Supplementary Materials for

Circularly polarized chemiluminescence from planarly chiral bis(adamantylidene-1,2-dioxetane)s

Minglin Shi, ${ }^{\text {ab }}$ Mo Xie, ${ }^{\text {c }}$ Shigang Wan, ${ }^{\text {b }}$ Chao Zou, ${ }^{\text {b }}$ Yuliang Liu, ${ }^{\text {b }}$ Xinyan Zhou, ${ }^{b}$ Peng Yang, ${ }^{b}$ Xiaoyong Chang, ${ }^{\text {b }}$ and Wei Lu* ${ }^{*}$
${ }^{\text {a }}$ School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, P. R. China
${ }^{\mathrm{b}}$ Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China. E-mail: luw@sustech.edu.cn
${ }^{\mathrm{c}}$ College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, Guangdong, P. R. China

Experimental Section

Materials. All starting materials were purchased from commercial sources and used as received. The solvents used for synthesis were of analytical grade unless stated otherwise. The solvents used for photophysical measurements were of HPLC grade. The reactions were performed at room temperature and under atmosphere unless states otherwise.

Characterization. ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$, COSY-NMR spectra were recorded with Bruker Avance 400 FTNMR, 500 FT-NMR and/or 600 FT-NMR with Prodigy Platform spectrometers. UV-vis absorption spectra were recorded on a Thermo Scientific Evolution 201 UV-visible Spectrophotometer (all the absorption data were recorded in a 1 cm cell). High resolution mass spectra (HR-MS) were obtained on a Thermo Scientific Q Exative mass spectrometer, operated in heated electrospray ionization (HESI) mode, coupled with Thermo Scientific Ultimate 3000 system (the HR-MS signals were very weak for some dioxetanes). Single crystal of 6R suitable for X-ray diffraction analysis was obtained by slowly evaporation of n-hexane/dichloromethane solution at ambient temperature. The diffraction data were collected on a Bruker D8 Venture single crystal X-ray diffractometer. The crystal was kept at 100 K during data collection. Using Olex2, the structure was solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the SHELXL refinement package using Least Squares minimization.

Measurement. Photoluminescent (PL) spectra were recorded via Edinburgh Spectrometer FLS-980 equipped with MCP-PMT detector. Emission lifetime measurements were performed with Hamamatsu compact fluorescence lifetime spectrometer C11367. Absolute photoluminescent quantum yields (PLQY) were recorded with Hamamatsu absolute PL quantum yield spectrometer C11347. Circularly polarized photoluminescence (CP-PL) and circularly polarized chemiluminescence (CP-CL) spectra were recorded on JASCO CPL-300 at rt. Electronic circular dichroism (ECD) spectra were recorded on Applied Photophysics Chirascan at rt. Chemiluminescent (CL) spectra and kinetic scans were recorded on FLS-980 with stirring and temperature controlling. The excitation Xe lamp was off when CL measurements were performed. CL spectra were recorded about 60 s after the dioxetane solution (in DMSO, $2 \mathrm{~mL}, 0.1 \mathrm{mM}$) was added TBAF solution (in DMSO, $0.4 \mathrm{~mL}, 1 \mathrm{mM}$ or 0.5 mM). The kinetic scans were started before the addition. CP-CL kinetic scans were started after a cuvette containing dioxetane solution (in DMSO, $0.8 \mathrm{~mL}, 0.5 \mathrm{mM}$) was added TBAF solution (in DMSO, $1.6 \mathrm{~mL}, 1 \mathrm{mM}$ or 0.5 mM). When CP-CL spectra were recorded, the slit of the excitation arm was adjusted to the minimum and the excitation beam was block with a mask.

Chemiluminescent quantum yields (CLQY) were recorded on Ultra Weak Chemiluminescent Analyzer

BPCL-GP21Q with tert-butyl(3-((1r,3r,5r,7r)-4'-methoxyspiro[adamantane-2,3'-[1,2]dioxetan]-4'yl)phenoxy) dimethylsilane (A0, Scheme S1) as standard ($\Phi_{\mathrm{CL}}=29 \%$). ${ }^{1}$ The records were started before dioxetane solution (in DMSO, $0.5 \mathrm{~mL}, 0.1 \mu \mathrm{M}$) was added TBAF solution (in DMSO, $0.5 \mathrm{~mL}, 1 \mathrm{mM}$).

Computational Methods

All calculations were performed with Gaussian 16 suite of program ${ }^{[2]}$ employing density functional theory (DFT) and time-dependent density functional theory (TDDFT). The hybrid functional M062 ${ }^{[3]}$ and triple zeta basis set $6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})^{[4]}$ were applied here. The geometries of complex $\mathbf{5 R}$ and $\mathbf{7 R}$ in ground state were full optimized based on the X-ray crystal structures. The singlet vertical excitation energy, rotatory strength and corresponding electron transitions as well as the frontier molecular orbital analysis was based on the ground state geometry. Based on the excitation energy, $\mathrm{E}_{\mathrm{n} \rightarrow \mathrm{m}}$, and rotatory strength, the electrostatic circular dichroisms were simulated using Gaussian functions. A full width at half-maximum (FWHM), that is, the broadening of each peak (individual transition) of 0.67 eV was applied.

Abstract

Abbreviations. $\mathbf{E t} \mathbf{3} \mathbf{N}$ - triethylamine, $\mathbf{P d}\left(\mathbf{P P h}_{3}\right)_{2} \mathbf{C l}_{\mathbf{2}}$ - bis(triphenylphosphine) palladium(II) chloride, $\mathbf{P d}(\mathbf{P h C N})_{2} \mathbf{C l}_{2}-\operatorname{bis}($ benzonitrile $)$ palladium chloride, $\mathbf{C u I}-\operatorname{Copper}(\mathrm{I})$ iodide, $\mathbf{E t}_{2} \mathbf{O}$ - diethyl ether, ${ }^{\boldsymbol{n}} \mathbf{B u L i}$ -n-butyllithium, THF - tetrahydrofuran, MeOH - methanol, DIPA - diisopropylamine, PE - petroleum ether, $\mathbf{E t O A c}$ - ethyl acetate, DMSO - dimethyl sulfoxide, $\mathbf{M g S O}_{4}$ - magnesium sulfate, $\mathbf{N a}_{2} \mathbf{S O}_{3}$ - sodium sulfite.

Synthesis and Characterization

The compounds tert-butyl(3-((1r,3r,5r,7r)-4'-methoxyspiro [adamantane-2,3'-[1,2]dioxetan]-4'yl)phenoxy)dimethylsilane (A0) ${ }^{5}$, 3-(((1r,3r,5R,7S)-adamantan-2-ylidene)(methoxy)methyl)-2-chloro-6iodophenol (A10) ${ }^{6},(R / S)$-4,12-diiodo[2.2]paracyclophane $(\mathbf{A 1 3})^{7},(R / S)$-4-iodo[2.2]paracyclophane (A14) ${ }^{7}$ and were prepared according to modified literature methods.

Ref

[1] Adam, W. et al. Photochem. Photobiol. 1996, 63, 463-467.
[2] M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision B.01, Gaussian Inc. Wallingford CT, 2016.
[3] Y. Zhao, D. G. Truhlar, J. Chem. Phy. 2006, 125, 194101.
[4] P. C. Hariharan, J. A. Pople, Theor. Chim. Acta 1973, 28, 213-222.
[5] Hisamatsu, S. et al. Tetrahedron 2017, 73, 3993-3998.
[6] Shabat, D. et al. ACS Cent Sci 2017, 3, 349-358.
[7] Lützen, A. et al. Eur. J. Org. Chem. 2013, 4523-4532.

Synthetic Procedures

Scheme S1 The synthetic procedures of dioxetane standard A0 and precursor A12.

Compound A1 and A5:

3-hydroxybenzaldehyde ($2.5 \mathrm{~g}, 20 \mathrm{mmol}$) was dissolved in methanol (20 mL), Trimethyl orthoformate (3.3 $\mathrm{ml}, 30 \mathrm{mmol}$) and tetrabutylammonium tribromide ($482 \mathrm{mg}, 1.0 \mathrm{mmol}$) were adde respectively. The mixture was stirred at room temperature and monitored by thin layer chromatography (TLC) until completion. After 4 h , the solution was diluted with EtOAc and washed with $0.01 \mathrm{M} \mathrm{NaHCO}_{3}(100 \mathrm{~mL})$. Organic phase was dried with anhydrous sodium sulfate, concentrated under reduced pressure and purified by column chromatography on silica gel (PE:EA $\left.=90: 10, R_{\mathrm{f}}=0.39\right)$ to afford $\mathbf{A 1}$ as a colorless oil ($3.12 \mathrm{~g}, 93 \%$ yield). The NMR data were matched with the literature's value. ${ }^{5}$ A5 was obtained by the same method as a colorless oil ($3.85 \mathrm{~g}, 95 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.04(\mathrm{~m}, 1 \mathrm{H})$, $5.76(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 6 \mathrm{H})$.

Compound A2 and A6:

Compound A1 ($3.02 \mathrm{~g}, 18 \mathrm{mmol}$) and imidazole ($2.45 \mathrm{~g}, 36 \mathrm{mmol}$) were dissolved in DCM (40 mL). Tertbutyldimethylsilyl chloride ($4.05 \mathrm{~g}, 27 \mathrm{mmol}$) was then added and the mixture was stirred and monitored by TLC. After 8 h , the white precipitate was filtered-off. The residue was evaporated under reduced pressure and purified by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=98: 2, R_{\mathrm{f}}=0.36$) to afford $\mathbf{A 2}$ as colorless oil. ($4.87 \mathrm{~g}, 96 \%$ yield). The NMR data were matched with the literature's value. ${ }^{5}$ A6 was obtained by the same method as a colorless oil ($5.48 \mathrm{~g}, 96 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.17(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 6 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 0.25(\mathrm{~s}$, 6 H).

Compound A3 and A7:

Compound A2 ($4.51 \mathrm{~g}, 16 \mathrm{mmol}$) and trimethyl phosphite ($2.45 \mathrm{ml}, 20.8 \mathrm{mmol}$) were dissolved in DCM (80 mL). Reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ and titanium (IV) chloride ($2.11 \mathrm{ml}, 19.2 \mathrm{mmol}$) was added dropwise. The solution was monitored by TLC. After 7 h , the reaction mixture was poured into the suspension of celite (30 g) in $\mathrm{DCM}(100 \mathrm{~mL})$, after stirring 10 min , saturated NaHCO_{3} solution $(10 \mathrm{~mL})$ was added at $0{ }^{\circ} \mathrm{C}$. The mixture stirred for 1 h before filtered, the filtrate was added saturated NaHCO_{3} solution $(80 \mathrm{~mL})$ and stirred for 30 min , then the phases were separated. Organic phase was dried with anhydrous sodium sulfate, concentrated under reduced pressure and purified by column chromatography on silica gel (PE:EA 50:50, $R_{\mathrm{f}}=0.45$) to afford $\mathbf{A 3}$ as colorless oil ($5.41 \mathrm{~g}, 94 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.24(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{q}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.80(\mathrm{~m}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.67(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.20(\mathrm{~s}, 6 \mathrm{H})$. A7 was obtained by the same method as a colorless oil ($5.86 \mathrm{~g}, 93 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.30(\mathrm{dt}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dt}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.81(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.67(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 0.25(\mathrm{~s}, 6 \mathrm{H})$.

Compound A4 and A8:

Compound A3 ($5.04 \mathrm{~g}, 14 \mathrm{mmol}$) was dissolved in anhydrous THF (60 mL) under argon atmosphere at $78{ }^{\circ} \mathrm{C}$. LDA (2.0 M in THF, $9.0 \mathrm{ml}, 18 \mathrm{mmol}$) was added and the solution was stirred for about 20 minutes. A solution of 2-adamantanone ($3.0 \mathrm{~g}, 20 \mathrm{mmol}$) in THF (20 mL) was added at the same temperature. The reaction was kept for 15 minutes and then warmed to room temperature slowly. The mixture was monitored by TLC. After 9 h , the solution was diluted with EtOAc and washed with brine. Organic phase was dried with anhydrous sodium sulfate, concentrated under reduced pressure and purified by column chromatography on silica gel (PE:EA 99:1, $R_{\mathrm{f}}=0.30$) to afford $\mathbf{A 4}$ as a white solid. ($4.08 \mathrm{~g}, 76 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.80-6.75(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H})$, $3.24(\mathrm{~s}, 1 \mathrm{H}), 2.63(\mathrm{~s}, 1 \mathrm{H}), 2.02-1.78(\mathrm{~m}, 12 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~s}, 6 \mathrm{H}) . \mathbf{A 8}$ was obtained by the same method as a white solid ($4.57 \mathrm{~g}, 78 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.14-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.90-6.88$ $(\mathrm{m}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~s}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 1 \mathrm{H}), 2.00-1.66(\mathrm{~m}, 12 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 0.25(\mathrm{~s}, 6 \mathrm{H})$.

Compound A0:

Compound A4 (76 mg, 0.2 mmol) and methylene blue (2 mg) were dissolved in DCM (4 mL). Oxygen was bubbled into the solution which was irradiated by a yellow light source (590 nm). The solution was monitored by TLC. After 15 min , the reaction mixture was purified by column chromatography on silica gel (PE:EA 98:2, $R_{\mathrm{f}}=0.35$) to afford A0 as a white solid ($75 \mathrm{mg}, 90 \%$ yield). The NMR data were matched with the literature's value. ${ }^{5}$

Compound A9:

Compound A8 ($5.03 \mathrm{~g}, 12 \mathrm{mmol}$) was dissolved in THF (30 mL). Tetrabutylammonium fluoride (1.0 M in THF, $13 \mathrm{~mL}, 13 \mathrm{mmol}$) was added. The solution was stirred at room temperature for 2 h . The solution was diluted with EtOAc and washed with $1 \mathrm{M} \mathrm{HCl}(15 \mathrm{~mL})$. Organic phase was dried with anhydrous sodium sulfate, concentrated under reduced pressure and purified by column chromatography on silica gel (PE:EA 95:5, $R_{\mathrm{f}}=0.30$) to afford $\mathbf{A 9}$ as a white solid ($3.03 \mathrm{~g}, 83 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20-7.16$ (m, 1H), 7.02 (dd, $J=8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}$, $1 \mathrm{H}), 2.04(\mathrm{~s}, 1 \mathrm{H}), 2.02-1.73(\mathrm{~m}, 12 \mathrm{H})$.

Compound A10:

Compound A9 (3.05 g, 10 mmol) was dissolved in 100 ml of toluene at $0{ }^{\circ} \mathrm{C}$. N-Iodosuccinimide (NIS) (2.48 $\mathrm{g}, 11 \mathrm{mmol}$) was added in several portions. Reaction was stirred for 4 hours at $0{ }^{\circ} \mathrm{C}$ and monitored by TLC. Before byproduct was formed, the reaction mixture was carefully purified by column chromatography on silica gel (PE:EA 95:5, $R_{\mathrm{f}}=0.34$) to afford $\mathbf{A 1 0}$ as white solid (1.38 g, 32\% yield). The unreacted $\mathbf{A 9}$ was recovered. A10: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~s}$, $1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~s}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 1 \mathrm{H}), 2.01-1.69(\mathrm{~m}, 12 \mathrm{H})$.

Compound A11:

Compound A10 (430 mg, 1 mmol) was dissolved in $\mathrm{Et}_{3} \mathrm{~N}(5 \mathrm{ml})$, then $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(35 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathrm{CuI}(9.5 \mathrm{mg}, 0.05 \mathrm{mmol})$ were added successively under nitrogen atmosphere. A solution of trimethylsilylacetylene ($150 \mathrm{mg}, 1.5 \mathrm{mmol}$) in THF (5 ml) was injected to the flask. The mixture was stirred at room temperature, monitored by TLC. After 10 h , the reaction mixture was concentrated and purified by column chromatography $\left(\mathrm{PE}: \mathrm{EA}=95: 5, R_{\mathrm{f}}=0.45\right)$ to give the desired product $\mathbf{A 1 1}(333 \mathrm{mg}, 83 \%$ yield $)$ as pale-yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~s}$,
$1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~s}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 1 \mathrm{H}), 1.96-1.69(\mathrm{~m}, 12 \mathrm{H}), 0.30(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 153.2,139.4,136.6,132.1,129.6,123.3,120.8,110.4,102.6,98.6,57.1,39.1,39.0,38.6,38.6$, 37.1, 32.9, 29.7, 28.4, 28.2, -0.1 . HRMS (ESI) m/z : $[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{ClO}_{2} \mathrm{Si}^{+}$, 401.1704; found, 401.1697.

Compound A12:

Compound A11 (200 mg, 0.5 mmol) was dissolved in MeOH/THF ($5 \mathrm{~mL} / 5 \mathrm{~mL}$). Potassium carbonate (345 $\mathrm{mg}, 2.5 \mathrm{mmol}, 5.0$ equiv.) was added to the solution, then the mixture was stirred at room temperature overnight. TLC was used to indicate completion of the reaction. After 9 h , the mixture was filtered through celite and washed with EtOAc. The filtrate was washed with 0.1 M HCl . The organic layer was dried by anhydrous sodium sulfate, concentrated, and used for next step without further purification. The obtained residue was dissolved in $5 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, then imidazole ($68 \mathrm{mg}, 1 \mathrm{mmol}$, 2 equiv.) and ter-butyldimethylsilyl chloride ($113 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5$ equiv.) were added successively. White precipitate was produced immediately. The solution was stirred at room temperature and monitored by TLC. After 4 h , the precipitate was filtered off. The residue was concentrated under reduced pressure and purified by column chromatography (PE:EA = 98:2, $R_{\mathrm{f}}=0.45$) to afford a white solid $\mathbf{A 1 2}$ ($199 \mathrm{mg}, 90 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~s}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 1 \mathrm{H})$, $2.04-1.64(\mathrm{~m}, 13 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.30(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.5,139.7,136.9,131.5$, $131.2,127.0,124.4,115.6,82.4,80.9,56.9,39.1,39.0,38.6,38.5,37.1,32.9,29.6,28.4,28.3,26.0,25.7$, 18.8, $-2.9,-2.9,-3.6$. HRMS (ESI) m/z : $[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{ClO}_{2} \mathrm{Si}^{+}$, 443.2173; found, 443.2168 .

(R)-A14: $X=H, 80 \%$

Scheme S2 The synthetic procedures of chiral scaffold $(R / S)-\mathbf{A 1 3}$ and $(R / S)-\mathbf{A 1 4}$.

4,12-dibromo[2.2]paracyclophane ($366 \mathrm{mg}, 1 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$, then ${ }^{n} \mathrm{BuLi}(2.5 \mathrm{M}$ in hexane, $1.2 \mathrm{~mL}, 3 \mathrm{mmol})$ was added slowly by using a syringe and the solution was stirred for 20 min . Iodine ($1.02 \mathrm{~g}, 4 \mathrm{mmol}$) was added, then the solution was warmed to room temperature and stirred for 2 h . The reaction mixture was diluted with EtOAc and water and the layers separated. The organic layer was washed with $\mathrm{Na}_{2} \mathrm{SO}_{3}$, water, and brine, and dried with MgSO_{4}. The solvent was evaporated, and the crude product was purified by column chromatography on silica gel (EtOAc/PE, $1 \% ; R_{\mathrm{f}}=0.31$) to give the product $\mathbf{A 1 3}$ as a colorless powder.
(R)-4,12-diiodo[2.2]paracyclophane (R)-A13: 248 mg colourless powder, 54% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.56-6.49(\mathrm{~m}, 4 \mathrm{H}), 3.40-3.35(\mathrm{~m}, 2 \mathrm{H}), 3.16-3.05(\mathrm{~m}, 2 \mathrm{H}), 3.00-$ $2.89(\mathrm{~m}, 4 \mathrm{H})$. HRMS (ESI) m/z : [M-H] ${ }^{-}$calc. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{I}_{2}^{-}$, 458.9112; found, 458.9114 .
(S)-4,12-diiodo[2.2]paracyclophane (S)-A13: 239 mg colourless powder, 52% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.56-6.49(\mathrm{~m}, 4 \mathrm{H}), 3.40-3.35(\mathrm{~m}, 2 \mathrm{H}), 3.16-3.05(\mathrm{~m}, 2 \mathrm{H}), 3.00-$ $2.89(\mathrm{~m}, 4 \mathrm{H})$. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}-\mathrm{H}]^{-}$calc. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{I}_{2}{ }^{-}$, 458.9112; found, 458.9115 .

Compound (R / S)-A14:

4-bromo[2.2]paracyclophane ($287 \mathrm{mg}, 1 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ and cooled to 0 ${ }^{\circ} \mathrm{C}$, then ${ }^{n} \operatorname{BuLi}(2.5 \mathrm{~m}$ in hexane, $0.5 \mathrm{~mL}, 1.25 \mathrm{mmol})$ was added slowly by using a syringe and the solution was stirred for 10 min . Iodine ($381 \mathrm{mg}, 1.5 \mathrm{mmol}$) was added, then the solution was warmed to room temperature and stirred for 2 h . The reaction mixture was diluted with EtOAc and washed with water and the layers separated. The organic layer was washed with $\mathrm{Na}_{2} \mathrm{SO}_{3}$ aqueous solution, water, and brine, and dried with MgSO_{4}. The solvent was evaporated, and the crude product was purified by column chromatography on silica gel ($\mathrm{EA} / \mathrm{PE}, 1 \% ; R_{\mathrm{f}}=0.30$) to give the product A 14 as a white powder.
(R)-4-iodo[2.2]paracyclophane (R)-A14: 267 mg white solid, 80% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24$ (dd, $J=8.0 \mathrm{~Hz} 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.58-6.45(\mathrm{~m}, 4 \mathrm{H}), 6.41(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-$ $3.35(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.14-2.87(\mathrm{~m}, 6 \mathrm{H})$. HRMS (ESI) m/z : $[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{I}^{+}$, 335.0297; found, 335.0290.
(S)-4-iodo[2.2]paracyclophane (S)-A14: 284 mg white solid, 85% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24$ (dd, $J=8.0 \mathrm{~Hz} 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.58-6.45(\mathrm{~m}, 4 \mathrm{H}), 6.41(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.41-$ $3.35(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.15-2.88(\mathrm{~m}, 6 \mathrm{H})$. HRMS (ESI) m/z : $[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{I}^{+}$, 335.0297; found, 335.0292.

Scheme S3 The synthetic procedures of chiral dioxetanes 1R, 1S, 2R and 2S.

Compound $3 R / 3 S$ and $4 R / 4 S$:

A mixture of (R)-A13 ($46 \mathrm{mg}, 0.1 \mathrm{mmol}$), A12 ($97 \mathrm{mg}, 0.22 \mathrm{mmol}), \mathrm{Pd}(\mathrm{PhCN})_{2} \mathrm{Cl}_{2}(7.7 \mathrm{mg}, 0.02 \mathrm{mmol}),(t-$ $B u)_{3} \mathrm{P} \cdot \mathrm{HBF}_{4}(11.6 \mathrm{mg}, 0.04 \mathrm{mmol}), \mathrm{CuI}(1.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ was placed in a round-bottom flask equipped with magnetic stirring bar. After degassing the reaction mixture three times, dry THF (4 mL) and dry DIPA $(4 \mathrm{~mL})$ were added to the mixture via a syringe. The reaction was carried out at $70^{\circ} \mathrm{C}$ overnight. After the reaction mixture was cooled to room temperature, precipitates were removed by filtration, and the solvent was evaporated. The residue was purified by column chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc} /$ petroleum ether $=$ $1 / 50 \mathrm{v} / \mathrm{v}$ as an eluent, $\left.R_{\mathrm{f}}=0.21\right)$ to afford $\mathbf{3 R}(16.3 \mathrm{mg}, 15 \%)$ as a light brown solid, further purification was performed by prep-TLC. $\mathbf{3 S}$ ($15.3 \mathrm{mg}, 14 \%$) was prepared by same methods with (S)-A13 ($46 \mathrm{mg}, 0.1$ mmol) and A12 ($97 \mathrm{mg}, 0.22 \mathrm{mmol}$) as materials. $\mathbf{4 R}$ and $\mathbf{4 S}$ were prepared by same methods.

3R: 16.3 mg pale-yellow solid, 15% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47$ $-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~s}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~s}, 4 \mathrm{H}), 3.72-3.66$ $(\mathrm{m}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 6 \mathrm{H}), 3.28(\mathrm{~s}, 2 \mathrm{H}), 3.21-3.12(\mathrm{~m}, 4 \mathrm{H}), 2.91-2.86(\mathrm{~m}, 2 \mathrm{H})$, $2.13-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.71(\mathrm{~m}, 24 \mathrm{H}), 0.95(\mathrm{~s}, 18 \mathrm{H}), 0.24-0.21(\mathrm{~m}, 12 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.3,142.4,139.9,139.7,136.1,133.7,133.0$, $131.2,130.9,127.2,124.8,124.5,119.2,117.5,104.8,94.09,57.1,56.9,39.2,39.0,38.6,37.2,34.6,33.8$, 33.0, 29.6, 28.4, 28.3, 25.9, 22.7, 18.7, $-2.9,-3.3$. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calc. for $\mathrm{C}_{68} \mathrm{H}_{82} \mathrm{O}_{4} \mathrm{Cl}_{2} \mathrm{Si}_{2} \mathrm{Na}^{+}$, 1111.5026; found, 1111.5031.

3S: 15.3 mg pale-yellow solid, 14% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46$ - 7.43 (m, 2H), 7.08 (s, 2H), 6.90 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.57 (s, 4H), $3.72-3.67$ $(\mathrm{m}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 6 \mathrm{H}), 3.28(\mathrm{~s}, 2 \mathrm{H}), 3.21-3.12(\mathrm{~m}, 4 \mathrm{H}), 2.91-2.86(\mathrm{~m}, 2 \mathrm{H})$, $2.12-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.70(\mathrm{~m}, 24 \mathrm{H}), 0.95(\mathrm{~s}, 18 \mathrm{H}), 0.23-0.21(\mathrm{~m}, 12 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.3,142.5,139.9,139.7,136.1,133.9,133.0$,
$131.2,131.0,127.2,124.8,124.5,119.2,117.6,104.8,94.1,77.3,77.0,76.8,57.1,56.9,39.2,39.0,38.6$, $37.2,34.7,34.6,33.8,33.0,29.6,28.4,28.3,26.9,25.9,18.7,-2.9,-3.3$. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calc. for $\mathrm{C}_{68} \mathrm{H}_{82} \mathrm{O}_{4} \mathrm{Cl}_{2} \mathrm{Si}_{2} \mathrm{Na}^{+}$, 1111.5026; found, 1111.5019.

4R: 16.8 mg pale-yellow solid, 26% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.59-$ $6.45(\mathrm{~m}, 6 \mathrm{H}), 3.67(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.33-3.23$ $(\mathrm{m}, 2 \mathrm{H}), 3.17-3.05(\mathrm{~m}, 4 \mathrm{H}), 3.03-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~s}$, $1 \mathrm{H}), 2.06-1.73(\mathrm{~m}, 12 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}), 0.36-0.34(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 152.2,142.6$, 139.9, 139.7, 139.4, 139.3, 136.4, 136.2, 134.0, 133.2, 132.9, 132.7, 132.4, 131.2, 131.0, 130.3, 127.3, $124.8,124.6,117.5,94.4,90.2,56.9,39.2,39.0,38.6,38.6,37.2,35.5,35.2,34.5,34.4,33.0,29.6,28.4$, 28.3, 26.0, 25.9, 18.8, -3.0, -3.1.

4S: 18.2 mg pale-yellow solid, 28% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.48(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.59-6.44(\mathrm{~m}, 6 \mathrm{H}), 3.67(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 3 \mathrm{H})$, $3.32-3.22(\mathrm{~m}, 2 \mathrm{H}), 3.17-3.07(\mathrm{~m}, 4 \mathrm{H}), 3.05-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.96-2.87$ $(\mathrm{m}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 1 \mathrm{H}), 1.97-1.72(\mathrm{~m}, 12 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}), 0.35-0.33(\mathrm{~m}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.3,142.6,139.9,139.7,139.5,139.4,136.5,136.2,134.0,133.3$, $132.9,132.7,132.4,131.2,131.0,130.3,127.3,124.9,124.6,117.5,94.5,90.3,56.9,39.2,39.0,38.6,38.6$, $37.2,35.5,35.2,34.6,34.5,33.0,29.7,28.5,28.3,26.0,18.9,-3.0,-3.1$.

Compound 1R/1S and 2R/2S:

The dioxetanes were synthesized using photocatalytic oxidation pathway. Precursor 3R ($21.8 \mathrm{mg}, 0.02$ $\mathrm{mmol})$ and methylene blue $(\mathrm{MB}, 1 \mathrm{mg})$ were dissolved in of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml})$. Oxygen was bubbled into the solution which was irradiated by a yellow light source (590 nm) for 15 min . The reaction was monitored by TLC and purified by column chromatography ($\mathrm{PE}: \mathrm{EA}=20: 1, R_{\mathrm{f}}=0.20$) to obtain $\mathbf{1 R}$ as a mixture of three diastereoisomers which are same spots on TLC plate and difficult to separate by column chromatography, their structures are illustrated in Figure S2. 1S, 2R and 2S were obtained with same procedures.

1R: 15.0 mg white solid, 65% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~s}, 4 \mathrm{H})$, $3.71-3.66(\mathrm{~m}, 2 \mathrm{H}), 3.24-3.13(\mathrm{~m}, 10 \mathrm{H}), 3.02(\mathrm{~s}, 2 \mathrm{H}), 2.94-2.88(\mathrm{~m}, 2 \mathrm{H})$, $2.37-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 2 \mathrm{H}), 1.93-1.57(\mathrm{~m}, 22 \mathrm{H}), 0.97-0.93(\mathrm{~m}, 18 \mathrm{H})$, $0.24-0.18(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.9,152.9,142.6$, $142.6,139.7,139.7,134.0,134.0,133.9,133.8,133.4,133.3,133.2,131.4,131.3,131.2,125.6,124.8$, $124.5,119.4,119.4,119.4,112.4,105.1,96.4,96.4,95.2,95.1,90.2,90.1,90.1,77.3,77.0,76.8,49.6,49.6$, $44.6,42.4,39.3,39.0,38.8,36.7,34.8,34.6,33.9,33.9,33.8,33.5,32.7,32.7,32.3,32.3,32.3,31.6,31.5$, 29.7, 29.5, 26.9, 26.3, 26.2, 25.9, 25.9, 25.9, 25.8, 25.3, 23.0, 23.0, 21.2, 20.2, 19.2, 18.8, 18.7, 18.7, 14.4, 14.2, 11.4, $-2.8,-2.9,-2.9,-3.1,-3.1,-3.2,-3.2$. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\mathrm{C}_{68} \mathrm{H}_{83} \mathrm{Cl}_{2} \mathrm{O}_{8} \mathrm{Si}_{2}{ }^{+}$, 1153.5004; found, 1153.5021.

1S 14.1 mg white solid, 61% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~s}, 4 \mathrm{H})$, $3.72-3.66(\mathrm{~m}, 2 \mathrm{H}), 3.24-3.10(\mathrm{~m}, 10 \mathrm{H}), 3.02(\mathrm{~s}, 2 \mathrm{H}), 2.94-2.88(\mathrm{~m}, 2 \mathrm{H})$, $2.37-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 2 \mathrm{H}), 1.93-1.48(\mathrm{~m}, 22 \mathrm{H}), 0.96-0.93(\mathrm{~m}, 18 \mathrm{H})$, $0.24-0.18(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 153.0, 142.6, 139.7, $134.0,134.0,133.9,133.8,133.4,133.3,131.4,131.3,125.7,124.8,124.5,119.4,112.1,105.1,96.4,96.4$, $95.2,90.1,90.0,77.3,77.2,77.0,76.8,49.6,49.6,47.0,39.3,36.7,36.3,34.5,33.9,33.5,32.7,32.7,32.3$, $32.3,31.6,31.5,27.5,26.9,26.3,25.9,25.9,25.9,25.9,22.7,20.2,18.8,18.7,-2.9,-3.2,-3.2$. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}]^{+}$calc. for $\mathrm{C}_{68} \mathrm{H}_{83} \mathrm{Cl}_{2} \mathrm{O}_{8} \mathrm{Si}_{2}{ }^{+}, 1153.5004$; found, 1153.4999.

2R: 9.8 mg white solid, 72% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.62-6.47(\mathrm{~m}, 6 \mathrm{H}), 3.69$ $(\mathrm{t}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.32-3.24(\mathrm{~m}, 4 \mathrm{H}), 3.19-2.92(\mathrm{~m}, 7 \mathrm{H}), 2.39(\mathrm{~d}, J=13.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.17(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~d}, J=13.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.80-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.70-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.43-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.37-0.31(\mathrm{~m}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.8,142.8,142.8,139.8,139.4,139.4,139.3,136.5,136.4,134.0$, $133.2,133.2,133.2,132.7,132.4,132.4,131.3,130.4,130.3,125.7,124.8,124.5,124.5,119.4,112.0,96.4$, $95.5,95.5,89.8,89.7,77.3,77.0,76.7,49.6,36.6,35.5,35.2,34.5,34.4,33.9,33.5,32.7,32.6,32.3,31.6$, 31.5, 26.9, 26.2, 26.0, 25.8, 18.8, -2.9, -2.9, -3.0, -3.0.

2S: 9.1 mg white solid, 67% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79$ (d, $J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62-6.47(\mathrm{~m}$, $6 \mathrm{H}), 3.69(\mathrm{t}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-3.24(\mathrm{~m}, 4 \mathrm{H}), 3.19-2.92(\mathrm{~m}, 7 \mathrm{H}), 2.39$ $(\mathrm{d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.87$ $(\mathrm{d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.70-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.43-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 9 \mathrm{H})$, $0.36-0.31(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 152.8,142.8,142.8,139.8,139.4,139.4,139.3,136.5$, $136.4,134.0,133.2,133.2,133.2,132.7,132.4,132.4,131.3,130.4,130.3,125.7,124.8,124.5,124.5$, $119.4,112.0,96.4,95.5,95.5,89.8,89.7,77.3,77.2,77.0,76.7,49.6,36.6,35.5,35.2,34.5,34.4,33.9,33.5$, 32.7, 32.6, 32.3, 31.6, 31.5, 26.9, 26.2, 26.0, 26.0, 25.8, 18.8, -2.9, -2.9, -3.0, -3.0.

Figure S1 The chemical structures of three diastereoisomers of 1R.

Figure S2 The chemical structures of three diastereoisomers of $\mathbf{1 S}$.

Figure S3 The chemical structures of two diastereoisomers of 2R.

Figure S4 The chemical structures of two diastereoisomers of 2S.

Figure S5 Illustration of the diastereoisomer ratio determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{1 R}$.

Figure S6 Comparison of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: (a) $\mathbf{1 R}$ stored at rt for 5 days, (b) freshly prepared $\mathbf{1 R}$, and (c) the mixture of $\mathbf{1 R}$ heated at $100^{\circ} \mathrm{C}$ for 5 hours.

Figure $\mathbf{S} 7$ Illustration of the diastereoisomer ratio determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{1 S}$.

Figure S8 Comparison of ${ }^{1} \mathrm{H}$-NMR spectra between 4R and 2R.

Scheme S4 The chemiexcitation of $\mathbf{1 S}, \mathbf{2 R} / \mathbf{2 S}$ and synthetic procedures of $\mathbf{6 S}, \mathbf{8 R} / \mathbf{8 S}$.

Compound 6R/6S and $8 R / 8 S$:

To a solution of $\mathbf{1 R}(23.1 \mathrm{mg}, 0.02 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ was added TBAF $(0.2 \mathrm{~mL}, 1 \mathrm{M}$ in THF), light emitted immediately, and the mixture stirred for 60 min for completely conversion, then extracted with EtOAc and acidified with 1 M HCl . The organic layer was washed with brine, dried with MgSO_{4}. The solvent was evaporated, and the crude product was purified by column chromatography on silica gel (EA/PE, $20 \% ; R_{\mathrm{f}}=0.3$) to give $\mathbf{6 R}$ as pale-yellow solid. $\mathbf{6 S}, \mathbf{8 R}$ and $\mathbf{8 S}$ were prepared by same methods.

$6 R$

6R: 11.2 mg pale-yellow solid, 90% yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45$ $(\mathrm{s}, 4 \mathrm{H}), 7.16(\mathrm{~s}, 2 \mathrm{H}), 6.62-6.58(\mathrm{~m}, 4 \mathrm{H}), 6.53(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 6 \mathrm{H}), 3.70-3.65$ $(\mathrm{m}, 2 \mathrm{H}), 3.26-3.21(\mathrm{~m}, 2 \mathrm{H}), 3.11-3.06(\mathrm{~m}, 2 \mathrm{H}), 2.97-2.91(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.5,153.2,142.6,139.9,134.1,134.1,133.8,130.0$, $129.8,123.8,122.7,120.0,115.2,98.0,86.8,52.6,34.3,33.7$. HRMS (ESI) m/z : [M-H] calc. for $\mathrm{C}_{36} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{O}_{6}{ }^{-}, 623.1034$; found, 623.1036.

6S: 11.3 mg pale-yellow solid, 91% yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46$ (s, $4 \mathrm{H}), 7.16(\mathrm{~s}, 2 \mathrm{H}), 6.62-6.58(\mathrm{~m}, 4 \mathrm{H}), 6.52(\mathrm{~s}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 6 \mathrm{H}), 3.70-3.65(\mathrm{~m}$, $2 \mathrm{H}), 3.27-3.21(\mathrm{~m}, 2 \mathrm{H}), 3.12-3.07(\mathrm{~m}, 2 \mathrm{H}), 2.97-2.91(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.5,153.2,142.6,139.8,134.1,134.0,133.7,130.0$, 129.7, 123.7, 122.7, 120.0, 115.1, 97.9, 86.7, 52.6, 34.2, 33.6. HRMS (ESI) m / z : $[\mathrm{M}-\mathrm{H}]^{-}$calc. for $\mathrm{C}_{36} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{O}_{6}{ }^{-}, 623.1034$; found, 623.1037.

8R: 6.7 mg pale-yellow solid, 81% yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=8.0 \mathrm{~Hz} 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.63-$ $6.48(\mathrm{~m}, 6 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.26(\mathrm{~m}, 1 \mathrm{H})$, $3.16-2.89(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.5,153.1,142.9,140.0$, $139.5,139.4,137.1,134.1,133.7,133.4,132.8,132.4,130.1,129.8,123.8,122.8$, 120.0, 115.4, 98.3, 86.5, 52.6, 35.5, 35.1, 34.5, 34.3. HRMS (ESI) m/z : [M+H ${ }^{+}$calc. for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{ClO}_{3}{ }^{+}$, 417.1257; found, 417.1248.

8S: 6.2 mg pale-yellow solid, 75% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01$ (dd, $J=8.0 \mathrm{~Hz} 1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.63-6.48(\mathrm{~m}, 6 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.26$ $(\mathrm{m}, 1 \mathrm{H}), 3.16-2.89(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 165.5, 153.1, $142.9,140.0,139.5,139.4,137.1,134.1,133.7,133.4,132.8,132.4,130.1$, $129.8,129.8,123.8,122.8,120.0,115.4,98.3,86.5,52.6,35.5,35.1,34.5,34.3 . \operatorname{HRMS}(E S I) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$ calc. for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{ClO}_{3}{ }^{+}, 417.1257$; found, 417.1247.

NMR and HRMS Spectra

20190316- か-
10
0
0
1
1

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3})

9
0
0
1

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3})

20180813-C1-0/

$\underbrace{\sim} \underbrace{\sim} \underbrace{\sim}$

c ${ }^{\boldsymbol{\phi}}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

20190418-C1-7 ©OOM/2
$\stackrel{\Gamma}{\stackrel{\circ}{\circ}}$

-
$\stackrel{i}{i}$

${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3})

2 \#11-31 RT: 0.05-0.14 AV: 21 NL: 5.63E7
T: FTMS + p ESI Full ms [150.0000-1500.0000]

[^0]

1_20230711163932 \#5-54 RT: 0.05-0.55 AV: 25 NL: 6.24E3
T: FTMS + p ESI Full ms [100.0000-800.0000

2_20230711164211 \#4-41 RT: 0.05-0.42 AV: 19 NL: 3.16E4
T: FTMS + p ESI Full ms [100.0000-800.0000]

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

SML-2 \#5-22 RT: 0.05-0.23 AV: $9 \mathrm{NL}: 1.55 \mathrm{E} 5$
T: FTMS + p ESI Full ms [500.0000-2000.0000]

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

 -

${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3})

sml-1_20221228134445 \#64-90 RT: 0.62-0.86 AV: 13 NL: 7.59E3
T: FTMS +p ESI Full ms [500.0000-1500.0000]

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{+}{\circ}$ $\underbrace{N} \underset{N}{N}$ No

${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3})

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1

(

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

8S HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calc.
417.1247 for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{ClO}_{3}{ }^{+}, 417.1257$;

Table S1. Crystal Data of 6R

cxy3235_0m
Identification code
$\mathrm{C}_{36} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{O}_{6}$
Empirical formula
625.47

Formula weight
100.0

Temperature/K
Crystal system
Space group
orthorhombic
$P 2_{1} 2_{1} 2_{1}$
a / \AA
7.2696(4)
b / \AA
19.8223(11)
c / \AA
20.3510(11)
$\alpha{ }^{\circ}$
90
$\beta{ }^{\circ}{ }^{\circ} 90$
$\gamma /{ }^{\circ} \quad 90$
Volume $/ \AA^{3} \quad$ 2932.6(3)
$\mathrm{Z} \quad 4$
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3} \quad 1.417$
$\mu / \mathrm{mm}^{-1} \quad 2.395$
$\mathrm{F}(000) \quad 1296.0$
Crystal size $/ \mathrm{mm}^{3} \quad 0.35 \times 0.28 \times 0.22$
Radiation $\quad \mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection $/{ }^{\circ} 6.224$ to 136.768

Index ranges
$-8 \leq \mathrm{h} \leq 8,-23 \leq \mathrm{k} \leq 23,-24 \leq 1 \leq 24$
Reflections collected
Independent reflections $\quad 5386\left[R_{\text {int }}=0.0477, R_{\text {sigma }}=0.0307\right]$
Data/restraints/parameters 5386/0/401
Goodness-of-fit on $\mathrm{F}^{2} \quad 1.029$
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})] \quad R_{I}=0.0281, w R_{2}=0.0728$
Final R indexes [all data] $\quad R_{1}=0.0287, w R_{2}=0.0732$
Largest diff. peak/hole / e $\AA^{-3} 0.23 /-0.17$
Flack parameter
-0.001(6)

Chemiluminescent and Photophysical Parameters

Table S2. Chemiluminescent Parameters.

	$\begin{aligned} & \mathrm{t}_{1 / 2} \mathrm{abs}(1 \mathrm{eq} . \\ & \mathrm{TBAF}) \end{aligned}$	$\begin{aligned} & \mathrm{CL}^{\max } \\ & (\mathrm{nm}) \end{aligned}$	$\begin{aligned} & t_{1 / 2}^{\mathrm{CL}}(1 \mathrm{eq} . \\ & \mathrm{TBAF}) \end{aligned}$	$\mathrm{t}_{1 / 2}{ }^{\mathrm{CL}}(2 \mathrm{eq} .$ TBAF)	$g_{\text {CL }}$	$\Phi_{\text {CL }}(\%)$	$\Phi_{\text {S }}(\%)$
$\begin{aligned} & \hline 1 R \\ & 1 S \end{aligned}$	30 s	497	28 min	18 min	$\begin{aligned} & \hline+0.0011 \\ & -0.0010 \end{aligned}$	7	9.5
2R	25 s	497	18 min	7 min	$\begin{aligned} & \text { N. D. } \\ & \text { N. D. } \end{aligned}$	9	10.2

Table S3. Photophysical Parameters.

	$\lambda_{\text {abs }}{ }^{\text {max }}$ (nm)	$\mathrm{g}_{\text {abs }} / \times 10^{-3}(\lambda / \mathrm{nm})$	$\mathrm{PL}^{\text {max }}$ (nm)	$g_{\text {PL }}\left(10^{-3}\right)$	$\Phi_{P L}(\%)$
1R	325	+2.1(295), $0.0 .9(339),+4.0$ (365)	418	+3.3	66
1S		$-2.2(295),+1.0(339),-3.9$ (365)		-3.0	
2R	324	+3.3(266), -1.3(318), +0.4(357)	435	+0.6	10
2S		$-3.3(266),+1.2(318),-0.5(357)$		-0.5	
6R	332	+1.1(290), $-0.5(337),+2.1(374)$	417	+1.2	3
6S		$-1.1(290),+0.5(337),-2.1(374)$		-1.2	
8R	338	+2.5(268), -1.1(314)	428	+0.3	7
8S		-2.5(268), +1.1(314)		-0.3	

Table S4. Comparison of Photophysical Data of Mixtures with Different Sources.

Mixtures	$\lambda_{\text {abs }}(\mathrm{nm})$	$\mathrm{g}_{\text {abs }} / \times 10^{-3}(\lambda / \mathrm{nm})$	$\mathrm{PL}^{\max }(\mathrm{nm})$	$g_{\mathrm{PL}}\left(10^{-3}\right)$	$\Phi_{P L}(\%)$
$\mathbf{1 R + T B A F ~ (5 R)}$	314,422	$-0.7(333),+0.9(380),+1.0(451)$	497	+1.1	73
$\mathbf{6 R + T B A F}$	314,422	$-0.6(334),+0.9(380),+1.0(451)$	497	+1.1	74
1S+TBAF (5S)	314,422	$+0.6(333),-0.9(380),-1.1(452)$	497	-1.1	73
6S+TBAF	314,422	$+0.6(334),-0.8(378),-0.8(450)$	497	-1.1	73
2R+TBAF (7R)	314,423	$-1.6(314)$	497	+0.07	88
8R+TBAF	314,423	$-1.6(314)$	497	+0.07	87
2S+TBAF (7S)	314,423	$+1.6(314)$	497	-0.07	88
$\mathbf{8 S + T B A F ~}$	314,423	$+1.6(314)$	497	-0.07	89

Chemiluminescent Spectra

Figure S9 Chemiluminescent Spectra of dioxetanes 1R/1S and 2R/2S. The scan was started 60 s after 2 mL the dioxetane $\mathbf{1 R} / \mathbf{1 S}$ or $\mathbf{2 R} / \mathbf{2} \mathbf{S}$ in DMSO $(0.1 \mathrm{mM})$ was added 0.2 mL TBAF in DMSO (1 mM for $\mathbf{2}$ or 2 mM for $\mathbf{1}$).

Figure S10 The chemiluminescent kinetic profile (monitored at 500 nm) of $\mathbf{1 R}$ in 2 mL DMSO solution (0.1 mM) with the addition of different TBAF (2 mM in DMSO) (0.2 mL for $2.0 \mathrm{eq} . ; 0.3 \mathrm{~mL}$ for $3.0 \mathrm{eq} . ; 0.4 \mathrm{~mL}$ for 4.0 eq.) with stirring at 293 K .

Figure S11 The chemiluminescent kinetic profile (monitored at 500 nm) of 2R in 2 mL DMSO solution (0.1 $\mathrm{mM})$ with the addition of different TBAF (1 mM in DMSO) (0.2 mL for $1 \mathrm{eq} . ; 0.4 \mathrm{~mL}$ for 2 eq.$)$ with stirring at 293 K .

Figure S12 CP-CL DC value spectra of $\mathbf{1 R} / \mathbf{1 S}$ in DMSO $\left(5.0 \times 10^{-4} \mathrm{M}\right)$ after the addition of TBAF (2.0 equiv. per dioxetane group).

Figure S13 CP-CL DC value spectra of $\mathbf{2 R} / \mathbf{2 S}$ in DMSO $\left(5.0 \times 10^{-4} \mathbf{M}\right)$ after the addition of TBAF (2.0 equiv. per dioxetane group).

Figure S14 kinetic decay of CP-CL DC values at 500 nm of $\mathbf{1 R} / \mathbf{1 S}$ in DMSO $\left(5.0 \times 10^{-4} \mathrm{M}\right)$ after the addition of TBAF (2.0 equiv. per dioxetane group).

Absorption, CD, PL, and CPL Spectra of Dioxetanes and Benzoate Esters

Figure S15. Electronic absorption spectra of $\mathbf{1 R} / \mathbf{1 S}, \mathbf{6 R} / \mathbf{6 S}$ and $\mathbf{1 R}+$ TBAF (2 eq.) in $\operatorname{DMSO}\left(1 \times 10^{-5} \mathrm{M}\right)$ at 298 K.

Figure S16. Electronic absorption spectra of $\mathbf{1 R}, \mathbf{1 R}$ stored at rt for 5 days, $\mathbf{1 R}$ heated at $100{ }^{\circ} \mathrm{C}$ for 5 hours, $\mathbf{6 R}$ and $\mathbf{1 R}+$ TBAF (2 eq.) in $\operatorname{DMSO}\left(1 \times 10^{-5} \mathrm{M}\right)$ at 298 K

Figure S17. Electronic absorption spectra of the mixture of $\mathbf{6 R}$ with different amount TBAF in DMSO $\left(1 \times 10^{-5} \mathrm{M}\right)$ at 298 K .

Figure S18. Time-course of the UV-vis kinetic profile at 330,370 and 430 nm of the $\mathbf{1 R}\left(1 \times 10^{-5} \mathrm{M}\right.$ in DMSO) was added 2.0 equiv. TBAF.

Figure S19. ECD spectra $(\Delta \varepsilon)$ of $\mathbf{1 R} / \mathbf{1 S}, \mathbf{6 R} / \mathbf{6 S}$ in $\operatorname{DMSO}\left(1 \times 10^{-5} \mathrm{M}\right)$ at 298 K .

Figure S20. gabs vs wavelength of $\mathbf{1 R} / \mathbf{1 S}, \mathbf{6 R} / \mathbf{6 S}$ in $\operatorname{DMSO}\left(1 \times 10^{-5} \mathrm{M}\right)$ at 298 K .

Figure S21. Photoluminescence spectra of $\mathbf{1 R} / \mathbf{1 S}\left(\lambda_{\text {ex }}=330 \mathrm{~nm}\right), \mathbf{6 R} / \mathbf{6 S}\left(\lambda_{\mathrm{ex}}=330 \mathrm{~nm}\right)$ in DMSO $\left(1 \times 10^{-5}\right.$ M) at 298 K .

Figure S22. CP-PL spectra of $\mathbf{1 R} / \mathbf{1 S}\left(\lambda_{\mathrm{ex}}=320 \mathrm{~nm}\right), \mathbf{6 R} / \mathbf{6 S}\left(\lambda_{\mathrm{ex}}=320 \mathrm{~nm}\right)$ in DMSO $\left(1 \times 10^{-5} \mathrm{M}\right)$ at 298 K .

Figure S23. glum vs wavelength of $\mathbf{1 R} / \mathbf{1 S}, \mathbf{6 R} / \mathbf{6 S}$ in $\operatorname{DMSO}\left(1 \times 10^{-5} \mathrm{M}\right)$ at 298 K .

Figure S24. Electronic absorption spectra of $\mathbf{2 R} / \mathbf{2 S}, \mathbf{8 R} / \mathbf{8 S}$ and $\mathbf{2 R}+$ TBAF (1 eq .) in DMSO $\left(1 \times 10^{-5} \mathrm{M}\right)$ at 298 K.

Figure S25. Electronic absorption spectra of the mixture of $\mathbf{8 R}$ with different amount TBAF in DMSO $\left(1 \times 10^{-5} \mathrm{M}\right)$ at 298 K .

Figure S26. Time-course of the UV-vis kinetic profile at 322, 375 and 422 nm of the $\mathbf{2 R}\left(1 \times 10^{-5} \mathrm{M}\right.$ in DMSO) was added 1.0 equiv. TBAF.

Figure S27.The absorption kinetic profile comparison of $\mathbf{1 R}$ and $\mathbf{2 R}$ at certain wavelength.

Figure S28. ECD spectra $(\Delta \varepsilon)$ of $\mathbf{2 R} / \mathbf{2 S}, \mathbf{8 R} / \mathbf{8 S}$ in $\mathrm{DMSO}\left(1 \times 10^{-5} \mathrm{M}\right)$ at 298 K .

Figure S29. $\mathrm{g}_{\text {abs }}$ vs wavelength of $\mathbf{2 R} / \mathbf{2 S}, \mathbf{8 R} / \mathbf{8 S}$ in $\operatorname{DMSO}\left(1 \times 10^{-5} \mathrm{M}\right)$ at 298 K .

Figure S30. Photoluminescence spectra of 2R/2S $\left(\lambda_{\mathrm{ex}}=330 \mathrm{~nm}\right), \mathbf{8 R} / \mathbf{8 S}\left(\lambda_{\mathrm{ex}}=330 \mathrm{~nm}\right)$ in DMSO $\left(1 \times 10^{-5}\right.$ M) at 298 K .

Figure S31. CP-PL spectra of $\mathbf{2 R} / \mathbf{2 S}\left(\lambda_{\text {ex }}=320 \mathrm{~nm}\right), \mathbf{8 R} / \mathbf{8 S}\left(\lambda_{\mathrm{ex}}=320 \mathrm{~nm}\right)$ in DMSO $\left(1 \times 10^{-5} \mathrm{M}\right)$ at 298 K .

Figure S32. glum vs wavelength of $\mathbf{2 R} / \mathbf{2 S}, \mathbf{8 R} / \mathbf{8 S}$ in $\operatorname{DMSO}\left(1 \times 10^{-5} \mathrm{M}\right)$ at 298 K .

Spectral Comparison of Mixtures with Different Sources

Figure S33. Comparison of absorption spectra of the spent reaction mixtures of $\mathbf{1 R} / \mathbf{1 S}+$ TBAF ($\mathbf{5 R} / \mathbf{5 S}$) and 6R/6S+TBAF in DMSO $\left(1 \times 10^{-5} \mathrm{M}\right)$ at 298 K .

Figure S34. Comparison of photoluminescence spectra of the spent reaction mixtures of $\mathbf{1 R} / \mathbf{1 S}+\mathrm{TBAF}$ $(5 R / 5 S)\left(\lambda_{\text {ex }}=410 \mathrm{~nm}\right)$ and $\mathbf{6 R} / 6$ S + TBAF $\left(\lambda_{\text {ex }}=410 \mathrm{~nm}\right)$ in DMSO $\left(1 \times 10^{-5} \mathrm{M}\right)$ and chemiluminescence spectra of dioxetanes $\mathbf{1 R} / \mathbf{S}$ in $\operatorname{DMSO}\left(1 \times 10^{-4} \mathrm{M}\right)$ at 298 K after the addition of TBAF (1.0 equiv. per dioxetane group).

Figure S35. Comparison of glum plots of photoluminescence ($\lambda_{\mathrm{ex}}=310 \mathrm{~nm}$) of the spent reaction mixtures of $\mathbf{1 R} / \mathbf{1 S}+\mathrm{TBAF}(\mathbf{5 R} / \mathbf{5 S})$ and $\mathbf{6 R} / \mathbf{6 S}+\mathrm{TBAF}$ in DMSO $\left(1 \times 10^{-5} \mathrm{M}\right)$ and g_{CL} of $\mathbf{1 R} / \mathbf{1 S}$ in DMSO $\left(5 \times 10^{-4} \mathbf{~ M}\right)$ at 298 K after the addition of TBAF (2.0 equiv. per dioxetane group).

Figure S36. Comparison of absorption spectra of the spent reaction mixtures of $\mathbf{2 R} / \mathbf{2 S}+$ TBAF $(\mathbf{7 R} / \mathbf{7 S})$ and $\mathbf{8 R} / \mathbf{8 S}+\mathrm{TBAF}$ in DMSO $\left(1 \times 10^{-5} \mathrm{M}\right)$ at 298 K .

Figure S37. Comparison of ECD spectra of the spent reaction mixtures of $\mathbf{2 R} / \mathbf{2 S}+$ TBAF ($\mathbf{7 R} / \mathbf{7 S}$) and $\mathbf{8 R} / \mathbf{8 S}+\mathrm{TBAF}$ in DMSO $\left(1 \times 10^{-5} \mathrm{M}\right)$ at 298 K .

Figure S38. Comparison of $g_{\text {abs }}$ plots of the spent reaction mixtures of $\mathbf{2 R} / \mathbf{2 S}+$ TBAF (7R/7S) and $\mathbf{8 R} / \mathbf{8 S}+\mathrm{TBAF}$ in $\mathrm{DMSO}\left(1 \times 10^{-5} \mathrm{M}\right)$ at 298 K .

Figure S39. Comparison of photoluminescence spectra of the spent reaction mixtures of $\mathbf{2 R} / \mathbf{2 S}+\mathrm{TBAF}$ $(\mathbf{7 R} / 7 \mathbf{S})\left(\lambda_{\mathrm{ex}}=410 \mathrm{~nm}\right)$ and $\mathbf{8 R} / \mathbf{8 S}+\mathrm{TBAF}\left(\lambda_{\mathrm{ex}}=410 \mathrm{~nm}\right)$ in DMSO $\left(1 \times 10^{-5} \mathrm{M}\right)$ and chemiluminescence spectra of dioxetanes $\mathbf{2 R} / \mathbf{2 S}$ in DMSO $\left(1 \times 10^{-4} \mathrm{M}\right)$ at 298 K after the addition of TBAF (1.0 equiv. per dioxetane group).

Figure S40. Comparison of CP-PL spectra of the spent reaction mixtures of $\mathbf{2 R} / \mathbf{2 S}+$ TBAF $(\mathbf{7 R} / 7 \mathbf{S})\left(\lambda_{\mathrm{ex}}=\right.$ $310 \mathrm{~nm})$ and $\mathbf{8 R} / \mathbf{8 S}+$ TBAF $\left(\lambda_{\text {ex }}=310 \mathrm{~nm}\right)$ in DMSO $\left(1 \times 10^{-5} \mathrm{M}\right)$ at 298 K .

Figure S41. Comparison of gpl plots of the spent reaction mixtures of $\mathbf{2 R} / \mathbf{2 S}+$ TBAF ($\mathbf{7 R} / \mathbf{7 S}$) and $\mathbf{8 R} / \mathbf{8 S}+\mathrm{TBAF}$ in $\mathrm{DMSO}\left(1 \times 10^{-5} \mathrm{M}\right)$ at 298 K .

Computational Results

Figure S42. Frontier molecular orbitals of 5R.

номо

номо-з

HOMO-4

Figure S43. Frontier molecular orbitals of 7R.

Figure S44. Comparison of the experimental and calculated TDDFT (BHLYP/SV(P) with DMSO continuum solvent model) ECD spectra of $\mathbf{5 R}$.

Figure S45. Comparison of the experimental and calculated TDDFT (BHLYP/SV(P) with DMSO continuum solvent model) ECD spectra of $7 \mathbf{R}$.

Table S5. Calculated absorption wavelength and the corresponding rotatory strength and electron transitions of $\mathbf{5 R}$.

	Wavelength	Rotatory strength	Ele. Dip. S. a	Mag (v). Dip. S.		
		E.-M. angle c	Transition			
1	492.38 nm	123.54	9.5684	0.1146	19.33	$\mathrm{H} \rightarrow \mathrm{L}(52.6 \%), \mathrm{H} \rightarrow \mathrm{L}+1(17.5 \%)$
2	393.75 nm	42.53	0.1399	0.0029	79.45	$\mathrm{H} \rightarrow \mathrm{L}+1(44.1 \%), \mathrm{H} \rightarrow \mathrm{L}(29.3 \%)$
3	392.32 nm	-21.43	0.1798	0.0038	111.09	$\mathrm{H}-1 \rightarrow \mathrm{~L}+1(39.9 \%), \mathrm{H}-1 \rightarrow \mathrm{~L}(34.5 \%)$
4	359.96 nm	118.51	0.9397	0.0219	76.84	$\mathrm{H} \rightarrow \mathrm{L}+2(16.9 \%), \mathrm{H}-1 \rightarrow \mathrm{~L}+3(14.9 \%)$
6	356.03 nm	76.46	0.4041	0.0100	23.98	$\mathrm{H}-5 \rightarrow \mathrm{~L}+1(24.4 \%), \mathrm{H}-5 \rightarrow \mathrm{~L}(18.5 \%)$
7	355.10 nm	-139.46	2.8211	0.0745	170.00	$\mathrm{H} \rightarrow \mathrm{L}+7(35.6 \%), \mathrm{H} \rightarrow \mathrm{L}+4(22.1 \%)$
8	352.39 nm	70.8	0.3682	0.0084	70.72	$\mathrm{H}-3 \rightarrow \mathrm{~L}(28.7 \%), \mathrm{H}-5 \rightarrow \mathrm{~L}(8.4 \%)$
9	345.17 nm	-161.22	1.7900	0.0487	164.56	$\mathrm{H}-2 \rightarrow \mathrm{~L}(34.3 \%), \mathrm{H}-3 \rightarrow \mathrm{~L}+1(11.9 \%)$
10	325.02 nm	-12.32	0.0458	0.0015	129.7	$\mathrm{H}-9 \rightarrow \mathrm{~L}(25.9 \%), \mathrm{H}-9 \rightarrow \mathrm{~L}+1(19.0 \%)$
11	322.12 nm	38.75	0.0415	0.0014	10.77	$\mathrm{H} \rightarrow \mathrm{L}+3(28.2 \%), \mathrm{H}-6 \rightarrow \mathrm{~L}(13.6 \%)$
12	319.91 nm	-91.53	0.7575	0.0263	104.6	$\mathrm{H}-1 \rightarrow \mathrm{~L}+3(26.1 \%), \mathrm{H}-7 \rightarrow \mathrm{~L}(16.8 \%)$
13	316.48 nm	85.89	0.268	0.0095	57.51	$\mathrm{H} \rightarrow \mathrm{L}+4(54.7 \%), \mathrm{H}-6 \rightarrow \mathrm{~L}(13.4 \%)$
14	315.85 nm	21.79	0.2214	0.0078	79.87	$\mathrm{H}-1 \rightarrow \mathrm{~L}+4(56.2 \%), \mathrm{H} \rightarrow \mathrm{L}+4(13.1 \%)$
15	309.01 nm	-50.23	0.1335	0.0046	125.59	$\mathrm{H}-1 \rightarrow \mathrm{~L}+12(19.7 \%), \mathrm{H}-3 \rightarrow \mathrm{~L}+1(18.6 \%)$
16	307.90 nm	70.96	0.6802	0.0256	72.18	$\mathrm{H} \rightarrow \mathrm{L}+13(37.1 \%), \mathrm{H} \rightarrow \mathrm{L}+10(15.6 \%)$
17	302.64 nm	27.33	0.0615	0.0028	55.79	$\mathrm{H}-12 \rightarrow \mathrm{~L}+1(13.5 \%), \mathrm{H}-12 \rightarrow \mathrm{~L}(11.2 \%)$
18	302.13 nm	57.25	0.5323	0.0200	72.67	$\mathrm{H}-1 \rightarrow \mathrm{~L}+5(30.9 \%), \mathrm{H}-1 \rightarrow \mathrm{~L}+12(12.2 \%)$
19	301.54 nm	-56.38	0.4217	0.0178	141.84	$\mathrm{H} \rightarrow \mathrm{L}+5(25.7 \%)$
20	298.64 nm	-134.11	0.685	0.0271	125.89	$\mathrm{H}-7 \rightarrow \mathrm{~L}+1(17.5 \%), \mathrm{H}-3 \rightarrow \mathrm{~L}+3(14.7 \%)$
21	297.86 nm	-47.93	0.6906	0.0261	96.35	$\mathrm{H} \rightarrow \mathrm{L}+13(9.9 \%), \mathrm{H}-3 \rightarrow \mathrm{~L}(9.0 \%)$
22	295.74 nm	-49.56	0.084	0.0038	145.81	$\mathrm{H}-7 \rightarrow \mathrm{~L}(24.8 \%), \mathrm{H}-2 \rightarrow \mathrm{~L}+1(21.9 \%)$
23	292.33 nm	134.67	0.7700	0.0328	41.56	$\mathrm{H}-1 \rightarrow \mathrm{~L}+9(8.7 \%), \mathrm{H}-1 \rightarrow \mathrm{~L}+5(5.5 \%)$
24	290.63 nm	60.12	0.5559	0.0262	73.05	$\mathrm{H} \rightarrow \mathrm{L}+10(6.2 \%), \mathrm{H}-1 \rightarrow \mathrm{~L}+5(5.3 \%)$
25	287.92 nm	-15.76	0.3069	0.0159	121.17	$\mathrm{H}-6 \rightarrow \mathrm{~L}+1(19.7 \%), \mathrm{H}-4 \rightarrow \mathrm{~L}+1(10.5 \%)$
26	284.97 nm	-28.25	0.1698	0.0078	107.82	$\mathrm{H}-4 \rightarrow \mathrm{~L}+10(20.5 \%), \mathrm{H}-5 \rightarrow \mathrm{~L}+10(10.9 \%)$
27	282.30 nm	88.91	0.5370	0.0240	71.10	$\mathrm{H}-7 \rightarrow \mathrm{~L}+1(8.1 \%), \mathrm{H}-2 \rightarrow \mathrm{~L}+4(7.4 \%)$

${ }^{a}$ The square of transition electronic dipole moment. ${ }^{b}$ The square of magnetic electronic dipole moment in velocity representation. ${ }^{c}$ The angle between the transition electronic and magnetic dipole moment.

Table S6. Calculated absorption wavelength and the corresponding rotatory strength and electron transitions of 7R.

	Wavelength	Rotatory strength	Ele. Dip. S. a	Mag (v). Dip. S.		
1	431.76 nm	7.50	6.1683	0.0724	E.-M. angle c	Transition
2	427.38 nm	-20.45	0.5939	0.0075	93.66	$\mathrm{H}-1 \rightarrow \mathrm{~L}(83.1 \%)$ $\mathrm{H} \rightarrow \mathrm{L}+3(37.9 \%), \mathrm{H} \rightarrow \mathrm{L}+7(17.9 \%)$, $\mathrm{H} \rightarrow \mathrm{L}+5(15.1 \%), \mathrm{H}-1 \rightarrow \mathrm{~L}(10.2 \%)$
						$\mathrm{H} \rightarrow \mathrm{L}+1(36.9 \%), \mathrm{H} \rightarrow \mathrm{L}(19.3 \%)$,
3	408.61 nm	-15.73	0.0559	0.0007	112.33	$\mathrm{H} \rightarrow \mathrm{L}+4(10.9 \%), \mathrm{H} \rightarrow \mathrm{L}+12(7.8 \%)$,
						$\mathrm{H} \rightarrow \mathrm{L}+3(6.9 \%)$
4	339.27 nm	-6.40	0.0193	0.0004	121.88	$\mathrm{H}-2 \rightarrow \mathrm{~L}(71.0 \%), \mathrm{H}-2 \rightarrow \mathrm{~L}+1(21.0 \%)$
5	320.03 nm	-155.85	1.2554	0.0273	121.41	$\mathrm{H}-3 \rightarrow \mathrm{~L}(68.6 \%), \mathrm{H}-3 \rightarrow \mathrm{~L}+1(11.8 \%)$
6	316.22 nm	-8.78	0.0156	0.0007	111.42	$\mathrm{H} \rightarrow \mathrm{L}+12(39.3 \%), \mathrm{H} \rightarrow \mathrm{L}+1(16.2 \%)$
7	292.70 nm	108.24	3.5834	0.0940	57.76	$\mathrm{H}-4 \rightarrow \mathrm{~L}(51.0 \%), \mathrm{H}-1 \rightarrow \mathrm{~L}+1(17.2 \%)$
8	290.36 nm	23.92	0.0470	0.0010	37.53	$\mathrm{H} \rightarrow \mathrm{L}+7(35.6 \%), \mathrm{H} \rightarrow \mathrm{L}+4(22.1 \%)$
9	285.95 nm	-32.70	0.0125	0.0007	91.53	$\mathrm{H}-1 \rightarrow \mathrm{~L}+1(65.5 \%), \mathrm{H}-4 \rightarrow \mathrm{~L}(14.6 \%)$
10	277.13 nm	60.72	0.3456	0.0099	14.02	$\mathrm{H}-1 \rightarrow \mathrm{~L}+3(31.2 \%), \mathrm{H}-6 \rightarrow \mathrm{~L}(11.2 \%)$
11	270.52 nm	-17.63	0.0470	0.0014	120.78	$\mathrm{H}-2 \rightarrow \mathrm{~L}+3(57.4 \%), \mathrm{H} \rightarrow \mathrm{L}+8(22.7 \%)$
12	264.99 nm	-12.89	0.0900	0.0023	147.35	$\mathrm{H} \rightarrow \mathrm{L}+8(55.5 \%), \mathrm{H}-2 \rightarrow \mathrm{~L}+3(25.0 \%)$
13	261.94 nm	25.06	0.0378	0.0010	36.63	$\mathrm{H}-2 \rightarrow \mathrm{~L}+1(42.3 \%), \mathrm{H}-1 \rightarrow \mathrm{~L}(13.8 \%)$
14	254.53 nm	21.26	0.0382	0.0018	59.32	$\mathrm{H}-3 \rightarrow \mathrm{~L}+3(9.1 \%), \mathrm{H}-1 \rightarrow \mathrm{~L}+2(8.9 \%)$
15	251.35 nm	-13.94	0.0579	0.0020	126.86	$\mathrm{H} \rightarrow \mathrm{L}+4(40.3 \%), \mathrm{H} \rightarrow \mathrm{L}+5(32.4 \%)$
16	247.91 nm	-48.41	0.1946	0.0076	117.76	$\mathrm{H}-6 \rightarrow \mathrm{~L}(17.3 \%), \mathrm{H}-3 \rightarrow \mathrm{~L}+1(14.8 \%)$
17	244.57 nm	98.93	0.1274	0.0054	13.00	$\mathrm{H}-3 \rightarrow \mathrm{~L}+1(39.1 \%), \mathrm{H}-1 \rightarrow \mathrm{~L}+3(10.4 \%)$
18	241.19 nm	17.02	0.0326	0.0016	51.08	$\mathrm{H}-10 \rightarrow \mathrm{~L}(38.6 \%), \mathrm{H}-17 \rightarrow \mathrm{~L}(13.1 \%)$
19	239.63 nm	-34.39	0.6620	0.0261	110.44	$\mathrm{H}-1 \rightarrow \mathrm{~L}+2(45.0 \%), \mathrm{H}-1 \rightarrow \mathrm{~L}+6(8.4 \%)$
20	238.83 nm	30.91	1.1046	0.0449	82.65	$\mathrm{H}-1 \rightarrow \mathrm{~L}+2(19.7 \%), \mathrm{H}-3 \rightarrow \mathrm{~L}+3(14.9 \%)$
21	236.13 nm	-109.14	0.3677	0.0161	163.96	$\mathrm{H}-1 \rightarrow \mathrm{~L}+4(16.7 \%), \mathrm{H}-3 \rightarrow \mathrm{~L}+3(14.9 \%)$
22	227.18 nm	21.92	0.2505	0.0101	83.65	$\mathrm{H}-3 \rightarrow \mathrm{~L}+5(21.7 \%), \mathrm{H}-2 \rightarrow \mathrm{~L}+5(14.3 \%)$

${ }^{a}$ The square of transition electronic dipole moment. ${ }^{b}$ The square of magnetic electronic dipole moment in velocity representation. ${ }^{c}$ The angle between the transition electronic and magnetic dipole moment.

Table S7. Cartesian coordinate of $\mathbf{5 R}$ in ground state (M062X/6-311G(d,p)).
$E($ M062X $)=\mathbf{- 2 7 5 7 . 6 2 5 9 1 7}$ Hartree

atom	x	y	z
Cl	-7.59504600	0.60498400	-0.86962200
Cl	7.43083800	0.78556700	0.96875500
O	8.06957800	3.32397700	-0.40342100
O	-6.81779700	4.61750800	0.86425500
O	-7.79466100	3.60581600	-0.88517800
O	-5.22451800	-1.02162600	-0.35034500
O	5.11661500	-0.89821300	0.39306000
O	6.51438300	4.90277700	-0.07134000
C	9.05019100	4.35492000	-0.31483900
H	8.90477500	5.10560500	-1.09656200
H	10.01076500	3.85617800	-0.44116100
H	9.00714000	4.85644500	0.65524900
C	6.78537200	3.72819600	-0.22053200
C	5.78680000	2.62928900	-0.30185300
C	4.55255700	3.00765500	-0.87838100
H	4.41559400	4.03969000	-1.17088300
C	3.56351700	2.06176700	-1.07357700
H	2.62586700	2.34884900	-1.53881200
C	3.73546700	0.72539000	-0.69006800
C	2.73799600	-0.24554700	-0.92586800
C	1.93949000	-1.14205000	-1.11626400
C	1.16256700	-2.31498700	-1.29932800
C	1.73368200	-3.56688900	-0.94593700
C	2.88492600	-3.64688300	0.03229700
H	3.70093600	-2.96616600	-0.22463300
H	3.27536700	-4.66991200	0.02801700
C	2.44985200	-3.27534000	1.52970900
H	3.00417600	-3.93719500	2.20418500
H	2.79391400	-2.25857300	1.72201000
C	0.95456800	-3.37954100	1.75896200
C	0.14430300	-2.24348800	1.68484200
H	0.59706100	-1.26038800	1.74877400
C	-1.21459800	-2.32591600	1.32137200
C	-2.01772700	-1.17403600	1.12003100
C	-2.83629600	-0.29878300	0.91629400
C	-3.84982000	0.65044400	0.66289400
C	-5.06996400	0.16092500	0.01369800
C	-6.08551300	1.19287700	-0.16374300

C	-5.92295900	2.52490500	0.22303400
C	-6.94392800	3.57322800	-0.02711700
C	-7.70778000	5.70594600	0.63695100
H	-7.55548800	6.14302800	-0.35395900
H	-7.48154900	6.43935800	1.41135500
H	-8.75038000	5.38536800	0.71099700
C	5.96875000	1.30986800	0.11310300
C	4.95863700	0.26731500	-0.02132800
C	-0.19793800	-2.26934800	-1.66328200
H	-0.67332700	-1.29802000	-1.74129900
C	-0.98169000	-3.42487200	-1.72091900
C	-2.47908100	-3.35286600	-1.49283800
H	-3.01749100	-4.03622600	-2.15864800
H	-2.84628600	-2.34699900	-1.69908700
C	-2.90572100	-3.71491600	0.00937600
H	-3.73728400	-3.05022200	0.25854600
H	-3.27241300	-4.74653700	0.02686600
C	-1.75647500	-3.59553400	0.98597600
C	-1.02309800	-4.71965200	1.36672100
H	-1.45349600	-5.70395500	1.20042600
C	0.30958900	-4.62281300	1.76318100
H	0.89092000	-5.53043700	1.90298900
C	-0.30802800	-4.65269300	-1.70801300
H	-0.86809200	-5.57544700	-1.83490800
C	1.02647800	-4.71291300	-1.31059600
H	1.47955000	-5.68453300	-1.13051400
C	-3.70426800	1.99280300	1.03704400
H	-2.77233100	2.30045600	1.50067100
C	-4.70908100	2.91984400	0.83686000
H	-4.57983600	3.95054100	1.13171100

Table S8. Cartesian coordinate of 7R in ground state (M062X/6-311G(d,p)).
$E($ M062X $)=\mathbf{- 1 6 8 7 . 6 8 4 5 3 4}$ Hartree

atom	x	y	z
Cl	-5.05532600	2.26039400	-0.35740100
O	-6.60664600	-1.89352200	0.12475200
O	-6.96473900	0.22806000	0.76478300
O	-2.15479100	2.05517200	-0.61606600
C	4.20581300	-1.16792200	1.81792200
C	5.43728900	-0.89973700	1.18491500
C	6.06793200	-2.00430200	0.34148000
H	6.28564800	-2.89653300	0.94237000
H	7.01851000	-1.65739300	-0.09017700
C	5.12241500	-2.47534500	-0.84594000
H	5.74902100	-2.87795500	-1.65535200
H	4.49928100	-3.29278600	-0.47684400
C	4.20612900	-1.36876000	-1.33461800
C	2.84009600	-1.39429000	-1.04950200
H	2.38034800	-2.31744900	-0.71740100
C	2.06874100	-0.21726600	-0.98242100
C	0.68605900	-0.26469200	-0.65625000
C	-0.51500700	-0.26338000	-0.46531200
C	-1.91471300	-0.29765200	-0.25969900
C	-2.67621400	0.95430900	-0.36804900
C	-4.11178500	0.77405200	-0.16256600
C	-4.72687100	-0.45404900	0.10582200
C	-6.17622100	-0.59992400	0.36848100
C	-7.97235900	-2.13241700	0.43935400
H	-8.17691900	-1.94881400	1.49857000
H	-8.15338300	-3.18088700	0.19823200
H	-8.63403700	-1.48980500	-0.14845700
C	3.39950200	-0.02995700	2.00879400
H	2.39424300	-0.14955300	2.42870800
C	3.72841700	1.26384000	1.53773800
C	2.63883400	2.24734000	1.15101700
H	2.90839600	3.27698000	1.42333900
H	1.72823100	1.99751500	1.70358100
C	2.25101200	2.26704500	-0.40925600
H	1.16747900	2.38389700	-0.49159500
H	2.71820800	3.14468000	-0.86982600
C	2.73212700	1.02899000	-1.12473700
		75	

C	4.00666200	1.01119100	-1.68989000
H	4.50593000	1.95817000	-1.87529600
C	4.73336300	-0.16807300	-1.81865200
H	5.77889500	-0.11593400	-2.10938000
C	5.07766700	1.49562000	1.23819800
H	5.41920200	2.49933100	0.98450600
C	5.94716800	0.40936700	1.08828500
H	6.97594300	0.59429000	0.76250000
C	-2.55141700	-1.51561400	0.01341300
H	-1.93593500	-2.40689500	0.08940300
C	-3.92034900	-1.61489600	0.18658600
H	-4.38486800	-2.56610600	0.40051500

[^0]: 3_20230711164502\#13-17 RT: 0.14-0.16 AV: 2 NL: 1.69E5
 T: FTMS - p ESI Full ms [100.0000-800.0000]

 $$
 \begin{gathered}
 458.91137 \\
 \mathrm{C}_{16} \mathrm{H}_{13} \mathrm{I}_{2}=458.91121
 \end{gathered}
 $$

 (R)-A13

 HRMS (ESI) m/z: [M-H]
 calc. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{I}_{2}^{-}, 458.9112$;
 found, 458.9114 .

