Electronic Supporting Information for:

A lens-shaped supramolecule based on the bulky pentaphosphaferrocene $\left[\mathrm{Cp}^{\mathrm{BIG}} \mathrm{Fe}\left(\boldsymbol{\eta}^{5}-\mathrm{P}_{5}\right)\right]$ and CuBr_{2}

Sebastian Heinl, ${ }^{a}$ Eugenia Peresypkina, ${ }^{a}$ Werner Kremer ${ }^{b}$ and Manfred Scheer ${ }^{a *}$

a) Institut für Anorganische Chemie, Universitätsstraße 31, 93053 Regensburg,
e-mail: Manfred.Scheer@chemie.uni-regensburg.de
b) Institut für Biophysik und Physikalische Biochemie und Zentrum für Magnetische Resonanz in Chemie und Biomedizin, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg

Contents:

1. Experimental detail
2. NMR spectra
3. Crystallographic details

1. Experimental detail

Materials and methods

All experiments were carried out under an atmosphere of dry argon or nitrogen using glovebox and Schlenk techniques. Solvents were purified, dried and degassed prior to use. CuBr_{2} was used as obtained from commercial suppliers. [$\left.\mathrm{Cp}^{\mathrm{B} 16} \mathrm{Fe}\left(\eta^{5}-\mathrm{P}_{5}\right)\right]$ was prepared according to the literature procedure. ${ }^{[1]}$ The NMR spectra in solution were measured on Bruker Avance 300, 400 or 600 spectrometers. The MAS NMR spectra were recorded on a Bruker Advance 300 spectrometer by using a double resonance 2.5 mm MAS probe (${ }^{31} \mathrm{P}: 121.495 \mathrm{MHz}$). All spectra were acquired at MAS rotation frequencies of up to 30 kHz with a 90° pulse length of about $2.3 \mu \mathrm{~s}$ and relaxation delays of 120 s (${ }^{31}$ P). ESI-MS spectra were measured on a ThermoQuest Finnigan TSG 7000 mass spectrometer. The elemental analysis was determined on a Vario EL III apparatus or by external service (all elements) ‘Lehrbereich Anorganische Chemie, TU Munich, Mikroanalytisches Labor, Tel.: +49-89-28913128'.

General procedure for the synthesis of compound $\left[\left\{\mathrm{Cp}^{816} \mathrm{Fe}\left(\eta^{5}-\mathrm{P}_{5}\right)\right\}_{6}(\mathrm{CuBr})_{32}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right](2)$.

To a suspension of $\mathrm{CuBr}_{2}(1.33 \mathrm{mmol})$ in $5 \mathrm{mLCH} \mathrm{CN}_{3} \mathrm{CN}$, a solution of $\left[\mathrm{Cp}^{\mathrm{BII}} \mathrm{Fe}\left(\eta^{5}-\mathrm{P}_{5}\right)\right](250 \mathrm{mg}$, 0.267 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is added and stirred for 30 min resulting in a red-brown solution. After the solvent is removed in vacuum, the residue is triturated with $10 \mathrm{mLCH}_{2} \mathrm{Cl}_{2}$ and filtered through cannula into a thin Schlenk tube. The reaction mixture is layered with 20 mL of toluene. After complete diffusion, well-shaped dark brown crystals of the product are obtained.

Analytical data.

$\left[\left\{\mathrm{Cp}^{\mathrm{BIG}} \mathrm{Fe}\left(\eta^{5}-\mathrm{P}_{5}\right)_{6}(\mathrm{CuBr})_{32}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\right.$: Yield: $285 \mathrm{mg}(61 \%)$.

Elemental analysis (all elements):

Calculated (\%) for [$\left.\mathrm{C}_{342} \mathrm{H}_{408} \mathrm{Br}_{32} \mathrm{Cu}_{32} \mathrm{Fe}_{6} \mathrm{~N}_{6} \mathrm{P}_{30}\right] \cdot 6 \mathrm{CH}_{2} \mathrm{Cl}_{2}(10967.20 \mathrm{~g} / \mathrm{mol}) \mathrm{C}, 39.28 ; \mathrm{H}, 3.93 ; \mathrm{Br}, 24.45$; Cu, 19.44; Fe, 3.20; N, 0.80; P, 8.89; found: C, 36.18; H, 3.58; Br, 28.34; Cu, 19.1; Fe, 4.13; N, 0.77; P, 8.19.

Positive ion ESI-MS ($\mathrm{CH}_{3} \mathrm{CN}^{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$):

$m / z(\%)=2079.7\left(30 \%,\left[\left(\mathrm{Cp}^{B 16} \mathrm{FeP}_{5}\right)_{2} \mathrm{Cu}_{2} \mathrm{Br}\right]^{+}\right), 1936.8\left(100 \%,\left[\left(\mathrm{Cp}^{B 16} \mathrm{FeP}_{5}\right)_{2} \mathrm{Cu}\right]^{+}\right), 1431.0(10 \%$, $\left.\left[\left(\mathrm{Cp}^{\mathrm{BIG}} \mathrm{FeP}_{5}\right) \mathrm{Cu}_{4} \mathrm{Br}_{3}\right]^{+}\right), 1328.0\left(12 \%,\left[\left(\mathrm{Cp}^{\mathrm{BIG}} \mathrm{FeP}_{5}\right) \mathrm{Cu}_{3} \mathrm{Br}_{2} \mathrm{CH}_{3} \mathrm{CN}^{+}\right]^{+}\right.$), $1287.3\left(18 \%,\left[\left(\mathrm{Cp}^{\mathrm{BIG}} \mathrm{FeP}_{5}\right) \mathrm{Cu}_{3} \mathrm{Br}_{2}\right]^{+}\right)$, $1143.3\left(40 \%,\left[\left(\mathrm{Cp}^{\mathrm{Bl6}} \mathrm{FeP}_{5}\right) \mathrm{Cu}_{2} \mathrm{Br}\right]^{+}\right), 1040.5\left(70 \%,\left[\left(\mathrm{Cp}^{\mathrm{BIG}} \mathrm{FeP}_{5}\right) \mathrm{CuCH}_{3} \mathrm{CN}^{+}\right]^{+}\right.$, $999.5\left(10 \%,\left[\left(\mathrm{Cp}^{\mathrm{BIG}} \mathrm{FeP}_{5}\right) \mathrm{Cu}^{+}\right]^{+}\right.$, $\left.726.4\left(7 \%,\left[\mathrm{Cp}^{\mathrm{BII}}\right]^{+}\right), 432.4\left(20 \%,\left[\mathrm{Cu}_{3} \mathrm{Br}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]^{+}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}\right)_{2}\right): \delta[\mathrm{ppm}]=1.1$ (pseudo-t, ${ }^{1} J_{\mathrm{pp}} \approx 560 \mathrm{~Hz}, 1 \mathrm{P}$), 16.4 (pseudo-t, ${ }^{1}{ }_{\mathrm{Jpp}} \approx 520 \mathrm{~Hz}, 1 \mathrm{P}$), 25.1 (pseudo-t, ${ }^{1} \mathrm{~J}_{\mathrm{Pp}} \approx 550 \mathrm{~Hz}, 1 \mathrm{P}$), 37.0 (pseudo-t, ${ }^{1}{ }_{\text {Jpp }} \approx 550 \mathrm{~Hz}, 1$ P), 59.0 (pseudo-t, ${ }^{1}{ }^{\text {pp }} \approx 555 \mathrm{~Hz}, 1 \mathrm{P}$).

2. NMR spectra

FigureS1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 298 K .

Figure S2. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of $\mathbf{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 298 K .

Figure S3. Zoomed section of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of $\mathbf{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 298 K .

Figure S4. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ MAS NMR spectrum of 2 at 298 K .

2) Crystallographic Details:

The compound $\mathbf{2}$ crystallizes in the trigonal crystal system as dark brown prisms. Crystals of $\mathbf{2}$ were taken from a Schlenk flask under a stream of argon and immediately covered with perfluorinated Fomblin ${ }^{\circledR}$ mineral oil. Despite this precaution, the crystals lose solvent and are prone to quick amorphization out of mother solution. The quickly chosen single crystals covered by a droplet of the oil were taken to the pre-centered goniometer head with CryoMount ${ }^{\circledR}$ and directly placed on a diffractometer in a cold nitrogen flow (123 K).

The data collection was performed on an Oxford Diffraction SuperNova diffractometer equipped with CuKa micro-focus source and Atlas detector. The data reduction was performed with CrysAlisPro software. ${ }^{[2]}$ An analytical absorption correction based on crystal faces was applied. ${ }^{[3]}$ The crystal structure was solved by direct methods using the program SIR- $97{ }^{[4]}$ and refined with the least square method on $\left|F^{2}\right|$ employing SHELXTL ${ }^{[5]}$ in anisotropic approximation for non-H atoms that occupy their positions with site occupancy factors of more than 0.5 . Hydrogen atoms were located in idealized positions and refined isotropically according to the riding model.

Supplementary Information for more detail. Deposition Number CCDC-2245833 (2) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe.

B)

Figure S5. ORTEP plot of the molecular structure of the compound 2: a) asymmetric part of the supramolecule. Solvent molecules and hydrogen atoms are omitted for clarity; b) asymmetric part of the inorganic core. Some copper positions are partly occupied and/or disordered over close positions.

Table 1. Crystallographic details for $2\left(\AA^{\circ}{ }^{\circ}\right)$

Crystal data	
Chemical formula	$\mathrm{C}_{342} \mathrm{H}_{408} \mathrm{Br}_{32} \mathrm{Cu}_{32} \mathrm{Fe}_{6} \mathrm{~N}_{6} \mathrm{P}_{30} \cdot 2.4\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
CCDC-Refcode	CCDC-2245833
M_{r}	10661.14
Crystal system, space group	Trigonal, R3:H
Temperature (K)	123
a, c (Å)	30.0348(4), 38.1116(9)
$V\left(\AA^{3}\right)$	29774.0(11)
Z	3
F(000)	15770
$D_{x}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.784
Radiation type	Cu K α
$\mu\left(\mathrm{mm}^{-1}\right)$	9.06
Crystal shape and colour	Dark brown prism
Crystal size (mm)	$0.11 \times 0.07 \times 0.07$
Data collection	
Diffractometer	SuperNova, Single source at offset, Atlas
Absorption correction	Analytical
$T_{\text {min }}, T_{\text {max }}$	0.521, 0.648
No. of measured, independent and observed [I>2s(I)] reflections	71417, 11894, 10124
$R_{\text {int }}$	0.036
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.599
Range of h, k, l	$h=-35 \rightarrow 29, k=-35 \rightarrow 32, I=-45 \rightarrow 45$
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.049, 0.158, 1.07
No. of reflections	11894
No. of parameters	900
No. of restraints	124
H -atom treatment	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	1.35, -0.85

Computer programs: CrysAlis PRO, Rigaku, Version 1.171.36.28 (release 01-02-2013
CrysAlis171 .NET), SIR97 (Altomare, 1999), SHELXL2018/3 (Sheldrick, 2018).

Table 2. Selected geometric parameters for $\mathbf{2}\left(\AA^{\circ},^{\circ}\right)$

Cu1C-Br6 ${ }^{\text {i }}$	2.4809 (12)	Cu5-Br5	2.386 (3)
Cu1C-Br6ii	2.4809 (12)	Cu5-Br4	2.407 (3)
Cu1C-Br6	2.4809 (12)	Cu5-Br6 ${ }^{\text {iv }}$	2.818 (4)
Cu1C-Br5iii	2.905 (6)	Cu4B-P5 ${ }^{\text {i }}$	2.200 (8)
Cu1-P1	2.2105 (18)	Cu4B-Br4	2.315 (8)
Cu1-Br3	2.3675 (12)	Cu4B-Br2 ${ }^{\text {iv }}$	2.437 (8)
Cu1-Br1	2.3992 (11)	Cu5B-P4	2.227 (2)
Cu2-N1	1.991 (7)	Cu5B-Br4	2.334 (2)
Cu2-P2	2.1996 (17)	Cu5B-Br5	2.529 (2)
$\mathrm{Cu} 2-\mathrm{Br} 3{ }^{\text {iv }}$	2.3923 (12)	Cu6-P4	2.280 (2)
Cu2-Br2	2.6011 (12)	Cu6-Br6 ${ }^{\text {V }}$	2.397 (2)
Cu3-P3	2.2137 (19)	Cu6-Br6 ${ }^{\text {iv }}$	2.490 (2)
Cu3-Br1 ${ }^{\text {iv }}$	2.3714 (12)	Cu6-P5	2.551 (3)
Cu3-Br2 ${ }^{\text {iv }}$	2.4166 (11)	Cu6-Br6	2.595 (2)
Cu4-P5 ${ }^{\text {i }}$	2.210 (6)	P1-P2	2.105 (2)
Cu4-Br2 ${ }^{\text {iv }}$	2.411 (6)	P1-P5	2.109 (2)
Cu4-Br4	2.440 (5)	P2-P3	2.102 (2)
Cu4-Br6 ${ }^{\text {iv }}$	2.679 (3)	P3-P4	2.107 (2)
Cu5-P4	2.208 (3)	P4-P5	2.124 (2)
Br6i-Cu1C-Br6ii	117.70 (7)	$\mathrm{Cu}^{\text {v }}-\mathrm{Br} 2-\mathrm{Cu} 2$	113.14 (4)
Br6i-Cu1C-Br6	117.70 (7)	$\mathrm{Cu} 4 \mathrm{~B}^{\text {v }}-\mathrm{Br} 2-\mathrm{Cu} 2$	120.01 (18)
Br6iilCu1C-Br6	117.70 (7)	Cu1-Br3-Cu2 ${ }^{\text {² }}$	100.91 (4)
Br6i-Cu1C-Br5iii	98.81 (13)	Cu4B-Br4-Cu5B	100.72 (15)
Br6iilCu1C-Br5iii	98.82 (13)	Cu6 ${ }^{\text {iv- }}$ - ${ }^{\text {r }} 6$-Cu6 ${ }^{\text {a }}$	118.89 (9)
Br6-Cu1C-Br5iii	98.81 (13)	Cu6iv-Br6-Cu6	87.93 (7)
Br3-Cu1-Br1	111.90 (4)	Cu1C-Br6-Cu6	98.32 (14)
$\mathrm{Br} 3{ }^{\text {iv }}-\mathrm{Cu} 2-\mathrm{Br} 2$	102.31 (4)	Cu6 ${ }^{\text {- Br6-Cu6 }}$	86.00 (6)
Br1 ${ }^{\text {iv }}-\mathrm{Cu} 3-\mathrm{Br} 2^{\text {iv }}$	107.85 (4)	Cu6 ${ }^{\text {iv }}$ - $\mathrm{Br} 6-\mathrm{Cu4}{ }^{\text {v }}$	90.52 (13)
Br2 ${ }^{\text {iv }}$-Cu4-Br4	103.4 (2)	Cu1C-Br6-Cu4 ${ }^{\text {v }}$	119.31 (17)
$\mathrm{Br}{ }^{\text {iv }}-\mathrm{Cu} 4-\mathrm{Br} 6^{\text {iv }}$	102.80 (15)	Cu6 - Br6-Cu4 ${ }^{\text {v }}$	131.83 (13)
Br4-Cu4-Br6 ${ }^{\text {iv }}$	116.18 (19)	Cu6-Br6-Cu4 ${ }^{\text {a }}$	135.65 (13)
Br5-Cu5-Br4	107.35 (12)	Cu6 ${ }^{\text {iv }}-\mathrm{Br} 6-\mathrm{Cu5}{ }^{\text {v }}$	104.75 (8)
Br5-Cu5-Br6 ${ }^{\text {iv }}$	103.62 (14)	Cu6-Br6-Cu5 ${ }^{\text {² }}$	159.96 (8)
Br4-Cu5-Br6 ${ }^{\text {iv }}$	112.38 (14)	Cu5-Br5-Cu5 ${ }^{\text {i }}$	113.56 (8)
$\mathrm{Br} 4-\mathrm{Cu} 4 \mathrm{~B}-\mathrm{Br} 2^{\text {iv }}$	106.4 (3)	Cu5-Br5-Cu5i	113.56 (8)
Br4-Cu5B-Br5	105.08 (8)	Cu5 - Br5-Cu5i	113.56 (8)
Br6 ${ }^{\text {v }}$-Cu6-Br6 ${ }^{\text {iv }}$	120.64 (9)	Cu5-Br5-Cu5B ${ }^{\text {i }}$	109.46 (10)
	94.11 (7)	Cu5iil ${ }^{\text {iir5 }}$-Cu5B ${ }^{\text {i }}$	128.77 (9)
Br6 ${ }^{\text {iv }}$-Cu6-Br6	91.96 (7)	Cu5B-Br5-Cu5B ${ }^{\text {i }}$	119.974 (4)
Cu4 ${ }^{\text {- }} \mathrm{Br} 2-\mathrm{Cu}^{\text {v }}$	108.78 (11)	Cu5-Br5-Cu5Bii	128.77 (9)
$\mathrm{Cu}^{\text {v }}-\mathrm{Br} 2-\mathrm{Cu} 4 \mathrm{~B}^{\vee}$	117.31 (16)	Cu5 ${ }^{\text {i }}$ - Br5-Cu5B ${ }^{\text {ii }}$	109.46 (10)
Cu4 ${ }^{\text {- }} \mathrm{Br} 2-\mathrm{Cu} 2$	121.06 (13)		

Symmetry codes: (i) $-y+1, x-y+1, z$; (ii) $-x+y,-x+1, z$; (iii) $-x+2 / 3,-y+4 / 3,-z+4 / 3$; (iv) $x-y+2 / 3$, $x+1 / 3,-z+4 / 3 ;$ (v) $y-1 / 3,-x+y+1 / 3,-z+4 / 3$.

Table 3. Site occupancy factors for non-carbon atoms in the core of $\mathbf{2}$

Atom	x	y	z	$\mathrm{U}_{\text {iso }}$	s.o.f. of crystallogr. position	s.o.f.
Cu1C	0.333333	0.666667	$0.71224(15)$	$0.0753(13)$	$1 / 3$	$1 / 2$
Cu1	$0.57320(4)$	$0.93346(4)$	$0.65195(3)$	$0.0391(2)$	1	1
Cu2	$0.44634(4)$	$0.96218(4)$	$0.68642(3)$	$0.0373(2)$	1	1
Cu3	$0.30009(4)$	$0.86324(4)$	$0.60626(3)$	$0.0424(2)$	1	1
Cu4	$0.22562(17)$	$0.7167(2)$	$0.58169(12)$	$0.0268(8)$	1	$1 / 2$
Cu4B	$0.2115(3)$	$0.7122(3)$	$0.57308(17)$	$0.0287(12)$	1	$1 / 3$
Cu5	$0.32359(13)$	$0.73808(12)$	$0.56106(10)$	$0.0339(7)$	1	$1 / 3$
Cu5B	$0.33975(9)$	$0.75388(9)$	$0.54379(7)$	$0.0325(5)$	1	$1 / 2$
Cu6	$0.38454(8)$	$0.75994(7)$	$0.63420(5)$	$0.0393(4)$	1	$1 / 2$
Br1	$0.59870(3)$	$0.97641(2)$	$0.70758(2)$	$0.03487(16)$	1	1
Br2	$0.45541(2)$	$0.90628(2)$	$0.73491(2)$	$0.03164(16)$	1	1
Br3	$0.64133(3)$	$0.92888(3)$	$0.62422(2)$	$0.03532(16)$	1	1
Br4	$0.26052(2)$	$0.73862(2)$	$0.52238(2)$	$0.03344(16)$	1	1
Br6	$0.38327(3)$	$0.76086(3)$	$0.70227(2)$	$0.04093(18)$	1	1
Br5	0.333333	0.666667	$0.54487(3)$	$0.0365(3)$	$1 / 3$	1

Figure S6. Disordering of the inorganic core in the molecule of the compound 2. Dark blue balls show the second position of the disordered copper atoms.

Partly occupied $\mathrm{Cu}(\mathrm{I})$ positions and symmetry-imposed restrictions lead to the following interpretation of the crystallographic disorder: the molecular structure can be presented as two isomers (\mathbf{A} and \mathbf{B}) overlapping in the same crystallographic position. It is disordered over total six positions each arising from inversion and 120°-rotation.

Isomer B

Figure S7. Side-by-side comparison of the isomeric forms \mathbf{A} and \mathbf{B} co-crystallizing in $\mathbf{2}$ in a ratio 1:1.

C)

Figure S8. Coordination modes of pentaphosphaferrocene 1d in 2: a) penta-, b) tetra-, c)

1,2,3-tri-coordination.

The outer shell of the molecule slightly resembles two fused fullerene-like fragments in which the pentagonal rings are represented by three cyclo- P_{5} ligands and tentative six-membered rings are represented by folded $\left\{\mathrm{P}_{2} \mathrm{Cu}_{3} \mathrm{Br}\right\}(\mathrm{Br})$ rings (Figure S9a). A similar fragment was observed in the other 1d-based supramolecule 3 possessing a C_{140}-fullerene topology (Figure $\mathrm{S9} \mathrm{~b}, \mathrm{c}$). However, the shorter $\mathrm{Cu} \cdots \mathrm{Cu}$ distances in the cycles $\left\{\mathrm{P}_{2} \mathrm{Cu}_{3} \mathrm{Br}\right\}(\mathrm{Br})$ of a fullerene-like supramolecule indicated the existence of Cu_{2} dimers and allowed to consider the $\left\{\mathrm{P}_{2} \mathrm{Cu}_{3} \mathrm{Br}\right\}(\mathrm{Br})$ rings as six-membered ones $(\mathrm{P}-\mathrm{Cu}-\mathrm{Br}-$ $\mathrm{Cu} \cdots \mathrm{Cu}-\mathrm{P}$) with a Br bridge. As the corresponding $\mathrm{Cu} \cdots \mathrm{Cu}$ distances are longer in $\mathbf{2}$, the fullerene topology is, strictly speaking, not fulfilled for 2.

B)

Figure S9. Side-by-side comparison of the b) fullerene-like fragments a) in $\mathbf{2}$ and b) in l-C C_{140} inorganic fullerene $\mathbf{3}$ based on 1d. ${ }^{[6]}$

Figure S10. Bond lengths in the central adamantane-like fragment of the inorganic core. In forms A and B co-crystallizing in $\mathbf{2}$ it is similar.

Figure S11. Supramolecule 2, a) top and b) side view in van der Waals spheres. Isomeric forms are indistinguishable from the outer shape and can therefore co-crystallize in the solid state.

References

[1] F. Dielmann, R. Merkle, S. Heinl, M. Scheer, Z. Naturforsch., B 2009, 64, 3-10.
[2] CrysAlisPro, Rigaku Oxford Diffraction, 2006-2023.
[3] R. C. Clark, J. S. Reid, Acta Cryst. 1995, A51, 887-897.
[4] A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, J. Appl. Cryst. 1999, 32, 115-119.
[5] G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122; G. M. Sheldrick, Acta Cryst. 2015, C71, 3-8.
[6] S. Heinl, E. Peresypkina, J. Sutter, M. Scheer. Angew. Chem. Int. Ed. 2015, 54, 13431-13435.

