Supporting Information Photo-induced 1,2-thiohydroxylation of maleimide involving disulfide and

singlet oxygen

Tamanna Khandelia, Subhendu Ghosh, Pritishree Panigrahi, Raju Mandal, Deepjyoti Boruah, and Bhisma K. Patel*

Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India. E-mail: patel@iitg.ac.in

Contents:

1. General Information	on and Instrumentation	S2
2. Light Information	and Reaction Setup	S2
3. Optimization of R	eaction Parameters	S3–S4
4. General Procedure	e for the Synthesis of 3aa	S 4
5. General Procedure	e for the Synthesis of 3aa in 2 mmol Scale	S4–S5
6. Mechanistic Studi	es	S5–S12
7. Crystallographic D	Description	S12-S13
8. References		
9. Spectral Data		S14–S24
10. NMR Spectra		
11. NOE Experiment of 3ba		

1. General Information and Instrumentation:

All chemicals were obtained from commercial sources and were used without further purification. The starting material **1** was synthesized according to previously described method.¹ Reactions were monitored via TLC, prepared using silica gel 60 F_{254} (0.25 mm), and were detected under UV light at 254 nm. The chromatography separation was carried out using 60–120 mesh-sized silica gel. Ethyl acetate/ hexane mixtures were used as the eluent. ¹H, ¹³C, and ¹⁹F NMR spectra were recorded in 500, and 400 MHz NMR in deuterated solvents, and the chemical shifts (δ) are given in ppm. The ¹H spectra were referenced to TMS (0 ppm) for CDCl₃; for ¹³C CDCl₃ (77.16 ppm). IR spectra were recorded neat using an FT-IR spectrometer. HRMS was recorded using ESI (Q-TOF type mass analyzer) in positive modes. UV–vis experiment was performed in 1 mL quartz cuvettes with a path length equal to 1 cm. Photoluminescence was carried out in 1 mL quartz cuvettes.

2. Light Information and Reaction Setup:

Philips 4 x 5 W white LED bulbs ($\lambda_{em,max} = 419$ nm) were used as the light source for this lightpromoted reaction and no filter was used. A borosilicate 10 mL vial was used as the reaction vessel. The distance from the light source to the irradiation vessel was ~3–5 cm. Regular fan was used to ventilate the area to maintain the room temperature (27–30 °C). The reaction set-up for this photochemical reaction is shown below (Figure S1)

Figure S1 Photochemical Reaction Set-up.

3. Optimization of Reaction Parameters:

Table S1: Optimization of reaction conditions

$\begin{array}{c} \begin{array}{c} & \text{MeO} \\ & \text{Ph} \\ & \text{O} \\ & \text{O} \\ & \text{(1a)} \end{array} \end{array} \xrightarrow{\text{Solvent}} \begin{array}{c} & \text{Solvent} \\ & \text{Light} \end{array} \xrightarrow{\text{Ph} \\ & \text{O} \\ & \text{OMe} \end{array} \xrightarrow{\text{OH}} \begin{array}{c} & \text{OH} \\ & \text{OH} \\ & \text{OMe} \end{array}$			
Sl. No.	Deviation from standard conditions	Yield% ^b	
1.	None	86	
2.	CHCl3 instead of ethyl acetate	63	
3.	DCE instead of ethyl acetate	60	
4.	DCM instead of ethyl acetate	65	
5.	TFE instead of ethyl acetate	71	
6.	1,4 dioxane instead of ethyl acetate	30	
7.	Toluene instead of ethyl acetate	40	
8.	PhCl instead of ethyl acetate	20	
9.	EtOH instead of ethyl acetate	55	
10.	0.6 and 0.75 equivalents of 2a	86 and 87	
11.	No light	0	
12.	Green LEDs instead of blue LEDs	0	

^{*a*}Reaction Conditions unless specified otherwise: **1a** (0.25 mmol), **2a** (0.125 mmol), solvent (2 mL) for 9 h under 5W x 4 blue LEDs ($\lambda_{em,max} = 419$ nm) in an open air. ^{*b*}Isolated yield.

Although the yield was quite good (86%), a series of optimization studies were carried out to improve it further Initially, various solvents were screened such as CHCl₃, dichloroethane

(DCE), dichloromethane (DCM), tetrafluoroethanol (TFE), 1,4-dioxane, toluene, PhCl, EtOH, (entry 2–9, Table1). But there was no improvement in the yield and ethyl acetate turned out to be the best solvent. Upon increasing the loading of 1,2-*bis*(4-methoxyphenyl)disulfane (**2a**) to 0.6 and 0.75 equiv there was no further enhancement in the yield (entry 10, Table1). Also, there was no reaction in the absence of light and under green LEDs (entry 11-12, Table 1). Thus, the optimized condition found was *N*-phenylmaleimide (**1a**, 1 equiv) and 1,2-*bis*(4-methoxyphenyl)disulfane (**2a**, 0.5 equiv) in ethyl acetate under the exposure of blue light (4 x 5W, $\lambda_{em,max} = 419$ nm) in an open air.

4. General Procedure for the Synthesis of 3aa

An oven-dried 10 mL vial was charged with *N*-phenylmaleimide (**1a**) (0.25 mmol, 43 mg), 1,2-*bis*(4-methoxyphenyl)disulfane (**2a**) (0.125 mmol, 35 mg), a magnetic stir bar in ethyl acetate (2 mL) and was stirred at room temperature in an open-air for 9 h under the irradiation of 4 x 5 W blue LEDs ($\lambda_{em,max} = 419$ nm) approximately at a distance of ~3–5 cm. The progress of the reaction was monitored via TLC. After completion of the reaction, the solvent was removed by rotary evaporation. The reaction mixture was then mixed with water (10 mL) and extracted with ethyl acetate (2 × 15 mL). The organic layer was dried over anhydrous sodium sulfate and was evaporated under reduced pressure. The residue so obtained was then purified over column chromatography by eluting with hexane: ethyl acetate (83:17) mixture to afford the desired product **3aa** as grey solid in 86% yields (71 mg).

5. General Procedure for the Synthesis of 3aa in 2 mmol Scale

An oven-dried 10 mL vial was charged with *N*-phenylmaleimide (**1a**) (2 mmol, 346 mg), 1,2*bis*(4-methoxyphenyl)disulfane (**2a**) (1 mmol, 278 mg), a magnetic stir bar in ethyl acetate (3 mL) and was stirred at room temperature in an open-air for 9 h under the irradiation of 4 x 5 W blue LEDs ($\lambda_{em,max} = 419$ nm) approximately at a distance of ~3–5 cm. The progress of the reaction was monitored via TLC. After completion of the reaction, the solvent was removed by rotary evaporation. The reaction mixture was then mixed with water (10 mL) and extracted with ethyl acetate (2×15 mL). The organic layer was dried over anhydrous sodium sulfate and was evaporated under reduced pressure. The residue so obtained was then purified over column chromatography by eluting with hexane: ethyl acetate (83:17) mixture to afford the desired product **3aa** as grey solid in 79% yields (519 mg).

6. Mechanistic Studies

(A) Procedure for Trapping of Radicals:

An oven-dried 10 mL vial was charged with *N*-phenylmaleimide (**1a**) (0.25 mmol, 43 mg), 1,2-*bis*(4-methoxyphenyl)disulfane (**2a**) (0.125 mmol, 35 mg), BHT (2 equiv, 0.5 mmol, 110 mg) or TEMPO (2 equiv, 0.5 mmol, 78 mg) or 1,1-diphenylethylene (DPE) (2 equiv, 0.5 mmol, 90 mg) a magnetic stir bar in ethyl acetate (1.5 mL) and was stirred at room temperature in an open-air for 9 h under the irradiation of 4 x 5 W blue LEDs ($\lambda_{em,max} = 419$ nm) approximately at a distance of ~3–5 cm. The solvent was removed by rotary evaporation. The reaction mixture was then mixed with water (10 mL) and extracted with ethyl acetate (2 × 15 mL). The organic layer was dried over anhydrous sodium sulfate and was evaporated under reduced pressure. The residue so obtained was then purified over column chromatography by eluting with hexane: ethyl acetate (83:17) mixture to afford the product **3aa** as grey solid in 16 mg (20% yield) for BHT, 0 mg (0% yield) for TEMPO and 12 mg (15% yield) for DPE. These results support the radical nature of the reaction.

(B) Procedure for Detection of Singlet Oxygen and Superoxide:

An oven-dried 10 mL vial was charged with *N*-phenylmaleimide (**1a**) (0.25 mmol, 43 mg), 1,2-*bis*(4-methoxyphenyl)disulfane (**2a**) (0.125 mmol, 35 mg), DABCO (2 equiv, 0.5 mmol, 56 mg) or *p*-benzoquinone (2 equiv, 0.5 mmol, 54 mg), a magnetic stir bar in ethyl acetate (1.5 mL) and was stirred at room temperature in an open-air for 9 h under the irradiation of 4 x 5 W blue LEDs ($\lambda_{em,max} = 419$ nm) approximately at a distance of ~3–5 cm. The solvent was removed by rotary evaporation. The reaction mixture was then mixed with water (10 mL) and extracted with ethyl acetate (2 × 15 mL). The organic layer was dried over anhydrous sodium sulfate and was evaporated under reduced pressure. The residue so obtained was then purified over column chromatography by eluting with hexane: ethyl acetate (83:17) mixture to afford the product **3aa** as grey solid in 0 mg (0% yield) for DABCO and 66 mg (81% yield) for *p*-benzoquinone. The failure to obtain the product **3aa** in the presence of DABCO confirms the involvement of the singlet oxygen in the reaction.

(C) Procedure for Singlet Oxygen Trapping:

An oven-dried 10 mL vial was charged with *N*-phenylmaleimide (**1a**) (0.25 mmol, 43 mg), 1,2-*bis*(4-methoxyphenyl)disulfane (**2a**) (0.125 mmol, 35 mg), 1,3-diphenylisobenzofuran (2 equiv, 0.5 mmol, 135 mg) a magnetic stir bar in ethyl acetate (1.5 mL) and was stirred at room temperature in an open-air for 9 h under the irradiation of 4 x 5 W blue LEDs ($\lambda_{em,max} = 419$ nm) approximately at a distance of ~3–5 cm. The solvent was removed by rotary evaporation. The reaction mixture was then mixed with water (10 mL) and extracted with ethyl acetate (2 × 15 mL). The organic layer was dried over anhydrous sodium sulfate and was evaporated under reduced pressure. The residue so obtained was then purified over column chromatography by eluting with hexane: ethyl acetate (83:17) mixture to afford the product **3aa** as grey solid in 12% yields (10 mg) and 1,2-phenylene*bis*(phenylmethanone) (**5**) was detected in HRMS analysis of the crude reaction mixture.

(D) Procedure for Investigation of Origin of Hydroxy Functionality

(i) H₂O¹⁸ Labelling Experiment:

An oven-dried 10 mL vial was charged with *N*-phenylmaleimide (**1a**) (0.25 mmol, 43 mg), 1,2-*bis*(4-methoxyphenyl)disulfane (**2a**) (0.125 mmol, 35 mg), H₂O¹⁸ (10 equiv, 2.5 mmol, 50 mg) a magnetic stir bar in ethyl acetate (1.5 mL) and was stirred at room temperature for 9 h under the irradiation of 4 x 5 W blue LEDs ($\lambda_{em,max} = 419$ nm) approximately at a distance of ~3–5 cm. The solvent was removed by rotary evaporation. The reaction mixture was then purified over column chromatography by eluting with hexane: ethyl acetate (83:17) mixture to afford the product **3aa** as grey solid in 83% yields (68 mg). No H₂O¹⁸ labelled **3aa** was detected.

(ii) Reaction in Dry and Argon Atmosphere:

An oven-dried 10 mL vial was charged with *N*-phenylmaleimide (**1a**) (0.25 mmol, 43 mg), 1,2-*bis*(4-methoxyphenyl)disulfane (**2a**) (0.125 mmol, 35 mg), a magnetic stir bar in dry ethyl acetate (1.5 mL) and was stirred at room temperature for 9 h under an argon atmosphere under the irradiation of 4 x 5 W blue LEDs ($\lambda_{em,max} = 419$ nm) approximately at a distance of ~3–5 cm. The solvent was removed by rotary evaporation. The reaction mixture was then purified over column chromatography by eluting with hexane: ethyl acetate (83:17) mixture to afford the product **3aa** in 7% yield.

(E) Reaction with 4-methoxybenzenethiol (6a) in Lieu of 1,2-bis(4-methoxyphenyl)disulfane(2a)

An oven-dried 10 mL vial was charged with *N*-phenylmaleimide (**1a**) (0.25 mmol, 43 mg), 4-methoxybenzenethiol (**6a**) (0.25 mmol, 35 mg), a magnetic stir bar in ethyl acetate (1.5 mL) and was stirred at room temperature in an open air for 9 h the irradiation of 4 x 5 W blue LEDs ($\lambda_{em,max}$ = 419 nm) approximately at a distance of ~3–5 cm. The solvent was removed by rotary evaporation. The reaction mixture was then mixed with water (10 mL) and extracted with ethyl acetate (2 × 15 mL). The organic layer was dried over anhydrous sodium sulfate and was evaporated under reduced pressure. The residue so obtained was then purified over column chromatography by eluting with hexane: ethyl acetate (88:12) mixture to afford the product **6aa** in 75% yield (58 mg) and **3aa** in 18% yields (14 mg).

(F) HRMS Analysis

Figure S3: Detection of 5

Figure S4: Detection of intermediate IV in crude reaction aliquot.

(G) Detection of H₂O₂ Release During the Reaction.

(i) H_2O_2 detection by iodometry

Figure S5: H₂O₂ detection experiment: (a) Reaction mixture after completion (b) Portion of the freshly prepared KI starch solution in 0.02 M H₂SO₄. (b) Appearance of dark blue colour due to the formation of I₂-starch complex (H₂O₂ detected).

An oven-dried 10 mL vial was charged with *N*-phenylmaleimide (**1a**) (0.25 mmol, 43 mg), 1,2-*bis*(4-methoxyphenyl)disulfane (**2a**) (0.125 mmol, 35 mg), a magnetic stir bar in ethyl acetate (2 mL) and was stirred at room temperature in an open-air for 9 h under the irradiation of 4 x 5 W blue LEDs ($\lambda_{em,max} = 419$ nm) approximately at a distance of ~3–5 cm. In a separate test tube, KI-starch solution was prepared by adding aqueous solution of KI (0.2 mmol in 1.5 mL H₂O), 0.02 M H₂SO₄ (1 ml) and 0.5 mL of freshly prepared starch solution. To a portion of the reaction mixture, the freshly prepared KI-starch solution was added and stirred vigorously. Instantly, the aqueous solution turned to dark blue colour (Fig S5c) indicating the presence of H₂O₂.

(ii) H₂O₂ detection in a typical reaction with KMnO₄.

(a) (b)

 $KMnO_4 + 3H_2O_2 \longrightarrow 2MnO_2 + 2KOH + 3O_2 + 2H_2O$

Figure S6: (a) KMnO₄ solution (b) KMnO₄ solution after addition of reaction mixture.

An oven-dried 10 mL vial was charged with *N*-phenylmaleimide (**1a**) (0.25 mmol, 43 mg), 1,2-*bis*(4-methoxyphenyl)disulfane (**2a**) (0.125 mmol, 35 mg), a magnetic stir bar in ethyl acetate (2 mL) and was stirred at room temperature in an open-air for 9 h under the irradiation of 4 x 5 W blue LEDs ($\lambda_{em,max} = 419$ nm) approximately at a distance of ~3–5 cm. . In a separate test tube, KMnO₄ solution was prepared by adding KMnO₄ (300 µM) in H₂O. A portion of the reaction mixture was added to the KMnO₄ solution (Fig S6a). Instantly, the aqueous solution turned to pale yellow colour (Fig S6b) indicating the presence of H₂O₂.

(H) UV- vis and Emission Spectra

FigS7: (a) UV-vis absorbance of 1,2-*bis*(4-methoxyphenyl)disulfane (2a) in Ethyl acetate at a concentration of 0.05 M at room temperature. (b) Emission spectra of blue LED. (c) spectral overlap of UV-vis absorption spectrum of 2a and emission spectra of blue LED.

The absorbance spectra of 1,2-*bis*(4-methoxyphenyl)disulfane (**2a**) has been recorded which show an absorbance in the region 400–440 nm. Also, the emission spectra of blue LED have been recorded, which has a maximum emission at 419 nm. The absorbance spectra of **2a** and the emission spectra of blue LED overlap each other as shown in Fig S7c.

7. Crystallographic Description

Crystal data were collected with Bruker Smart Apex-II CCD diffractometer using graphite monochromated MoK_{α} radiation ($\lambda = 0.71073$ Å) at 298 K for **3aa**. Cell parameters were retrieved using SMART^a software and refined with SAINT^a on all observed reflections. Data reduction was performed with the SAINT software and corrected for Lorentz and polarization effects. Absorption corrections were applied with the program SADABS.^b The structure was solved by direct methods implemented in SHELX-2014^c program and refined by full-matrix least-squares methods on F2. All non-hydrogen atomic positions were placed in their geometrically generated positions.

- a. SMART V 4.043 Software for the CCD Detector System; Siemens Analytical Instruments Division: Madison, WI, 2008.
- b. SAINT Plus (v 6.14) Bruker AXS Inc., Madison, WI, 2008.

c. Sheldrick, G. M. SHELXL-2014, Program for the Refinement of Crystal Structures; University of Göttingen: Göttingen (Germany), 1997.

Figure S8. ORTEP diagram of 3aa with ellipsoid probability 50%.

Table S2. Crystal Data table for 3aa

C ₁₇ H ₁₅ NO ₄ S		
2278695		
329.36		
298 (2)		
0.71073 Å		
orthorhombic		
P 21 21 21		
a = 5.2038(7) Å, $b = 13.8139(17)$ Å, $c =$		
21.853(3) Å α = 90°, β = 90°, γ = 90°		
1570.9(3) Å ³		
4		
1.393 g/cm ⁻³		
0.226		
688		
1.744 to 24.991°		
-6 < = h < = 6, -16 < = k < = 16, -25 < = 1 < =		
25		
37567		
Full-matrix least-squares on F2		
2765/ 0/ 212		
0.895		
0.0594, wR2 = 0.1401		
0.1223, wR2 = 0.1804		

8. References:

1. R. Mandal, B. Emayavaramban, B. Sundararaju, Org. Lett. 2018, 20, 2835.

9. Spectral Data

(3S,4R)-3-Hydroxy-4-((4-methoxyphenyl)thio)-1-phenylpyrrolidine-2,5-dione (3aa)

Grey solid (71 mg, 86% yield), m.p. 140–143 °C; purified over a column of silica gel (17% ethyl acetate in hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.56 (d, J = 8.5 Hz, 2H), 7.46–7.43 (m, 2H), 7.41–7.38 (m, 1H), 7.14 (d, J = 7.0 Hz, 2H), 6.88 (d, J = 9.0 Hz, 2H), 4.62 (d, J = 4.0 Hz, 1H), 3.98 (d, J = 5.0 Hz, 1H), 3.81 (s, 3H), 3.30 (s, 1H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 174.7, 171.6, 161.2, 137.6, 131.3, 129.4, 129.2, 126.3, 120.3, 115.2, 72.9, 55.6, 53.7. IR (neat, cm⁻¹) 3155, 3054, 1599, 1489, 1452, 1328, 1258, 1049, 758, 696. HRMS (ESI) [M + H]⁺ calcd for C₁₇H₁₆NO₄S⁺ 330.0795, found 330.0796.

(3S,4R)-3-Hydroxy-4-((4-methoxyphenyl)thio)-1-(p-tolyl)pyrrolidine-2,5-dione (3ba)

White solid (72 mg, 84% yield); m.p. 137–140 °C; purified over a column of silica gel (16% ethyl acetate in hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.55 (d, *J* = 8.5 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.01 (d, *J* = 8.0 Hz, 2H), 6.88 (d, *J* = 8.0 Hz, 2H), 4.62–4.60 (m, 1H), 3.97 (d, *J* = 5.0 Hz, 1H), 3.81 (s, 3H), 3.39 (s, 1H), 2.37 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 174.9, 171.8, 161.2, 139.4, 137.6, 130.0, 128.6, 126.1, 120.3, 115.2, 72.9, 55.6, 53.7, 21.4. IR (neat, cm⁻¹) 3388, 1699, 1591, 1493, 1395, 1245, 1178, 1024, 798, 730. HRMS (ESI) [M + H]⁺ calcd for C₁₈H₁₈NO₄S⁺ 344.0951, found 344.0946.

(3S,4R)-1-(4-Bromophenyl)-3-hydroxy-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3ca)

White solid (88 mg, 87% yield); m.p. 180–182 °C; purified over a column of silica gel (16% ethyl acetate in hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.57 (d, *J* = 8.5 Hz, 2H), 7.54 (d, *J* = 8.5 Hz, 2H), 7.06 (d, *J* = 8.5 Hz, 2H), 6.88 (d, *J* = 8.5 Hz, 2H), 4.63–4.61 (m, 1H), 3.97 (d, *J* = 5.0 Hz, 1H), 3.81 (s, 3H), 3.15 (s, 1H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 174.3, 171.3, 161.3, 137.6, 132.6, 132.5, 130.2, 127.7, 123.1, 121.4, 120.1, 115.3, 73.0, 55.6, 53.6. IR (neat, cm⁻¹) 3389,

1705, 1592, 1491, 1392, 1244, 1177, 1014, 828, 767. HRMS (ESI) [M + H]⁺ calcd for C₁₇H₁₅BrNO₄S⁺ 407.9900, found 407.9900.

(3S,4R)-3-Hydroxy-1-(4-iodophenyl)-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3da)

Light yellow solid (101 mg, 89% yield); m.p. 191–196°C; purified over a column of silica gel (17% ethyl acetate in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.4 Hz, 2H), 7.54 (d, *J* = 8.8 Hz, 2H), 6.91 (d, *J* = 8.8 Hz, 2H), 6.87 (d, *J* = 8.8 Hz, 2H), 4.61 (d, *J* = 5.2 Hz, 1H), 3.97 (d, *J* = 4.8 Hz, 1H), 3.81 (s, 3H), 3.40 (s, 1H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 174.2, 171.3, 161.3, 138.5, 137.6, 131.0, 127.9, 120.1, 115.3, 94.7, 73.0, 55.6, 53.6. IR (neat, cm⁻¹) 3442, 1705, 1591, 1489, 1396, 1244, 1177, 1101, 1006, 764. HRMS (ESI) [M + H]⁺ calcd for C₁₇H₁₅INO₄S⁺ 455.9761, found 455.9762.

(3S,4R)-1-Benzyl-3-hydroxy-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3ea)

Brown solid (69 mg, 80% yield); m.p. 126–130 °C; purified over a column of silica gel (17% ethyl acetate in hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.41 (d, *J* = 8.5 Hz, 2H), 7.27–7.26 (m, 3H), 7.20–7.18 (m, 2H), 6.73 (d, *J* = 9.0 Hz, 2H), 4.59 (q, *J* = 14.7 Hz, 2H), 4.44 (d, *J* = 5.0 Hz, 1H), 3.81 (d, *J* = 5.0 Hz, 1H), 3.77 (s, 3H), 3.46 (s, 1H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 175.4, 172.2, 160.9, 137.4, 135.0, 128.8, 128.7, 128.2, 120.2, 115.1, 72.7, 55.5, 53.6, 42.9. IR (neat, cm⁻¹) 3352, 1696, 1589, 1499, 1399, 1242, 1171,1082, 1023, 817. HRMS (ESI) [M + H]⁺ calcd for C₁₈H₁₈NO₄S⁺ 344.0951, found 344.0951.

(3S,4R)-1-(Cyclohexylmethyl)-3-hydroxy-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3fa)

Yellow liquid (68 mg, 78% yield); purified over a column of silica gel (15% ethyl acetate in hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.51 (d, J = 8.5 Hz, 2H), 6.85 (d, J = 9.0 Hz, 2H), 4.48–4.46 (m, 1H), 3.80 (d, J = 5.5 Hz, 1H), 3.79 (s, 3H), 3.29 (dd, J = 7.3, 2.3 Hz, 2H), 3.13 (d, J = 3.0 Hz, 1H), 1.62–1.52 (m, 4H), 1.41 (d, J = 12.9 Hz, 1H), 1.31 (d, J = 11.5Hz, 1H), 1.15–1.06 (m, 3H), 0.87–0.79 (m, 2H); ¹³C{¹H}

NMR (126 MHz, CDCl₃) δ 175.9, 172.4, 161.1, 137.7, 120.2, 115.1, 72.6, 55.5, 53.7, 45.4, 36.0, 30.6, 30.5, 26.2, 25.7, 25.6. IR (neat, cm⁻¹) 3056, 1586, 1483, 1320, 1167, 1011, 975, 692, 677. HRMS (ESI) [M + H]⁺ calcd for C₁₈H₂₄NO₄S⁺ 350.1421, found 350.1422.

(3S,4R)-3-Hydroxy-1-(4-methoxybenzyl)-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3ga)

White solid (76 mg, 82% yield); m.p. 112–116 °C; purified over a column of silica gel (20% ethyl acetate in hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.40 (d, *J* = 8.5 Hz, 2H), 7.16 (d, *J* = 9.0 Hz, 2H), 6.78 (d, *J* = 8.5 Hz, 2H), 6.73 (d, *J* = 8.5 Hz, 2H), 4.53 (q, *J* = 14.0 Hz, 2H), 4.41 (d, *J* = 4.0 Hz, 1H), 3.79 (d, *J* = 4.0 Hz, 1H), 3.78 (s, 3H), 3.77 (s, 3H), 3.37 (s, 1H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 175.4, 172.2, 160.9, 159.5, 137.3, 130.3, 127.3, 120.3, 115.1, 114.1, 72.8, 55.42, 55.38, 53.6, 42.4. IR (neat, cm⁻¹) 3376, 1708, 1593, 1511, 1395, 1293, 1249, 1175, 1027, 828. HRMS (ESI) [M + H]⁺ calcd for C₁₉H₂₀NO₅S⁺ 374.1057, found. 374.1054.

(3S,4R)-3-Hydroxy-4-((4-methoxyphenyl)thio)-1-(3-(trifluoromethyl)benzyl)pyrrolidine-2,5-

Brown solid (87 mg, 85% yield); m.p. 147–148 °C; purified over a column of silica gel (19% ethyl acetate in hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.55 (d, *J* = 5.5 Hz, 2H), 7.42–7.39 (m, 4H), 6.74 (d, *J* = 9.0 Hz, 2H), 4.65 (q, *J* = 13.5 Hz, 2H), 4.47–4.45 (m, 1H), 3.83 (d, *J* = 5.0 Hz, 1H), 3.77 (s, 3H), 3.22 (s, 1H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 175.0, 172.1, 161.1, 137.4, 135.9, 132.2, 131.3 (d, *J* = 32.4 Hz), 129.4, 125.7 (q, *J* = 21.3 Hz), 125.2 (q, *J* = 3.6 Hz), 122.9, 120.0, 115.1, 72.7, 55.4, 53.6, 42.5. ¹⁹F NMR (471 MHz, CDCl₃) δ - 62.6. IR (neat, cm⁻¹) 3066, 1588, 1489, 1333, 1166, 1011, 865, 677. HRMS (ESI) [M + H]⁺ calcd for C₁₉H₁₇F₃NO₄S⁺ 412.0825, found 412.0829.

(3S,4R)-1-(2-Fluorobenzyl)-3-hydroxy-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3ia)

Brown liquid (75 mg, 83% yield); purified over a column of silica gel (18% ethyl acetate in hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, J = 9.0 Hz, 2H), 7.25–7.23 (m, 1H), 7.02–7.01 (m, 2H), 6.77 (d, J = 9.0 Hz, 2H), 6.70 (d, J = 1.0 Hz, 1H), 4.68 (q, J = 12.7 Hz, 2H), 4.48 (d, J = 5.0 Hz, 1H), 3.84 (d, J = 5.0 Hz, 1H), 3.79 (s, 3H), 3.39 (s, 1H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 175.1, 171.9, 161.0, 137.5, 135.3, 130.1 (d, J = 3.5 Hz), 130.0 (d, J = 8.2 Hz), , 124.3 (d, J = 3.7 Hz), 121.7 (d, J = 14.5 Hz), 120.2, 115.7 (d, J = 21.3 Hz), 115.1, 72.6, 55.5, 53.7, 36.7 (d, J = 4.7 Hz,). ¹⁹F NMR (471 MHz, CDCl₃) δ -116.9. IR (neat, cm⁻¹) 3414, 1710, 1590, 1492, 1344, 1244, 1170, 1098, 830, 752. HRMS (ESI) [M + H]⁺ calcd for C₁₈H₁₇FNO₄S⁺ 362.0857, found 362.0856.

(3S,4R)-3-Hydroxy-4-((4-methoxyphenyl)thio)-1-methylpyrrolidine-2,5-dione (3ja)

Brown solid (57 mg, 86% yield); m.p. 93–95 °C; purified over a column of silica gel (15% ethyl acetate in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 8.8 Hz, 2H), 6.86 (d, *J* = 8.8 Hz, 2H), 4.47 (d, *J* = 4.8 Hz, 1H), 3.84 (d, *J* = 4.8 Hz, 1H), 3.80 (s, 3H), 3.44 (s, 1H), 2.95 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 175.8, 172.7, 161.0, 137.2, 120.5, 115.1, 72.9, 55.5, 53.8, 25.4. IR (neat, cm⁻¹) 3327, 1683, 1590, 1492, 1444, 1285, 1240, 1092, 1029, 776, 629. HRMS (ESI) [M + H]⁺ calcd for C₁₂H₁₄NO4S⁺ 268.0638, found 268.0634.

(3S,4R)-1-Ethyl-3-hydroxy-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3ka)

Brown liquid (55 mg, 79% yield); purified over a column of silica gel (16% ethyl acetate in hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, J = 9.0 Hz, 2H), 6.85 (d, J = 9.0 Hz, 2H), 4.45 (d, J = 5.0 Hz, 1H), 3.81 (d, J = 5.0 Hz, 1H), 3.80 (s, 3H), 3.51 (q, J = 7.2 Hz, 2H), 3.45 (s, 1H), 1.07 (t, J = 7.3 Hz, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 13C NMR (126 MHz, CDCl₃) δ 175.6, 172.4, 161.0, 137.3, 120.5,

115.1, 72.9, 55.5, 53.6, 34.4, 12.9. IR (neat, cm⁻¹) 3066, 2967, 1606, 1589, 1473, 1278, 1015, 956, 745, 694. HRMS (ESI) $[M + H]^+$ calcd for C₁₃H₁₆NO₄S⁺ 282.0795, found 282.0790.

(3S,4R)-3-Hydroxy-1-isobutyl-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3la)

Brown solid (59 mg, 76% yield); m.p. 143–145 °C; purified over a column of silica gel (17% ethyl acetate in hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, *J* = 9.0 Hz, 2H), 6.85 (d, *J* = 8.5 Hz, 2H), 4.46 (d, *J* = 5.0 Hz, 1H), 3.82 (d, *J* = 5.0 Hz, 1H), 3.79 (s, 3H), 3.28 (s, 1H), 3.27–3.26 (m, 2H), 1.94–1.89 (m, 1H), 0.79 (d, *J* = 6.5 Hz, 3H), 0.73 (d, *J* = 6.5 Hz, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 176.0, 172.5, 161.1, 137.6, 120.4, 115.1, 72.6, 55.5, 53.7, 46.6, 27.1, 20.0, 19.9. IR (neat, cm⁻¹) 3120, 1567, 1484, 1446, 1335, 1226, 1098, 975, 742, 699. HRMS (ESI) [M + H]⁺ calcd for C₁₅H₂₀NO4S⁺ 310.1108, found 310.1107.

(3S,4R)-3-Hydroxy-1-isopentyl-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3ma)

Brown solid (60 mg, 74% yield); m.p. 165–169 °C; purified over a column of silica gel (16% ethyl acetate in hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, *J* = 8.5 Hz, 2H), 6.85 (d, *J* = 9.0 Hz, 2H), 4.46 (d, *J* = 4.5 Hz, 1H), 3.80 (d, *J* = 4.5 Hz, 1H), 3.79 (s, 3H), 3.53 (s, 1H), 3.46 (t, *J* = 7.5 Hz, 2H), 1.41–1.35 (m, 1H), 1.34–1.28 (m, 2H), 0.88 (d, *J* = 3.5 Hz, 3H), 0.87 (d, *J* = 3.5 Hz, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 175.7, 172.4, 161.0, 137.5, 120.5, 115.1, 72.9, 55.5, 53.7, 37.9, 36.3, 25.9, 22.35, 22.34. IR (neat, cm⁻¹) 3137, 1581, 1478, 1388, 1336, 1101, 976, 896, 711, 698. HRMS (ESI) [M + H]⁺ calcd for C₁₆H₂₂NO₄S⁺ 324.1264, found. 324.1268.

(3S,4R)-1-Hexyl-3-hydroxy-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3na)

Brown liquid (63 mg, 75% yield); purified over a column of silica gel (15% ethyl acetate in hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, J = 9.0 Hz, 2H), 6.85 (d, J = 9.0 Hz, 2H), 4.46–4.44 (m, 1H), **S18**

3.81–3.80 (m, 1H), 3.79 (s, 3H), 3.44 (t, J = 7.3 Hz, 2H), 3.19 (s, 1H), 1.47–1.40 (m, 2H), 1.27–1.20 (m, 4H), 1.17–1.12 (m, 2H), 0.87 (t, J = 6.7 Hz, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 175.7, 172.4, 161.1, 137.5, 120.4, 115.1, 72.8, 55.5, 53.7, 39.5, 31.4, 27.6, 26.4, 22.6, 14.1. IR (neat, cm⁻¹) 3419, 1701, 1589, 1492, 1398, 1289, 1174, 1026, 829, 632. HRMS (ESI) [M + H]⁺ calcd for C₁₇H₂₄NO₄S⁺ 338.1421, found 338.1418.

(3S,4R)-1-Heptyl-3-hydroxy-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3oa)

Brown liquid (75 mg, 85% yield); purified over a column of silica gel (18% ethyl acetate in hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, J = 8.5 Hz, 2H), 6.85 (d, J = 8.5 Hz, 2H), 4.45 (d, J = 2.5 Hz, 1H), 3.80 (d, J = 2.5 Hz, 1H), 3.79 (s, 3H), 3.44 (t, J = 7.5 Hz, 2H), 3.25 (s, 1H), 1.48–1.41 (m, 2H), 1.31–1.21 (m, 6H), 1.16–1.10 (m, 2H), 0.87 (t, J = 7.0 Hz, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 175.7, 172.4, 161.0, 137.5, 120.4, 115.1, 72.8, 55.5, 53.7, 39.5, 31.8, 28.9, 27.6, 26.7, 22.7, 14.2. IR (neat, cm⁻¹) 3157, 1581, 1485, 1454, 1236, 1087, 1044, 934, 747, 697. HRMS (ESI) [M + H]⁺ calcd for C₁₈H₂₆NO₄S⁺ 352.1577, found 352.1571.

(3S,4R)-3-Hydroxy-4-((4-methoxyphenyl)thio)-1-octylpyrrolidine-2,5-dione (3pa)

Brown liquid (81 mg, 89% yield); purified over a column of silica gel (18% ethyl acetate in hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, J = 9.0 Hz, 2H), 6.85 (d, J = 8.5 Hz, 2H), 4.45 (d, J = 3.0 Hz, 1H), 3.80 (d, J = 3.0 Hz, 1H), 3.79 (s, 3H), 3.44 (t, J = 7.3 Hz, 2H), 3.31 (s, 1H), 1.47–1.40 (m, 2H), 1.30–1.21 (m, 8H), 1.16–1.10 (m, 2H), 0.88 (t, J = 7.0 Hz, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 175.8, 172.5, 161.0, 137.4, 120.4, 115.1, 72.8, 55.5, 53.7, 39.5, 31.9, 29.22, 29.17, 27.6, 26.8, 22.7, 14.2. IR (neat, cm⁻¹) 3419, 1702, 1591, 1492, 1398, 1246, 1172, 1030, 830, 632. HRMS (ESI) [M + H]⁺ calcd for C₁₉H₂₈NO₄S⁺ 366.1734, found 366.1734.

(3S,4R)-1-Decyl-3-hydroxy-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3qa)

Brown liquid (76 mg, 77% yield); purified over a column of silica gel (17% ethyl acetate in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 8.8 Hz, 2H), 6.85 (d, J = 8.8 Hz, 2H), 4.45 (d, J = 4.4 Hz, 1H), 3.80 (d, J = 3.0 Hz, 1H), 3.78 (s, 3H), 3.44 (t, J = 7.4 Hz, 2H), 3.20 (s, 1H), 1.46–1.42 (m, 2H), 1.29–1.20 (m, 12H), 1.17–1.12 (m, 2H), 0.88 (t, J = 6.8 Hz, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 175.7, 172.4, 161.0, 137.4, 120.4, 115.1, 72.8, 55.5, 53.7, 39.5, 32.0, 29.7, 29.6, 29.4, 29.2, 27.6, 26.8, 22.8, 14.3. IR (neat, cm⁻¹) 3421, 1702, 1591, 1492, 1399, 1246, 1173, 1030, 829, 632. HRMS (ESI) [M + H]⁺ calcd for C₂₁H₃₂NO₄S⁺ 394.2047, found 394.2049.

(3S,4R)-3-Hydroxy-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3ra)

Brown liquid (54 mg, 85% yield); purified over a column of silica gel (20% ethyl acetate in hexane); ¹H NMR (500 MHz, CDCl₃) δ 8.11 (s, 1H), 7.52 (d, *J* = 9.0 Hz, 2H), 6.87 (d, *J* = 9.0 Hz, 2H), 4.48 (d, *J* = 6.0 Hz, 1H), 3.89 (d, *J* = 5.5 Hz, 1H), 3.81 (s, 3H), 3.30 (s, 1H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 13C NMR (126 MHz, CDCl3) δ 175.1, 171.8, 161.1, 137.4, 135.3, 115.3, 73.5, 55.5, 54.9. IR (neat, cm⁻¹) 3241, 2933, 1608, 1488, 1429, 1291, 1181, 1012, 930, 759. HRMS (ESI) [M + H]⁺ calcd for C₁₁H₁₂NO₄S⁺ 254.0482, found 254.0483.

3-Hydroxy-4-((4-methoxyphenyl)thio)-1-(4-phenylbutan-2-yl)pyrrolidine-2,5-dione (3sa)

Light yellow solid (75 mg, 78% yield); dr 1:0.87; m.p. 100-104 °C; purified over a column of silica gel (17% ethyl acetate in hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, *J* = 8.0 Hz, 4H), 7.25–7.23 (m, 4H), 7.19–7.14 (m, 2H), 7.07 (t, *J* = 8.0 Hz, 4H), 6.81 (d, *J* = 8.5 Hz, 4H), 4.31–4.27 (m, 2H), 4.22–4.15 (m, 2H), 3.71 (s, 3H), 3.67 (s, 3H), 3.63 (d, *J* = 5.5 Hz, 1H), 3.57 (d, *J* = 5.5 Hz, 1H), 3.26–3.23 (m, 2H), 2.48–2.43 (m, 2H), 2.38 – 2.14 (m, 4H), 1.91–1.83 (m, 2H), 1.30 (d, J = 7.0 Hz, 3H), 1.27 (d, J = 7.0 Hz, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 175.87, 175.86, 172.4, 160.99, 160.97, 141.0, 140.9, 137.5, 137.4, 128.6, 128.5, 128.4, 126.22, 126.19, 120.6, 120.5, 115.07, 115.06, 72.31, 72.27, 55.44, 55.36, 53.64, 53.62, 49.2, 49.0, 33.9, 33.8, 33.2, 33.0, 18.2, 18.0. IR (neat, cm⁻¹) 3385, 1689, 1590, 1491, 1367, 1246, 1166, 1028, 826, 699. HRMS (ESI) [M + H]⁺ calcd for C₂₁H₂₄NO₄S⁺ 386.1421, found 386.1425.

(3S,4R)-3-Hydroxy-4-((4-methoxyphenyl)thio)-1-(4-phenylbutyl)pyrrolidine-2,5-dione (3ta)

Brown liquid (83 mg, 86% yield); purified over a column of silica gel (17% ethyl acetate in hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.48 (d, J = 9.0 Hz, 2H), 7.27 (t, J = 6.8 Hz, 2H), 7.18 (t, J = 7.5 Hz, 1H), 7.13 (d, J = 7.5 Hz, 2H), 6.79 (d, J = 9.0 Hz, 2H), 4.44 (d, J = 5.5 Hz, 1H), 3.80 (d, J = 5.5 Hz, 1H), 3.75 (s, 3H), 3.71 (s, 1H), 3.46 (t, J = 6.5 Hz, 2H), 2.56 (t, J = 7.0 Hz, 2H), 1.50–1.49 (m, 4H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 175.9, 172.5, 161.0, 141.8, 137.4, 128.5, 126.0, 120.3, 115.1, 72.6, 55.5, 53.7, 39.1, 35.2, 28.4, 27.1. IR (neat, cm⁻¹) 3420, 1700, 1591, 1492, 1396, 1245, 1146, 1029, 829, 740. HRMS (ESI) [M + H]⁺ calcd for C₂₁H₂₄NO4S 386.1421, found 386.1427.

(3S,4R)-3-Hydroxy-4-((4-methoxyphenyl)thio)-1-phenethylpyrrolidine-2,5-dione (3ua)

Brown solid (80 mg, 89% yield); m.p. 153–155 °C; purified over a column of silica gel (17% ethyl acetate in hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, *J* = 9.0 Hz, 2H), 7.25–7.20 (m, 3H), 7.08 (d, J = 6.5 Hz, 2H), 6.86 (d, *J* = 8.5 Hz, 2H), 4.37 (d, *J* = 3.0 Hz, 1H), 3.79 (s, 3H), 3.76 (d, *J* = 5.5 Hz, 1H), 3.69 (t, *J* = 7.6 Hz, 2H), 3.33 (s, 1H), 2.83–2.73 (m, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 175.5, 172.2, 161.1, 137.44, 137.37, 128.9, 128.7, 127.0, 120.5, 115.1, 72.6, 55.5, 53.7, 40.5, 33.5. IR (neat, cm⁻¹) 3078, 1681, 1508, 1336, 1287,

1156, 1114, 984, 835, 756, 685. HRMS (ESI) $[M + H]^+$ calcd for $C_{19}H_{20}NO_4S^+$ 358.1108, found 358.1107.

(3S, 4R) - 3 - Hydroxy - 4 - ((4 - methoxyphenyl) thio) - 1 - (2 - (thiophen - 2 - yl) ethyl) pyrrolidine - 2, 5 - dione - 2

Brown solid (73 mg, 81% yield); m.p. 120–124 °C; purified over a column of silica gel (18% ethyl acetate in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 8.8 Hz, 2H), 7.13 (dd, J = 4.8, 1.2 Hz, 1H), 6.90–6.87 (m, 1H), 6.86 (d, J = 8.4 Hz, 2H), 6.70 (d, J = 2.8 Hz, 1H), 4.41 (d, J = 4.0 Hz, 1H), 3.80 (s, 3H), 3.78 (d, J = 4.0 Hz, 1H), 3.72 (t, J = 7.2 Hz, 2H), 3.11 (s, 1H), 3.05–3.00 (m, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 175.3, 172.1, 161.1, 139.3, 137.4, 127.2, 126.0, 124.5, 120.5, 115.2, 72.7, 55.5, 53.8, 40.6, 27.5. IR (neat, cm⁻¹) 3317, 2965, 1600, 1511, 1478, 1370, 1264, 964, 746, 681. HRMS (ESI) [M + H]⁺ calcd for C₁₇H₁₈NO₄S₂⁺ 364.0672, found 364.0675.

(3S,4R)-3-Hydroxy-1-phenyl-4-(phenylthio)pyrrolidine-2,5-dione (3ab)

White solid (42 mg, 56% yield); m.p. 148–151 °C; purified over a column of silica gel (15% ethyl acetate in hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.64–7.62 (m, 3H), 7.46 (t, *J* = 7.5 Hz, 2H), 7.40–7.37 (m, 4H), 7.19–7.17 (m, 1H), 4.66–4.65 (m, 1H), 4.13 (d, *J* = 5.5 Hz, 1H), 3.30 (s, 1H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 174.6, 171.5, 134.6, 129.7, 129.5, 129.42, 129.41, 129.2, 126.3, 125.6, 119.9, 73.4, 53.3. IR (neat, cm⁻¹) 3172, 1476, 1461, 1239, 1166, 1037, 968, 637. HRMS (ESI) [M + H]⁺ calcd for C₁₆H₁₄NO₃S⁺ 300.0689, found 300.0710.

(3S,4R)-3-Hydroxy-1-phenyl-4-(p-tolylthio)pyrrolidine-2,5-dione (3ac)

White solid (56 mg, 71% yield); m.p. 141–148 °C; purified over a column of silica gel (16% ethyl acetate in hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, *J* = 7.5 Hz, 2H), 7.45 (t, *J* = 7.5 Hz, 2H), 7.41 (d, *J* = 7.5 Hz, 1H), 7.18–7.15 (m, 4H), 4.63 (d, *J* = 5.0 Hz, 1H), 4.05 (d, *J* = 5.5 Hz, 1H), 3.36 (s, 1H), 2.36 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 174.7, 171.6, 140.1, 135.2, 131.3, 130.5, 129.4, 129.2, 126.7, 126.3, 73.1, 53.4, 21.4. IR (neat, cm⁻¹) 3372, 1676, 1351, 1320, 1208, 1026, 928, 738, 655. HRMS (ESI) [M + H]⁺ calcd for C₁₇H₁₆NO₃S⁺ 314.0845, found 314.0851.

(3R,4S)-3-((4-Chlorophenyl)thio)-4-hydroxy-1-phenylpyrrolidine-2,5-dione (3ad)

White solid (58 mg, 70% yield); m.p. 156–159 °C; purified over a column of silica gel (19% ethyl acetate in hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 8.4 Hz, 2H), 7.47–.46 (m, 2H), 7.44–7.41 (m, 1H), 7.34 (d, *J* = 8.4 Hz, 2H), 7.21 (d, *J* = 7.2 Hz, 2H), 4.63 (d, *J* = 5.6 Hz, 1H), 4.12 (d, *J* = 5.6 Hz, 1H), 3.43 (s, 1H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 174.4, 171.3, 135.9, 135.7, 131.1, 129.8, 129.5, 129.4, 129.3, 126.2, 73.3, 53.5. IR (neat, cm⁻¹) 3072, 1676, 1651, 1369, 1158, 1028, 938, 688, 599. HRMS (ESI) [M + H]⁺ calcd for C₁₆H₁₃ClNO₃S⁺ 334.0305, found 334.0303.

(3R,4S)-3-((3-Fluoro-4-methoxyphenyl)thio)-4-hydroxy-1-phenylpyrrolidine-2,5-dione (3ae)

White solid (67 mg, 77% yield); m.p. 149–154 °C; purified over a column of silica gel (23% ethyl acetate in hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.47 (t, *J* = 7.5 Hz, 2H), 7.42–7.38 (m, 3H), 7.20 (d, *J* = 7.5 Hz, 2H), 6.94 (t, *J* = 9.0 Hz, 1H), 4.61 (d, *J* = 5.0 Hz, 1H), 4.03 (d, *J* = 5.0 Hz, 1H), 3.90 (s, 3H), 3.37 (s, 1H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 174.5, 171.4, 149.5 (d, *J* = 10.3 Hz), 132.2 (d, *J* = 3.7 Hz), 131.2, 129.5, 129.31, 129.27, 126.2, 123.1 (d, *J* = 18.5 Hz), 121.3 (d, *J* = 6.7 Hz), 113.9 (d, *J* = 2.3 Hz), 72.9, 56.4, 53.8. ¹⁹F NMR (471

MHz, CDCl₃) δ -132.4. IR (neat, cm⁻¹) 3172, 1523, 1445, 1329, 1165, 1127, 858, 738, 635. HRMS (ESI) [M + H]⁺ calcd for C₁₇H₁₅FNO₄S⁺ 348.0700, found 348.0696.

3-((4-Methoxyphenyl)thio)-1-phenylpyrrolidine-2,5-dione (6aa)

Brown liquid (58 mg, 75% yield; purified over a column of silica gel (11% ethyl acetate in hexane); ¹H NMR (500 MHz, CDCl₃) δ 7.51 (d, J = 8.5 Hz, 2H), 7.44–7.41 (m, 2H), 7.37 (d, J = 7.5 Hz, 1H), 7.04 (d, J = 7.5 Hz, 2H), 6.88 (d, J = 9.0 Hz, 2H), 4.03 (dd, J = 9.5, 3.5 Hz, 1H), 3.81 (s, 3H), 3.31 (q, J = 9 Hz, 1H), 2.90 (dd, J = 19.0, 3.5 Hz, 1H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 174.8, 173.8, 161.4, 137.9, 131.7, 129.3, 128.9, 126.5, 119.7, 115.2, 55.6, 44.7, 36.4. IR (neat, cm⁻¹) 3163, 1514, 1455, 1314, 1115, 1107, 755, 631, 601. HRMS (ESI) [M + H]⁺ calcd for C₁₇H₁₆NO₃S⁺ 314.0845, found 314.0844.

(3*S*,4*R*)-3-Hydroxy-4-((4-methoxyphenyl)thio)-1-phenylpyrrolidine-2,5-dione (3aa): ¹H NMR (CDCl₃, 500 MHz)

(3S,4R)-3-Hydroxy-4-((4-methoxyphenyl)thio)-1-phenylpyrrolidine-2,5-dione (3aa): ¹³C{¹H} NMR (CDCl₃, 126 MHz)

(3*S*,4*R*)-3-Hydroxy-4-((4-methoxyphenyl)thio)-1-(*p*-tolyl)pyrrolidine-2,5-dione (3ba): ¹H NMR (CDCl₃, 500 MHz)

(3*S*,4*R*)-3-Hydroxy-4-((4-methoxyphenyl)thio)-1-(*p*-tolyl)pyrrolidine-2,5-dione (3ba): ¹³C{¹H} NMR (CDCl₃, 126 MHz)

(3S,4R)-1-(4-Bromophenyl)-3-hydroxy-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3ca): ¹H NMR (CDCl₃, 500 MHz)

(3*S*,4*R*)-1-(4-Bromophenyl)-3-hydroxy-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3ca): ¹³C{¹H} NMR (CDCl₃, 126 MHz)

(3*S*,4*R*)-3-Hydroxy-1-(4-iodophenyl)-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3da): ¹H NMR (CDCl₃, 400 MHz)

(3*S*,4*R*)-3-Hydroxy-1-(4-iodophenyl)-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3da): ¹³C{¹H} NMR (CDCl₃, 126 MHz)

(3S,4R)-1-Benzyl-3-hydroxy-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3ea): ¹H NMR (CDCl₃, 500 MHz)

(3S,4R)-1-Benzyl-3-hydroxy-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3ea): ¹³C{¹H} NMR (CDCl₃, 126 MHz)

(35,4R)-1-(Cyclohexylmethyl)-3-hydroxy-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3fa): ¹H NMR (CDCl₃, 500 MHz)

(3*S*,4*R*)-1-(Cyclohexylmethyl)-3-hydroxy-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3fa): ¹³C{¹H} NMR (CDCl₃, 126 MHz)

(3S,4R)-3-Hydroxy-1-(4-methoxybenzyl)-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3ga): ¹H NMR (CDCl₃, 500 MHz)

(3*S*,4*R*)-3-Hydroxy-1-(4-methoxybenzyl)-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3ga): ¹³C{¹H} NMR (CDCl₃, 126 MHz)

(3*S*,4*R*)-3-Hydroxy-4-((4-methoxyphenyl)thio)-1-(3-(trifluoromethyl)benzyl)pyrrolidine-2,5-dione (3ha): ¹H NMR (CDCl₃, 500 MHz)

(3*S*,4*R*)-3-Hydroxy-4-((4-methoxyphenyl)thio)-1-(3-(trifluoromethyl)benzyl)pyrrolidine-2,5-dione (3ha): ¹³C{¹H} NMR (CDCl₃, 126 MHz)

(3*S*,4*R*)-3-Hydroxy-4-((4-methoxyphenyl)thio)-1-(3-(trifluoromethyl)benzyl)pyrrolidine-2,5-dione (3ha): ¹⁹FNMR (CDCl₃, 471 MHz)

(3*S*,4*R*)-1-(2-Fluorobenzyl)-3-hydroxy-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3ia): ¹H NMR (CDCl₃, 500 MHz)

(3*S*,4*R*)-1-(2-Fluorobenzyl)-3-hydroxy-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3ia): ¹³C{¹H} NMR (CDCl₃, 126 MHz)

LO.5 -111.0 -111.5 -112.0 -112.5 -113.0 -113.5 -114.0 -114.5 -115.0 -115.5 -116.0 -116.5 -117.0 -117.5 -118.0 -118.5 -119.0 -119.5 -120.0 -120.5 -121.0 -121.5 -122.0 f1 (ppm)

(3S,4R)-1-(2-Fluorobenzyl)-3-hydroxy-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3ia): ¹⁹F NMR (CDCl₃, 471 MHz)

(3*S*,4*R*)-3-Hydroxy-4-((4-methoxyphenyl)thio)-1-methylpyrrolidine-2,5-dione (3ja): ¹H NMR (CDCl₃, 400 MHz)

(3*S*,4*R*)-3-Hydroxy-4-((4-methoxyphenyl)thio)-1-methylpyrrolidine-2,5-dione (3ja): ¹³C{¹H} NMR (CDCl₃, 126 MHz)

(3S,4R)-1-Ethyl-3-hydroxy-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3ka): ¹H NMR (CDCl₃, 500 MHz)

(3*S*,4*R*)-1-Ethyl-3-hydroxy-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3ka): ¹³C{¹H} NMR (CDCl₃, 126 MHz)

(3S,4R)-3-Hydroxy-1-isobutyl-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3la): ¹H NMR (CDCl₃, 500 MHz)

(3*S*,4*R*)-3-Hydroxy-1-isobutyl-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3la): ¹³C{¹H} NMR (CDCl₃, 126 MHz)

(3S,4R)-3-Hydroxy-1-isopentyl-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3ma): ¹H NMR (CDCl₃, 500 MHz)

(3*S*,4*R*)-3-Hydroxy-1-isopentyl-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3ma): ¹³C{¹H} NMR (CDCl₃, 126 MHz)

(3S,4R)-1-Hexyl-3-hydroxy-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3na): ¹H NMR (CDCl₃, 500 MHz)

(3*S*,4*R*)-1-Hexyl-3-hydroxy-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3na): ¹³C{¹H} NMR (CDCl₃, 126 MHz)

(3S,4R)-1-Heptyl-3-hydroxy-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3oa): ¹H NMR (CDCl₃, 500 MHz)

(3*S*,4*R*)-1-Heptyl-3-hydroxy-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3oa): ¹³C{¹H} NMR (CDCl₃, 126 MHz)

(3S,4R)-3-Hydroxy-4-((4-methoxyphenyl)thio)-1-octylpyrrolidine-2,5-dione (3pa): ¹H NMR (CDCl₃, 500 MHz)

(3*S*,4*R*)-3-Hydroxy-4-((4-methoxyphenyl)thio)-1-octylpyrrolidine-2,5-dione (3pa): ¹³C{¹H} NMR (CDCl₃, 126 MHz)

(3S,4R)-1-Decyl-3-hydroxy-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3qa): ¹H NMR (CDCl₃, 400 MHz)

(3*S*,4*R*)-1-Decyl-3-hydroxy-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3qa): ¹³C{¹H} NMR (CDCl₃, 126 MHz)

(3*S*,4*R*)-3-Hydroxy-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3ra): ¹H NMR (CDCl₃, 500 MHz)

(3*S*,4*R*)-3-Hydroxy-4-((4-methoxyphenyl)thio)pyrrolidine-2,5-dione (3ra): ¹³C{¹H} NMR (CDCl₃, 126 MHz)

3-Hydroxy-4-((4-methoxyphenyl)thio)-1-(4-phenylbutan-2-yl)pyrrolidine-2,5-dione (3sa): ¹H NMR (CDCl₃, 500 MHz)

3-Hydroxy-4-((4-methoxyphenyl)thio)-1-(4-phenylbutan-2-yl)pyrrolidine-2,5-dione (3sa): ¹³C{¹H} NMR (CDCl₃, 126 MHz)

(3*S*,4*R*)-3-Hydroxy-4-((4-methoxyphenyl)thio)-1-(4-phenylbutyl)pyrrolidine-2,5-dione (3ta): ¹H NMR (CDCl₃, 500 MHz)

(3*S*,4*R*)-3-Hydroxy-4-((4-methoxyphenyl)thio)-1-(4-phenylbutyl)pyrrolidine-2,5-dione (3ta): ¹³C{¹H} NMR (CDCl₃, 126 MHz)

(3S,4R)-3-Hydroxy-4-((4-methoxyphenyl)thio)-1-phenethylpyrrolidine-2,5-dione (3ua): ¹H NMR (CDCl₃, 500 MHz)

(3*S*,4*R*)-3-Hydroxy-4-((4-methoxyphenyl)thio)-1-phenethylpyrrolidine-2,5-dione (3ua): ¹³C{¹H} NMR (CDCl₃, 126 MHz)

(3*S*,4*R*)-3-Hydroxy-4-((4-methoxyphenyl)thio)-1-(2-(thiophen-2-yl)ethyl)pyrrolidine-2,5-dione (3va): ¹H NMR (CDCl₃, 400 MHz)

(3*S*,4*R*)-3-Hydroxy-4-((4-methoxyphenyl)thio)-1-(2-(thiophen-2-yl)ethyl)pyrrolidine-2,5-dione (3va): ¹³C{¹H} NMR (CDCl₃, 126 MHz)

(3S,4R)-3-Hydroxy-1-phenyl-4-(phenylthio)pyrrolidine-2,5-dione (3ab): ¹H NMR (CDCl₃, 500 MHz)

(3*S*,4*R*)-3-Hydroxy-1-phenyl-4-(phenylthio)pyrrolidine-2,5-dione (3ab): ¹³C{¹H} NMR (CDCl₃, 126 MHz)

(3*S*,4*R*)-3-Hydroxy-1-phenyl-4-(*p*-tolylthio)pyrrolidine-2,5-dione (3ac): ¹H NMR (CDCl₃, 500 MHz)

(3*S*,4*R*)-3-Hydroxy-1-phenyl-4-(*p*-tolylthio)pyrrolidine-2,5-dione (3ac): ¹³C{¹H} NMR (CDCl₃, 126 MHz)

(3*R*,4*S*)-3-((4-Chlorophenyl)thio)-4-hydroxy-1-phenylpyrrolidine-2,5-dione (3ad): ¹H NMR (CDCl₃, 400 MHz)

(3R,4S)-3-((4-Chlorophenyl)thio)-4-hydroxy-1-phenylpyrrolidine-2,5-dione (3ad): ¹³C{¹H} NMR (CDCl₃, 126 MHz)

(3R,4S)-3-((3-Fluoro-4-methoxyphenyl)thio)-4-hydroxy-1-phenylpyrrolidine-2,5-dione (3ae): ¹H NMR (CDCl₃, 500 MHz)

(3*R*,4*S*)-3-((3-Fluoro-4-methoxyphenyl)thio)-4-hydroxy-1-phenylpyrrolidine-2,5-dione (3ae): ¹³C{¹H} NMR (CDCl₃, 126 MHz)

(3R,4S)-3-((3-Fluoro-4-methoxyphenyl)thio)-4-hydroxy-1-phenylpyrrolidine-2,5-dione (3ae): ¹⁹F NMR (CDCl₃, 471 MHz)

3-((4-methoxyphenyl)thio)-1-phenylpyrrolidine-2,5-dione (6aa): ¹H NMR (CDCl₃, 500 MHz)

3-((4-methoxyphenyl)thio)-1-phenylpyrrolidine-2,5-dione (6aa): ¹³C{¹H} NMR (CDCl₃, 126 MHz)

11. NOE Experiment of 3ba

Upon irradiation of H_a , enhancement was observed in the signal corresponding to H_b (0.73% w.r.t. H_a), which indicates that H_a is in *trans* relation with H_b . Similarly, upon irradiation of H_b , enhancement was observed for H_a (0.79% w.r.t. H_b), which also indicates that H_a is in *trans* relation with H_b .

