Supporting information for:

Cooperative Bond Activations by a Tucked-in Iron Complex

Joseph A. Zurakowski and Marcus W. Drover*

*E-mail: marcus.drover@uwindsor.ca

^a Department of Chemistry and Biochemistry, The University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada

1. Experimental Section	S2
2. Preparation of Compounds	S 3
3. Multinuclear NMR Data	S 9
4. X-Ray Crystallography	S27
5. Computational Chemistry	S32
6. References	S35

Experimental Section:

General considerations. All experiments were carried out employing standard Schlenk techniques under an atmosphere of dry nitrogen employing degassed, dried solvents in a solvent purification system supplied by PPT, LLC. Non-halogenated solvents were tested with a standard purple solution of sodium benzophenone ketyl in tetrahydrofuran in order to confirm effective moisture removal. *d*₆-benzene was dried over molecular sieves and degassed by three freeze-pump-thaw cycles. All other reagents were purchased from commercial vendors and used without further purification unless otherwise stated. 1,2-*bis*(di-*n*-propylphosphino)ethane) (dnppe),¹ HBCy₂,² and [Cp*Fe(dnppe)Cl]³ were prepared according to literature procedures.

Physical methods. ¹H NMR spectra are reported in parts per million (ppm) and are referenced to residual solvent e.g., ¹H(C₆D₆): δ = 7.16; ¹³C(C₆D₆): δ = 128.06; coupling constants are reported in Hz. ¹³C, ³¹P, and ¹¹B NMR spectra were performed as proton-decoupled experiments (unless explicitly stated otherwise) and are reported in ppm.

Preparation of Compounds:

 $[Cp*Fe^{II}(dnppe)N_2]BPh_4$ (1; C₄₈H₆₇BFeN₂P₂, M_W = 801 g/mol): In the glovebox, [Cp*Fe(dnppe)Cl] (500 mg, 1.02 mmol) was weighed into a 20 mL scintillation vial equipped with a stir bar. Approximately 10 mL of Et₂O was added. To this solution was added NaBPh₄ (107 mg, 0.31 mmol,

1 equiv.) suspended in 3 mL of EtzO. The mixture was stirred for 1 h during which time it became yellow. The solvent was removed *in-vacuo* and the powder extracted into THF and filtered through Celite®. The orange filtrate was dried *in-vacuo* and the resulting orange powder was washed with 3 x 5 mL of pentane and dried (598 mg, 73%). Crystals suitable for X-Ray diffraction were grown from THF layered with pentane at -35 °C overnight. ¹H NMR (500 MHz, ds-THF, 298 K): δ_{i1} = 7.26 (m; 8H; *o*-C₆H₅ [BPh₄]), 6.83 (m; 8H; *m*-C₆H₅ [BPh₄]), 6.69 (m, 4H; *p*-C₆H₅ [BPh₄]), 1.93 (m; 2H; P-CH₂-CH₂-P linker), 1.79 (m; 4H; overlapping P-CH₂-CH₂-CH₃ signals), 1.63 (m; 2H; overlapping P-CH₂-CH₂-CH₃ signals), 1.59 (s, 15H; Cp*-CH₃), 1.51-1.41 (m, 10H; overlapping P-CH₂-CH₂-CH₃ signals), 1.28 (m, 2H; P-CH₂-CH₂-P linker), 1.05-0.98 (overlapping triplets, 12H; P-CH₂-CH₂-CH₃ signals), 1.28 (m, 2H; P-CH₂-CH₂-P linker), 1.05-0.98 (overlapping triplets, 12H; P-CH₂-CH₂-CH₃ [BPh₄]), 121.7 (s; *p*-C₆H₅ [BPh₄]), 91.9 (s; Cp*(aromatic)), 29.0-28.7 (m; overlapping CH₂ signals), 22.8 (m; CH₂), 18.7 (app. s; CH₂), 17.8 (m; CH₂), 16.2-15.9 (m; overlapping CH₃ signals), 9.97 (s; Cp*-CH₃). ³¹P{¹H} NMR (202.5 MHz, ds-THF, 298 K): δ_{P} = +71.2.

[(η^{6} -C₅Me₄=CH₂)Fe(d*n*ppe)] (2; C₂₄H₄₆FeP₂, M_w = 452 g/mol): In the glovebox, 1 (400 mg, 0.50 mmol) was weighed into a 20 mL scintillation vial equipped with a stir bar and dissolved in approximately 4 mL of THF. This solution was cooled to -35 °C in the glovebox freezer. Next, *n*-butyllithium (1.6 M in hexane, 1 equiv.)

was added. The reaction was stirred for 30 min at room temperature. The solution became gradually red over time. The solvent was removed *in-vacuo*, and the product was extracted with 3 x 2 mL portions of pentane and filtered through Celite[®]. The red filtrate was dried *in vacuo* giving **2** as a red powder (192 mg, 85%). Crystals suitable for X-ray diffraction were grown from

a saturated pentane solution at -35 °C overnight. ¹H NMR (500 MHz, C₆D₆, 298 K): δ_{H} = 2.74 (t; 2H; η^{6} -C₅Me₄=CH₂ (³*J*_{H-P} = 3.6 Hz)), 1.70 (s; 12H; η^{6} -C₅Me₄=CH₂), 1.63 (m; 2H; CH₂), 1.51-1.45 (m; 8H; multiple overlapping CH₂ signals), 1.37 (m; 3H; multiple overlapping CH₂ signals), 1.20 (m; 7H; multiple overlapping CH₂ signals), 0.96 (t; 6H; P-CH₂-CH₂-CH₃ (³*J*_{H-H} = 7.24 Hz)), 0.92 (t; 6H; P-CH₂-CH₂-CH₂-CH₃ (³*J*_{H-H} = 7.24 Hz))). ¹³C{¹H} NMR (75.5 MHz, C₆D₆, 298 K): δ_{C} = 96.2 (s; η^{6} -[C₄Me₄]C = CH₂), 84.0 (br. s; η^{6} -[C₄Me₄]C = CH₂), 35.6 (m; CH₂), 23.5 (m; η^{5} -[C₄Me₄]C = CH₂), 28.3 (m; multiple overlapping CH₂ signals), 19.0 (s; CH₂), 18.3 (s; CH₂), 16.7 (m; multiple overlapping P-CH₂-CH₂-CH₃ signals), 12.7 (s; η^{6} -[C₄Me₄]C = CH₂), 11.9 (s; η^{6} -[C₄Me₄]C = CH₂). ³¹P{¹H} NMR (202.5 MHz, C₆D₆, 298 K): δ_{P} = +89.6.

[(η^{5} -C₅Me₄-CH₂-CO₂)Fe^{II}(*dnppe*)] (3; C₂₅H₄₆FeO₂P₂, M_W = 496 g/mol): In the glovebox, **2** (20 mg, 0.04 mmol) was weighed into a J-Young NMR tube and dissolved in approximately 500 µL of THF. The J-Young NMR tube was removed from the glovebox and degassed with 3 freeze-pump-thaw cycles

on the Schlenk line. After the third cycle, the J-Young NMR tube was warmed to room temperature and an atmosphere of CO₂ was introduced. The J-Young NMR tube was shaken vigorously for 5 mins then left to sit for 1 h. During this time, the solution changed from red to purple. The solvent was removed *in-vacuo* on the Schlenk line, then the tube brought back into the glovebox. The purple solid was extracted into THF and filtered through Celite®. The filtrate was dried *in-vacuo* and the purple solid washed with 3 x 2 mL of pentane, giving **3** (16 mg, 72%). Crystals suitable for X-ray diffraction were grown from slow evaporation of THF at room temperature overnight. ¹H NMR (500 MHz, C₆D₆, 298 K): δ_{t1} = 3.26 (br. s; 2H; η^5 -C₅Me₄-CH₂-CO₂), 2.07 (br. s; 6H; η^5 -C₅Me₄-CH₂-CO₂), 1.90 (m; 2H; CH₂), 1.69 (m; 4H; multiple overlapping CH₂ signals), 1.47 (m; 8H; multiple overlapping CH₂ signals), 1.26 (m; 2H; CH₂), 1.18 (m; 2H; CH₂), 1.11 (m; 2H; CH₂), 1.00 (br. t; 6H; P-CH₂-CH₂-CH₂-CH₂), 0.90 (br. s; 6H; η^5 -C₅Me₄-CH₂-CO₂), 0.86 (br. t; 6H; P-CH₂-CH₂-CH₂), 1.91 (app. s; η^5 -C₅Me₄-CH₂-CO₂), (assigned from a ¹H-¹³C HMBC experiment), see Figure S14), 91.7 (s; η^5 -C₅Me₄-CH₂-CO₂), 80.0 (s; η^5 -C₅Me₄-CH₂-CO₂), 32.9 (s; η^5 -C₅Me₄-CH₂-CO₂), 29.9 (m; CH₂), 27.5 (m; CH₂), 24.2 (m; CH₂), 18.5 (m; CH₂), 18.3 (m; CH₂), 16.6 (s; P-CH₂-CH₂-CH₂), 16.4 (s; P-CH₂-CH₂-CH₂-CH₂)

CH₂-<u>C</u>H₃), 11.5 (s; η^5 -C₅<u>Me</u>₄-CH₂-CO₂), 11.3 (s; η^5 -C₅<u>Me</u>₄-CH₂-CO₂). ³¹P{¹H} NMR (121.5 MHz, C₆D₆, 298 K): δ_P = +79.1. IR (ATR): 1622 cm⁻¹ (ν [C=O]).

[\pm (η^5 -C₅Me₄-CH₂-PhCHO)Fe^{II}(*dn*ppe)] ((\pm)-4; C₃₁H₅₂FeOP₂, M_W = 559 g/mol): In the glovebox, **2** (20 mg, 0.04 mmol) was weighed into a 20 mL scintillation vial equipped with a stir bar and dissolved in approximately 4 mL of PhCH₃. Benzaldehyde (0.04 mmol, 4 µL, 1 equiv.) was added and

the solution stirred overnight at room temperature. The solution became purple over time. The solvent was removed *in-vacuo* and the product extracted into 3 x 2 mL of pentane and filtered through Celite[®]. The solvent was removed *in-vacuo* giving 4 as a purple solid (18 mg, 82%). Crystals were grown by slow evaporation of pentane at room temperature. Connectivity map shown in Figure S36. ¹H NMR (300 MHz, C₆D₆, 298 K): *δ*_H = 7.55 (m; 2H, Ph), 7.29 (m; 2H, Ph), 7.10 (m; 1H, Ph), 5.42 (m; 1H, η⁵-C₅Me₄-CH₂-PhCHO), 2.55 (app. d; 3H; η⁵-C₅Me₄-CH₂-PhCHO), 2.46-2.36 (m; 2H; η⁵-C₅Me₄-CH₂-PhCHO), 2.30 (app. d; 3H; η⁵-C₅Me₄-CH₂-PhCHO), 2.08-2.03 (3H; multiple overlapping CH₂ signals), 1.92-1.86 (2H, multiple overlapping CH₂ signals), 1.60-1.48 (4H; multiple overlapping CH₂ signals), 1.48-1.18 (11H; multiple overlapping CH₂ signals), 1.13 (s; 3H; η⁵-C₅Me₄-CH₂-PhCHO), 1.10 (s; 3H; η⁵-C₅Me₄-CH₂-PhCHO), 0.98-0.85 (12H; multiple overlapping P-CH₂-CH₂-CH₂-CH₃ signals). ¹³C{¹H} NMR (75.5 MHz, C₆D₆, 298 K): δ_c = 152.5 (s; quaternary <u>C</u> (Ph)), 127.0 (s; Ph), 125.9 (s; Ph), 125.5 (s; Ph), 109.2 (s; η⁵-<u>C</u>₅Me₄-CH₂-PhCHO), 93.8 (m; η⁵-C₅Me₄-CH₂-Ph<u>C</u>HO), 83.8-79.2 (overlapping Cp*-(aromatic) signals), 38.0 (s; η⁵-C₅Me₄-CH2-PhCHO), 30.9-30.2 (multiple overlapping CH2 signals), 25.8-23.6 (multiple overlapping CH2 signals), 19.1-18.3 (multiple overlapping CH₂ signals), 17.0-16.5 (multiple overlapping CH₃ signals), 13.7 (s; <u>CH</u>₃), 12.9 (s; <u>CH</u>₃), 12.3 (s; <u>CH</u>₃), 11.9 (s; <u>CH</u>₃), 11.5 (s; <u>CH</u>₃). ³¹P{¹H} NMR (121.5 **MHz**, C₆D₆, **298** K): δ_P = +80.5 (d; ²*J*_{P-P} = 33.7 Hz), +78.2 (d; ²*J*_{P-P} = 33.7 Hz).

[(η^{5} -C₅Me₄-CH₂-Au-(PPh₃))Fe^{II}(d*n*ppe)Br] (5; C₄₂H₆₁AuBrFeP₃, M_W = 992 g/mol): In the glovebox, **2** (20 mg, 0.04 mmol) was weighed into a 20 mL scintillation vial equipped with a stir bar and dissolved in approximately 4 mL of PhCH₃. Bromo(triphenylphosphine)gold(I) (0.04 mmol, 22 mg, 1 equiv.) was added and the solution stirred for 1 h at room temperature. The solution became gradually darker over time. The solvent was

removed *in-vacuo* and the product extracted into 3 x 2 mL of pentane and filtered through Celite®. The solvent was removed *in-vacuo* giving 5 (15 mg, 34%). ¹H NMR (300 MHz, d₈-toluene, 298 K): $\delta_{\text{H}} = 7.30$ (br. m; 6H; Ph [PPh₃]), 7.11 (br. s; 3H; Ph [PPh₃]), 7.03-6.99 (Ph signal coincident with residual toluene (from d₈-toluene) signals), 2.55 (br. s; 2H; η⁵-C₅Me₄-CH₂-Au-PPh₃), 2.31 (br. m; 6H; multiple overlapping CH₂ signals), 1.99 (s; 6H; η⁵-C₅Me₄-CH₂-Au-(PPh₃)), 1.96 (s; 6H; η⁵-C₅<u>Me</u>₄–CH₂–Au-(PPh₃)), 1.89 (br. s; 2H; C<u>H</u>₂), 1.77 (br. s; 2H; C<u>H</u>₂), 1.70 (br. s; 2H; C<u>H</u>₂), 1.59 (br. m; 2H; CH₂), 1.48 (br. m; 4H; multiple overlapping CH₂ signals), 1.36 (br. s; 2H; CH₂), 1.11 (br. t; 6H; P-CH2-CH2-CH2-CH3), 0.99 (br. t; 6H; P-CH2-CH2-CH2-CH3). 13C{1H} NMR (125.8 MHz, d8-toluene, 298 **K):** & = 134.4 (d; Ph-(aromatic)), 130.6 (m; Ph-(aromatic)), 100.9 (s; η^{5} -C₅Me₄-CH₂-Au-(PPh₃)), 84.9 (s; η⁵-C₅Me₄-CH₂-Au-(PPh₃)), 73.6 (s; η⁵-C₅Me₄-CH₂-Au-(PPh₃)), 32.2 (m; CH₂), 31.3 (m; CH₂), 30.3 (m; <u>CH</u>₂), 28.3 (br. m; η^5 -C₅Me₄-<u>C</u>H₂-Au-PPh₃; assigned from a ¹H-¹³C HSQC experiment), 24.2-24.0 (mulitple overlapping CH2 signals), 19.7 (m; CH2), 18.7 (m; CH2), 16.9-16.8 (multiple overlapping P-CH₂-CH₂-<u>C</u>H₃ signals), 12.4 (s; η⁵-C₅<u>Me</u>₄-CH₂-Au-PPh₃), 12.2 (s; η⁵-C₅<u>Me</u>₄-CH₂-Au-PPh₃). Note: Other Ph-(aromatic) peaks (for PPh₃) coincident with d₈-toluene solvent peaks in ¹³C{¹H} NMR spectrum. ³¹P{¹H} NMR (202.5 MHz, d₈-toluene, 298 K): δ_P = +77.9 (s; dnppe), +40.3 (br; PPh₃).

[{ η^{5} -C₅Me₄-CH₂-B(C₆F₅)₃}Fe^{II}(*dnppe*)N₂] (6; C₄₂H₄₆BF₁₅FeN₂P₂, M_W = 992 g/mol): In the glovebox, **2** (20 mg, 0.04 mmol) was weighed into a 20 mL scintillation vial equipped with a stir bar and dissolved in approximately 4 mL of THF. Tris(pentafluorophenyl)borane (0.04 mmol, 21 mg, 1 equiv.) was added and the solution stirred for 1 h at

PPh₃

ĊH₂

room temperature. The solution became yellow over time. The solvent was removed in-vacuo and

the product washed with 3 x 2 mL of pentane. The product was dried *in-vacuo* giving the titled compound as a yellow solid (31 mg, 70%). Crystals suitable for X-ray diffraction were grown by slow evaporation of THF at room temperature overnight. ¹H NMR (300 MHz, ds-THF, 298 K): δt = 2.55 (br. s; 2H; η^{5} -C₅Me₄-C<u>H</u>₂-B(C₆F₅)₃), 2.19-2.14 (m; 2H, multiple overlapping C<u>H</u>₂ signals), 1.95-1.88 (m; 6H, multiple overlapping C<u>H</u>₂ signals), 1.66 (s; 6H; η^{5} -C₅<u>Me</u>₄-CH₂-B(C₆F₅)₃), 1.59-1.55 (m; 12H, multiple overlapping C<u>H</u>₂ signals), 1.12-1.07 (m; 12H, multiple overlapping P-CH₂-CH₂-G($_{2}$ -G($_{4}$ -signals), 0.99 (s; 6H, η^{5} -C₅<u>Me</u>₄-CH₂-B(C₆F₅)₃). ¹³C{¹H} NMR (125.8 MHz, ds-THF, 298 K): δc = 149.1 (m; <u>C</u>-F(aromatic) [B(C₆F₅)₃]), 138.1 (m; <u>C</u>-F(aromatic) [B(C₆F₅)₃]), 127.0 (br; <u>C</u>-F(aromatic) [B(C₆F₅)₃]), 112.6 (app. s; quaternary <u>C</u>-(aromatic) [B(C₆F₅)₃), 30.4 (app. s; <u>C</u>H₂), 29.6-28.5 (multiple overlapping <u>C</u>H₂-B(C₆F₅)₃), 86.5 (s; η^{5} -C₅Me₄-CH₂-B(C₆F₅)₃), 30.4 (app. s; <u>C</u>H₂), 29.6-28.5 (multiple overlapping <u>C</u>H₂ signals), 22.9-22.6 (overlapping η^{5} -C₅Me₄-<u>C</u>H₂-B(C₆F₅)₃) and <u>C</u>H₂ signals), 18.9 (br. s; <u>C</u>H₂), 17.7 (br. s; <u>C</u>H₂), 16.1 (br. s; P-CH₂-CH₂-<u>C</u>H₃), 15.9 (br. s; P-CH₂-CH₂-CH₂-<u>C</u>H₃), 9.9 (overlapping η^{5} -C₅<u>Me</u>₄-CH₂-B(C₆F₅)₃ signals). ³¹P{¹H} NMR (202.5 MHz, ds-THF, 298 K): δr = -127.1 (br. s), -161.5 (m), -164.7 (br. s). ¹¹B{¹H} NMR (96.3 MHz, ds-THF, 298 K): δr = -147. FT-IR (ATR): 2093 cm⁻¹ (ν [N₂]).

[{ η^{5} -C₅Me₄-CH₂-B(Cy₂)}Fe^{II}(*dnppe*)H] (7; C₃₆H₆₉BFeP₂, M_W = 631 g/mol): In the glovebox, **2** (20 mg, 0.04 mmol) was weighed into a 20 mL scintillation vial equipped with a stir bar and dissolved in approximately 4 mL of PhCH₃. Dicyclohexylborane (HBCy₂; 0.04 mmol, 7 mg, 1 equiv.) was added and the solution stirred for 1 h at room temperature. The solution became orange over time. The solvent was removed *in-vacuo* and

the product extracted into 3 x 2 mL of pentane and filtered through Celite®. The product was dried *in-vacuo* giving 7 as a yellow oil (23 mg, 81%). ¹H NMR (500 MHz, C₆D₆, 298 K): δ_{H} = 2.42 (s; 2H, η^{5} -C₅Me₄–C<u>H</u>₂–B(Cy₂)), 2.00 (s; 6H, η^{5} -C₅<u>Me</u>₄–CH₂–B(Cy₂)), 1.97 (s; 6H, η^{5} -C₅<u>Me</u>₄–CH₂–B(Cy₂)), 1.78-1.76 (10H, multiple overlapping C<u>H₂/CH</u> signals), 1.61-1.58 (10H, multiple overlapping C<u>H₂/CH</u> signals), 1.61-1.58 (10H, multiple overlapping C<u>H₂/CH</u> signals), 1.48-1.46 (5H, multiple overlapping C<u>H₂/CH</u> signals), 1.30 (17H; multiple overlapping C<u>H₂/CH</u> signals), 1.30 (17H; multiple overlapping C<u>H₂/CH</u> signals), 1.30 (17H; multiple overlapping C<u>H₂/CH</u> signals), 1.08-1.02 (12H, multiple overlapping P-CH₂-CH₂-CH₂-C<u>H₃ signals), -17.83 (t; 1H, [Fe]–H (²J_{H-P} = 70.6 Hz).¹³C{¹H} NMR (125.8 MHz, C₆D₆, 298 K): δ_{C} = 90.0 (s; η^{5} -C₅Me₄–</u>

CH₂–B(Cy₂)), 83.7 (s; η^{5} - $\underline{C}_{5}Me_{4}$ –CH₂–B(Cy₂)), 82.7 (s; η^{5} - $\underline{C}_{5}Me_{4}$ –CH₂–B(Cy₂)), 35.9-35.7 (multiple overlapping *sp*³-carbon signals), 26.5 (br. s; η^{5} - $C_{5}Me_{4}$ –<u>C</u>H₂–B(Cy₂)), 19.2 (br. s; *sp*³-carbon signal), 18.7 (br. s; *sp*³-carbon signal), 16.8 (br. s; P-CH₂-CH₂-<u>C</u>H₃), 16.6 (br. s; P-CH₂-<u>C</u>H₃), 13.7 (s; η^{5} -C₅<u>Me₄</u>–CH₂–B(Cy₂)), 13.1 (s; η^{5} -C₅<u>Me₄</u>–CH₂–B(Cy₂)), 13.1 (s; η^{5} -C₅<u>Me₄</u>–CH₂–B(Cy₂)). ³¹P{¹H} NMR (202.5 MHz, C₆D₆, 298 K): δ_{P} = +97.8. ¹¹B{¹H} NMR (160.5 MHz, C₆D₆, 298 K): δ_{P} = +82.6 ($\Delta_{1/2}$ = 1390 Hz). FT-IR (ATR): 1844 cm⁻¹ (ν [Fe–H]).

Multinuclear NMR Data:

Figure S1: 1, ¹H NMR, d₈-THF, 500 MHz, 298 K.

Figure S2: 1, ¹H NMR, d₈-THF, 500 MHz, 298 K – expansion of the alkyl region.

Figure S3: 1, ³¹P{¹H} NMR, d₈-THF, 202.5 MHz, 298 K.

Figure S4: 1, ¹³C{¹H} NMR, d₈-THF, 125.8 MHz, 298 K.

Figure S5: 1, ¹¹B{¹H} NMR, d₈-THF, 160.5 MHz, 298 K.

Wavenumber / cm⁻¹

Figure S8: 2, ¹H NMR, C₆D₆, 500 MHz, 298 K – expansion of the alkyl region.

Figure S9: 2, ³¹P{¹H} NMR, C₆D₆, 202.5 MHz, 298 K.

Figure S10: 2, ¹³C{¹H} NMR, C₆D₆, 75.5 MHz, 298 K.

Figure S11: 3, ¹H NMR, C₆D₆, 500 MHz, 298 K.

Figure S12: 3, ³¹P{¹H} NMR, C₆D₆, 121.5 MHz, 298 K.

Figure S13: 3, ¹³C{¹H} NMR, C₆D₆, 125.8 MHz, 298 K.

Figure S14: 3, ¹H-¹³C HMBC NMR showing the location of the η^5 -C₅Me₄-CH₂-<u>C</u>O₂ signal from the proton signal for η^5 -C₅Me₄-C<u>H</u>₂-CO₂.

Figure S15: 3, FT-IR ATR, 298 K (ν[C=O] = 1622 cm⁻¹).

Figure S16: 4, ¹H NMR, C₆D₆, 300 MHz, 298 K.

Figure S17: 4, ³¹P{¹H} NMR, C₆D₆, 121.5 MHz, 298 K. Insert shows an enhanced view of the two sets of doublets.

Figure S19: 5, ¹H NMR, d₈-toluene, 300 MHz, 298 K.

Figure S20: 5, ³¹P{¹H} NMR, d₈-toluene, 202.5 MHz, 298 K.

Figure S21: 5, ¹³C{¹H} NMR, d₈-toluene, 125.8 MHz, 298 K.

Figure S22: 5, ¹H-¹³C HSQC showing the location of the η^{5} -C₅Me₄-<u>C</u>H₂- Au-PPh₃ carbon signal from the proton signal for η^{5} -C₅Me₄-C<u>H₂-Au-PPh₃</u>.

Figure S23: 6, ¹H NMR, d₈-THF, 300 MHz, 298 K

Figure S24: 6, ³¹P{¹H} NMR, d₈-THF, 202.5 MHz, 298 K.

73.4468

Figure S25: 6, ¹¹B{¹H} NMR, d₈-THF, 96.3 MHz, 298 K.

Figure S28: 6, FT-IR ATR, 298 K (*ν*[N₂] = 2093 cm⁻¹).

Wavenumber / cm⁻¹

Figure S29: 7, ¹H NMR, C₆D₆, 500 MHz, 298 K. Note that the integral value for the [Fe]–<u>H</u> signal is lower than expected. This has been observed for other [Fe]-hydrides reported by our group^{3,4} and can be attributed to relaxation time.

Figure S30: 7, ¹H NMR, C₆D₆, 500 MHz, 298 K – expansion of the alkyl region. * = residual pentane solvent.

Figure S31: 7, ¹H NMR, C₆D₆, 500 MHz, 298 K – expansion of the [Fe]–<u>H</u> signal.

Figure S32: 7, ³¹P{¹H} NMR, C₆D₆, 202.5 MHz, 298 K.

Figure S33: 7, ¹¹B{¹H} NMR, C₆D₆, 160.5 MHz, 298 K.

Figure S34: 7, ¹³C{¹H} NMR, C₆D₆, 125.8 MHz, 298 K.

Figure S35: 7, FT-IR ATR, 298 K (ν[Fe–H] = 1844 cm⁻¹).

X-Ray Crystallography:

Single crystal X-Ray diffraction (scXRD) data for X was collected using a Bruker D8 Venture diffractometer equipped with an Apex detector having a Cu/Mo IµS microsource at the University of Windsor. All crystals were mounted on a MiTeGen loop.

Cell refinement and data reduction were performed using Apex3.⁵ An empirical absorption correction based on multiple measurements of equivalent reflections and merging of data was performed using SADABS.⁶ Data conversion from XDS to SADABS file format was performed using XDS2SAD.⁷ The space group was confirmed by XPREP.⁸

Routine checkCIF and structure factor analyses were performed using Platon.⁹ CCDC **2266746**-**2266749** contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

Compound	1	2
Empirical formula	C48H67BFeN2P2	$C_{24}H_{46}FeP_2$
Formula weight	800.63	452.40
Temperature/K	170.0	170.0
Crystal system	Triclinic	Triclinic
Space group	<i>P-1</i>	P-1
a/Å	10.4118(10)	8.3558(12)
b/Å	14.7221(14)	9.4334(16)
c/Å	15.2322(16)	16.5656(18)
α/°	96.196(4)	82.946(9)
β/°	93.280(4)	82.104(9)
γ/°	105.849(4)	77.117(8)
V/Å ³	2223.8(4)	1255.1(3)
Z	2	2
$ ho_{calc} g/cm^{-3}$	1.196	1.197
µ/ mm ⁻¹	0.445	0.735
F(000)	860.0	492.0
Crystal size/ mm ³	$0.1 \ge 0.07 \ge 0.05$	0.17 x 0.07 x 0.03
Radiation	ΜοΚ _α (λ =0.71073)	MoK _α (λ = 0.71073)
2θ range for data collection/°	5.92 to 52.94	4.45 to 56.652
Index ranges	$-13 \le h \le 13, -18 \le k \le 18, -19 \le$	-11 \leq h \leq 11, -12 \leq k \leq 12, -22 \leq
	$l \le 19$	1≤22
Independent reflections	9147 [R _{int} = 0.0916, R _{sigma} =	$6237 [R_{int} = 0.0547, R_{sigma} =$
	0.0381]	0.0227]
Data/restraints/parameters	9147/1352/659	6237/0/252
Goodness-of-fit on F ²	1.029	1.0064
R [I>=2θ (I)] (R1, wR2)	$R_1 = 0.0542, wR_2 = 0.1317$	$R_1 = 0.0283$, $wR_2 = 0.0656$
R (all data) (R1, wR2)	$R_1 = 0.0753$, $wR_2 = 0.1458$	$R_1 = 0.0369$, $wR_2 = 0.0703$
Largest diff. peak/hole / (e Å-3)	1.06/-0.96	0.32/-0.30

 Table S1. Crystallographic data for 1 and 2.

 $R1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|; wR2 = [\Sigma(w(F_o^2 - F_c^2)^2) / \Sigma w(F_o^2)^2]^{1/2}$

Compound	3	(±) -4
Empirical formula	$C_{25}H_{46}FeO_2P_2$	C ₃₁ H ₅₂ FeOP ₂
Formula weight	496.41	558.51
Temperature/K	170.0	170.0
Crystal system	Monoclinic	Triclinic
Space group	P21/c	P-1
a/Å	18.7645(10)	9.790(14)
b/Å	8.6734(4)	10.43(2)
c/Å	16.7609(9)	16.32(2)
α/°	90	84.54(8)
β/°	100.195(2)	89.08(5)
$\gamma/^{\circ}$	90	67.93(5)
V/Å ³	2684.8(2)	1537(4)
Z	4	2
$ ho_{calc}$ g/cm ⁻³	1.228	**
μ/ mm ⁻¹	0.699	**
F(000)	1072.0	**
Crystal size/ mm ³	0.15 x 0.04 x 0.02	**
Radiation	ΜοΚ _α (λ =0.71073)	**
2θ range for data collection/°	4.938 to 56.682	**
Index ranges	$-25 \le h \le 25, -11 \le k \le 11, -22 \le$	**
	1≤22	
Independent reflections	$6700 [R_{int} = 0.0543, R_{sigma} =$	**
-	0.0263]	
Data/restraints/parameters	6700/0/279	**
Goodness-of-fit on F ²	1.063	**
R [I>=2θ (I)] (R1, wR2)	$R_1 = 0.0278$, $wR_2 = 0.0682$	**
R (all data) (R1, wR2)	$R_1 = 0.0320$, $wR_2 = 0.0714$	**
Largest diff. peak/hole / (e Å-³)	0.49/-0.22	**
** = Connectivity map only		

Table S2. Crystallographic data for **3** and (\pm) -**4**.

 $R1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|; wR2 = [\Sigma(w(F_o^2 - F_c^2)^2) / \Sigma w(F_o^2)^2]^{1/2}$

Figure S36. Connectivity map of (±)-4. Protons omitted for clarity except on η^5 -C₅Me₄-C<u>H</u>₂-PhC<u>H</u>O.

 Table S3. Crystallographic data for 6.

Compound	6
Empirical formula	$C_{42}H_{46}BF_{15}FeN_2P_2$
Formula weight	992.41
Temperature/K	170.0
Crystal system	Orthorhombic
Space group	Pca21
a/Å	24.1488(9)
b/Å	9.1691(4)
c/Å	20.0496(6)
a/°	90
β/°	90
γ/°	90
V/Å ³	4439.4(3)
Z	4
$ ho_{calc} g/cm^{-3}$	1.485
µ/ mm ⁻¹	0.508
F(000)	2032.0
Crystal size/ mm ³	0.15 x 0.1 x 0.02
Radiation	ΜοΚ _α (λ =0.71073)
2θ range for data collection/°	3.989 to 56.728
Index ranges	$-32 \leq h \leq 32, -12 \leq k \leq 12, -26 \leq$
	$l \leq 26$
Independent reflections	11077 [$R_{int} = 0.0744$, $R_{sigma} =$
	0.0227]
Data/restraints/parameters	11077/6/575
Goodness-of-fit on F ²	1.057
R [I>=2θ (I)] (R1, wR2)	$R_1 = 0.0330, wR_2 = 0.0759$
R (all data) (R1, wR2)	$R_1 = 0.0434$, $wR_2 = 0.0831$
Largest diff. peak/hole / (e Å-3)	0.48/-0.40

 $R1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|; wR2 = [\Sigma(w(F_o^2 - F_c^2)^2) / \Sigma w(F_o^2)^2]^{1/2}$

Computational Details:

All calculations were performed using version 5.0.3 of the ORCA computational package¹⁰ and were run on the Graham cluster maintained by Compute Canada. All geometry optimizations and frequency calculations were performed at the BP86-D3(BJ)/def2-TZVP level of theory.¹¹ The RI approximation was used to enhance computational efficiency, along with the auxiliary basis *def2/J*. ¹² Convergence criteria were met using the *defgrid2* integral grid size. Frequency calculations (*Freq*) were performed to confirm that each optimized geometry was a true minimum indicated by the absence of imaginary frequencies. Single-point calculations were performed at the BP86-D3(BJ)/def2-TZVP level of theory on optimized geometries.

Accurate electronic energies were determined using CCSD(T) at the DLPNO-CCSD(T)/def2-TZVP level of theory.¹³ The RIJCOSX approximation was used to enhance computational efficiency, along with a *def2/J* auxiliary basis set.¹⁴ As well, a *def2-TZVP/C* auxiliary basis set was used.¹⁵

To obtain accurate thermochemical information, the final Gibbs free energies for each chemical species were calculated using the following equation.

$$\Delta G_{solv} = E_{el}(DLPNO-CCSD(T)) + \Delta G_{correction}(DFT) + \Delta G_{solv}^{\circ}(DFT).$$

 $E_{el}(DLPNO-CCSD(T))$ is the final electronic energy from a DLPNO-CCSD(T)/def2-TZVP calculation, $\Delta G_{correction}(DFT)$ is the *G*- E_{el} (Gibbs free energy minus the electronic energy) from a BP86-D3(BJ)/def2-TZVP calculation, and $\Delta G_{solv}(DFT)$ is the sum of $\Delta G_{ENP}(CPCM \ Dielectric)$ and $\Delta G_{CDS}(Free-energy(cav+disp))$ from an *SMD* single point calculation.

Wiberg bond indices (WBIs) were calculated at the BP86-D3(BJ)/def2-TZVPP level of theory using the Multiwfn program.¹⁶

NBOs were calculated using the NBO 7.0¹⁷ program implemented with Gaussian 16, revision C.01.¹⁸ The D3(BJ) dispersion correction was used along with the BP86 functional and the def2-TZVPP basis set. NBOs were visualized in Avogadro.¹⁹

Figure S37. NBOs showcasing the bonding between Fe1 and the two carbon atoms of the exocyclic alkenyl fragment on the fulvene ligand of **2**. Atomic contributions are in parentheses.

Table S4. Wiberg bond index (WBI) data from DFT calculations on 2.

Atom pair	Wiberg bond index (WBI)
C1-C2	1.33
C2-C3	1.11
C3-C4	1.21
C4-C5	1.21
C5-C6	1.21
C6-C2	1.11
Fe1-C1	0.70
Fe1-C2	0.70
Fe1-C3	0.60
Fe1-C4	0.52
Fe1-C5	0.52
Fe1-C6	0.60

Figure S38. Computationally-determined thermodynamics for deprotonation of either a methyl group on a Cp*-ring or *dn*ppe propyl arm. Energy calculated using DLPNO-CCSD(T).

The thermodynamics of generating the tucked-in complex **2** were examined. Specifically, we were interested to see if it was more favourable to deprotonate one of the methyl groups on the dnppe ligand (to generate a stable five-membered ferra(II)cycle) or deprotonate the Cp*(C<u>H</u>₃) ligand. This investigation was prompted by a previous study, where we observed such five-membered ferra(II)cyclized products, speaking to their ease of access.³ Starting with [1]⁺, we found that deprotonation of the dnppe(C<u>H</u>₃) arm was favoured by 2.3 kcal mol⁻¹, indicating that formation of **2** is likely a kinetic effect.

References:

¹ Drover, M.W.; Dufour, M.C.; Lesperance-Nantau, L.A.; Noriega, R.P.; Levin, K.; Schurko, R.W. *Chem. Eur. J.* **2020**, *26*, 11180-11186.

² Abiko, A. Org. Synth. **2003**, 79, 103.

³ Zurakowski, J.A.; Brown, K.R.; Drover, M.W. Inorg. Chem. **2023**, 62, 7053-7060.

⁴ a) Zurakowski, J.A.; Bhattacharyya, M.; Spasyuk, D.M.; Drover, M.W. Inorg. Chem. **2021**, 60, 37.

⁵ Bruker (2016). APEX3, SAINT, and SADBAS. Bruker AXS Inc., Madison, Wisconsin, USA.

⁶ Krause, L; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, S. J. Appl. Cryst. 2015, 48, 3.

⁷ XDS2SAD, Sheldrick, G.M. **2008**, University of Gottingen, Germany.

⁸ a) XPREP, **2014**, Bruker AXS Inc., Madison, Wisconsin, USA.; b) XPREP Version **2008**, Sheldrick, G.M. **2008**, Bruker AXS Inc., Madison, Wisconsin, USA.

⁹ Spek, A.L. Structure validation in chemical crystallography. *Acta Cryst.* **2009**, *D65*, 148.

¹⁰ Neese, F. Software Update: The ORCA Program – Version 5.0. *WIREs Comput. Mol. Sci.*, **2022**, *12*, e1606.

¹¹ a) S. Grimme, S. Ehrlich, L. Goerigk, *J. Comput. Chem.* **2011**, *32*, 1456; b) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, *J. Chem. Phys.* **2010**, *132*, 154104; c) F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, **7**, 3297.

¹² F. Weigend, *Phys. Chem. Chem. Phys.* **2006**, *8*, 1057.

¹³ a) C. Riplinger, P. Pinski, U. Becker, E.F. Valeeve, F. Neese, *J. Chem. Phys.* **2016**, *144*, 024109; b) C. Riplinger, B. Sandhoefer, A. Hansen, F. Neese, *J. Chem. Phys.* **2013**, *139*, 134101; c) C. Riplinger,

F. Neese, J. Chem. Phys. 2013, 138, 034106.

¹⁴ A. Hellweg, C. Hattig, S. Hofener, W. Klopper, *Theor. Chim. Acta* **1990**, 77, 123.

¹⁵ a) G. Knizia, J.E.M.N. Klein, *Angew. Chem. Int. Ed.* **2015**, *54*, 5518; b) G. Knizia, *J. Chem. Theory Comput.* **2013**, *9*, 4834.

¹⁶ Tian Lu, Feiwu Chen, Multiwfn: A Multifunctional Wavefunction Analyzer, *J. Comput. Chem.* **33**, 580-592 (2012) DOI: 10.1002/jcc.22885

¹⁷ NBO 7.0. E. D. Glendening, J, K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiloglou, C. R. Landis, and F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison (2018).

¹⁸ Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2019.

¹⁹ a) Avogadro: an open-source molecular builder and visualization tool. Version 1.20. http://avogadro.cc/ b) Marcus D. Hanwell, Donald E. Curtis, David C. Lonie, Tim Vandermeersch, Eva Zurek and Geoffrey R. Hutchison; "Avogadro: An advanced semantic chemical editor, visualization, and analysis platform" *Journal of Cheminformatics* **2012**, 4:17.