SUPPORTING INFORMATION
 Experimental procedures, computational details and characterization data

Table of Contents

I. General experimental - pg. 2
II. Substrate synthesis - pg. 3
III. Catalyst synthesis - pg. 16
IV. Polyene cyclizations: optimization - pg. 30
V. Polyene cyclizations: scope - pg. 31
VI. Additional derivatization and determination of absolute stereochemistry of polyene cyclization products - pg. 43
VII. NMR spectra of new compounds - pg. 45
VIII. Diastereomeric ratios of polyene cyclization products - pg. 105
IX. HPLC chromatograms of asymmetric polyene cyclization products - pg. 107
X. References - pg. 124

I. General experimental

All reactions were performed under an inert argon atmosphere in oven- or flame-dried round bottom flasks fitted with rubber septa and using magnetic stirring, unless otherwise stated. Liquids and solutions were transferred via syringe or stainless-steel cannula under inert conditions. Reactions were frequently monitored by thin-layer chromatography (TLC), which was carried out on glass plates coated with $250 \mu \mathrm{~m}$ of 230-400 mesh silica gel that had been saturated with F-254 indicator. TLC plates were visualized using ultraviolet light and/or by exposure to various staining solutions followed by heating. Flash column chromatography was carried out on 230-400 mesh silica gel (Silicycle) using reagent-grade solvents. Room temperature (rt) indicates a temperature of approximately $22{ }^{\circ} \mathrm{C}$.

All commercial reagents were used without further purification with the following exceptions: tetrahydrofuran and diethyl ether were distilled from sodium/benzophenone ketyl radical under a nitrogen atmosphere. Triethylamine was distilled from calcium hydride under a nitrogen atmosphere. Dichloromethane was distilled from calcium hydride under a dry air atmosphere. Pyridine, dimethylformamide, and dimethyl sulfoxide were stored over $4 \AA$ molecular sieves. Triphenylphosphine was recrystallized from methanol.

All polyene cyclization reactions were performed under air using reagent-grade solvents out of the bottle.

IR spectra were obtained using a Perkin-Elmer Spectrum One FT-IR spectrophotometer. NMR spectra were recorded on $400,500 \mathrm{MHz}$ Varian or $400,500,800 \mathrm{MHz}$ Bruker spectrometers. Some NMR experiments were recorded at the Quebec/Eastern Canada High Field NMR Facility, supported by the Canada Foundation for Innovation, McGill University Faculty of Science and Department of Chemistry. Chemical shifts (δ) were internally referenced to the residual proton resonance of chloroform- $d(\delta 7.26 \mathrm{ppm})$. The following abbreviations were used for NMR peak multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, sext $=$ sextet, $\mathrm{m}=$ multiplet. Coupling constants (J) are reported in Hertz (Hz). High-resolution mass spectrometry was conducted by Dr. Nadim Saadé and Dr. Alexander Wahba in the Mass Spectrometry Facility in the Department of Chemistry, McGill University, using Thermo-Fisher Exactive Plus Orbitrap-API and Bruker Maxis API QqTOF mass spectrometers.

The following known compounds were synthesized following literature procedures: ethyl 1,2-diazepane-1-carboxylate ${ }^{1}$ and Dess-Martin periodinane ${ }^{2,3}$.

Atom numbering for decalin compounds is based on IUPAC rules for the numbering of steroids, except for the numbering in the compounds' names, which uses general IUPAC nomenclature (as assigned by PerkinElmer ChemDraw).

II. Substrate synthesis

Synthesis of (E)-iodoalkene coupling partner

ethyl (E)-6-iodo-5-methyl-2-methylenehex-5-enoate

To a stirred solution of $\mathrm{PPh}_{3}(3.369 \mathrm{~g}, 12.8 \mathrm{mmol})$ in $\mathrm{DCM}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added bromine $(600 \mu \mathrm{~L}, 11.7 \mathrm{mmol})$. The solution was stirred for 10 minutes, then a solution of (E)-4-iodo-3-methylbut-3-en-1-ol ${ }^{4}(2.079 \mathrm{~g}, 9.8 \mathrm{mmol})$ in DCM $(40 \mathrm{~mL})$ was added. The solution was stirred for 1 h , then concentrated. The crude bromide was purified by a silica gel plug (eluted with hexanes).

Following the procedure of Serebryakov et al ${ }^{5}$: To a stirred solution of $\mathrm{NaH}(60 \%$ dispersion in mineral oil, $622 \mathrm{mg}, 15.5 \mathrm{mmol}$) in DMSO $(16 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added triethyl phosphonoacetate $(3.0 \mathrm{~mL}, 15.5 \mathrm{mmol})$ dropwise. When bubbling ceased, the solution was added to the bromide formed in the previous step. The solution was brought to $50^{\circ} \mathrm{C}$ and stirred for 2 h . The solution was cooled to room temperature and $\mathrm{K}_{2} \mathrm{CO}_{3}(3.248 \mathrm{~g}, 23.2 \mathrm{mmol})$ and formaldehyde (37% in water, $3.5 \mathrm{~mL}, 47.0 \mathrm{mmol}$) were added. The mixture was brought to $60^{\circ} \mathrm{C}$ and let stir for 1 h . The solution was diluted with water and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine, dried with MgSO_{4}, filtered, and concentrated. The crude extracts were purified by silica gel column chromatography (gradient from hexanes to $95: 5$ hexanes/ethyl acetate) to obtain ethyl (E)-6-iodo-5-methyl-2-methylenehex-5-enoate, which was isolated as a colourless oil ($1.673 \mathrm{~g}, 5.7 \mathrm{mmol}, 58 \%$ yield over 2 steps. IR (Film) 3057, 2980, 2930, 2854, 1712, 1630, 1445, 1408, 1369, 1306, 1267, 1185, 1134, 1095, 1025, 943, 888, 863, 843, 815, 780, 682, $662 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=6.15(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{q}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.51(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{qt}, J=7.1,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 1.85(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{tt}, J=7.0,1.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=166.8,146.9,139.7,125.2,75.5,60.7,38.6,30.3,23.8,14.2 \mathrm{ppm}$; MS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]\left(\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{INaO}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 317.0009$, found $\mathrm{m} / \mathrm{z} 317.0007$.

(E)-6-iodo-5-methyl-2-methylenehex-5-en-1-ol

To a stirred solution of ethyl (E)-6-iodo-5-methyl-2-methylenehex-5-enoate ($1.553 \mathrm{~g}, 5.3 \mathrm{mmol}$) in THF (20 mL) at $0{ }^{\circ} \mathrm{C}$ was added DIBAL-H (25 wt . \% in toluene, $8 \mathrm{~mL}, 11.6 \mathrm{mmol}$) dropwise. The solution was stirred for 3 h , then quenched with a saturated solution of Rochelle's salt. The mixture was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine, dried with MgSO_{4}, filtered and concentrated. The crude extracts were purified by silica gel column chromatography (gradient from hexanes to 80:20 hexanes/EtOAc) to obtain (E)-6-iodo-5-methyl-2-methylenehex-5-en-1-ol, which was isolated as a colourless oil ($1.237 \mathrm{~g}, 4.9 \mathrm{mmol}, 93 \%$ yield). IR (Film) 3378, 3058, 2979, 2914, 2853, 1712, 1653, 1629, 1446, 1409, 1374, 1290, 1268, $1189,1138,1094,1065,1024,945,898,864,815,780,764,742,665,598,579 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.93(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}$, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{dd}, J=8.4,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{dd}, J=8.4,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.39$ (t, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=147.8,147.4,110.2,75.2,65.9,37.9$, 31.1, 23.9 ppm ; MS (ESI) exact mass calculated for [M+Na] $\left(\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{INaO}\right)$ requires $\mathrm{m} / \mathrm{z} 274.9903$, found $\mathrm{m} / \mathrm{z} 274.9906$.

(E)-tert-butyl((6-iodo-5-methyl-2-methylenehex-5-en-1-yl)oxy)dimethylsilane

To a stirred solution of (E)-6-iodo-5-methyl-2-methylenehex-5-en-1-ol ($1.304 \mathrm{~g}, 5.2 \mathrm{mmol}$) in DCM (20 mL) was added imidazole ($717 \mathrm{mg}, 10.5 \mathrm{mmol}$) and $\mathrm{TBSCl}(872.5 \mathrm{mg}, 10.3 \mathrm{mmol})$. The resulting solution was stirred for 3 h , then concentrated and purified by silica gel column chromatography (gradient from hexanes to 93:7 hexanes/ethyl acetate) to obtain (E)-tert-butyl((6-iodo-5-methyl-2-methylenehex-5-en-1-yl)oxy)dimethylsilane, which was isolated as a colourless oil ($1.762 \mathrm{~g}, 4.8 \mathrm{mmol}, 93 \%$ yield). IR (Film) 3075, 3056, 2953, 2928, 2895, 2856, 1654, 1618, 1471, 1462, 1388, 1377, 1361, 1252, 1141, 1107, 1081, 1006, 939, 899, 834, 774, 738, 705, 667, $583,509 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=5.91(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J$ $=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 2 \mathrm{H}), 2.36(\mathrm{dd}, J=8.8,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{dd}, J=8.7,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.86$ (d, $J=0.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=147.6$, $147.6,109.3,75.0,65.9,38.0,30.9,25.9,23.9,18.4,-5.3 \mathrm{ppm}$; MS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]\left(\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{INaOSi}\right)$ requires $\mathrm{m} / \mathrm{z} 389.0768$, found $\mathrm{m} / \mathrm{z} 389.0775$.

General procedure A

To a stirred suspension of methyltriphenylphosphonium bromide ($1.82 \mathrm{~g}, 5.1 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}$ (20 mL) at $0^{\circ} \mathrm{C}$ was added potassium tert-butoxide ($505 \mathrm{mg}, 4.5 \mathrm{mmol}$). The mixture was stirred 15 minutes and became bright yellow. A solution of aryl aldehyde (3.0 mmol) in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added dropwise. The reaction mixture was removed from cooling, stirred overnight, cooled to 0 ${ }^{\circ} \mathrm{C}$, and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(12 \mathrm{~mL})$. The aqueous layer was diluted with water (6 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{x} 12 \mathrm{~mL})$. The organic layer and ether extracts were combined, washed with water and brine, dried with MgSO_{4}, filtered, concentrated, and purified by flash chromatography to give the vinylarene.

General procedure B

Following a modified procedure of Molander et al. ${ }^{6}$: To a 10 mL microwave vial containing aryl bromide, $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}, \mathrm{CsCO}_{3}$, and vinyl trifluoroborate was added THF: $\mathrm{H}_{2} \mathrm{O}(9: 1)$. The solution was brought to $85^{\circ} \mathrm{C}$ and let stir for 21 h . The reaction quenched with water (5 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The organic layer and ether extracts were combined, washed with brine, dried with MgSO_{4}, filtered, concentrated, and purified by flash chromatography to give the vinylarene.

1,3-dimethoxy-5-vinylbenzene

From 3,5-dimethoxybenzaldehyde (6.0 mmol), general procedure A was followed to give, after flash chromatography (gradient from $99: 1$ to $97: 3$ hexanes/EtOAc), 950 mg (5.8 mmol) of 1,3-dimethoxy-5-vinylbenzene as a colourless oil (96% yield). Spectroscopic data were in accordance with previously reported literature. ${ }^{7}$

1,2-dimethoxy-3-vinylbenzene

From 2,3-dimethoxybenzaldehyde (2.1 mmol), general procedure A was followed to give, after flash chromatography (gradient from 97:3 to $90: 10$ hexanes/DCM), $279.4 \mathrm{mg}(1.7 \mathrm{mmol})$ of 1,2-dimethoxy-3-vinylbenzene as a colourless oil (80% yield). Spectroscopic data were in accordance with previously reported literature. ${ }^{8}$

1-methoxy-2-methyl-3-vinylbenzene

From 3-methoxy-2-methylbenzaldehyde (3.0 mmol), general procedure A was followed to give, after flash chromatography (gradient from 96:4 to $92: 8$ hexanes/DCM), $384 \mathrm{mg}(2.6 \mathrm{mmol}$) of 1-methoxy-2-methyl-3-vinylbenzene as a colourless oil (86% yield). Spectroscopic data were in accordance with previously reported literature. ${ }^{9}$

4-methoxy-1-methyl-2-vinylbenzene

From 5-methoxy-2-methylbenzaldehyde (1.6 mmol), general procedure A was followed to give, after flash chromatography (gradient from $96: 4$ to $92: 8$ hexanes/DCM), $217 \mathrm{mg}(1.5 \mathrm{mmol}$) of 4 -methoxy-1-methyl-2-vinylbenzene as a colourless oil (89% yield). Spectroscopic data were in accordance with previously reported literature. ${ }^{10}$

3-methyl-4-vinylthiophene

From 3-bromo-4-methylthiophene (2.8 mmol), general procedure B was followed to give, after flash chromatography (pentane), $264.7 \mathrm{mg}(2.1 \mathrm{mmol})$ of 3-methyl-4-vinylthiophene as a colourless oil (75\% yield). IR (Film) 3087, 3008, 2971, 2946, 2920, 2862, 1622, 1444, 1381, 985 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.28(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dq}, J=3.2,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.58 (dd, $J=17.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.21 (dd, $J=17.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=139.5,136.2,130.1,121.5,121.0,114.4,15.0 \mathrm{ppm}$; HRMS (APCI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~S}\right)$ requires m / z 125.0423, found m / z 125.0419.

1-tosyl-2-vinyl-1H-pyrrole

From 1-tosyl-1H-pyrrole-2-carbaldehyde (3.0 mmol), general procedure A was followed to give, after flash chromatography (gradient from 97:3 to $93: 7$ hexanes/DCM), $655.7 \mathrm{mg}(2.7 \mathrm{mmol})$ of 1-tosyl-2-vinyl-1H-pyrroleas a colourless oil (89% yield). Spectroscopic data were in accordance with previously reported literature. ${ }^{8}$

2-vinylfuran

From furan-2-carbaldehyde (12.1 mmol), general procedure A was followed to give, after flash chromatography ($90: 10$ pentane $/ \mathrm{Et}_{2} \mathrm{O}$), $844.5 \mathrm{mg}(9.0 \mathrm{mmol})$ of 2-vinylfuran as a colourless oil (57% yield). Spectroscopic data were in accordance with previously reported literature. ${ }^{11}$
3-vinylbenzofuran

From 3-bromobenzofuran (3.0 mmol), general procedure B was followed to give, after flash chromatography (hexanes), $364.8 \mathrm{mg}(2.5 \mathrm{mmol})$ of 3-vinylbenzofuran as a colourless oil (82% yield). Spectroscopic data were in accordance with previously reported literature. ${ }^{12}$

1,3-dimethyl-5-vinylbenzene

From 3,5-dimethylbenzaldehyde (3.0 mmol), general procedure A was followed to give, after flash chromatography (gradient from 97:3 to $95: 5$ pentane/DCM), $323 \mathrm{mg}(2.4 \mathrm{mmol})$ of 1,3-dimethyl5 -vinylbenzene as a colourless oil (81% yield). Spectroscopic data were in accordance with previously reported literature. ${ }^{13}$

Synthesis of (E)-polyene substrates (4)

Synthesis of alcohol (general procedure C)

Following the procedure of Zhao et al ${ }^{14}$: To a stirred solution of vinylarene (1.1 mmol) in tetrahydrofuran $(400 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$ was added a solution of $9-\mathrm{BBN}(0.5 \mathrm{M}$ in THF, $2.1 \mathrm{~mL}, 1.1$ $\mathrm{mmol})$. The mixture was brought to room temperature and stirred for 18 h . When the hydroboration was complete, the reaction was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(40 \mathrm{mg}, 0.054 \mathrm{mmol}), \mathrm{NaOH}(216$ $\mathrm{mg}, 5.4 \mathrm{mmol})$, and a solution of (E)-tert-butyl((6-iodo-5-methyl-2-methylenehex-5-en-1yl)oxy)dimethylsilane ($198.0 \mathrm{mg}, 0.54 \mathrm{mmol}$) in THF ($400 \mu \mathrm{~L}$) were added sequentially. The mixture was brought to room temperature and stirred for 22 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine, dried with MgSO_{4}, filtered, and concentrated. The crude extracts were purified by silica gel column chromatography (gradient from hexanes to $94: 6$ hexanes/EtOAc) to obtain coupling product.

To a stirred solution of coupled product in THF was added a solution of TBAF (1.0 M in THF, $1.1 \mathrm{~mL}, 1.1 \mathrm{mmol}$) was added and the resulting solution was stirred for 1 h . The reaction was quenched with saturated aqueous NaHCO_{3} and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine, dried with MgSO_{4}, filtered, and concentrated. The crude extracts were purified by silica gel column chromatography (gradient from hexanes to 70:30 hexanes/EtOAc) to obtain alcohol product.

(E)-8-(3,5-dimethoxyphenyl)-5-methyl-2-methyleneoct-5-en-1-ol

Followed general procedure C from 3,5-dimethoxystyrene on a 0.54 mmol scale and purified using silica gel column chromatography to give $98 \mathrm{mg}(0.38 \mathrm{mmol}, 70 \%$ yield over 2 steps $)$ of $(E)-8-$ (3,5-dimethoxyphenyl)-5-methyl-2-methyleneoct-5-en-1-ol as a colourless oil. IR (Film) 3393, 3083, 2933, 2838, 1594, 1459, 1428, 1204, 1148, 1065, 1026, 896, 829, 736, $694 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=6.36(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.31(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1$ H), $5.02(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 2.59(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $2.31(\mathrm{td}, J=7.5,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{bs}, 4 \mathrm{H}), 2.09(\mathrm{~s}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=160.5,148.7,144.6,135.2,123.8,109.0,106.5,97.5,65.6,55.1,37.7,36.2$,
31.4, 29.5, 15.8 ppm ; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]\left(\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NaO}_{3}\right)$ requires m / z 313.1774, found $\mathrm{m} / \mathrm{z} 313.1784$.

(E)-8-(2,3-dimethoxyphenyl)-5-methyl-2-methyleneoct-5-en-1-ol

Followed general procedure C from 1,2-dimethoxy-3-vinylbenzene on a 0.81 mmol scale and purified using silica gel column chromatography to give $187 \mathrm{mg}(0.64 \mathrm{mmol}, 78 \%$ yield over 2 steps) of (E)-8-(2,3-dimethoxyphenyl)-5-methyl-2-methyleneoct-5-en-1-ol a colourless oil. IR (Film) 3418, 2930, 2856, 1689, 1584, 1475, 1267, 1076, $1009 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=6.97(\mathrm{dd}, J=8.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=8.1,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.23(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.00$ ($\mathrm{s}, 1 \mathrm{H}$), $4.84(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{dt}$, $J=8.1,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 4 \mathrm{H}), 1.72(\mathrm{bs}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=152.6,148.9,147.1,136.0,135.1,124.3,123.6,121.9,110.0,109.1,65.8,60.5,55.6,37.8$, 31.4, 29.9, 29.1, 15.8 ppm ; HRMS (ESI) exact mass calculated for [$\mathrm{M}+\mathrm{Na}$] $\left(\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NaO}_{3}\right)$ requires $\mathrm{m} / \mathrm{z} 313.1774$, found $\mathrm{m} / \mathrm{z} 313.1770$.

(E)-8-(3-methoxy-2-methylphenyl)-5-methyl-2-methyleneoct-5-en-1-ol

Followed general procedure C from 3-methoxy-2-methylstyrene on a 0.54 mmol scale and purified using silica gel column chromatography to give 101 mg ($0.36 \mathrm{mmol}, 67 \%$ yield over 2 steps) of (E)-8-(3-methoxy-2-methylphenyl)-5-methyl-2-methyleneoct-5-en-1-ol as a colourless oil. IR (Film) 3327, 3071, 2932, 2861, 2837, 1653, 1584, 1463, 1438, 1380, 1310, 1252, 1192, 1168, $1142,1101,1018,895,835,778,719,678 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.12(\mathrm{dd}, J=$ $7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.05(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{td}, J=7.6$, $7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $2.23(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 4 \mathrm{H}), 1.83(\mathrm{~s}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=157.6,148.8,141.7,135.1,125.8,124.4,124.1,121.4,109.2,107.8,65.8,55.4,37.9$, $33.6,31.4,28.8,15.8,11.2 \mathrm{ppm}$; HRMS (APCI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]\left(\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 267.1390$, found $\mathrm{m} / \mathrm{z} 267.1389$.

(E)-8-(5-methoxy-2-methylphenyl)-5-methyl-2-methyleneoct-5-en-1-ol

Followed general procedure C from 4-methoxy-2-methylstyrene on a 0.54 mmol scale and purified using silica gel column chromatography to give 102 mg ($0.38 \mathrm{mmol}, 70 \%$ yield over 2 steps) of (E)-8-(5-methoxy-2-methylphenyl)-5-methyl-2-methyleneoct-5-en-1-ol as a colourless oil. IR (Film) 3452, 3053, 1936, 2865, 2837, 1652, 1608, 1579, 1498, 1454, 1383, 1303, 1265, 1208, $1161,1114,1045,896,854,803,704 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.07(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.74(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=8.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.26$ (t, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.06$ (s, 1 H), $4.90(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~m}, 5 \mathrm{H}), 2.18(\mathrm{~s}, 4 \mathrm{H})$, $2.06(\mathrm{~s}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=157.6,148.8,141.5$, 135.2, $130.6,127.9,123.9,114.8,110.5,109.1,65.7,55.1,37.8,33.5,31.4,28.4,18.3,15.8 \mathrm{ppm}$; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]\left(\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NaO}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 297.1825$, found m / z 297.1815.

(E)-5-methyl-2-methylene-8-(4-methylthiophen-3-yl)oct-5-en-1-ol

Followed general procedure C from 2-vinylthiophene on a 0.54 mmol scale and purified using silica gel column chromatography to give $82 \mathrm{mg}(0.33 \mathrm{mmol}, 62 \%$ yield over 2 steps) of $(E)-5$ -methyl-2-methylene-8-(4-methylthiophen-3-yl)oct-5-en-1-ol as a colourless oil. IR (Film) 3330, 3085, 2921, 2856, 1652, 1445, 1383, 1060, 1022, 896, $861 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $6.90(\mathrm{~m}, 2 \mathrm{H}), 5.25(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ (s, 2 H), 2.57 (t, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 2.33 (td, $J=8.3,6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.20(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{bs}, 4 \mathrm{H}), 1.75$ (s, 1 H), $1.63(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=148.8$, 141.7, 136.9, 135.3, 124.0, 120.7, 120.2, 109.3, 65.8, 37.8, 31.4, 29.0, 27.8, 15.8, 14.4 ppm; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]\left(\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NaOS}\right)$ requires $\mathrm{m} / \mathrm{z} 273.1284$, found $\mathrm{m} / \mathrm{z} 273.1279$.

(E)-5-methyl-2-methylene-8-(1-tosyl-1H-pyrrol-2-yl)oct-5-en-1-ol

Followed general procedure C from 1-tosyl-2-vinyl-1H-pyrrole on a 0.54 mmol scale and purified using silica gel column chromatography to give $74 \mathrm{mg}(0.32 \mathrm{mmol}, 59 \%$ yield over 2 steps) of (E)-5-methyl-2-methylene-8-(1-tosyl-1H-pyrrol-2-yl)oct-5-en-1-ol as a colourless oil. IR (Film) 3555, $3373,3155,2922,2855,1652,1597,1448,1362,1185,10990,1053 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.62(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~m}, 3 \mathrm{H}), 6.18(\mathrm{dd}, J=3.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~m}, 1 \mathrm{H})$, $5.11(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 2 \mathrm{H}), 2.68(\mathrm{t}$,
$J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{td}, J=8.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{~m}, 4 \mathrm{H}), 1.78(\mathrm{bs}, 1 \mathrm{H}), 1.56$ (s, 3 H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=148.8,144.6,136.4,135.6,135.3,128.9,126.6$, $123.5,122.2,112.0,111.2,109.2,65.7,37.8,31.3,27.2,27.0,21.5,15.8 \mathrm{ppm}$; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]\left(\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NNaO}_{3} \mathrm{~S}\right)$ requires $\mathrm{m} / \mathrm{z} 396.1604$, found $\mathrm{m} / \mathrm{z} 396.1600$.

(()-8-(furan-2-yl)-5-methyl-2-methyleneoct-5-en-1-ol

Followed general procedure C from 2-vinylfuran on a 0.54 mmol scale and purified using silica gel column chromatography to give $78 \mathrm{mg}(0.35 \mathrm{mmol}, 64 \%$ yield over 2 steps) of (E)-8-(furan-2-yl)-5-methyl-2-methyleneoct-5-en-1-ol (4.43) as a colourless oil. IR (Film) 3331, 2915, 2853, $1383,1072 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.29(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{dd}, J=3.1,2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 2$ H), $2.64\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right.$), $2.33\left(\mathrm{dt}, J=7.2,7.0 \mathrm{~Hz}, 2 \mathrm{H}\right.$), $2.14(\mathrm{~s}, 4 \mathrm{H}), 1.60(\mathrm{~s}, 4 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=156.0,148.8,140.7,135.6,123.5,110.0,109.3,104.8,65.8,37.8$, 21.4, 28.1, 26.4, 15.8 ppm ; HRMS (ESI) exact mass calculated for [M+Na] $\left(\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NaO}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 243.13555$, found $\mathrm{m} / \mathrm{z} 243.13547$.

(E)-8-(benzofuran-3-yl)-5-methyl-2-methyleneoct-5-en-1-ol

Followed general procedure C from 3-vinylbenzofuran on a 0.83 mmol scale and purified using silica gel column chromatography to give $177 \mathrm{mg}(0.65 \mathrm{mmol}, 79 \%$ yield over 2 steps) of $(E)-8$ -(benzofuran-3-yl)-5-methyl-2-methyleneoct-5-en-1-ol a colourless oil. IR (Film) 3327, 3062, 2916, 2853, 1652, 1452, $1009 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.58(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.48(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=7.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=7.9,6.2 \mathrm{~Hz}, 1$ H), $5.27(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $2.43(\mathrm{dt}, J=7.6,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 4 \mathrm{H}), 1.89(\mathrm{bs}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=155.2,148.7,141.0,135.5,128.2,123.9,123.9,122.0,120.1,119.5,111.2$, $109.2,65.7,37.8,31.3,27.3,23.6,15.9 \mathrm{ppm}$; HRMS (ESI) exact mass calculated for [M+Na] $\left(\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NaO}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 293.1512$, found $\mathrm{m} / \mathrm{z} 293.1514$.
(E)-8-(3,5-dimethylphenyl)-5-methyl-2-methyleneoct-5-en-1-ol

Followed general procedure C from 3,5-dimethylstyrene on a 0.54 mmol scale and purified using silica gel column chromatography to give $119 \mathrm{mg}(0.46 \mathrm{mmol}, 82 \%$ yield over 2 steps $)$ of $(E)-8$ -
(3,5-dimethylphenyl)-5-methyl-2-methyleneoct-5-en-1-ol as a colourless oil. IR (Film) 3318, 3012, 2917, 2854, 1653, 1605, 1449, 1378, 1061, 1023, 895, 842, $701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=6.84(\mathrm{bs}, 1 \mathrm{H}), 6.82(\mathrm{bs}, 2 \mathrm{H}), 5.22(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.88$ (s, 1 H), 4.07 (d, $J=5.0 \mathrm{~Hz}, 2 \mathrm{H}$), $2.57(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~m}, 8 \mathrm{H}), 2.16(\mathrm{bs}, 4 \mathrm{H}), 1.60(\mathrm{~s}$, $3 \mathrm{H}), 1.39(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=149.0,142.2,138.0,135.1$, 127.3, 126.3, 124.3, 109.4, 66.0, 38.0, 35.9, 31.6, 30.0, 21.3, 15.9 ppm ; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]\left(\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NaO}\right)$ requires 281.1876, found $\mathrm{m} / \mathrm{z} 281.1867$.

Synthesis of aldehydes (general procedure D)

To a solution of alcohol (0.30 mmol) in DCM (3 mL) was added pyridine ($40 \mu \mathrm{~L}, 0.50 \mathrm{mmol}$) and Dess-Martin periodinane ${ }^{3}(170 \mathrm{mg}, 0.40 \mathrm{mmol})$. The mixture was stirred for 1 h . The reaction was quenched with saturated aqueous sodium thiosulphate and extracted with DCM ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine, dried with MgSO_{4}, filtered and concentrated. The crude extracts were purified by silica gel column chromatography (gradient from hexanes to 90:10 hexanes/EtOAc) to obtain aldehyde.

(()-8-(3,5-dimethoxyphenyl)-5-methyl-2-methyleneoct-5-enal (4a)

From (E)-8-(3,5-dimethoxyphenyl)-5-methyl-2-methyleneoct-5-en-1-ol, general procedure D was followed on a 0.30 mmol scale to give 73 mg ($0.23 \mathrm{mmol}, 76 \%$ yield) of $(E)-8$-(3,5-dimethoxyphenyl)-5-methyl-2-methyleneoct-5-enal as a colourless oil. IR (Film) 3083, 3056, 2992, 2932, 2838, 2694, 1687, 1594, 1460, 1428, 1347, 1315, 1293, 1204, 1150, 1066, 940, 830, $694 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.52(\mathrm{~s}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.32(\mathrm{t}, J=2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{tq}, J=7.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 2.59(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.36(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{td}, J=7.6,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.14$ (t, $J=7.9,2 \mathrm{H}$), 1.61 (s, 3 H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=194.6,160.7,149.8,144.7,134.6,134.2,124.6,106.5$, 97.7, 55.2, 37.6, 36.3, 29.6, 26.3, 15.9 ppm ; HRMS (ESI) exact mass calculated for [M+Na] $\left(\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NaO}_{3}\right)$ requires $\mathrm{m} / \mathrm{z} 311.1618$, found $\mathrm{m} / \mathrm{z} 311.1622$.

(E)-8-(2,3-dimethoxyphenyl)-5-methyl-2-methyleneoct-5-enal (4b)

From (E)-8-(2,3-dimethoxyphenyl)-5-methyl-2-methyleneoct-5-en-1-ol, general procedure D was followed on a 0.64 mmol scale to give $148 \mathrm{mg}(0.51 \mathrm{mmol}, 80 \%$ yield) of (E)-8-(2,3-dimethoxyphenyl)-5-methyl-2-methyleneoct-5-enal as a colourless oil. IR (Film) 2931, 2855, 2835, 2698, 1687, 1475, 1336, 1267, $1076 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.49$ (s, 1 H), $6.95(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{t}, J=$
$7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.26$ (dt, $J=8.1,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.11(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=194.4,152.5,149.7,147.0,135.9,134.3,134.0,124.8,123.5,121.8,110.0,60.4,55.5,37.5$, 29.9, 29.0, 26.2, 15.6 ppm ; HRMS (ESI) exact mass calculated for [M+Na] $\left(\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NaO}_{3}\right)$ requires $\mathrm{m} / \mathrm{z} 311.1618$, found $\mathrm{m} / \mathrm{z} 311.1631$.
(E)-8-(3-methoxy-2-methylphenyl)-5-methyl-2-methyleneoct-5-enal (4c)

From (E)-8-(3-methoxy-2-methylphenyl)-5-methyl-2-methyleneoct-5-en-1-ol, general procedure D was followed on a 0.35 mmol scale to give 72 mg ($0.26 \mathrm{mmol}, 74 \%$ yield) of (E)-8-(3-methoxy-2-methylphenyl)-5-methyl-2-methyleneoct-5-enal as a colourless oil. IR (Film) 2937, 2865, 2844, 2699, 1689, 1627, 1584, 1464, 1438, 1378, 1346, 1310, 1256, 1167, 1142, 1101, 1055, 1033, 1014, $942,870,838,778,720,678 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.53(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{t}, 7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.79(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{tq}, J=$ $7.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.26$ (td, $J=8.0$, $7.2 \mathrm{~Hz}, 2 \mathrm{H}) 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=194.6,157.6,149.8,141.7,134.4,134.1,125.8,124.7,124.4,121.4,107.8,55.4,37.6$, $33.6,28.9,26.3,15.7,11.2 \mathrm{ppm}$; HRMS (APCI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]\left(\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 255.1743$, found $\mathrm{m} / \mathrm{z} 255.1751$.

(E)-8-(5-methoxy-2-methylphenyl)-5-methyl-2-methyleneoct-5-enal (4d)

From (E)-8-(5-methoxy-2-methylphenyl)-5-methyl-2-methyleneoct-5-en-1-ol, general procedure D was followed on a 0.30 mmol scale to give $72 \mathrm{mg}(0.24 \mathrm{mmol}, 81 \%$ yield) of (E)-8-(5-methoxy-2-methylphenyl)-5-methyl-2-methyleneoct-5-enal as a colourless oil. IR (Film) 3060, 2932, 2863, 2834, 2698, 1688, 1609, 1578, 1498, 1452, 1382, 1304, 1284, 1249, 1208, 1160, 1114, 1087, 1045, 997, 942, 868, 848, 801, 778, $713 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.55(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~d}, 7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{dd}, 7.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 5.24$ (tq, $J=7.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.31-$ $2.27(\mathrm{~m}, 5 \mathrm{H}), 2.17(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=194.6$, $157.8,149.9,141.6,134.6,134.2,130.8,127.9,124.7,114.8,110.8,55.2,37.7,33.6,28.5,26.4$, 18.4, 15.8 ppm ; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]\left(\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NaO}_{2}\right)$ requires m / z 295.1669, found m/z 295.1678.

(E)-5-methyl-2-methylene-8-(4-methylthiophen-3-yl)oct-5-enal (4e)

From (E)-5-methyl-2-methylene-8-(4-methylthiophen-3-yl)oct-5-en-1-ol, general procedure D was followed on a 0.32 mmol scale to give 58 mg ($0.23 \mathrm{mmol}, 73 \%$ yield) (E)-5-methyl-2-methylene-8-(4-methylthiophen-3-yl)oct-5-enal as a colourless oil. IR (Film) 3083, 2922, 2855, 2699, 1688, 1627, 1444, $1383 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.53(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 2 \mathrm{H})$, $6.22(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}) 5.21(\mathrm{t}, J=7.0,1 \mathrm{H}), 2.53(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.30(\mathrm{td}, J=7.6,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=194.5,149.8,141.6,136.8,134.6,134.1,124.6,120.7,120.1,37.6,29.0$, 27.8, 26.3, 15.8, 14.4 ppm ; HRMS (ESI) exact mass calculated for [M+Na] $\left(\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NaOS}\right)$ requires $\mathrm{m} / \mathrm{z} 271.1127$, found $\mathrm{m} / \mathrm{z} 271.1127$.
(E)-5-methyl-2-methylene-8-(1-tosyl-1H-pyrrol-2-yl)oct-5-enal (4f)

From (E)-5-methyl-2-methylene-8-(1-tosyl-1H-pyrrol-2-yl)oct-5-en-1-ol, general procedure D was followed on a 0.28 mmol scale to give 83 mg ($0.22 \mathrm{mmol}, 80 \%$ yield) of (E)-5-methyl-2-methylene-8-(1-tosyl-1H-pyrrol-2-yl)oct-5-enal as a colourless oil. IR (Film) 3151, 3063, 2924, 2854, 2702, 1686, 1596, 1363, 1173, $945 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.49(\mathrm{~s}, 1 \mathrm{H}), 7.61$ (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.27 (m, 3 H), 6.17 (m, 2 H), 5.95 (s, 2 H), 5.06 (t, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.65 (t, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{td}, J=7.2,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=194.5,149.7,144.6,136.4$, $135.3,134.9,134.2,129.9,126.6,124.1,122.2,112.0,111.2,37.5,27.2,27.0,26.2,21.5,15.8$ ppm; HRMS (ESI) exact mass calculated for [M+Na] $\left(\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NNaO}_{3} \mathrm{~S}\right)$ requires m/z 394.1447, found $\mathrm{m} / \mathrm{z} 394.1434$.

(E)-8-(furan-2-yl)-5-methyl-2-methyleneoct-5-enal (4g)

From (E)-8-(furan-2-yl)-5-methyl-2-methyleneoct-5-en-1-ol, general procedure D was followed on a 0.20 mmol scale to give $38 \mathrm{mg}(0.17 \mathrm{mmol}, 86 \%$ yield) of (E)-8-(furan-2-yl)-5-methyl-2-methyleneoct-5-enal as a colourless oil. IR (Film) 2959, 2921, 2851, 1749, 1689, 1476, $1073 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.50(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{dd}, J=3.0,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{~m}, 2 \mathrm{H}), 5.14(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.36-$ $2.30(\mathrm{~m}, 4 \mathrm{H}), 2.12(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=194.6$, 155.9, 149.8, 140.7, 134.9, 134.1, 124.1, 110.0, 104.8, 37.6, 28.1, 26.4, 26.2, 15.7 ppm; HRMS
(ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]\left(\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NaO}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 241.1199$, found m / z 241.1190.

(E)-8-(benzofuran-3-yl)-5-methyl-2-methyleneoct-5-enal (4h)

From (E)-8-(benzofuran-3-yl)-5-methyl-2-methyleneoct-5-en-1-ol, general procedure D was followed on a 0.45 mmol scale to give 94 mg ($0.35 \mathrm{mmol}, 77 \%$ yield) of (E)-8-(benzofuran-3-yl)-5-methyl-2-methyleneoct-5-enal as a colourless oil. IR (Film) 2928, 2854, 2699, 1687, 1452, 1271, $1086,942 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.50(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=7.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=7.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.18$ (s, 1 H), $5.93(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{td}, J=7.3,7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.36(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=194.5,155.2,149.7,141.0,134.8,134.0,128.2,124.5,123.9,122.1,120.1,119.5$, $111.3,37.6,27.3,26.2,23.6,15.8 \mathrm{ppm}$; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]$ $\left(\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NaO}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 291.1356$, found $\mathrm{m} / \mathrm{z} 291.1351$.
(E)-8-(3,5-dimethylphenyl)-5-methyl-2-methyleneoct-5-enal (4i)

From (E)-8-(3,5-dimethylphenyl)-5-methyl-2-methyleneoct-5-en-1-ol, general procedure D was followed on a 0.46 mmol scale to give 78 mg ($30 \mathrm{mmol}, 66 \%$ yield) of $(E)-8$-(3,5-dimethylphenyl)-5-methyl-2-methyleneoct-5-enal as a colourless oil. IR (Film) 3435, 3012, 2921, 2860, 1715, 1605, 1451, 1377, 1265, 1161, 1084, 1038, 946, 845, 734, $702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $9.54(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 2 \mathrm{H}), 6.23(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.21$ (tq, $J=7.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.37$ (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.32-2.27$ (m, 8 H), $2.15(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) 1.62(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=194.6,149.9,142.2$, 137.7, 134.4, 134.1, 127.4, 126.2, 124.9, 37.6, 35.9, 30.0, 26.4, 21.3, 15.8 ppm ; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]\left(\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NaO}\right)$ requires $\mathrm{m} / \mathrm{z} 279.1719$, found $\mathrm{m} / \mathrm{z} 279.1712$.

III. Catalyst synthesis

Note: due to restricted bond rotation, some catalyst intermediates display multiple rotamers and broad peaks in their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra.
ethyl 1,2-diazepane-1-carboxylate hydrochloride

Ethyl 1,2-diazepane-1-carboxylate was synthesized according to literature. ${ }^{1}$ Gaseous hydrochloric acid was bubbled through a stirred solution of freebase ethyl 1,2-diazepane-1-carboxylate in hexanes, causing an oil to crash out. The solvent was removed in vacuo, the residue was dissolved in a hexanes/dichloromethane mixture, and the solvent was again removed. After three repetitions of this cycle, the oil was left under high vacuum for several days until all the material had solidified, giving an off-white powder.

dibenzyl (R)-1-(6-bromo-1-hydroxyhexan-2-yl)hydrazine-1,2-dicarboxylate

Following a modified procedure of Hamada et al. ${ }^{15,16}$: To a stirred solution of 6-bromohexanal $(1.908 \mathrm{~g}, 10.7 \mathrm{mmol})$ and dibenzylazodicarboxylate $(2.130 \mathrm{~g}, 7.1 \mathrm{mmol})$ in $\mathrm{MeCN}(50 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$ was added (S)-proline ($181 \mathrm{mg}, 1.6 \mathrm{mmol}$) and the resulting reaction mixture was stirred at -5 ${ }^{\circ} \mathrm{C}$ for 17 h . $\mathrm{EtOH}(50 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(320 \mathrm{mg}, 8.5 \mathrm{mmol})$ were added and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined extracts were washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated, and purified by flash chromatography (gradient from 80:20 to 60:40 hexanes/EtOAc) to give dibenzyl (R)-1-(6-bromo-1-hydroxyhexan-2-yl)hydrazine-1,2dicarboxylate $(2.20 \mathrm{~g}, 4.6 \mathrm{mmol}, 64 \%$ yield) which was isolated as a colourless oil. Enantioselectivity was $97: 3$ to $>99: 1 \mathrm{er}$ (when run at $0^{\circ} \mathrm{C}$ or on larger scale, enantioselectivity was decreased, resulting in variations in final catalyst er) as determined by HPLC analysis using a CHIRACEL OD column ($10 \%{ }^{i} \mathrm{PrOH}$ in hexanes $40 \mathrm{~min}-\operatorname{tr} 13.3$ and 25.7 min). IR (thin film) v 3272, 3033, 2956, 1712, $1252 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.20(\mathrm{~m}, 10 \mathrm{H}), 6.64-$ $6.48(\mathrm{~m}, 1 \mathrm{H}), 5.35-5.02(\mathrm{~m}, 4 \mathrm{H}), 4.55-4.00(\mathrm{~m}, 2 \mathrm{H}), 3.64-3.21(\mathrm{~m}, 4 \mathrm{H}), 1.96-1.60(\mathrm{~m}, 2 \mathrm{H})$, 1.48 - 1.16 (m, 4H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=157.2,156.2,135.8,135.1,128.8$, $128.8,128.7,128.4,128.2,127.9,68.8,68.4,62.3,33.7,33.4,32.1,27.0,24.5 \mathrm{ppm}$; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]\left(\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{BrNaO}_{5}\right)$ requires $\mathrm{m} / \mathrm{z} 501.0996$, found $\mathrm{m} / \mathrm{z} 501.0975$.

dibenzyl (R)-3-(hydroxymethyl)-1,2-diazepane-1,2-dicarboxylate

To a stirred solution of dibenzyl (R)-1-(6-bromo-1-hydroxyhexan-2-yl)hydrazine-1,2dicarboxylate ($1.85 \mathrm{~g}, 3.8 \mathrm{mmol}$) in tetrahydrofuran $(90 \mathrm{~mL})$ was added tetrabutylammonium fluoride hydrate (1 M in THF, $11.4 \mathrm{~mL}, 11.4 \mathrm{mmol}$). After 48 hours, saturated aqueous ammonium chloride was added, and the mixture was extracted with ethyl acetate. The combined extracts were washed with brine, dried with sodium sulfate, filtered, concentrated, and purified by flash chromatography (gradient from $80: 20$ to $65: 35$ hexanes/EtOAc) to give dibenzyl (R)-3-(hydroxymethyl)-1,2-diazepane-1,2-dicarboxylate $(1.422 \mathrm{~g}, 3.6 \mathrm{mmol}, 92 \%$ yield) which was isolated as a colourless oil. Spectroscopic data were in accordance with previously reported literature. ${ }^{17}$

ethyl (R)-3-(hydroxymethyl)-1,2-diazepane-1-carboxylate

A stirred solution of dibenzyl (R)-3-(hydroxymethyl)-1,2-diazepane-1,2-dicarboxylate (1.504 g , $3.8 \mathrm{mmol})$ in $\mathrm{MeOH}(40 \mathrm{~mL})$ was submitted to three cycles of vacuum/argon. $\mathrm{AcCl}(1.1 \mathrm{~mL}, 15.2$ $\mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(454 \mathrm{mg}, 0.43 \mathrm{mmol})$ were added. Argon flow was removed, and a needle attached to a hydrogen-filled balloon was inserted through the septum and into the reaction mixture. A second needle was inserted through the septum to allow gas efflux and the hydrogen was allowed to bubble through the mixture, with the balloon being refilled as needed. After 1 h , the balloon was removed and the mixture was filtered through diatomaceous earth, rinsing with MeOH . The filtrate was concentrated to give crude (R)-(1,2-diazepan-3-yl)methanol hydrochloride as a yellow solid. (Note: benzyloxycarbonyl removal is performed under acidic conditions as the unprotected freebase is highly unstable to air oxidation.)

To a stirred suspension of crude (R)-(1,2-diazepan-3-yl)methanol in $\mathrm{DCM}(4.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(1.6 \mathrm{~mL}, 11.4 \mathrm{mmol})$ and $\mathrm{EtO}_{2} \mathrm{CCl}(340 \mu \mathrm{~L}, 3.6 \mathrm{mmol})$. After 1 h , saturated aqueous NaHCO_{3} was added, and the mixture was extracted with $\mathrm{DCM}(3 \times 5 \mathrm{~mL})$. The combined extracts were washed with water, dried with MgSO_{4}, filtered, concentrated, and purified by flash chromatography (gradient from 70:30 to 20:80 hexanes/EtOAc). ethyl (R)-3-(hydroxymethyl)-1,2-diazepane-1-carboxylate was isolated as a colourless oil ($582 \mathrm{mg}, 2.9 \mathrm{mmol}, 76 \%$ yield over two steps). IR (Film) $v=3430,3329,2981,2928,2864,1672,1410,1380,1211,1096,1034 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=4.93(\mathrm{bs}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.73-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.49$ (bs, 2 H), $3.37-3.32$ (m, 2 H), 3.03 (bs, 1 H), $1.80-1.61$ (m, 5 H), 1.28 (t, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}$), 1.22 $-1.20(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=157.7,156.7,64.0,61.8,61.4,49.2,30.7$,
28.1, 27.4, 23.7, 14.4 ppm ; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]\left(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{3}\right)$ requires $\mathrm{m} / \mathrm{z} 225.1210$, found $\mathrm{m} / \mathrm{z} 225.1200$.

2-benzyl 1-ethyl (R)-3-(hydroxymethyl)-1,2-diazepane-1,2-dicarboxylate

To a stirred solution of ethyl (R)-3-(hydroxymethyl)-1,2-diazepane-1-carboxylate ($582 \mathrm{mg}, 2.9$ mmol) and $\mathrm{NaHCO}_{3}(874 \mathrm{mg}, 10.4 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$ was added benzyl chloroformate ($0.020 \mathrm{~mL}, 0.21 \mathrm{mmol}$). After 19 h , the reaction was quenched with water and extracted with DCM ($3 \times 30 \mathrm{~mL}$). The combined extracts were dried with MgSO_{4}, filtered, concentrated, and purified by flash chromatography (gradient from 70:30 to 90:10 hexanes/EtOAc) to give 2-benzyl 1-ethyl (R)-3-(hydroxymethyl)-1,2-diazepane-1,2-dicarboxylate ($947 \mathrm{mg}, 2.8 \mathrm{mmol}, 95 \%$ yield) as a colourless oil. IR (Film) $v=3429,2935,1693,1320,1212,1051 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.36-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.29-5.12(\mathrm{~m}, 2 \mathrm{H}), 4.27-4.13(\mathrm{~m}, 3 \mathrm{H}), 4.12-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.74-$ $3.36(\mathrm{~m}, 2 \mathrm{H}), 3.11-2.92(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.40(\mathrm{~m}, 6 \mathrm{H}), 1.32-1.11(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.1,157.5,155.0,155.0,136.0,135.7,68.0,67.6,63.1,63.0,62.9,62.8,61.5$, $61.3,50.8,49.7,28.5,28.4,28.2,27.9,24.6,24.3,14.3,14.2,14.0 \mathrm{ppm}$; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]\left(\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{5}\right)$ requires $\mathrm{m} / \mathrm{z} 359.1577$, found $\mathrm{m} / \mathrm{z} 359.1577$.

2-benzyl 1-ethyl (R)-3-(bromomethyl)-1,2-diazepane-1,2-dicarboxylate

To a stirred solution of $\mathrm{PPh}_{3}(357 \mathrm{mg}, 1.4 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{CBr}_{4}(412$ $\mathrm{mg}, 1.2 \mathrm{mmol}$). After 15 minutes, 2-benzyl 1-ethyl (R)-3-(hydroxymethyl)-1,2-diazepane-1,2dicarboxylate ($325 \mathrm{mg}, 0.97 \mathrm{mmol}$) was added in THF (5 mL). The solution was brought to room temperature and stirred for 17 h . The reaction was quenched with the addition of saturated aqueous NaHCO_{3} and extracted with EtOAc (3 x 10 mL). The combined extracts were washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated, and purified by flash chromatography (gradient from 90:10 to 80:20 hexanes/EtOAc). 2-benzyl 1-ethyl (R)-3-(bromomethyl)-1,2-diazepane-1,2dicarboxylate was isolated as a colourless oil ($367 \mathrm{mg}, 0.92 \mathrm{mmol}, 95 \%$ yield). IR (Film) $v=2934$, 2857, 1705, 1350, 1229, 1210, $1078 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.37-7.28(\mathrm{~m}, 5 \mathrm{H})$, $5.30-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.30-3.90(\mathrm{~m}, 4 \mathrm{H}), 3.85-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.81$ $(\mathrm{m}, 1 \mathrm{H}), 2.56-2.34(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.29(\mathrm{~m}, 2 \mathrm{H})$, $1.29-1.04(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=156.2,156.1,155.9$, 155.7, 154.7, $154.6,154.2,154.0,135.9,135.8,135.7,135.6,128.4,128.4,128.3,128.3,128.1,128.1,127.8$, $127.7,127.6,127.3,68.0,68.0,67.6,62.4,62.4,62.2,61.6,61.2,61.1,60.7,51.0,50.4,50.0,49.4$, $34.2,33.7,33.6,33.3,30.3,30.0,29.8,29.6,28.5,28.3,28.2,28.0,24.4,24.3,14.4,14.4,14.2$,
14.2 ppm ; HRMS (ESI) exact mass calculated for [$\mathrm{M}+\mathrm{Na}$] $\left(\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{BrN}_{2} \mathrm{NaO}_{4}\right)$ requires m / z 421.0733, found $\mathrm{m} / \mathrm{z} 421.0734$.

Synthesis of m-terphenyls

General procedure \mathbf{E}

Toluene and 1 M aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ were degassed by bubbling argon through for 1 h . To a solution of 1,3,5-tribromobenzene (1 mmol) and aryl boronic acid (2.2-2.5 mmol) in toluene (4 mL) was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.1 \mathrm{mmol})$ then 1 M aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(3.0 \mathrm{~mL})$. The solution was brought to reflux and let stir for 17 h before it was cooled, diluted with water and extracted with DCM (3 x 10 mL). The combined extracts were washed with brine, dried with MgSO_{4}, filtered, concentrated, and purified by flash chromatography (hexanes).

5'-bromo-1,1':3',1'-terphenyl

From phenylboronic acid ($695 \mathrm{mg}, 5.6 \mathrm{mmol}$), general procedure E was followed to give, after flash chromatography (hexanes), 5'-bromo-1,1':3',1"-terphenyl ($227 \mathrm{mg}, 0.44 \mathrm{mmol}, 18 \%$ yield) as a white foam. Spectroscopic data were in accordance with previously reported literature. ${ }^{18}$

5'-bromo-3,3',5,5'-tetramethyl-1,1':3',1'-terphenyl

From 3,5-dimethylphenylboronic acid ($741 \mathrm{mg}, 4.9 \mathrm{mmol}$), general procedure E was followed to give, after flash chromatography (hexanes), 5^{\prime}-bromo-3,3",5,5"-tetramethyl-1, $1^{\prime}: 3$ ',1"-terphenyl ($347 \mathrm{mg}, 0.95 \mathrm{mmol}, 43 \%$ yield) of a white foam. Spectroscopic data were in accordance with previously reported literature. ${ }^{19}$

5'-bromo-3,3',5,5''-tetra-tert-butyl-1,1':3',1''-terphenyl

From 3,5-tert-butylphenylboronic acid ($458 \mathrm{mg}, 1.9 \mathrm{mmol}$), general procedure E was followed to give, after flash chromatography (hexanes), 5'-bromo-3,3",5,5"-tetra-tert-butyl-1, 1':3',1"-terphenyl ($187 \mathrm{mg}, 0.35 \mathrm{mmol}, 37 \%$ yield) as a white foam. Spectroscopic data were in accordance with previously reported literature. ${ }^{20}$

5'-bromo-4,4''-di-tert-butyl-1,1':3',1'-terphenyl

From (4-(tert-butyl)phenyl)boronic acid ($732 \mathrm{mg}, 4.1 \mathrm{mmol}$), general procedure E was followed to give, after flash chromatography (hexanes), 5'-bromo-4,4"-di-tert-butyl-1,1':3',1"-terphenyl ($326 \mathrm{mg}, 0.77 \mathrm{mmol}, 47 \%$ yield) of a white foam. Spectroscopic data were in accordance with previously reported literature. ${ }^{21}$

(5'-bromo-[1,1':3',1''-terphenyl]-3,3',5,5''-tetrayl)tetrakis(tert-butyldimethylsilane)

From (3,5-bis(tert-butyldimethylsilyl)phenyl)boronic acid ($717 \mathrm{mg}, 2.0 \mathrm{mmol}$), general procedure E was followed to give, after flash chromatography (hexanes), (5'-bromo-[1, 1':3',1"-terphenyl]-3,3",5,5"-tetrayl)tetrakis(tert-butyldimethylsilane) ($166 \mathrm{mg}, 0.22 \mathrm{mmol}, 26 \%$ yield) as a white foam. IR (Film) $v=3026,2952,2927,2884,2955,1470,1249,860,767 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.72-7.70(\mathrm{~m}, 9 \mathrm{H}), 0.93(\mathrm{~s}, 36 \mathrm{H}), 0.35(\mathrm{~s}, 24 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=144.5,140.4,137.8,137.2,133.7,128.8,125.6,123.2,26.5,16.9,-6.2$ ppm. HRMS (APCI) $\left(\mathrm{CH}_{3} \mathrm{CN}\right.$ adduct formed with loss of $\left.{ }^{t} \mathrm{Bu}\right)$ exact mass calculated for $[\mathrm{M}+\mathrm{H}]\left(\mathrm{C}_{40} \mathrm{H}_{63} \mathrm{BrNSi}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 748.3221$, found $\mathrm{m} / \mathrm{z} 748.3207$.

1,1',1',1'"'-(5'-bromo-[1,1':3',1'-terphenyl]-3,3',5,5'-tetrayl)tetrakis(adamantane)

From (3,5-di(adamantan-1-yl)phenyl)boronic acid ($732 \mathrm{mg}, 1.9 \mathrm{mmol}$), general procedure E was followed to give, after flash chromatography (hexanes), 1, 1',1",1"'-(5'-bromo-[1, $1^{\prime}: 3^{\prime}, 1^{\prime \prime}-$ terphenyl]-3,3",5,5"-tetrayl)tetrakis(adamantane) ($489 \mathrm{mg}, 0.58 \mathrm{mmol}, 62 \%$ yield) as a white foam. IR (Film) $v=3062,2900,2847,1589,1449,1344,1103 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.69(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 2 \mathrm{H}), 7.44(\mathrm{~s}, 2 \mathrm{H}), 7.39(\mathrm{~s}, 4 \mathrm{H}), 2.12(\mathrm{~s}, 12 \mathrm{H}), 2.00(\mathrm{~s}, 24 \mathrm{H}), 1.80(\mathrm{~s}$, $24 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=151.6,145.1,139.6,128.9,127.4,125.8,121.6$, 121.2, 43.3, 36.8, 29.0 ppm ; HRMS (APCI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]\left(\mathrm{C}_{58} \mathrm{H}_{70} \mathrm{Br}\right)$ requires $\mathrm{m} / \mathrm{z} 845.46554$, found $\mathrm{m} / \mathrm{z} 845.46425$.

2,2'-(5-bromo-1,3-phenylene)dinaphthalene

From 2-naphthylboronic acid ($493 \mathrm{mg}, 2.9 \mathrm{mmol}$), general procedure E was followed to give, after flash chromatography (98:2 to 95:5 hexanes/EtOAc), 2,2'-(5-bromo-1,3-phenylene)dinaphthalene ($123 \mathrm{mg}, 0.30 \mathrm{mmol}, 25 \%$ yield) as a white foam. Spectroscopic data were in accordance with previously reported literature. ${ }^{22}$

5'-bromo-4,4'-dimethoxy-1,1':3',1'-terphenyl

From (4-methoxyphenyl)boronic acid ($510 \mathrm{mg}, 3.4 \mathrm{mmol}$), general procedure E was followed to give, after flash chromatography ($95: 5$ to $85: 15$ hexanes/EtOAc), 5'-bromo-4,4"-dimethoxy$1,1^{\prime}: 3^{\prime}, 1^{\prime \prime}$-terphenyl ($104 \mathrm{mg}, 0.28 \mathrm{mmol}, 30 \%$ yield) as a white foam. Spectroscopic data were in accordance with previously reported literature. ${ }^{23}$

5'-bromo-3,3',4,4',5,5'-hexamethoxy-1,1':3',1''-terphenyl

From (3,4,5-trimethoxyphenyl)boronic acid ($144 \mathrm{mg}, 0.68 \mathrm{mmol}$), general procedure E was followed to give, after flash chromatography (90:10 to 70:30 hexanes/EtOAc), 5'-bromo-

3,3",4,4",5,5"-hexamethoxy-1, 1':3',1"-terphenyl ($70 \mathrm{mg}, 0.15 \mathrm{mmol}, 74 \%$ yield) as a white foam. IR (Film) $v=3050,2935,2838,1718,1508,1407,1344,1124,1006 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.64(\mathrm{~s}, 2 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 4 \mathrm{H}), 3.93(\mathrm{~s}, 12 \mathrm{H}), 3.90(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=153.6,143.9,138.2,135.6,128.9,124.8,123.0,104.6,61.0,56.3 \mathrm{ppm} ;$ HRMS (ESI) exact mass calculated for [M+Na] $\left(\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{BrNaO}_{6}\right)$ requires $\mathrm{m} / \mathrm{z} 511.07267$, found m/z 511.07275.

5'-bromo-3,3',5,5''-tetrakis(trifluoromethyl)-1,1':3',1'"-terphenyl

From 3,5-bis(trifluoromethyl)phenylboronic acid ($999 \mathrm{mg}, 3.9 \mathrm{mmol}$), general procedure E was followed to give, after flash chromatography (hexanes), 5'-bromo-3,3",5,5"-tetrakis(trifluoromethyl)-1, $1^{\prime}: 3^{\prime}, 1^{\prime \prime}$-terphenyl ($252 \mathrm{mg}, 0.43 \mathrm{mmol}, 43 \%$ yield) as a white foam. Spectroscopic data were in accordance with previously reported literature. ${ }^{24}$

Synthesis of m-terphenyl catalysts

General procedure \mathbf{F}

Following a modified procedure of Weix et al. ${ }^{25}$: To a 1 mL HPLC vial containing bromo-mterphenyl $(0.25 \mathrm{mmol}), \mathrm{NiI}_{2}(0.025 \mathrm{mmol})$, 1,10-phenanthroline $(0.025 \mathrm{mmol})$, and $\mathrm{NaI}(0.063$ mmol) was added a solution of 2-benzyl 1-ethyl (R)-3-(bromomethyl)-1,2-diazepane-1,2dicarboxylate (0.25 mmol) in DMPU (1 mL). Zn dust (0.50 mmol) was added, vial was capped, and the solution was brought to $60{ }^{\circ} \mathrm{C}$. After 72 h , the reaction was purified by flash chromatography (gradient from 95:5 to 85:15 hexanes/EtOAc) to give coupled product which was isolated as a mixture with the dehalogenated hydrazide.
A stirred solution of the isolated mixture in THF (2.0 mL) was submitted to three cycles of vacuum/argon and $10 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(0.050 \mathrm{mmol})$ was added. Argon flow was removed, and a
needle attached to a hydrogen-filled balloon was inserted through the septum and into the reaction mixture. A second needle was inserted through the septum to allow gas efflux and the hydrogen was allowed to bubble through the mixture, with the balloon being refilled as needed. After 6 h , the balloon was removed and the mixture was filtered through diatomaceous earth, rinsing with DCM. The filtrate was concentrated and purified by flash chromatography (gradient from 80:20 to 50:50 hexanes/EtOAc) to give desired product.
ethyl (R)-3-([1,1':3',1'-terphenyl]-5'-ylmethyl)-1,2-diazepane-1-carboxylate (3a)

Prepared according to general procedure F from 5'-bromo-1, 1':3', 1 "-terphenyl ($82 \mathrm{mg}, 0.26 \mathrm{mmol}$). ethyl (R)-3-([1, $1^{\prime}: 3$ ', 1"-terphenyl]-5'-ylmethyl)-1,2-diazepane-1-carboxylate was isolated as a colourless oil ($22 \mathrm{mg}, 0.053 \mathrm{mmol}, 22 \%$ yield). IR (Film) $v=3325,2058,3033,2927,2854,1688$, 1596, 1261, $1028 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.68-7.64(\mathrm{~m}, 5 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 6$ H), $7.38-7.36$ (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{bs}, 1 \mathrm{H}), 4.15$ (bs, 1 H), 3.82 (bs, 2 H), $3.39-3.14$ (m, $2 \mathrm{H}), 2.93-2.65(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.42-1.26(\mathrm{~m}, 3 \mathrm{H}), 0.84(\mathrm{bs}, 2 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=156.8,156.0,142.0,141.0,139.6,128.8,127.4,127.2,127.1,124.3$, $62.1,61.3,60.5,48.3,47.4,41.2,37.1,35.0,27.5,26.9,23.8,14.4 \mathrm{ppm} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $\left._{6}, 80^{\circ} \mathrm{C}\right) \delta=7.75-7.72(\mathrm{~m}, 5 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 6 \mathrm{H}), 7.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.82(\mathrm{~s}$, $1 \mathrm{H}), 3.95(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.73-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.18(\mathrm{~m}, 2 \mathrm{H}), 2.83-2.73(\mathrm{~m}, 2 \mathrm{H})$, $1.81-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.41-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d $\left._{6}, 80^{\circ} \mathrm{C}\right) \delta=155.4,140.6,140.0,139.9,128.3,127.0,126.5,126.3,122.6,60.2,47.9$, $40.0,34.5,26.6,23.0,13.9 \mathrm{ppm}$; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]\left(\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 437.2199$, found $\mathrm{m} / \mathrm{z} 437.2200$.

ethyl (R)-3-((3,3',5,5'-tetramethyl-[1,1':3',1'-terphenyl]-5'-yl)methyl)-1,2-diazepane-1carboxylate (3b)

Prepared according to general procedure F from 5^{\prime}-bromo-3,3",5,5"-tetramethyl-1, $1^{\prime}: 33^{\prime}, 1^{\prime \prime}$ terphenyl ($94 \mathrm{mg}, 0.26 \mathrm{mmol})$. ethyl (R)-3-((3,3",5,5"-tetramethyl-[1,1':3',1"-terphenyl]-5'-
yl)methyl)-1,2-diazepane-1-carboxylate was isolated as a colourless oil ($38 \mathrm{mg}, 0.080 \mathrm{mmol}, 31 \%$ yield). IR (Film) $v=2927,2865,1696,1593,1447,1408,1380,1336,1212,1112,1025 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.65(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 2 \mathrm{H}), 7.28(\mathrm{~s}, 4 \mathrm{H}), 7.02(\mathrm{~s}, 2 \mathrm{H}), 4.89-4.50$ (m, 1 H), 4.18 (bs, 1 H), 3.85 (bs, 2 H), $3.41-3.15$ (m, 2 H), 2.89 - 2.64 (m, 2 H), 2.41 (s, 12 H), $1.95-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.47-1.24(\mathrm{~m}, 3 \mathrm{H}), 0.87(\mathrm{bs}, 2 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $156.8,156.0,142.0,141.1,139.3,138.2,129.0,126.9,125.1,124.3,62.2,61.3,60.4,48.2,47.4$, $41.2,37.1,34.9,27.5,27.1,26.9,23.8,23.5,21.4,14.7,14.4 \mathrm{ppm}$; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]\left(\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{NaO}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 493.2825$, found $\mathrm{m} / \mathrm{z} 493.2822$.
ethyl (R)-3-((3,3',5,5'-tetra-tert-butyl-[1,1':3',1'-terphenyl]-5'-yl)methyl)-1,2-diazepane-1carboxylate (3c)

Prepared according to general procedure F from 5^{\prime}-bromo-3,3",5,5"-tetra-tert-butyl-1, $1^{\prime}: 3^{\prime}, 1^{\prime \prime}$ terphenyl ($171 \mathrm{mg}, 0.32 \mathrm{mmol}$). ethyl (R)-3-((3,3",5,5"-tetra-tert-butyl-[1,1':3',1"-terphenyl]-5'-yl)methyl)-1,2-diazepane-1-carboxylate was isolated as a colourless oil ($65 \mathrm{mg}, 0.10 \mathrm{mmol}, 37 \%$ yield). IR (Film) $v=2962,2865,1697,1590,1476,1464,1408,1248,1111 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.64(\mathrm{bs}, 1 \mathrm{H}), 7.47-7.46$ (m, 6 H), 7.39 (bs, 2 H), 4.66 (bs, 1 H), 4.16 (bs, 1 H), 3.84 (bs, 2 H), $3.44-3.24(\mathrm{~m}, 2 \mathrm{H}), 2.89-2.67(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.43-1.40$ $(\mathrm{m}, 39 \mathrm{H}), 0.87(\mathrm{bs}, 2 \mathrm{H}) \mathrm{ppm}{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=156.8,156.0,151.2,143.3,140.8$, $139.2,127.2,125.2,121.9,121.6,62.2,61.2,60.1,48.2,47.4,41.1,37.1,35.0,31.5,27.6,26.9$, 23.8, $14.6 \mathrm{ppm} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $_{6}, 80^{\circ} \mathrm{C}$) $\delta=7.58(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.46(\mathrm{~m}, 4 \mathrm{H})$, $7.45-7.43(\mathrm{~m}, 4 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.74-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{bs}, 1 \mathrm{H})$, $3.23-3.17(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.73(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.42-1.37(\mathrm{~m}, 38 \mathrm{H}), 1.06(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $_{6}, 80^{\circ} \mathrm{C}$) $\delta=155.4,150.5,141.9,139.8,139.5$, $126.3,123.4,120.8,1206,60.2,60.0,47.8,40.0,34.7,34.2,30.9,26.6,23.0,14.0 \mathrm{ppm}$; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]\left(\mathrm{C}_{43} \mathrm{H}_{62} \mathrm{~N}_{2} \mathrm{NaO}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 661.4703$, found m / z 661.4710.
ethyl (R)-3-((3,3',5,5'-tetrakis(tert-butyldimethylsilyl)-[1,1':3',1'-terphenyl]-5'-yl)methyl)-1,2-diazepane-1-carboxylate (3d)

Prepared according to general procedure F from (5'-bromo-[1, '':3', $1^{\prime \prime}$-terphenyl]-3,3",5,5"-tetrayl)tetrakis(tert-butyldimethylsilane) (224 mg, 0.29 mmol$). \quad$ ethyl (R)-3-((3,3",5,5"-tetrakis(tert-butyldimethylsilyl)-[1,1':3',1"-terphenyl]-5'-yl)methyl)-1,2-diazepane-1-carboxylate was isolated as a colourless oil ($52 \mathrm{mg}, 0.059 \mathrm{mmol}, 22 \%$ yield). IR (Film) $v=3027,2952,2927$, 2884, 2856, 2698, 1597, 1470, 1361, 1249, $1176 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.74$ (s, 4 H), $7.68(\mathrm{~s}, 2 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 2 \mathrm{H}), 4.70-4.57(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.92-$ $3.76(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.12(\mathrm{~m}, 2 \mathrm{H}), 2.97-2.66(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.22(\mathrm{~m}, 3$ H), $0.92-0.86(\mathrm{~m}, 38 \mathrm{H}), 0.33(\mathrm{~s}, 24 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=156.8,156.0$, $142.8,139.8,139.6,139.0,137.0,133.8,126.9,125.2,62.3,61.2,60.1,48.3,47.4,41.1,37.0,35.0$, $26.5,23.8,23.5,16.9,14.5,-6.2 \mathrm{ppm}$; HRMS (ESI) exact mass calculated for [M+Na] $\left(\mathrm{C}_{51} \mathrm{H}_{86} \mathrm{~N}_{2} \mathrm{NaSi}_{4} \mathrm{O}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 893.56586$, found $\mathrm{m} / \mathrm{z} 893.56383$.
ethyl (R)-3-((3,3',5,5'-tetra(adamantan-1-yl)-[1,1':3',1'-terphenyl]-5'-yl)methyl)-1,2-diazepane-1-carboxylate (3e)

Prepared according to general procedure F from $1,1^{\prime}, 1^{\prime \prime}, 1^{\prime \prime}$ '-(5'-bromo-[1, $1^{\prime}: 3^{\prime}, 1^{1}$ "-terphenyl]$3,3 ", 5,5$ "-tetrayl)tetrakis(1-adamantane) (198 mg, 0.23 mmol$)$. ethyl (R)-3-((3,3",5,5"-tetra(adamantan-1-yl)-[1, 1':3',1"-terphenyl]-5'-yl)methyl)-1,2-diazepane-1-carboxylate was isolated as a colourless oil ($52 \mathrm{mg}, 0.054 \mathrm{mmol}, 23 \%$ yield). IR (Film) $v=2979,2905,2950,1731$, 1588, 1450, 1374, 1178, $1154 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.66$ (bs, 1 H), 7.43 (s 6 H), $2.08(\mathrm{~s}, 2 \mathrm{H}), 4.60(\mathrm{bs}, 1 \mathrm{H}), 4.16(\mathrm{bs}, 1 \mathrm{H}), 3.84(\mathrm{bs}, 2 \mathrm{H}), 3.44-3.23(\mathrm{~m}, 2 \mathrm{H}), 2.93-2.65(\mathrm{~m}, 2$ H), $2.13(\mathrm{~s}, 12 \mathrm{H}), 2.01(\mathrm{~s}, 24 \mathrm{H}), 1.83-1.78(\mathrm{~m}, 28 \mathrm{H}), 1.44-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.25(\mathrm{~m}, 1$ H), 0.86 (s, 2 H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=156.8,156.0,151.4,143.4,140.9,139.0$,
127.0, 126.2, 125.4, 121.6, 120.6, 62.1, 61.3, 60.5, 48.5, 47.3, 43.3, 41.1, 36.8, 29.0, 23.8, 14.6 ppm; HRMS (APCI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]\left(\mathrm{C}_{67} \mathrm{H}_{87} \mathrm{~N}_{2} \mathrm{O}_{8}\right)$ requires m / z 951.67621, found $\mathrm{m} / \mathrm{z} 951.67554$.

```
ethyl (R)-3-((4,4''-di-tert-butyl-[1,1':3',1'-terphenyl]-5'-yl)methyl)-1,2-diazepane-1-
carboxylate (3f)
```


Prepared according to general procedure F from 5^{\prime}-bromo-4,4"-di-tert-butyl-1,1':3',1"-terphenyl (106 mg, 0.25 mmol$)$. ethyl (R)-3-((4,4"-di-tert-butyl-[1,1':3',1"-terphenyl]-5'-yl)methyl)-1,2-diazepane-1-carboxylate was isolated as a colourless oil ($18 \mathrm{mg}, 0.034 \mathrm{mmol}, 13 \%$ yield). IR (Film) $v=3307,3031,2933,2862,1709,1597,1322,1308,1080,1063 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.68(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.40(\mathrm{~s}, 2 \mathrm{H}), 4.61$ (bs, 1 H), 4.16 (bs, 1 H), 3.84 (bs, 2 H), $3.37-3.12$ (m, 2 H), 2.86-2.63 (m, 2 H), $1.83-1.77$ (m, $4 \mathrm{H}), 1.38-1.25(\mathrm{~m}, 21 \mathrm{H}), 0.84(\mathrm{bs}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=156.8,156.0$, $150.4,141.7,139.5,138.2,126.8,125.7,124.0,62.2,61.3,48.3,47.4,41.2,37.1,34.5,31.4,27.1$, 26.9, 24.0, 23.8, 14.4 ppm ; HRMS (ESI) exact mass calculated for [M+Na] $\left(\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{NaO}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 549.3451$, found $\mathrm{m} / \mathrm{z} 549.3475$.
ethyl (R)-3-(3,5-di(naphthalen-2-yl)benzyl)-1,2-diazepane-1-carboxylate (3g)

Prepared according to general procedure F from 2,2'-(5-bromo-1,3-phenylene)dinaphthalene (103 $\mathrm{mg}, 0.25 \mathrm{mmol}$). ethyl (R)-3-(3,5-di(naphthalen-2-yl)benzyl)-1,2-diazepane-1-carboxylate was isolated as a colourless oil ($30 \mathrm{mg}, 0.059 \mathrm{mmol}, 24 \%$ yield). IR (Film) $v=3053,3017,2929,2854$, 1693, 1593, 1506, 1447, 1408, 1212, $1112 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($800 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.10(\mathrm{~s}, 2 \mathrm{H})$, $7.92-7.91(\mathrm{~m}, 5 \mathrm{H}), 7.87-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.79(\mathrm{~s}, 2 \mathrm{H}), 7.63(\mathrm{~s}, 2 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 4 \mathrm{H}), 4.28$
$-3.99(\mathrm{~m}, 4 \mathrm{H}), 3.84-3.46(\mathrm{~m}, 2 \mathrm{H}), 3.19(\mathrm{bs}, 1 \mathrm{H}), 2.00-1.92(\mathrm{~m}, 4 \mathrm{H}), 1.58(\mathrm{bs}, 2 \mathrm{H}), 1.28-$ 1.18 (m, 3 H) ppm; ${ }^{13} \mathrm{C}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=155.2,153.6,142.3,137.9,133.6,132.7$, $128.5,128.2,127.6,127.3,126.3,126.0,126.0,125.5,64.2,63.6,47.2,38.8,30.6,26.6,22.9,14.4$ ppm; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]\left(\mathrm{C}_{35} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{NaO}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 537.2512$, found $\mathrm{m} / \mathrm{z} 537.2534$.
ethyl (R)-3-((4,4'-dimethoxy-[1,1':3',1'-terphenyl]-5'-yl)methyl)-1,2-diazepane-1-
carboxylate (3h)

Prepared according to general procedure F from 5'-bromo-4,4"-dimethoxy-1,1':3',1"-terphenyl (104 mg, 0.23 mmol$)$. ethyl (R)-3-((4,4"-dimethoxy-[1,1':3',1"-terphenyl]-5'-yl)methyl)-1,2-diazepane-1-carboxylate was isolated as a colourless oil ($24 \mathrm{mg}, 0.12 \mathrm{mmol}, 22 \%$ yield). IR (Film) $v=2930,2836,1687,1608,1512,1451,1440,1247,1177,1032 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.58(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 5 \mathrm{H}), 7.35(\mathrm{~s}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 4.71-4.55(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{bs}$, $1 \mathrm{H}), 3.86-3.78(\mathrm{~m}, 8 \mathrm{H}), 3.39-3.13(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.61(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.41$ $-1.26(\mathrm{~m}, 3 \mathrm{H}), 0.84(\mathrm{bs}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=159.2,156.8,156.0,141.4$, $139.5,133.6,128.2,126.1,123.4,114.2,62.2,61.3,60.4,55.3,48.2,47.4,41.2,37.1,34.9,27.5$, 26.9, 23.8, 14.6 ppm ; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]\left(\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{NaO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 497.2411$, found $\mathrm{m} / \mathrm{z} 497.2408$.

ethyl (R)-3-((3,3',4,4',5,5''-hexamethoxy-[1,1':3',1'-terphenyl]-5'-yl)methyl)-1,2-diazepane-1-carboxylate (3i)

Prepared according to general procedure F from 5^{\prime}-bromo-3, "', 4, $4^{\prime \prime}, 5,5^{\prime \prime}$-hexamethoxy-1, $1^{\prime}: 3^{\prime}, 1^{\prime \prime}$ terphenyl ($202 \mathrm{mg}, 0.45 \mathrm{mmol}$). ethyl (R)-3-((3,3",4,4",5,5"-hexamethoxy-[1, $1^{\prime}: 3^{\prime}, 1$ "-terphenyl]-5^{\prime}-yl)methyl)-1,2-diazepane-1-carboxylate was isolated as a colourless oil ($42 \mathrm{mg}, 0.071 \mathrm{mmol}$,
14% yield). IR (Film) $v=2933,2865,1691,1581,1430,1409,1240,1127 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.54(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 2 \mathrm{H}), 6.83(\mathrm{~s}, 4 \mathrm{H}), 4.71(\mathrm{bs}, 1 \mathrm{H}), 4.12(\mathrm{bs}, 1 \mathrm{H}), 3.94-$ $3.84(\mathrm{~m}, 20 \mathrm{H}), 3.48-3.23(\mathrm{~m}, 2 \mathrm{H}), 2.84-2.67(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.45-1.39(\mathrm{~m}$, $2 \mathrm{H}), 1.27-1.24(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{bs}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=156.8,156.0$, $153.5,142.2,139.3,137.8,137.2,127.1,124.3,104.7,61.9,61.4,60.9,59.5,56.3,48.1,47.5$, 41.0, 36.9, 35.7, 27.4, 23.6, 14.6 ppm ; HRMS (ESI) exact mass calculated for [M+Na] $\left(\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{NaO}_{8}\right)$ requires $\mathrm{m} / \mathrm{z} 617.2833$, found $\mathrm{m} / \mathrm{z} 617.2812$.

ethyl (R)-3-((3,3',5,5'-tetrakis(trifluoromethyl)-[1,1':3',1'-terphenyl]-5'-yl)methyl)-1,2-diazepane-1-carboxylate (3J)

Prepared according to general procedure F from 5'-bromo-3,3",5,5"-tetrakis(trifluoromethyl)$1,1^{\prime}: 3^{\prime}, 1$ "-terphenyl ($114 \mathrm{mg}, 0.20 \mathrm{mmol}$). ethyl $(R)-3-((3,3 ", 5,5$ "-tetrakis(trifluoromethyl)[1, $1^{\prime}: 3^{\prime}, 1^{\prime \prime}$-terphenyl]-5'-yl)methyl)-1,2-diazepane-1-carboxylate was isolated as a colourless oil ($34 \mathrm{mg}, 0.050 \mathrm{mmol}, 17 \%$ yield). IR (Film) $v=3029,2933,1692,1600,1410,1299,1172,1130$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.13(\mathrm{~s}, 4 \mathrm{H}), 7.91(\mathrm{~s}, 2 \mathrm{H}), 7.62(\mathrm{~s}, 3 \mathrm{H}), 4.63(\mathrm{bs}, 1 \mathrm{H})$, $4.17-3.76(\mathrm{~m}, 3 \mathrm{H}), 3.55-3.22(\mathrm{~m}, 2 \mathrm{H}), 3.02-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.75(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.73$ $(\mathrm{m}, 4 \mathrm{H}), 1.50-1.20(\mathrm{~m}, 4 \mathrm{H}), 1.00-0.78(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=156.8$, $142.8,140.4,139.7,132.2(\mathrm{q}, J=34.7 \mathrm{~Hz}), 128.8,127.6,124.5,123.5(\mathrm{q}, J=253.1 \mathrm{~Hz}), 121.3$, 61.6, 59.4, 47.7, 40.7, 36.6, 27.2, 23.7, 14.6 ppm ; HRMS (ESI) exact mass calculated for [M+Na] $\left(\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{~F}_{12} \mathrm{~N}_{2} \mathrm{NaO}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 709.1695$, found $\mathrm{m} / \mathrm{z} 709.1668$.

IV. Polyene cyclizations: optimization

4a

General polyene cyclization procedure during optimization

General procedure for asymmetric polyene cyclization optimization

To a $1.8-\mathrm{mL}$ vial containing aldehyde $\mathbf{4 a}(0.035 \mathrm{mmol})$ was added a solution of catalyst (0.0070 mmol, as the salt or $1: 1$ freebase:salt) in solvent ($140 \mu \mathrm{~L}, 0.25 \mathrm{M}$ in substrate). The mixture was briefly swirled to homogenize and let stand at the specified temperature until complete. The reaction mixture was concentrated and purified by silica gel column chromatography (gradient from 97:3 to 90:10 hexanes/ethyl acetate) to obtain aldehyde 5a as a mixture of diastereomers. Where alcoholic solvents were used, the following acetal-cleavage sequence was performed after concentration and prior to chromatography: the material was redissolved in chloroform (0.5 mL); water (0.25 mL) and trifluoroacetic acid $(0.25 \mathrm{~mL})$ were added; and the biphasic mixture was stirred for 2 hours, added dropwise to a saturated solution of sodium bicarbonate (5 mL), extracted with dichloromethane (5 mL), and concentrated.

To determine product enantiopurity (where applicable), excess sodium borohydride was added to a stirred sample of the aldehyde product in methanol. After one hour, the reaction was quenched with 1 M hydrochloric acid. The resulting mixture was extracted with a small amount of dichloromethane and the extract was purified directly by flash chromatography (gradient from 85:15 to 75:25 hexanes/ethyl acetate) to give a diastereomeric mixture of alcohols. This mixture was submitted to chiral HPLC analysis. For (E) cyclizations: Daicel Chiralcel OJ-H, $1 \mathrm{~mL} / \mathrm{min}$, 94:6 hexanes/isopropanol, $220 \mathrm{~nm}: 10.4 \mathrm{~min}(4 \mathrm{a} R, 10 \mathrm{a} R-\alpha), 11.9 \mathrm{~min}(4 \mathrm{a} R, 10 \mathrm{a} R-\beta), 15.3 \mathrm{~min}$ $(4 \mathrm{a} S, 10 \mathrm{a} S-\beta), 23.4 \mathrm{~min}(4 \mathrm{a} S, 10 \mathrm{a} S-\alpha)$.) Catalyst 3a, 3d-3J had an er of $>99: 1$ for screening. Catalyst $\mathbf{3 b}$ and $\mathbf{3 c}$ had an er of $97: 3$ for screening reactions. Reported er of product 5a were adJusted accounting for catalyst enantiopurity, assuming no non-linear effects.

Racemic polyene cyclization (general procedure G)

To a $1.8-\mathrm{mL}$ or 4 mL vial containing aldehyde was added a solution of ethyl 1,2-diazepane-1carboxylate hydrochloride (0.2 equiv.) in $5 \% \mathrm{HFIP} / \mathrm{DCM}$ (0.25 M in substrate). The mixture was briefly swirled to homogenize and let stand for 5 hours. The reaction mixture was concentrated and purified by silica gel column chromatography (gradient from hexanes to $93: 7$ hexanes/EtOAc) to obtain trans-decalin products as a mixture of diastereomers.

Asymmetric polyene cyclization (general procedure H)

To a 4 mL vial containing aldehyde (0.15 mmol) was added a solution of catalyst $\mathbf{3 c}$ ($99: 1 \mathrm{er}$, 0.030 mmol , as the premixed $1: 1 \mathrm{TFA}$ salt) in ethanol ($600 \mu \mathrm{~L}, 0.25 \mathrm{M}$ in substrate). The mixture was briefly swirled to homogenize and let sit for $24-30 \mathrm{~h}$. Once complete, the reaction mixture was concentrated and redissolved in THF (0.6 mL). Water $(0.3 \mathrm{~mL})$ and camphorsulfonic acid $(0.30 \mathrm{mmol})$ were added and the biphasic mixture was stirred for 3 hours, then purified by flash chromatography to obtain aldehyde 5 as a mixture of diastereomers. The enantiomeric excess of the product was determined by reduction to the corresponding alcohol (following the general procedure used for the corresponding racemic product, vide supra) and chiral HPLC analysis (see section IX for chromatographic conditions).
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ peaks for the α diastereomer of trans-decalin products are reported with an asterisk (*) where possible to distinguish from the β diastereomer peaks. The integrations are reported as a
proportion of the total signal (i.e. $1 \mathrm{H} \times 0.8$ for a signal that corresponds to one proton of one of the two diastereomers).

Stereochemical nomenclature for polyene cyclization products:

- trans and cis refer to ring fusion
- α and β refer to stereochemistry at C3

trans

cis

α

β

Reduction and separation of polyene cyclization products (general procedure I)

To a stirred sample of aldehyde 5 in methanol was added excess sodium borohydride. After one hour, the reaction was quenched with 1 M hydrochloric acid. The resulting mixture was extracted with a small amount of dichloromethane and the extract was purified directly by flash chromatography to give a diastereomeric mixture of alcohols. The mixture of alcohols was submitted to semi-preparative normal phase HPLC to give pure trans- α and trans- β alcohols. Due to the small amounts of alcohol obtained, complete characterization was done for the maJor transβ alcohols.

(4aR,10aR)-5,7-dimethoxy-4a-methyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-2carbaldehyde (5a)

Racemic:
Prepared according to general procedure G from (E)-8-(3,5-dimethoxyphenyl)-5-methyl-2-methyleneoct-5-enal ($49 \mathrm{mg}, 0.17 \mathrm{mmol}$). The reaction was run for 5 h and ($4 \mathrm{a} R S, 10 \mathrm{a} R S$)-5,7-dimethoxy-4a-methyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-2-carbaldehyde was isolated as a colourless oil ($35 \mathrm{mg}, 0.12 \mathrm{mmol}, 72 \%$ yield, trans:cis $95: 5$, trans- $\alpha: \beta 6: 1$).
Asymmetric:
Prepared according to general procedure H from (E)-8-(3,5-dimethoxyphenyl)-5-methyl-2-methyleneoct-5-enal ($43 \mathrm{mg}, 0.15 \mathrm{mmol}$). The reaction was run for 24 h and $(4 \mathrm{a} R, 10 \mathrm{a} R)-5,7-$ dimethoxy-4a-methyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-2-carbaldehyde was isolated as a colourless oil ($28 \mathrm{mg}, 0.097 \mathrm{mmol}, 65 \%$ yield, 89:11 er, trans:cis 99:1, trans- $\alpha: \beta 6: 1$).

IR (Film) 2988, 2928, 2861, 2837, 2709, 1721, 1604, 1580, 1459, 1419, 1341, 1325, 1309, 1289, 1268, 1230, 1212, 1194, 1150, 1132, 1119, 1085, 1065, 1046, 1023, 941, 829, 736, $702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.73^{*}(\mathrm{~s}, 1 \mathrm{H} \times 0.2), 9.66(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H} \times 0.8), 6.30(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H} x 0.8$), $6.30^{*}\left(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H} x 0.2\right.$), $6.22(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H} x 0.8), 6.21^{*}(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{Hx} 0.2$), 3.78 ($\mathrm{s}, 3 \mathrm{Hx} 0.8$), 3.77 ($\mathrm{s}, 3 \mathrm{Hx} 0.8$), 3.75^{*} ($\mathrm{s}, 3 \mathrm{H} \times 0.2$), $3.75^{*}(\mathrm{~s}, 3 \mathrm{H} \times 0.2$), 3.17 (dt, $J=13.4,3.5 \mathrm{~Hz}, 1 \mathrm{Hx} 0.8$), $2.99-2.91$ (m, 1 Hx 0.8), $2.99-2.91 *(\mathrm{~m}, 2 \mathrm{Hx} 0.2$), 2.77 (dd, $J=17.4,4.5 \mathrm{~Hz}, 1 \mathrm{Hx} 0.8$), 2.7 2* $^{*}(\mathrm{dd}, J=17.3,5.5 \mathrm{~Hz}, 1 \mathrm{Hx} 0.2$), 2.43* (t, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}$ x 0.2), $2.40-2.34(\mathrm{~m}, 1 \mathrm{Hx} 0.8), 2.13^{*}(\mathrm{~d}, J=14.8,1 \mathrm{Hx} 0.2), 2.01^{*}(\mathrm{~d}, J=14.0,1 \mathrm{H} x 0.2)$, 1.96-1.88* (m, 1 Hx 0.2), 1.86 (m, $1 \mathrm{H} \times 0.8$), 1.82 - 1.74* (m, 1 Hx 0.2), $1.74-1.39$ (m, 6 H x 0.8), $1.74-1.39^{*}(\mathrm{~m}, 3 \mathrm{Hx} 0.2), 1.25$ (td, $J=13.4,3.8 \mathrm{~Hz}, 1 \mathrm{Hx} 0.8$), $1.20^{*}(\mathrm{~s}, 3 \mathrm{Hx} 0.2), 1.17$ (s, 3 Hx 0.8), $1.13^{*}(\mathrm{td}, J=14.1,4.2,1 \mathrm{H} \mathrm{x} 0.2) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=206.0^{*}$, 204.7, 160.0, 159.8*, 158.0, 158.0*, 138.8, 138.8*, 127.6*, 127.5, 105.0, 105.0*, 97.4, 97.4*, 55.1, $55.1^{*}, 55.0,55.0^{*}, 50.8,46.6^{*}, 44.2,41.5^{*}, 37.4,37.3^{*}, 34.7,32.8^{*}, 32.2,32.0^{*}, 28.2,27.4^{*}, 25.7$, $25.7^{*}, 22.0,21.0^{*}, 16.6,16.1^{*} \mathrm{ppm}$; MS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]\left(\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NaO}_{3}\right)$ requires $\mathrm{m} / \mathrm{z} 311.1618$, found $\mathrm{m} / \mathrm{z} 311.1611$.
((2R,4aR,10aR)-5,7-dimethoxy-4a-methyl-1,2,3,4,4a,9,10,10a-octahydrophenanthren-2yl)methanol

From $\quad(4 \mathrm{a} R, 10 \mathrm{a} R)$-5,7-dimethoxy-4a-methyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-2carbaldehyde, general procedure I was followed to give, after flash chromatography (gradient from 85:15 to 75:25 hexanes/ethyl acetate) and semi-preparative HPLC (99:1 hexanes/isopropanol), a white solid.
IR (Film) 3423, 2924, 2858, 2838, 1685, 1597, 1460, $1117 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $6.29(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{td}, J=5.7$, $2.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{dt}, J=12.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=12.1,5.1 \mathrm{~Hz}, 1$ H), $1.67-1.56(\mathrm{~m}, 3 \mathrm{H}), 1.45-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.22(\mathrm{~m}, 4 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 0.90-0.84(\mathrm{~m}$, $2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=160.0,157.9,139.0,128.3,105.0,97.4,68.7,55.1$, $55.0,44.7,40.9,37.8,35.3,32.4,31.9,31.6,26.0,25.4,22.6,16.9,14.1 \mathrm{ppm}$; MS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]\left(\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NaO}_{3}\right)$ requires $\mathrm{m} / \mathrm{z} 313.1774$, found $\mathrm{m} / \mathrm{z} 313.1780$.
(4aR,10aR)-7,8-dimethoxy-4a-methyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-2carbaldehyde (5b)

Racemic:
Prepared according to general procedure G from (E)-8-(2,3-dimethoxyphenyl)-5-methyl-2-methyleneoct-5-enal ($32 \mathrm{mg}, 0.11 \mathrm{mmol}$). The reaction was run for 5 h and ($4 \mathrm{a} R S, 10 \mathrm{a} R S$)-7,8-dimethoxy-4a-methyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-2-carbaldehyde was isolated as a colourless oil ($26 \mathrm{mg}, 0.089 \mathrm{mmol}, 81 \%$ yield, trans- $\alpha: \beta 4: 1$).
Asymmetric:
Prepared according to general procedure H from (E)-8-(2,3-dimethoxyphenyl)-5-methyl-2-methyleneoct-5-enal ($43 \mathrm{mg}, 0.15 \mathrm{mmol}$). The reaction was run for 5 h and $(4 \mathrm{a} R, 10 \mathrm{a} R)$ - 7,8 -dimethoxy-4a-methyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-2-carbaldehyde was isolated as a colourless oil ($33 \mathrm{mg}, 0.12 \mathrm{mmol}, 77 \%$ yield, $93: 7 \mathrm{er}$, trans- $\alpha: \beta 6: 1$).
IR (Film) 2928, 2857, 2709, 1721, 1598, 1489, 1451, 1375, 1151, $1077 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=9.72^{*}(\mathrm{~s}, 1 \mathrm{H} x 0.2), 9.68(\mathrm{~s}, 1 \mathrm{Hx} 0.8), 6.99(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H} \times 0.8), 6.94^{*}(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{Hx} 0.2$), $6.77\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H} x 0.8\right.$), $6.73^{*}(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H} x 0.2$), 3.84 ($\mathrm{s}, 3 \mathrm{H} x$ 0.8), 3.82 ($\mathrm{s}, 3 \mathrm{Hx} 0.2$), 3.80 ($\mathrm{s}, 3 \mathrm{Hx} 0.8$), $3.78^{*}(\mathrm{~s}, 3 \mathrm{Hx} 0.2$), $2.99-2.89$ (m, 1 H), 2.80-2.67 (m, 1 H), 2.39-2.31 (m, 2 Hx 0.8), 2.29-2.21* (m, 1 Hx 0.2), 2.17-2.10* (m, 1 Hx 0.2), 2.08 - 2.01* (m, $1 \mathrm{H} \times 0.2$), $2.00-1.94(\mathrm{~m}, 1 \mathrm{H} \times 0.8), 1.80-1.55(\mathrm{~m}, 5 \mathrm{H}), 1.49-1.39(\mathrm{~m}, 2 \mathrm{H})$, 1.08* (s, 3 Hx 0.2), 1.05 ($\mathrm{s}, 3 \mathrm{H} \mathrm{x} \mathrm{0.8)} \mathrm{ppm;}{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=205.4^{*}$, 204.3, 150.1, 150.0*, 146.4, 146.3*, 140.8*, 140.7, 130.0, 130.0*, 119.8, 119.7*, 109.8, 109.8*, 59.6, $59.6^{*}, 55.6,55.6^{*}, 50.5,46.4^{*}, 40.9,38.2^{*}, 36.8,36.2,36.0^{*}, 34.7^{*}, 28.3,27.4^{*}, 25.1^{*}, 25.0,23.3$, $23.2^{*}, 21.9,21.7,21.2^{*}, 20.8^{*} \mathrm{ppm}$; MS (ESI) exact mass calculated for [M+Na] ($\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NaO}_{3}$) requires $\mathrm{m} / \mathrm{z} 311.1618$, found $\mathrm{m} / \mathrm{z} 311.1618$.
 yl)methanol

From $\quad(4 \mathrm{a} R, 10 \mathrm{a} R)$-7,8-dimethoxy-4a-methyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-2carbaldehyde, general procedure I was followed to give, after flash chromatography (gradient from 85:15 to 75:25 hexanes/ethyl acetate) and semi-preparative HPLC (99:1 hexanes/isopropanol), a white solid.

IR (Film) 3411, 2923, 2855, 1598, 1489, 1273, 1083, $1031 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $7.00(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{dd}, J=5.8$, $5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.96-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.75(\mathrm{~m}, 1$ H), $1.65-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.47-1.29(\mathrm{~m}, 3 \mathrm{H}), 1.17-1.09(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=150.0,146.3,141.5,130.2,119.8,109.7,68.5,59.6,55.7,41.2,40.6,37.5$, $36.5,31.9,25.4,25.2,23.4,21.9 \mathrm{ppm}$; MS (ESI) exact mass calculated for [M+Na] $\left(\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NaO}_{3}\right)$ requires $\mathrm{m} / \mathrm{z} 313.1774$, found $\mathrm{m} / \mathrm{z} 313.1779$.

(4aR,10aR)-7-methoxy-4a,8-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-2carbaldehyde (5c)

Racemic:
Prepared according to general procedure G from (E)-8-(3-methoxy-2-methylphenyl)-5-methyl-2-methyleneoct-5-enal ($48 \mathrm{mg}, 0.18 \mathrm{mmol}$). The reaction was run for 5 h and ($4 \mathrm{a} R S, 10 \mathrm{a} R S$)-7-methoxy-4a,8-dimethyl-1,2,3,4,4a, $9,10,10 \mathrm{a}$-octahydrophenanthrene-2-carbaldehyde was isolated as a white solid ($36 \mathrm{mg}, 0.13 \mathrm{mmol}, 75 \%$ yield, trans:cis 96:4, trans- $\alpha: \beta 4: 1$).

Asymmetric:
Prepared according to general procedure H from (E)-8-(3-methoxy-2-methylphenyl)-5-methyl-2-methyleneoct-5-enal ($41 \mathrm{mg}, 0.15 \mathrm{mmol}$). The reaction was run for 30 h and $(4 \mathrm{a} R, 10 \mathrm{a} R)-7-$ methoxy-4a,8-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-2-carbaldehyde was isolated as a white solid ($30 \mathrm{mg}, 0.11 \mathrm{mmol}, 73 \%$ yield, $92: 8$ er trans:cis $>99: 1$, trans- $\alpha: \beta 6: 1$).

IR (Film) 3083, 3040, 2928, 2858, 2833, 2709, 1721, 1596, 1583, 1483, 1464, 1438, 1375, 1337, $1291,1260,1214,1192,1170,1148,1109,1088,1023,999,930,899,844,802,738,706 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.72 *(\mathrm{~s}, 1 \mathrm{Hx} 0.2), 9.70(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H} \times 0.8), 7.15(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H} \times 0.8$), $7.09^{*}(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H} \times 0.2), 6.75(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H} \times 0.8), 6.72^{*}(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{Hx} 0.2$), 3.81 ($\mathrm{s}, 3 \mathrm{Hx} 0.8$), 3.80^{*} ($\mathrm{s}, 3 \mathrm{H} x 0.2$), $2.84-2.62$ (m, 2 H x 0.8), 2.84 - 2.62* (m, 2 Hx 0.2), 2.51* (t, $J=6.0 \mathrm{~Hz}, 1 \mathrm{Hx} 0.2$), $2.42-2.32$ (m, 2 Hx 0.8), $2.30-2.23^{*}$ ($\mathrm{m}, 1 \mathrm{H}$ x 0.2), $2.20-2.14^{*}(\mathrm{~m}, 1 \mathrm{Hx} 0.2), 2.11$ ($\mathrm{s}, 3 \mathrm{Hx} 0.8$), 2.08* ($\mathrm{s}, 3 \mathrm{Hx} 0.2$), $2.08-2.04^{*}(\mathrm{~m}, 1 \mathrm{H} \mathrm{x}$ 0.2), 2.02-1.95 (m, $1 \mathrm{H} x 0.8$), $1.95-1.88^{*}(\mathrm{~m}, 1 \mathrm{Hx} 0.2$), $1.83-1.57$ (m, $5 \mathrm{H} \times 0.8$), $1.83-$ 1.57* (m, $3 H \times 0.2$), $1.50-1.39$ (m, 2 Hx 0.8), $1.50-1.39^{*}(\mathrm{~m}, 1 \mathrm{H} \times 0.2), 1.35^{*}(\mathrm{td}, J=13.6$, $4.2 \mathrm{~Hz}, 1 \mathrm{Hx} 0.2$), $1.11^{*}(\mathrm{~s}, 3 \mathrm{Hx} 0.2), 1.08(\mathrm{~s}, 3 \mathrm{Hx} 0.8) \mathrm{ppm}$; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 205.4*, 204.3, 155.2, 155.1*, 139.7*, 139.6, 135.2, 135.1*, 124.4, 124.4*, 122.3, 122.2*, 108.0, $108.0^{*}, 55.5,55.5^{*}, 50.5,46.4^{*}, 40.7,38.0^{*}, 37.1,36.2,36.0^{*}, 34.9^{*}, 28.3,27.4^{*}, 27.3,27.2^{*}$, $25.6^{*}, 25.6,22.0,21.8,21.3^{*}, 20.8^{*}, 11.1,11.0^{*} \mathrm{ppm}$; MS (APCI) exact mass calculated for [M$\mathrm{H}]\left(\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 271.1703$, found $\mathrm{m} / \mathrm{z} 271.1701$.
($(2 R, 4 \mathrm{a} R, 10 \mathrm{a} R)$-7-methoxy-4a,8-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthren-2yl)methanol

From $\quad(4 \mathrm{a} R, 10 \mathrm{a} R)$-7-methoxy-4a,8-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-2carbaldehyde, general procedure I was followed to give, after flash chromatography (gradient from 85:15 to 75:25 hexanes/ethyl acetate) and semi-preparative HPLC (99:1 hexanes/isopropanol), a white solid.

IR (Film) 3355, 2925, 2856, 1595, 1483, 1463, 1262, $1096 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ $7.14(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{dd}, J=5.9,5.9 \mathrm{~Hz}, 2 \mathrm{H})$, $2.78-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.56(\mathrm{~m}, 6 \mathrm{H}), 1.46-1.26(\mathrm{~m}, 3$ H), $1.14(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=155.1$, 140.4, 135.4, 124.4, $122.4,107.9,68.6,55.5,41.1,40.6,37.8,36.5,31.9,27.5,25.8,25.5,22.0,11.1 \mathrm{ppm}$; MS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]\left(\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NaO}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 297.1825$, found m / z 297.1812.
(4aR,10aR)-5-methoxy-4a,8-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-2carbaldehyde (5d)

Racemic:
Prepared according to general procedure G from (E)-8-(5-methoxy-2-methylphenyl)-5-methyl-2-methyleneoct-5-enal ($48 \mathrm{mg}, 0.17 \mathrm{mmol}$). The reaction was run for 5 h and ($4 \mathrm{a} R S, 10 \mathrm{a} R S$)-5-methoxy-4a,8-dimethyl-1,2,3,4,4a, $9,10,10 \mathrm{a}$-octahydrophenanthrene-2-carbaldehyde was isolated as an off-white solid ($34 \mathrm{mg}, 0.12 \mathrm{mmol}, 72 \%$ yield, $85: 15 \mathrm{er}$, trans:cis $94: 6$, trans- $\alpha: \beta 4: 1$).

Asymmetric:
Prepared according to general procedure H from (E)-8-(5-methoxy-2-methylphenyl)-5-methyl-2-methyleneoct-5-enal ($41 \mathrm{mg}, 0.15 \mathrm{mmol}$). The reaction was run for 30 h and $(4 \mathrm{a} R, 10 \mathrm{a} R)-5$ -methoxy-4a,8-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-2-carbaldehyde was isolated as an off-white solid ($26 \mathrm{mg}, 0.095 \mathrm{mmol}, 63 \%$ yield, trans:cis 98:2, trans- $\alpha: \beta 6: 1$).

IR (Film) 2927, 2861, 2833, 1708, 1721, 1582, 1461, 1437, 1406, 1374, 1340, 1289, 1244, 1223, $1190,1166,1144,1107,1085,1057,1034,1007,948,922,907,888,801,736,722,702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.73 *(\mathrm{~s}, 1 \mathrm{H} \times 0.2), 9.67(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H} \times 0.8), 6.97(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{Hx} 0.8), 6.95^{*}(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{Hx} 0.2), 6.68(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H} \times 0.8), 6.64^{*}(\mathrm{~d}, J=8.1$ Hz, $1 \mathrm{H} x 0.2$), 3.79 (s, $3 \mathrm{H} x 0.8$), 3.77^{*} ($\mathrm{s}, 3 \mathrm{H} x 0.2$), 3.26 (dt, $J=13.4,3.3 \mathrm{~Hz}, 1 \mathrm{H} x 0.8$), 3.05* (dt, $J=13.7,3.5 \mathrm{~Hz}, 1 \mathrm{H} x 0.2$), $2.70-2.64$ (m, $2 \mathrm{H} \times 0.8$), $2.65-2.60^{*}$ (m, $2 \mathrm{H} \times 0.2$), 2.46* (t,
$J=6.5 \mathrm{~Hz}, 1 \mathrm{Hx} 0.2), 2.41-2.33(\mathrm{~m}, 1 \mathrm{H} x 0.8), 2.15(\mathrm{~s}, 3 \mathrm{Hx} 0.8), 2.13 *(\mathrm{~s}, 3 \mathrm{H} \times 0.2), 2.05-$ 2.00* (m, 1 Hx 0.2), $1.99-1.90^{*}(\mathrm{~m}, 1 \mathrm{Hx} 0.2), 1.90-1.83$ (m, 1 Hx 0.8), $1.84-1.76^{*}(\mathrm{~m}, 1 \mathrm{H}$ x 0.2), $1.77-1.54$ (m, $6 \mathrm{H} \mathrm{x} \mathrm{0.8}^{2}$), $1.77-1.54 *\left(\mathrm{~m}, 3 \mathrm{Hxx} 0.2\right.$), $1.48-1.39^{*}(\mathrm{~m}, 1 \mathrm{Hx} 0.8), 1.27^{*}$ (s, 3 Hx 0.2), $1.26-1.20(\mathrm{~m}, 1 \mathrm{Hx} 0.8), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.12^{*}(\mathrm{td}, J=13.7$, $4.1 \mathrm{~Hz}, 1 \mathrm{Hx} 0.2) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=206.0^{*}, 204.7,157.2,157.2^{*}, 136.5,136.5^{*}, 134.9,134.8^{*}$, $128.9,128.9^{*}, 127.7,127.6^{*}, 109.0,109.0^{*}, 55.1,55.0^{*}, 50.8,46.5^{*}, 43.5,40.8^{*}, 38.0,37.9^{*}$, 34.6, 32.6*, 29.4, 29.2*, 28.2, 27.4*, 25.6, 25.6*, 22.0, 21.0*, 19.5, 19.5*, 16.4, 15.8* ppm; MS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]\left(\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NaO}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 295.1669$, found m / z 295.1667.
($(2 R, 4 a R, 10 a R)-5-m e t h o x y-4 a, 8-d i m e t h y l-1,2,3,4,4 a, 9,10,10 a-o c t a h y d r o p h e n a n t h r e n-2-~$ yl)methanol

From $\quad(4 \mathrm{a} R, 10 \mathrm{a} R)-5$-methoxy-4a, 8 -dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-2carbaldehyde, general procedure I was followed to give, after flash chromatography (gradient from 85:15 to 75:25 hexanes/ethyl acetate) and semi-preparative HPLC (99:1 hexanes/isopropanol), a white solid.

IR (Film) 3514, 2927, 2855, 1688, 1452, 1222, $1085 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=6.95$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $6.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{td}, J=6.1,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.12$ (dt, $J=12.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.66-2.63(m, 2 H), $2.14(\mathrm{~s}, 3 \mathrm{H}), 1.68-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.29-1.23$ (m, 4 H), $1.21(\mathrm{~s}, 3 \mathrm{H}), 0.90-0.87(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.4$, 136.8, $135.6,128.9,127.5,109.0,68.7,55.1,44.0,40.8,38.4,35.2,31.9,29.6,25.8,25.4,19.6,16.6$ ppm; MS (ESI) exact mass calculated for [M+Na] $\left(\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NaO}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 297.1825$, found m/z 297.1824.
(5aR,9aR)-3,9a-dimethyl-4,5,5a,6,7,8,9,9a-octahydronaphtho[1,2-b]thiophene-7carbaldehyde (5e)

Racemic:
Prepared according to general procedure G from (E)-5-methyl-2-methylene-8-(4-methylthiophen3 -yl)oct-5-enal ($49 \mathrm{mg}, 0.20 \mathrm{mmol}$). The reaction was run for 5 h and ($5 \mathrm{a} R S, 9 \mathrm{a} R S$)-3,9a-dimethyl-4,5,5a,6,7,8,9,9a-octahydronaphtho[1,2-b]thiophene-7-carbaldehyde was isolated as a white powder ($21 \mathrm{mg}, 0.084 \mathrm{mmol}, 43 \%$ yield, trans $-\alpha: \beta 4: 1$).

Asymmetric:

Prepared according to general procedure H from (E)-5-methyl-2-methylene-8-(4-methylthiophen3 -yl)oct-5-enal ($43 \mathrm{mg}, 0.17 \mathrm{mmol}$). The reaction was run for 30 h and $(5 \mathrm{a} R, 9 \mathrm{a} R)-3,9 \mathrm{a}$-dimethyl-4,5,5a,6,7,8,9,9a-octahydronaphtho[1,2-b]thiophene-7-carbaldehyde was isolated as white powder ($34 \mathrm{mg}, 0.14 \mathrm{mmol}, 81 \%$ yield, $94: 6 \mathrm{er}$, trans- $\alpha: \beta 4: 1$).
IR (Film) 3087, 2964, 1928, 1857, 2708, 1724, 1462, 1450, 1438, 1374, $1018 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.71^{*}(\mathrm{~s}, 1 \mathrm{Hx} 0.2), 9.67$ ($\mathrm{s}, 1 \mathrm{Hx} 0.8$), 6.72 ($\mathrm{s}, 1 \mathrm{Hx} 0.8$), $6.68^{*}(\mathrm{~s}, 1 \mathrm{H} \times 0.2)$, $2.62-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.06(\mathrm{~m}, 4 \mathrm{H}), 1.96-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.59$ (m, 6 H), $1.52-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.20^{*}(\mathrm{~s}, 3 \mathrm{H} x 0.2), 1.16\left(\mathrm{~s}, 3 \mathrm{H} \mathrm{x} \mathrm{0.8)} \mathrm{ppm;}{ }^{13} \mathrm{C}\right.$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=205.2^{*}, 203.9,148.1^{*}, 147.9,136.2,136.2^{*}, 133.1,133.0^{*}, 116.9,116.8^{*}, 50.8,46.8^{*}$, 42.7, 40.0*, 38.6, 36.6, 36.6*, 36.5*, 27.4, 26.5*, 25.5*, 25.5, 24.7, 24.6*, 21.9, 21.6, 21.4*, 20.4*, 14.2, 14.2* ppm; MS (ESI) exact mass calculated for [M+Na] ($\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NaOS}$) requires m / z 271.1127, found $\mathrm{m} / \mathrm{z} 271.1127$.

((5aR,7R,9aR)-3,9a-dimethyl-4,5,5a,6,7,8,9,9a-octahydronaphtho[1,2-b]thiophen-7yl)methanol

From
(5aR,9aR)-3,9a-dimethyl-4,5,5a,6,7,8,9,9a-octahydronaphtho[1,2-b]thiophene-7carbaldehyde, general procedure I was followed to give, after flash chromatography (gradient from 85:15 to 75:25 hexanes/ethyl acetate) and semi-preparative HPLC (99:1 hexanes/isopropanol), a white solid.

IR (Film) 3424, 2925, 2856, 1685, 1641, 1594, 1460, 1429, 1150, $1058 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=6.70(\mathrm{~s}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=5.2,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.58-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.02$ $-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.57(\mathrm{~m}, 6 \mathrm{H}), 1.41-1.25(\mathrm{~m}, 3 \mathrm{H}), 1.20-1.12(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=148.7,136.2,133.1,116.7,68.4,43.1,41.0,39.2,36.9,31.0,25.6,25.0$, 24.8, 22.1, 14.3 ppm ; MS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]\left(\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NaOS}\right)$ requires m / z 273.1284, found $\mathrm{m} / \mathrm{z} 273.1273$.
(5aR,9aR)-9a-methyl-3-tosyl-4,5,5a,6,7,8,9,9a-octahydro-3H-benzo[e]indole-7-carbaldehyde (5f)

Racemic:
Prepared according to general procedure G from of (E)-5-methyl-2-methylene-8-(1-tosyl-1H-pyrrol-2-yl)oct-5-enal ($48 \mathrm{mg}, 0.13 \mathrm{mmol}$). The reaction was run for 5 h and ($5 \mathrm{a} R S, 9 \mathrm{a} R S$)-9a-
methyl-3-tosyl-4,5,5a,6,7,8,9,9a-octahydro-3H-benzo[e]indole-7-carbaldehyde was isolated as a white powder ($31 \mathrm{mg}, 0.084 \mathrm{mmol}, 65 \%$ yield, trans- $\alpha: \beta 4: 1$).

Asymmetric:
Prepared according to general procedure H from (E)-5-methyl-2-methylene-8-(1-tosyl-1H-pyrrol2 -yl)oct-5-enal ($42 \mathrm{mg}, 0.11 \mathrm{mmol}$). The reaction was run for 24 h and ($5 \mathrm{a} R, 9 \mathrm{a} R$)-9a-methyl-3-tosyl-4,5,5a, $6,7,8,9,9 \mathrm{a}$-octahydro-3H-benzo[e]indole-7-carbaldehyde was isolated as a white powder ($38 \mathrm{mg}, 0.10 \mathrm{mmol}, 90 \%$ yield, $93: 7 \mathrm{er}$, trans- $\alpha: \beta 4: 1$).
IR (Film) 3147, 3058, 2933, 2857, 2713, 1721, 1597, 1365, 1265, 1171, 1139, 1124, 1090, 1037, $813 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.65^{*}(\mathrm{~s}, 1 \mathrm{Hx} 0.2), 9.63(\mathrm{~s}, 1 \mathrm{H} \times 0.8), 7.65-7.61(\mathrm{~m}$, $2 \mathrm{H}), 7.29-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{Hx} 0.8), 7.13^{*}(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{Hx} 0.2), 6.12$ (d, $J=3.9 \mathrm{~Hz}, 1 \mathrm{Hx} 0.8$), $6.06(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H} \times 0.2$), $2.90-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.57(\mathrm{~m}, 1$ H x 0.8), 2.51-2.46* (m, $2 \mathrm{H} \times 0.2$), 2.41 ($\mathrm{s}, 3 \mathrm{H}$), $2.35-2.28$ (m, 1 Hx 0.8), 2.12-1.96 (m, 1 H), $1.96-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.21(\mathrm{~m}, 3 \mathrm{H}), 0.99^{*}(\mathrm{~s}, 3 \mathrm{H} \times 0.2), 0.95(\mathrm{~s}$, $2 \mathrm{H} x 0.8) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=205.5^{*}, 204.0,144.6,144.5^{*}, 136.5,136.4^{*}$, 134.3*, 134.3, 130.0*, 129.9, 127.2(*), 126.8(*), 121.1, 121.0*, 108.3, 108.2*, 50.7, 46.7*, 41.9, $39.2^{*}, 36.3,34.2^{*}, 33.6,33.5^{*}, 27.0,26.1^{*}, 25.4^{*}, 25.3,23.3,23.0^{*}, 21.6,21.2,20.4\left(^{*}\right), 20.0^{*}$, 19.9* ppm; MS (ESI) exact mass calculated for [M+Na] $\left(\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NNaO}_{3} \mathrm{~S}\right)$ requires $\mathrm{m} / \mathrm{z} 394.1447$, found $\mathrm{m} / \mathrm{z} 394.1431$.
((5aR,7R,9aR)-9a-methyl-3-tosyl-4,5,5a,6,7,8,9,9a-octahydro-3H-benzo[e]indol-7yl)methanol

From $\quad((5 \mathrm{a} R, 9 \mathrm{a} R)-9 \mathrm{a}-$ methyl-3-tosyl-4,5,5a,6,7,8,9,9a-octahydro-3H-benzo[e]indole-7carbaldehyde, general procedure I was followed to give, after flash chromatography (gradient from 85:15 to 75:25 hexanes/ethyl acetate) and semi-preparative HPLC (99:1 hexanes/isopropanol), a white solid.

IR (Film) 3388, 2925, 2854, 1453, 1412, 1261, 1141, $1090 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.64(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=3.2 \mathrm{~Hz}$, 1 H), 3.49 (dd, $J=6.4,6.4 \mathrm{~Hz}, 2 \mathrm{H}$), $2.84-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.95$ $-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.26(\mathrm{~m}, 4 \mathrm{H}), 1.12-1.03(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H})$ $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=144.4,136.6,135.0,129.9,127.3,126.8,121.0,108.5$, 68.5, 42.3, 41.0, 36.9, 33.9, 30.6, 25.6, 24.6, 23.4, 21.6, 20.6 ppm ; MS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]\left(\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NNaO}_{3} \mathrm{~S}\right)$ requires $\mathrm{m} / \mathrm{z} 396.16039$, found $\mathrm{m} / \mathrm{z} 396.16057$.

Racemic:
Prepared according to general procedure G from of (E)-8-(furan-2-yl)-5-methyl-2-methyleneoct5 -enal ($10 \mathrm{mg}, 0.045 \mathrm{mmol}$). The reaction was run for 5 h and ($5 \mathrm{a} R S, 9 \mathrm{a} R S$)-9a-methyl-4,5,5a,6,7,8,9,9a-octahydronaphtho[2,1-b]furan-7-carbaldehyde was isolated as a colourless oil ($2.9 \mathrm{mg}, 0.013 \mathrm{mmol}, 29 \%$ yield, trans $-\alpha: \beta 4: 1$).
Asymmetric:
Prepared according to general procedure H from (E)-8-(furan-2-yl)-5-methyl-2-methyleneoct-5enal ($47 \mathrm{mg}, 0.22 \mathrm{mmol}$) with catalyst The reaction was run for 24 h and ($5 \mathrm{a} R, 9 \mathrm{a} R$) -9 a -methyl-4,5,5a,6,7,8,9,9a-octahydronaphtho[2,1-b]furan-7-carbaldehyde was isolated as a colourless oil ($22 \mathrm{mg}, 0.10 \mathrm{mmol}, 47 \%$ yield, $90: 10 \mathrm{er}$, trans $-\beta: \alpha 4: 1$).
IR (Film) $v=2929,2854,1721,1614,1368,1279,1138 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.70^{*}$ ($\mathrm{s}, 1 \mathrm{Hx} 0.2$), 9.67 ($\mathrm{s}, 1 \mathrm{H} \times 0.8$), 7.23 ($\mathrm{s}, 1 \mathrm{H} \times 0.8$) 7.19* ($\mathrm{s}, 1 \mathrm{H} \times 0.2$), 6.23 ($\mathrm{s}, 1 \mathrm{H} \times 0.8$), 6.18* (s, $1 \mathrm{H} x 0.2$), $2.68-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.05-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.86(\mathrm{~m}, 1$ $\mathrm{H}), 1.84-1.56(\mathrm{~m}, 5 \mathrm{H}), 1.47-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.06^{*}(\mathrm{~s}, 3 \mathrm{H} x 0.2), 1.02(\mathrm{~s}, 3 \mathrm{H} \times 0.8) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=205.4^{*}, 204.1,148.9,148.8^{*}, 140.7$, 140.6*, 128.0, 127.9*, 107.1, $107.0^{*}, 50.9,46.8^{*}, 42.8,40.1^{*}, 36.4,34.4^{*}, 33.3,33.1^{*}, 27.1,26.2^{*}, 25.6^{*}, 25.5,23.4,23.3^{*}$, $21.2,20.2,20.0^{*}, 19.7^{*} \mathrm{ppm}$; HRMS (APCI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 219.13796$, found $\mathrm{m} / \mathrm{z} 219.13728$.
((5aR,7R,9aR)-9a-methyl-4,5,5a,6,7,8,9,9a-octahydronaphtho[2,1-b]furan-7-yl)methanol

From $\quad(5 \mathrm{a} R, 9 \mathrm{a} R)$-9a-methyl-4,5,5a,6,7,8,9,9a-octahydronaphtho[2,1-b]furan-7-carbaldehyde, general procedure I was followed to give, after flash chromatography (gradient from 85:15 to 75:25 hexanes/ethyl acetate) and semi-preparative HPLC (99:1 hexanes/isopropanol), a white solid.
IR (Film) 3435, 2928, 2854, 1683, 1594, 1460, 1429, 1149, $1060 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.23(\mathrm{~m}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{t}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.67-2.64(\mathrm{~m}, 2 \mathrm{H})$, $1.94(\mathrm{dt}, J=12.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.44-1.26(\mathrm{~m}, 4 \mathrm{H}), 1.17-1.10(\mathrm{~m}, 1 \mathrm{H})$, $1.01(2,3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=149.0,140.5,128.4,107.2,68.5,43.2,41.1$, $36.9,33.5,30.6,25.7,24.5,23.5,20.3 \mathrm{ppm}$; MS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]$ $\left(\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NaO}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 243.1356$, found $\mathrm{m} / \mathrm{z} 243.1346$.
(4aR,11cR)-11c-methyl-1,2,3,4,4a,5,6,11c-octahydronaphtho[2,1-b]benzofuran-3carbaldehyde (5h)

Racemic:
Prepared according to general procedure G from (E)-8-(benzofuran-3-yl)-5-methyl-2-methyleneoct-5-enal ($31 \mathrm{mg}, 0.11 \mathrm{mmol}$). The reaction was run for 5 h and ($4 \mathrm{a} R S, 11 \mathrm{c} R S$)-11c-methyl-1,2,3,4,4a,5,6,11c-octahydronaphtho[2,1-b]benzofuran-3-carbaldehyde was isolated as a colourless oil ($27 \mathrm{mg}, 0.10 \mathrm{mmol}, 89 \%$ yield, trans- $\alpha: \beta 4: 1$).

Asymmetric:
Prepared according to general procedure H from (E)-8-(benzofuran-3-yl)-5-methyl-2-methyleneoct-5-enal ($43 \mathrm{mg}, 0.16 \mathrm{mmol}$). The reaction was run for 30 h and $(4 \mathrm{a} R, 11 \mathrm{c} R)-11 \mathrm{c}-$ methyl-1,2,3,4,4a,5,6,11c-octahydronaphtho[2,1-b]benzofuran-3-carbaldehyde was isolated as a colourless oil ($35 \mathrm{mg}, 0.13 \mathrm{mmol}, 81 \%$ yield, $92: 8$ er, trans- $\alpha: \beta 9: 1$).
IR (Film) 3058, 2930, 2858, 2709, 1721, 1612, 1244, $1153 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 9.73* (s, 1 Hx 0.1), 9.69 ($\mathrm{s}, 1 \mathrm{Hx} 0.9$), $7.42-7.37$ (m, 2 H), $7.23-7.17$ (m, 2 H), 2.72-2.53 (m,
 2.06* (m, 1 H x 0.1), $2.00-1.96\left(\mathrm{~m}, 1 \mathrm{H} \mathrm{x} \mathrm{0.9)} 1.84-,1.64(\mathrm{~m}, 5 \mathrm{H}), 1.60-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.23^{*}\right.$ (s, 3 Hx 0.1), 1.19 ($\mathrm{s}, 3 \mathrm{Hx} 0.9$) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=205.1^{*}$, 203.8, 161.0, 161.0*, 154.4, 154.4*, 128.8, 128.8*, 123.1, 123.0*, 122.1, 122.1*, 118.6, 118.6*, 111.0, 110.9*, $110.4,110.4^{*}, 50.7,46.7^{*}, 43.4,40.6^{*}, 35.6,35.4^{*}, 33.6,31.7^{*}, 26.6,26.6^{*}, 25.7^{*}, 25.5,20.9$, 20.4, 20.3*, 19.7*, 18.2, 17.7* ppm; MS (ESI) exact mass calculated for [M+Na] ($\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NaO}_{2}$) requires $\mathrm{m} / \mathrm{z} 291.1356$, found $\mathrm{m} / \mathrm{z} 291.1348$.
($(3 R, 4 a R, 11 c R)-11 \mathrm{c}-m e t h y l-1,2,3,4,4 a, 5,6,11 \mathrm{c}-\mathrm{c}$ (ahydronaphtho[2,1-b]benzofuran-3yl)methanol

From
(4aR,11cR)-11c-methyl-1,2,3,4,4a,5,6,11c-octahydronaphtho[2,1-b]benzofuran-3carbaldehyde, general procedure I was followed to give, after flash chromatography (gradient from 85:15 to 75:25 hexanes/ethyl acetate) and semi-preparative HPLC (99:1 hexanes/isopropanol), a white solid.

IR (Film) 3373, 2926, 2856, 1690, 1596, 1452, 1152, $1051 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ $7.40-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.16(\mathrm{~m}, 2 \mathrm{H}), 3.56-3.54(\mathrm{~m}, 2 \mathrm{H}), 2.68-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.26$ $(\mathrm{m}, 1 \mathrm{H}), 1.81-1.60(\mathrm{~m}, 6 \mathrm{H}), 1.58-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.26(\mathrm{~m}, 1 \mathrm{H})$, 1.18 (s, 3 H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=161.9,154.4,128.9,122.9,122.0,118.5$, $110.9,110.3,68.4,43.8,41.0,35.8,34.2,30.2,25.7,24.3,20.6,18.3 \mathrm{ppm}$; MS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]\left(\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NaO}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 293.1512$, found m / z 293.1507.

(4aR,10aR)-4a,5,7-trimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-2-carbaldehyde (5i)

Racemic:
Prepared according to general procedure G from (E)-8-(3,5-dimethylphenyl)-5-methyl-2-methyleneoct-5-enal ($48 \mathrm{mg}, 0.18 \mathrm{mmol}$). The reaction was run for 5 h and ($4 \mathrm{a} R S, 10 \mathrm{a} R S$)-4a,5,7-trimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-2-carbaldehyde was isolated as a colourless oil (36, $0.14 \mathrm{mmol}, 75 \%$ yield, trans:cis 94:6, trans- $\alpha: \beta 5: 1$).

Asymmetric:
Prepared according to general procedure H with catalyst as the HCl salt, from $(E)-8$ - $(3,5-$ dimethylphenyl)-5-methyl-2-methyleneoct-5-enal ($9.0 \mathrm{mg}, 0.035 \mathrm{mmol}$). The reaction was run for 19 h and $(4 \mathrm{a} R, 10 \mathrm{a} R)-4 \mathrm{a}, 5,7$-trimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-2-carbaldehyde was isolated as a colourless oil ($3.6 \mathrm{mg}, 0.014 \mathrm{mmol}, 36 \%$ yield, $66: 34 \mathrm{er}$, trans:cis $96: 4$, trans$\alpha: \beta 4: 1)$.
IR (Film) 3050, 2973, 2926, 2860, 2712, 1722, 1611, 1463, 1440, 1382, 1266, 1166, 1044, 1016, 911, 849, 734, 703, $611 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.73 *(\mathrm{~s}, 1 \mathrm{H} \mathrm{x} \mathrm{0.2)} ,9.68(\mathrm{~d}, J=$ $1.5 \mathrm{~Hz}, 1 \mathrm{Hx} 0.8$), 6.79 ($\mathrm{s}, 1 \mathrm{Hx} 0.8$), 6.78 ($\mathrm{s}, 1 \mathrm{Hx} 0.8$), $6.76^{*}(\mathrm{~s}, 1 \mathrm{Hx} 0.2), 6.75^{*}(\mathrm{~s}, 1 \mathrm{Hx} 0.2)$, 3.02 - 2.91* (m, 1 Hx 0.2), 2.99 (ddd, $J=16.9,12.2,7.6 \mathrm{~Hz}, 1 \mathrm{H} x 0.8$), 2.87 (dt, $J=13.4,3.4$ $\mathrm{Hz}, 1 \mathrm{H} x 0.8$), 2.80 (dd, $J=17.0,6.0 \mathrm{~Hz}, 1 \mathrm{Hx} 0.8$), $2.80-2.74^{*}\left(\mathrm{~m}, 1 \mathrm{H} \times 0.2\right.$), 2.66^{*} (dt, $J=$ $13.5,2.7 \mathrm{~Hz}, 1 \mathrm{Hx} 0.2$), $2.50\left(\mathrm{~s}, 3 \mathrm{Hx} 0.8\right.$), 2.47^{*} ($\mathrm{s}, 3 \mathrm{Hx} 0.2$), $2.40-2.33(\mathrm{~m}, 1 \mathrm{H} \times 0.8), 2.40$
 -2.02* (m, $1 \mathrm{H} \times 0.2$), $1.95-1.88^{*}(\mathrm{~m}, 1 \mathrm{H} \times 0.2), 1.94-1.89$ (m, $1 \mathrm{H} \times 0.8$), $1.84-1.46^{*}(\mathrm{~m}, 3$ H x 0.2), $1.78-1.50$ (m, 6 H x 0.8), 1.39 (ddd, $J=13.5,13.5,3.6 \mathrm{~Hz}, 1 \mathrm{H} \times 0.8$), $1.31-1.27^{*}$ (m, 1 Hx 0.2), $1.27^{*}(\mathrm{~s}, 3 \mathrm{Hx} 0.2), 1.24(\mathrm{~s}, 3 \mathrm{Hx} 0.8) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=205.5^{*}$, 204.4, 142.0*, 141.9, 136.8, 136.8*, 136.2, 136.1*, 134.9, 134.8*, 131.8, 131.7*, 128.8, 128.7*, 50.3, 46.1*, 44.4, 41.6*, 38.5, 38.4*, 35.3, 33.2*, 31.7, 31.5*, 28.7, 27.8*, 25.8, 25.7*, 24.3, 24.2*, $22.0,20.9^{*}, 20.3,20.3^{*}, 17.4,16.9^{*} \mathrm{ppm}$; MS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]$ $\left(\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NaO}\right)$ requires m / z 279.1719, found $\mathrm{m} / \mathrm{z} 279.1713$.

VI. Additional derivatization and determination of absolute stereochemistry of polyene cyclization products

Absolute stereochemistry of trans-decalin via circular dichroism:

(4aR,10aR)-5,7-Dimethoxy-4a-methyl-3,4,4a,9,10,10a-hexahydrophenanthren-2(1H)-one was derived from enantioenriched $\mathbf{4 a}$ (66:34 er). ${ }^{26}$ A sample was dissolved in methanol and submitted to circular dichroism spectroscopy:

The negative Cotton effect near 275 nm is consistent with that of a trans-2-decalone with the absolute stereochemistry shown, as deduced by performing an octant-rule analysis ${ }^{27}$:

This octant-rule determination was further supported by calculation (td/aug-cc-pvdz//M06-2x/6$311 \mathrm{~g}(\mathrm{~d}, \mathrm{p})$ with $\mathrm{SCRF}=\mathrm{MeOH})$:

${ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

${ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}, 125 \mathrm{MHz}$

${ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

${ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}, 125 \mathrm{MHz}$

	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30

COSY, DMSO- $\mathrm{d}_{6}, 80^{\circ} \mathrm{C}$

HSQC, DMSO- $\mathrm{d}_{6}, 80^{\circ} \mathrm{C}$

HMBC, DMSO- $\mathrm{d}_{6}, 80^{\circ} \mathrm{C}$

$\stackrel{\stackrel{\infty}{\infty}}{\stackrel{\infty}{\infty}} \stackrel{n}{\infty}$

${ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}, 125 \mathrm{MHz}$

${ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

${ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

${ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}, 125 \mathrm{MHz}$

VIII. Diastereomeric ratios of decalin products

racemic

${ }^{1} \mathrm{H}$ NMR $\left(800 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)$
trans:cis 96:4, trans- $\beta: \alpha 4: 1$

5c

IX. HPLC chromatograms of asymmetric polyene cyclization products

In all cases, HPLC was run on either a Daicel Chiralcel OJ-H or Chiral OD column, flow rate was $1 \mathrm{~mL} / \mathrm{min}$ and UV absorbance was observed at 220 nm .

Aldehydes were derivatized to the corresponding α and β alcohols by reduction with NaBH_{4} in MeOH . As the enantiomeric ratio differed between the α and β alcohols in some cases, the overall enantiomeric ratio was calculated as follows:

Enantiomeric excess $=\left[\left(\right.\right.$ area of maJor HPLC peak of α alcohol $x^{1} H$ NMR ratio of α aldehyde) + (area of maJor HPLC peak of β alcohol $x^{1} \mathrm{H}$ NMR ratio of β aldehyde)) - (area of minor HPLC peak of α alcohol ${ }^{1} \mathrm{H}$ NMR ratio of α aldehyde) + area of minor HPLC peak of β alcohol $\mathrm{x}{ }^{1} \mathrm{H}$ NMR ratio of β aldehyde))]/total peak area

95:5 hexanes/iPrOH, Daicel Chiralcel OJ-H, $1 \mathrm{~mL} / \mathrm{min}$
Racemic:


```
|
```

Asymmetric:

93:7 hexanes/iPrOH, Daicel Chiralcel OJ-H, $1 \mathrm{~mL} / \mathrm{min}$
Racemic:

Asymmetric:

90:10 hexanes $/ \mathrm{iPrOH}$, Daicel Chiralcel OJ-H, $1 \mathrm{~mL} / \mathrm{min}$

Racemic:

Asymmetric:

95:5 hexanes $/ \mathrm{iPrOH}$, Daicel Chiralcel OJ-H, $1 \mathrm{~mL} / \mathrm{min}$

Racemic:

Asymmetric:

95:5 hexanes/iPrOH, Daicel Chiralcel OJ-H, $1 \mathrm{~mL} / \mathrm{min}$

Racemic:

Asymmetric:

95:5 hexanes/iPrOH, Daicel Chiralcel OJ-H, $1 \mathrm{~mL} / \mathrm{min}$

Racemic:

Asymmetric:

95:5 hexanes/iPrOH, Daicel Chiralcel OJ-H, $1 \mathrm{~mL} / \mathrm{min}$

Racemic:

Asymmetric:

97:3 hexanes/iPrOH, Daicel Chiralcel OJ-H, $1 \mathrm{~mL} / \mathrm{min}$

Racemic:

Asymmetric:

99.4:0.6 hexanes/iPrOH, Daicel Chiralcel OJ-H, $1 \mathrm{~mL} / \mathrm{min}$

Racemic:

Asymmetric:

99.4:0.6 hexanes/iPrOH, Daicel Chiralcel OJ-H, $1 \mathrm{~mL} / \mathrm{min}$

Racemic:

Asymmetric:

80:20 hexanes/iPrOH, Daicel Chiralcel OJ-H, $1 \mathrm{~mL} / \mathrm{min}$

Racemic:

Asymmetric:

95:5 hexanes/iPrOH, Daicel Chiralcel OJ-H, $1 \mathrm{~mL} / \mathrm{min}$

Racemic:

Asymmetric:

97:3 hexanes $/ \mathrm{iPrOH}$, Daicel Chiralcel OJ-H, $1 \mathrm{~mL} / \mathrm{min}$

Racemic:

Asymmetric:

97:3 hexanes/iPrOH, Daicel Chiralcel OJ-H, $1 \mathrm{~mL} / \mathrm{min}$

Racemic:

Asymmetric:

95:5 hexanes $/ \mathrm{iPrOH}$, Daicel Chiralcel OJ-H, $1 \mathrm{~mL} / \mathrm{min}$

Racemic:

Asymmetric:

95:5 hexanes $/ \mathrm{iPrOH}$, Daicel Chiralcel OJ-H, $1 \mathrm{~mL} / \mathrm{min}$

Racemic:

Asymmetric:

97:3 hexanes/iPrOH, Daicel Chiralcel OJ-H, $1 \mathrm{~mL} / \mathrm{min}$
Enantiomeric excess $=($ area of maJor HPLC peak of α alcohol - area of minor HPLC peak of α alcohol)/total peak area

Racemic:

Asymmetric:

X. References

1. D. Kaldre and J. L. Gleason, Angew. Chem. Int. Ed., 2016, 55, 11557-11561.
2. M. Frigerio, M. Santagostino and S. Sputore, J. Org. Chem., 1999, 64, 4537-4538.
3. R. K. Boeckman, P. Shao and J. J. Mullins, Org. Synth., 2000, 77, 141.
4. C. L. Rand, D. E. Van Horn, M. W. Moore and E. Negishi, J. Org. Chem., 1981, 46, 4093-4096.
5. A. A. Vasil'Ev, L. Engman and E. P. Serebryakov, J. Chem. Soc., Perkin Trans. 1, 2000, 2211-2216.
6. G. A. Molander and A. R. Brown, J. Org. Chem., 2006, 71, 9681-9686.
7. J. C. Roberts and J. A. Pincock, J. Org. Chem., 2006, 71, 1480-1492.
8. S. Movahhed, J. Westphal, M. Dindaroğlu, A. Falk and H.-G. Schmalz, Chem. Eur. J., 2016, 22, 7381-7384.
9. V. Resch, H. Lechner, J. H. Schrittwieser, S. Wallner, K. Gruber, P. Macheroux and W. Kroutil, Chem. Eur. J., 2012, 18, 13173-13179.
10. G. Médard, Tetrahedron, 2014, 70, 186-196.
11. T. K. Britten and M. G. McLaughlin, J. Org. Chem., 2020, 85, 301-305.
12. M. W. Gribble, M. T. Pirnot, J. S. Bandar, R. Y. Liu and S. L. Buchwald, J. Am. Chem. Soc., 2017, 139, 2192-2195.
13. L. R. Odell, J. Lindh, T. Gustafsson and M. Larhed, Eur. J. Org. Chem., 2010, 2010, 2270-2274.
14. L. Fan, C. Han, X. Li, J. Yao, Z. Wang, C. Yao, W. Chen, T. Wang and J. Zhao, Angew. Chem. Int. Ed., 2018, 57, 2115-2119.
15. Y. Henmi, K. Makino, Y. Yoshitomi, O. Hara and Y. Hamada, Tetrahedron: Asymmetry, 2004, 15, 3477-3481.
16. B. List, J. Am. Chem. Soc., 2002, 124, 5656-5657.
17. N. O. Häggman, B. Zank, H. Jun, D. Kaldre and J. L. Gleason, Eur. J. Org. Chem., 2018, 2018, 5412-5416.
18. T. Higuchi, K. Matsumoto, K. Hatano and N. Umezawa, Synthesis, 2004, 2004, 21812185.
19. A. C. Spivey, T. Fekner and S. E. Spey, J. Org. Chem., 2000, 65, 3154-3159.
20. K. Tiefenbacher, H. Dube, D. Ajami and J. Rebek, Chem. Commun., 2011, 47, 73417343.
21. G. E. Greco and R. R. Schrock, Inorg. Chem., 2001, 40, 3850-3860.
22. T.-Y. Zhao, K. Li, L.-L. Yang, S.-F. Zhu and Q.-L. Zhou, Org. Lett, 2021, 23, 38143817.
23. C.-J. Jang, J.-H. Ryu, J.-D. Lee, D. Sohn and M. Lee, Chem. Mater., 2004, 16, 42264231.
24. R. Takagi and Y. Yamasaki, Chem. Lett., 2021, 50, 1781-1783.
25. D. A. Everson, B. A. Jones and D. J. Weix, J. Am. Chem. Soc., 2012, 134, 6146-6159.
26. S. J. Plamondon, J. M. Warnica, D. Kaldre and J. L. Gleason, Angew. Chem. Int. Ed., 2020, 59, 253-258.
27. D. N. Kirk, Tetrahedron, 1986, 42, 777-818.
