Electronic Supplementary Information for

Nitrogen intercalated Pd metallene nanoribbons with optimized electronic structure for oxygen reduction catalysis

Hongjing Wang, Yunju Li, Songliang Liu*, Hongjie Yu, Kai Deng, Ziqiang Wang, You Xu and Liang Wang*

State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.

Corresponding authors

*E-mails: songliangliu@zjut.edu.cn, wangliang@zjut.edu.cn

Experimental Section

Chemicals and Materials

Sodium tetrachloropalladate (Na₂PdCl₄), ethylenediamine (EN), L-ascorbic acid (AA), polyvinylpyrrolidone (PVP, $M_W = 40000$), molybdenum hexacarbonyl (Mo(CO)₆), diiron nonacarbonyl (Fe₂(CO)₉), dicobalt octacarbonyl (Co₂(CO)₈), tungsten hexacarbonyl (W(CO)₆), urea, Nafion (5 wt%) and PVP ($M_W = 58000$) were supplied by Aladdin. Pt/C (20 wt%) was provided by Alfa Aesar.

Synthesis of Pd MNRs

The synthesis of Pd MNRs was based on a previous report with minor modification.¹ First, $Mo(CO)_6$ (50 mg), AA (80 mg) and PVP (600 mg, $M_W = 40000$) were dissolved in 2 mL EN by sonication. Subsequently, 0.5 mL Na₂PdCl₄ (0.1 M) was dripped in the gained solution and the mixture was held for 8 h at 120 °C in an oil bath. Eventually, Pd MNRs were centrifuged with water, ethanol and acetone.

Synthesis of N-Pd MNRs

The above Pd MNRs (2 mg) were added into a water (6 mL) containing urea (60 mg) and PVP (85 mg, $M_W = 58000$). The resulting mixture was vigorously stirred for 20 min and then transferred to a Teflon-lined stainless-steel autoclave (25 mL). The above mixture was heated for 1 h at 180 °C. At last, the resulting sample was purified by alternating centrifugal washing with water, ethanol and acetone.

Materials Characterization

The microstructure, composition, electronic structure, and crystal information of catalyst were characterized by transmission electron microscopy (TEM, JEOL-2100F) equipped with energy

dispersive X-ray spectroscopy (EDX) system, atomic force microscopy (AFM, Bruker Dimension ICON), X-ray photoelectron spectroscopy (XPS, Thermo ESCALAB 250XI), and X-ray diffraction spectrometer (XRD, PANalytical Empyrean). Inductively coupled plasma optical emission spectrometry (ICP-OES) analysis was performed on Agilent ICPOES730.

Electrocatalytic Experiments

During the electrochemical measurements, all potentials were referred to reversible hydrogen electrode (RHE). The ORR properties were tested on CHI 852D electrochemical analyzer with a three-electrode system consisting of counter electrode (Pt wire), working electrode (rotating disk electrode (RDE, a diameter of 3 mm) with catalyst coating) and reference electrode (Ag/AgCl electrode (KCl saturated)). To prepare catalyst ink, different samples (2 mg) were dispersed in 200 μ L of ethanol, 750 μ L of H₂O and 50 μ L of Nafion solution (0.5 wt %) under ultrasonication. The rotating disk electrode was covered with 2.0 μ L catalyst ink. Linear sweep voltammetry (LSV) was recorded with a rotating speed of 1600 rpm at a scan rate of 10 mV s⁻¹ in an O₂-saturated 0.1 M KOH solution.

The electron transfer number (n) could be estimated from the Koutecky-Levich equation as follows:

$$j^{-1} = j_k^{-1} + j_d^{-1}$$
$$j_d = 0.2nFD^{2/3}v^{-1/6}\omega^{1/2} C_{O2}$$

In which j_d , j_k and j stand for limiting diffusion current density, kinetic current density and measured current density, respectively, F is the Faraday constant (96485 C mol⁻¹), v is the electrolyte viscosity (1.13×10^{-2} cm² s⁻¹), D is O₂ diffusion coefficient (1.93×10^{-5} cm² s⁻¹), C_{O2} is dissolved O₂ concentration in 0.1 M KOH (1.2×10^{-3} mol L⁻¹), and ω is the rotation speed of electrode (rpm). Electrochemical active surface area (ECSA) value could be calculated from cyclic voltammetry (CV) curve that was recorded with a sweep speed of 50 mV s⁻¹ in 0.1 M HClO₄ based on following equation:

$$ECSA = Q / m \times 420$$

Where Q is the reduced charge gained by integrating the Pd oxide layer, 420 μ C cm⁻² is the reduced charge of the oxide monolayer on the Pd surface, and *m* is the Pd loading on the electrode surface. The mass activity (MA) and specific activity (SA) in this article are calculated at a potential of 0.9 V. The calculation formulas of MA and SA are as follows:

$$MA = (0.07 \text{ cm}^2 \times j_k) / m_{\text{metal}}$$
$$SA = (0.07 \text{ cm}^2 \times j_k) / (ECSA \times m_{\text{metal}})$$

Where j_k is the kinetic current density at 0.9 V, 0.07 cm² is the surface area of the electrode, *m* is the metal mass loaded on the glassy carbon electrode.

Fig. S1 TEM images of the samples prepared by replacing $Mo(CO)_6$ with (a) $Fe_2(CO)_9$, (b) $Co_2(CO)_8$ and (c) $W(CO)_6$, respectively, under the same synthetic conditions.

Fig. S2 (a) HAADF-STEM and (b) TEM images of Pd MNRs. (c) HAADF-STEM image and relevant EDX mapping images of Pd MNRs.

Fig. S3 EDX spectrum of Pd MNRs.

Fig. S4 (a) TEM image of N-Pd MNRs and (b) corresponding SAED pattern.

Fig. S5 EDX spectrum of N-Pd MNRs.

Fig. S6 (a) CV curves in 0.1 M $HClO_4$ solution and the corresponding ECSAs (b) of different catalysts.

Fig. S7 (a) ORR polarization curves at different rotating speeds, and (b) electron transfer numbers at different potentials of Pd MNRs.

Fig. S8 (a) ORR polarization curves at different rotating speeds, and (b) electron transfer numbers at different potentials of Pt/C.

Fig. S9 Chronoamperometric curves in an O_2 -saturated 0.1 M KOH electrolyte with 3 M CH₃OH added at around 600 s.

Catalyst	SA (mA cm ⁻²)	$MA \\ (mA \ \mu g^{-1}_{metal})$	Ref.
N-Pd MNRs	1.29	0.68	This work
Pd ₆ Ni icosahedra	0.66	0.22	2
Pd ₃ Pb UPINs/C	1.18	0.59	3
Fe-Pd UPM	0.225	0.736	4
Pd ₉ Pt ₁ Ni ₁ NSs	1.22	0.29	5
Pd ₃ Pb nanoplates	/	0.78	6
Pd@PdFe NPs	1.56	0.31	7
Au-NWs@Pd@PEI	/	0.29	8
Pt_2Pd_1	1.14	0.44	9
Pd ₃ Pb/Pd NSs/C	1.31	0.57	10
PtPdSP mNCs	1.10	0.56	11

Table S1 The comparisons of the ORR performance of N-Pd MNRs with some recently reportedPd-based catalysts.

References

- B. Ni, Q. Zhang, C. Ouyang, S. Zhang, B. Yu, J. Zhuang, L. Gu and X. Wang, CCS Chem.,
 2020, 2, 642-654.
- 2 Y. Feng, Q. Shao, Y. Ji, X. Cui, Y. Li, X. Zhu and X. Huang, *Sci. Adv.*, 2018, 4, eaap8817.
- J. Guo, L. Gao, X. Tan, Y. Yuan, J. Kim, Y. Wang, H. Wang, Y.-J. Zeng, S.-I. Choi, S. C.
 Smith and H. Huang, *Angew. Chem., Int. Ed.*, 2021, 60, 10942-10949.
- 4 S. Huang, S. Lu, S. Gong, Q. Zhang, F. Duan, H. Zhu, H. Gu, W. Dong and M. Du, ACS Nano, 2022, 16, 522-532.
- 5 L. Shi, Q. Wang, Q. Ren, Q. Yang, D. Zhao, Y. Feng, H. Chen and Y. Wang, *Small*, 2022, 18, e2103665.
- K. Wang, Y. Qin, F. Lv, M. Li, Q. Liu, F. Lin, J. Feng, C. Yang, P. Gao and S. Guo, *Small Methods*, 2018, 2, 1700331.
- X. Li, X. Li, C. Liu, H. Huang, P. Gao, F. Ahmad, L. Luo, Y. Ye, Z. Geng, G. Wang, R. Si,
 C. Ma, J. Yang and J. Zeng, *Nano Lett.*, 2020, 20, 1403-1409.
- 8 Q. Xue, J. Bai, C. Han, P. Chen, J.-X. Jiang and Y. Chen, *ACS Catal.*, 2018, **8**, 11287-11295.
- 9 X. Lyu, W.-N. Zhang, G. Li, B.-W. Shi, Y.-N. Zhang, H. Chen, S.-C. Li and X. Wang, ACS Appl. Nano Mater., 2020, 3, 8586-8591.
- 10 C. Tang, N. Zhang, Y. Ji, Q. Shao, Y. Li, X. Xiao and X. Huang, *Nano Lett.*, 2019, **19**, 1336-1342.
- S. Yin, Y. Xu, S. Liu, H. Yu, Z. Wang, X. Li, L. Wang and H. Wang, *Nanoscale*, 2020, 12, 14863-14869.