4575(3)
b, Å	21.2487(6)	18.8170(4)	15.5646(4)
<i>c</i> , Å	27.5926(9)	24.5153(6)	16.0433(5)
a, deg	84.417(2)	90	84.280(2)
β , deg	81.544(2)	95.8090(10)	75.467(2)
γ, deg	89.324(2)	90	86.6760(10)
V, Å ³	7381.7(4)	6418.5(2)	2754.08
Z	4	4	2
$D_{\text{calcd}}, \text{g/cm}^3$	1.371	1.495	1.458
µ/mm ⁻¹	3.870	5.624	4.772
F(000)	3120	2919	1220
2θ range, deg	4.178to 133.19	6.988 to 133.18	5.71 to 140.34
Index ranges	$-15 \le h \le 15$,	$-16 \le h \le 16$,	$-13 \le h \le 13$,
	$-25 \le k \le 25$,	$-22 \le k \le 22,$	$-18 \le k \le 18$,
	$-32 \le l \le 32$	$-29 \le l \le 29$	$-19 \le l \le 19$
Reflections collected	305899	113733	67812
Independent reflections	26036	11344	10422
	$[R_{int} = 0.0658,$	$[R_{int} = 0.0959,$	$[R_{int} = 0.0595,$
	$R_{sigma} = 0.0266$]	$R_{sigma} = 0.0412$]	$R_{sigma} = 0.0332$]
Data/restraints/parameters	26036/1/1783	11344/52/879	10422/0/704
Goodness-of-fit on F ²	1.091	1.036	1.065
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0445,$	$R_1 = 0.0541,$	$R_1 = 0.0289,$
	$wR_2 = 0.1091$	$wR_2 = 0.1443$	$wR_2 = 0.0705$
Final R indexes [all data]	$R_1 = 0.0477,$	$R_1 = 0.0650,$	$R_1 = 0.0326,$
	$wR_2 = 0.1107$	$wR_2 = 0.1528$	$wR_2 = 0.0722$
Largest diff. peak/hole, e/Å ⁻³	1.49/-1.15	1.80/-0.50	0.37/-0.44

 Table S2. Crystal data and structure refinement details for compounds 5-7

Figure S1. Thermal ellipsoid plot for **1** with the anisotropic displacement parameters depicted at the 50% probability level.

Figure S2. Thermal ellipsoid plot for **2** with the anisotropic displacement parameters depicted at the 50% probability level.

Figure S3. Thermal ellipsoid plot for **3** with the anisotropic displacement parameters depicted at the 50% probability level.

Figure S4. Thermal ellipsoid plot for **4** with the anisotropic displacement parameters depicted at the 50% probability level.

Figure S5. Thermal ellipsoid plot for **5** with the anisotropic displacement parameters depicted at the 50% probability level.

Figure S6. Thermal ellipsoid plot for **6** with the anisotropic displacement parameters depicted at the 50% probability level.

Figure S7. Thermal ellipsoid plot for **7** with the anisotropic displacement parameters depicted at the 50% probability level.

Figure S9. ¹³C NMR spectrum of 1 in C_6D_6

Figure S11. ¹H NMR spectrum of 2 in CDCl₃

Figure S12.¹³C NMR spectrum of 2 in CDCl₃

Figure S13. ³¹P NMR spectrum of 2 in CDCl₃

Figure S15. ¹¹B NMR spectrum of 2 in CDCl₃

Figure S17. ¹³C NMR spectrum of 3 in CD₂Cl₂

Figure S19. ¹⁹F NMR spectrum of 3 in CD₂Cl₂

Figure S20. ¹¹B NMR spectrum of 3 in CD₂Cl₂

₹3.94 2.65 5333

Figure S21. ¹H NMR spectrum of 4 in CD₂Cl₂

Figure S23. ³¹P NMR spectrum of 4 in CD₂Cl₂

Figure S25. ¹¹B NMR spectrum of 4 in CD₂Cl₂

110 100 f1 (ppm) 140 130

Figure S27. 13 C NMR spectrum of 5 in C₆D₆

Figure S29. ¹⁹F NMR spectrum of 5 in C_6D_6

Figure S30. ¹H NMR spectrum of 6 in CD_2Cl_2

Figure S31. ¹³C NMR spectrum of 6 in CD₂Cl₂

Figure S33. ¹⁹F NMR spectrum of 6 in CD₂Cl₂

Figure S35. ¹H NMR spectrum of 7 in CD_2Cl_2

Figure S36. ¹³C NMR spectrum of 7 in CD₂Cl₂

Figure S37. ³¹P NMR spectrum of 7 in CD₂Cl₂

Figure S39. ¹¹B NMR spectrum of 7 in CD₂Cl₂

Figure S40. ¹¹H NMR spectrum (CDCl₃) of the NacnacH isolated from the reaction of 1 and

dimethyl maleate at room temperature

Figure S41. HRMS spectrum of 1

Figure S42. HRMS spectrum of 2

Figure S43. HRMS spectrum of 3

Figure S44. HRMS spectrum of 5

Figure S45. HRMS spectrum of 6

Figure S46. HRMS spectrum of 7

Reference

- [S1] Y. Ding, H. W. Roesky, M. Noltemeyer, H.-G. Schmidt, P. P. Power, Organometallics 2001, 20, 1190-1194.
- [S2] D. Heift, Z. Benkő, H. Grützmacher, *Dalton Trans.* 2014, 43, 831-840.
- [S3] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339-341.
- [S4] G. Sheldrick, Acta Crystallogr. Sect. A 2015, 71, 3-8.
- [S5] G. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112-122.