Supporting Information

Multitarget inhibitors/probes that target LRRK2 and AURORA A kinases noncovalently and covalently

\author{
Wei Wang, ${ }^{\text {tab }}$ Xuan Wang, ${ }^{\text {ª }}$ Guanghui Tang, ${ }^{*}{ }^{*}$ Chengjun Zhu, ${ }^{\text {c }}$ Menghua Xiang, ${ }^{\text {a }}$ Qicai Xiao, ${ }^{\text {a }}$ Zhi-Min Zhang, ${ }^{*}{ }^{\text {c }}$ Liqian Gao ${ }^{*}$ and Shao Q. Yao ${ }^{* b}$
 [^0]}
${ }^{\dagger}$ These authors contributed equally to this work

Table of Contents

1. Table S1. Summary of key compounds (A1-A11 and ABPs) used in this work
2. Chemistry
2.1. General information
2.2. Synthesis and characterizations

Scheme S1 Synthesis of inhibitors A2-A11, probes ABPA2 and ABPA7
3. Other Experimental Details
3.1 Cell culture and anti-proliferative assay
3.2 Biochemical Assay
3.3 Cellular inhibition by WB/cell-based LRRK2 inhibition assay
3.4 KINOMEscan®
3.5 In vitro pure LRRK2 protein labeling
3.6 Protein expression and purification
3.7 Intact protein mass spectrometry analysis
3.8 X-ray analysis
3.9 In-gel fluorescence scanning in live A549/K562 cells
3.10 Large-scale pull-down (PD) in live A549/K562 cells
3.11 Cellular phosphorylation assay
3.12 Cellular washout assay
3.13 Molecular docking study

4. Results and Discussion

Fig. S1 Dendrogram showing KinomeScan ${ }^{\text {TM }}$ of PF-06447475 (A1) and A2
Fig. S2 The in vitro inhibition potency of LRRK2-IN-1, A1-A11 against LRRK2 ${ }^{\mathrm{WT}}$ and LRRK2 ${ }^{\text {G2019S }}$
Fig. S3 Intracellular inhibition of A1-A11 (A549 cells, $37^{\circ} \mathrm{C}$ for 1.5 h)
Fig. S4 Time-dependent IC50 plots and values of A3 and A4 against recombinant human protein LRRK2 ${ }^{\text {WT }}$
Fig. S5 Putative noncovalent/covalent binding mode of A1 and A2 in AURKA and LRRK2
Fig. S6 Intact protein MS analysis of AURKA-A2 complex
Fig. S7 Anti-proliferative activity of A2 and A7 against K562 cells and HEK293 cells
Fig. S8 Cellular phosphorylation assay
Table S2 Time-dependent kinase inhibition assays of A2, A3 and A4 against LRRK2.
Table S3 KinomeScan ${ }^{\text {TM }}$ results of A2 $(200 \mathrm{nM})$ and PF-06447475 (1000 nM)
Table S4 Selectivity Scores for PF-06447475 from KinomeScan ${ }^{\text {TM }}$ results
Table S5 X-Ray data collection and refinement statistics for X-ray structures of AURKA-A2 complex

5. References

6. NMR Spectra
7. Raw data of electrophoretic gels and blots
8. Original HRMS and summar table
9. Table S1. Summary of key compounds (A1-A11 and ABPs) used in this work

Compound	Chemical Structure	Study goal	Result
VX 680		A reported AURKA inhibitor used as reference compound in biochemical assay and anti-proliferation assay	Has been reported as an AURKA kinase inhibitor with IC 50 of 0.6 nM and show an IC 50 of 0.71 nM in our hands
LRRK2-IN-1		A reported LRRK2 inhibitor used as reference compound in biochemical assay and anti-proliferation assay	Has been reported as an LRRK2 kinase inhibitor with IC_{50} of 13 $\mathrm{nM} / 6 \mathrm{nM}$ for LRRK2 ${ }^{W T} /$ LRRK $2{ }^{\text {G2019S }}$ and show an IC 5_{50} of $5.89 \mathrm{nM} / 2.89$ nM for LRRK2 ${ }^{\mathrm{WT}} /$ LRRK $^{\text {G2019 }}$ in our hands
$\begin{gathered} \text { A1 } \\ \text { (PF-06447475) } \end{gathered}$		A reported LRRK2 inhibitor used as reference compound in biochemical assay and anti-proliferation assay	Has been reported as an LRRK2 kinase inhibitor with IC_{50} of 3 $\mathrm{nM} / 6 \mathrm{nM}$ for LRRK2 and show an IC_{50} of $2.36 \mathrm{nM} / 2.69 \mathrm{nM}$ for LRRK2 ${ }^{\text {WT} / L R R K 2 ~}{ }^{\text {G2019S }}$, and an IC_{50} of 701.7 nM for AURKA in our hands
A2		To establish the structure-activity relationship among compounds with SA warhead	$\begin{gathered} \mathrm{IC}_{50}=16.0 \mathrm{nM}\left(\text { LRRK2 }^{\mathrm{WT}}\right) \\ \mathrm{IC}_{50}=11.6 \mathrm{nM}\left(\text { LRRK2 }^{\mathrm{G} 2019 \mathrm{~S}}\right) \\ \mathrm{IC}_{50}=1.28 \mathrm{nM}\left(\text { AURKA }^{\mathrm{WT}}\right) \end{gathered}$
A3		To establish the structure-activity relationship among compounds with SA warhead	IC $_{50}=43.6 \mathrm{nM}\left(\right.$ LRRK $\left.^{2}{ }^{\mathrm{WT}}\right)$ $\mathrm{IC}_{50}=18.6 \mathrm{nM}\left(\right.$ LRRK $\left.^{\mathrm{G} 2019 \mathrm{~S}}\right)$
A4		To establish the structure-activity relationship among compounds with SA warhead	$\begin{gathered} \mathrm{IC}_{50}=28.9 \mathrm{nM}\left(\mathrm{LRRK}^{2 \mathrm{WT}}\right) \\ \mathrm{IC}_{50}=59.4 \mathrm{nM}\left(\mathrm{LRRK}^{\mathrm{G} 2019 \mathrm{~S}}\right) \end{gathered}$
A5		To establish the structure-activity relationship among compounds with SA warhead	$\begin{gathered} \mathrm{IC}_{50}=1524 \mathrm{nM}\left(\text { LRRK2 }^{\mathrm{WT}}\right) \\ \mathrm{IC}_{50}=1008 \mathrm{nM}\left(\text { LRRK2 }^{\mathrm{G} 2019 \mathrm{~S}}\right) \end{gathered}$

A6		To establish the structure-activity relationship among compounds with SA warhead	$\begin{gathered} \mathrm{IC}_{50}=0.74 \mathrm{nM}\left(\mathrm{LRRK}^{\mathrm{WT}}\right) \\ \mathrm{IC}_{50}=0.80 \mathrm{nM}\left(\mathrm{LRRK}^{\mathrm{G} 2019 \mathrm{~S}}\right) \end{gathered}$
A7		To establish the structure-activity relationship among compounds with SA warhead	$\begin{gathered} \mathrm{IC}_{50}=931 \mathrm{nM}\left(\text { LRRK }^{\mathrm{WT}}\right) \\ \mathrm{IC}_{50}=108 \mathrm{nM}\left(\text { LRRK2 }^{\mathrm{G} 2019 \mathrm{~S}}\right) \\ \mathrm{IC}_{50}=718 \mathrm{nM}\left(\text { AURKA }^{\mathrm{WT}}\right) \end{gathered}$
A8		To establish the structure-activity relationship among compounds with SA warhead	Not detected
A9		To establish the structure-activity relationship among compounds with SA warhead	$\begin{gathered} \mathrm{IC}_{50}=133 \mathrm{nM}\left(\text { LRRK } 2^{\mathrm{WT}}\right) \\ \mathrm{IC}_{50}=139 \mathrm{nM}\left(\text { LRRK2 }^{\mathrm{G} 20199}\right) \end{gathered}$
A10		To establish the structure-activity relationship among compounds with SA warhead	$\begin{gathered} \mathrm{IC}_{50}=310 \mathrm{nM}\left(\mathrm{LRRK}^{\mathrm{WT}}\right) \\ \mathrm{IC}_{50}=175 \mathrm{nM}\left(\mathrm{LRRK}^{\mathrm{G} 20199}\right) \end{gathered}$
A11		To establish the structure-activity relationship among compounds with SA warhead	$\begin{gathered} \mathrm{IC}_{50}=4.62 \mathrm{nM}\left(\mathrm{LRRK}^{\mathrm{WT}}\right) \\ \mathrm{IC}_{50}=5.75 \mathrm{nM}\left(\mathrm{LRRK}^{\mathrm{G} 2019 \mathrm{~S}}\right) \end{gathered}$
ABP2		Probe used in chemoproteomic experiments	Successfully labeled off-targets in general in-gel fluorescence experiments; labeled AURKA kinase domain in competition assay and AURKA in pull-down in living cells
ABP7		Probe used in chemoproteomic experiments	Successfully labeled off-targets in general in-gel fluorescence experiments; labeled AURKA kinase domain in competition assay and AURKA in pull-down in living cells

2. Experimental.

2.1 General information

All chemicals were purchased from bide pharm, Sigma-Aldrich or Energy Chemical. All solvents and reagents were used as obtained without further purification, unless otherwise stated. All reactions that required anhydrous conditions were carried out under nitrogen or argon atmosphere using oven-dried glassware. Heating of reactions was accomplished with a silicon oil bath on top of a stirring hotplate equipped with an electronic contact thermometer to maintain the indicated temperature. The reaction process was monitored by analytical thin layer chromatography (TLC) on pre-coated silica plates (Merck $60 \mathrm{~F} 254,0.25 \mu \mathrm{~m}$) and spots were visualized by UV ($254 / 365 \mathrm{~nm}$). Flash column chromatography was carried out using 200-300 or 300-400 mesh silica gel. All NMR spectra (${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{C}$ NMR) spectra were on a BRUKER 400-MR spectrometer. Chemical shifts (δ) are reported in ppm $\left(\mathrm{CDCl}_{3}=7.26 \mathrm{ppm}\right.$ and $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}=2.50 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ NMR; $\mathrm{CDCl}_{3}=77.0 \mathrm{ppm}$ and $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}=39.5 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$ NMR), The following abbreviations were used for reporting ${ }^{1} \mathrm{H}$ NMR spectra: chemical shift ($\delta \mathrm{ppm}$), $\mathrm{s}=$ singlet, d $=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quin $=$ quintuplet, sext $=$ sextet, sep $=$ septet, $\mathrm{dd}=$ doublet of doublets, ddd $=$ doublets of doublets of doublets, $\mathrm{td}=$ triplets of doublets, $\mathrm{dt}=$ doublets of triplets, br. = broad, app. = apparent, obs. $=$ obscured and $\mathrm{m}=$ multiplet. Coupling constants J, are measured to the nearest 0.1 Hz . Chemical shifts are quoted to 0.01 ppm . All the measurements were performed at $25^{\circ} \mathrm{C}$. ESI mass spectrometry was measured on an Agilent Mass Spectrometer. High resolution mass spectra (HRMS) were recorded on DIONEX UltiMate 3000 \& Bruker Compact TOF mass spectrometer. Purification via preparative HPLC (column, Phenomenex Gemini C18, mobile phase A, 1% FA in water; mobile phase B, acetonitrile; gradient, $10-50 \%$ B).

2.2 Synthesis and characterizations ${ }^{1}$

Scheme S1 Synthesis of inhibitors A2-A11, probes ABPA2 and ABPA7. Reagents and conditions: (a) DIEA, n BuOH , reflux, 3 h ; (b) NIS, DMF, rt; (c) NaH , (Boc$)_{2} \mathrm{O}$, THF; (d) XPhos Pd G2, $\mathrm{K}_{3} \mathrm{PO}_{4}, 1,4$-dioxane, $\mathrm{H}_{2} \mathrm{O}$, rt; (e) TFA, DCM, rt; (f) n-Butyllithium, triisopropylsilyl chloride, DIEA, $-78^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$; (g) HOBT, EDCI, DMF, rt; (h) TBAF, THF, rt; (i) $\mathrm{CH}_{3} \mathrm{COOK}, \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}, 4,4,4^{\prime}, 44^{\prime}, 5,5,5$ ',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane); (j) KF , rt; (k) $\mathrm{NaBH}_{4}, 0^{\circ} \mathrm{C}$; (l) pyridine, rt

2-hydroxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde (B1): ${ }^{2}$

To a solution of 5-bromo-2-hydroxybenzaldehyde ($1.50 \mathrm{~g}, 7.46 \mathrm{mmol}$) in 1,4-dioxane (20 mL)
 was added potassium acetate $(2.20 \mathrm{~g}, 22.39 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(178.7 \mathrm{mg}, 0.15$ $\mathrm{mmol})$. The solution was stirred for 15 min at room temperature and then $4,4,4^{\prime}, 4^{\prime}, 5,5,5^{\prime}, 5^{\prime}-$ octamethyl-2,2'-bi(1,3,2-dioxaborolane) $(2.27 \mathrm{~g}, 8.95 \mathrm{mmol})$ was added. The reaction mixture was degassed and purged with nitrogen, then the reaction mixture was stirred at $85^{\circ} \mathrm{C}$ for 18 h . Then the reaction was quenched by the addition of water $(30 \mathrm{~mL})$. The resulting solution was extracted with ethyl acetate $(4 \times 30 \mathrm{~mL})$, dried over anhydrous sodium sulfate and concentrated in vacuo to give a residue. Purification via silica gel chromatography (gradient, $0-30 \%$ ethyl acetate in petroleum ether) afforded the product as a white solid 936.0 mg , yield: 50.6%. LC-MS: $m / z 249.1\left[\mathrm{M}+\mathrm{H}^{+}\right] .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 11.24(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.94(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}$, $J=8.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 12 \mathrm{H})$.

3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenol (B2):

To a solution of 3-bromophenol ($1.73 \mathrm{~g}, 10.0 \mathrm{mmol}$) and 4,4,4', 4',5,5,5',5'-octamethyl-2, 2^{\prime}-bi ($1,3,2-$
 dioxaborolane) ($3.05 \mathrm{~g}, 12.0 \mathrm{mmol}$) in 1,4-dioxane (20 mL) were added $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(163.3 \mathrm{mg}, 0.2 \mathrm{mmol})$, potassium acetate $(2.94 \mathrm{~g}, 30.0 \mathrm{mmol})$. The reaction mixture was degassed and purged with nitrogen, then the reaction mixture was stirred at $85^{\circ} \mathrm{C}$ for 18 h . After cooling to room temperature, the reaction mixture was diluted with water $(100 \mathrm{~mL})$ and extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous sodium chloride solution $(100 \mathrm{~mL})$, dried over sodium sulfate, filtered, and concentrated in vacuo. Purification via silica gel chromatography (gradient, $0-30 \%$ ethyl acetate in petroleum ether) afforded the product as a colorless solid 1.20 g , yield: 54.5\%. LC-MS: $m / z 221.1\left[\mathrm{M}+\mathrm{H}^{+}\right] .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d 6$) $\delta(\mathrm{ppm}) 9.32(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.13(\mathrm{~m}, 1 \mathrm{H})$, $7.09(\mathrm{dd}, J=4.5,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.94-6.76(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 12 \mathrm{H})$.

3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzenesulfonyl fluoride (B3): ${ }^{3}$

To a solution of 3-bromobenzenesulfonyl chloride ($2.0 \mathrm{~g}, 7.83 \mathrm{mmol}$) in acetonitrile (8 mL), potassium fluoride $(0.91 \mathrm{~g}, 15.65 \mathrm{mmol})$ was added. The mixture was stirred under room temperature for 48 h . Upon solvent evaporation, the crude product was partitioned between ethyl acetate and water, and extracted using ethyl acetate $(3 \times 30 \mathrm{~mL})$. The combined organic extract was washed with brine, dried over anhydrous sodium sulfate and evaporated under reduced pressure to afford the corresponding sulfonyl fluoride as a pale oil 1.60 g , yield: 85.5%. LC-MS: $m / z 240.0\left[\mathrm{M}+\mathrm{H}^{+}\right] .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.18(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.99(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$.

Next, to a solution of oil from step $1(1.60 \mathrm{~g}, 6.70 \mathrm{mmol})$ and $4,4,4^{\prime}, 4^{\prime}, 5,5,5 ', 5^{\prime}$-octamethyl-2,2'-bi $(1,3,2-$ dioxaborolane) $(2.04 \mathrm{~g}, 8.03 \mathrm{mmol})$ in 1,4-dioxane $(20 \mathrm{~mL})$ were added $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(109.3 \mathrm{mg}, 0.13$ $\mathrm{mmol})$, potassium acetate $(1.97 \mathrm{~g}, 20.08 \mathrm{mmol})$. The reaction mixture was degassed and purged with nitrogen, then the reaction mixture was stirred at $85^{\circ} \mathrm{C}$ for 18 h . After cooling to room temperature, the reaction mixture was diluted with water $(50 \mathrm{~mL})$ and extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous sodium chloride solution $(50 \mathrm{~mL})$, dried over sodium sulfate, filtered, and concentrated in vacuo. Purification via silica gel chromatography (gradient, $0-30 \%$ ethyl acetate in petroleum ether) afforded the product as a white solid 1.04 g , Yield: 54.3%. LC-MS: $m / z 287.0\left[\mathrm{M}+\mathrm{H}^{+}\right] .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ $8.46(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{dq}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}$, $12 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 65.86$.

2-(hydroxymethyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenol (B4): ${ }^{4}$

5-bromo-2-hydroxybenzaldehyde ($2.0 \mathrm{~g}, 10.0 \mathrm{mmol}$) and 20 mL of tetrahydrofuran was added into a round bottle flask and then 200.0 mg of sodium borohydride was added in 3 portions. This mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min , the reaction mixture was diluted with water $(50 \mathrm{~mL})$ and extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous sodium chloride solution (50 mL), dried over sodium sulfate, filtered, and concentrated in vacuo to afforded the product as a white solid 1.80 g , yield: 89.1%. The crude solid was use for the next step without purified.

Next, to a solution of 4-bromo-2-(hydroxymethyl) phenol ($1.80 \mathrm{~g}, 7.87 \mathrm{mmol}$) and 4,4,4’,4, 5,5,5',5'-octamethyl-2, ' '-bi(1,3,2-dioxaborolane) $(2.40 \mathrm{~g}, \quad 10.64 \mathrm{mmol})$ in 1,4-dioxane $(20 \mathrm{~mL})$ were added $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(128.7 \mathrm{mg}, 0.157 \mathrm{mmol})$, potassium acetate $(2.32 \mathrm{~g}, 23.64 \mathrm{mmol})$. The reaction mixture was degassed and purged with nitrogen, then the reaction mixture was stirred at $85^{\circ} \mathrm{C}$ for 18 h . After cooling to room temperature, the reaction mixture was diluted with water (50 mL) and extracted with ethyl acetate ($3 \times 30 \mathrm{~mL}$). The combined organic layers were washed with saturated aqueous sodium chloride solution (50 mL), dried over sodium sulfate, filtered, and concentrated in vacuo. Purification via silica gel chromatography (gradient, 0-30\% ethyl acetate in petroleum ether) afforded the product as a white solid 1.30 g , yield: 58.6%. LC-MS: $m / z 251.1\left[\mathrm{M}+\mathrm{H}^{+}\right] .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta(\mathrm{ppm}) 9.75(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=22.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.30(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.67(\mathrm{~m}, 1 \mathrm{H})$, $5.14-4.85(\mathrm{~m}, 1 \mathrm{H}), 4.44(\mathrm{dt}, J=20.4,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{~s}, 12 \mathrm{H})$.

2-hydroxy-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde (B5):

To a solution of 4-bromo-2-hydroxybenzaldehyde ($2.01 \mathrm{~g}, 10.0 \mathrm{mmol}$) and 4,4,4', $4^{\prime}, 5,5,5^{\prime}, 5^{\prime}-$
 octamethyl-2,2'-bi(1,3,2-dioxaborolane) ($3.05 \mathrm{~g}, 12.0 \mathrm{mmol}$) in 1,4-dioxane (20 mL) were added $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(163.3 \mathrm{mg}, 0.199 \mathrm{mmol})$, potassium acetate ($2.94 \mathrm{~g}, 30.0 \mathrm{mmol}$). The reaction mixture was degassed and purged with nitrogen, then the reaction mixture was stirred at $85^{\circ} \mathrm{C}$ for 18 h . After cooling to room temperature, the reaction mixture was diluted with water $(50 \mathrm{~mL})$ and extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous sodium chloride solution (50 mL), dried over sodium sulfate, filtered, and concentrated in vacuo. Purification via silica gel chromatography (gradient, 0-30\% ethyl acetate in petroleum ether) afforded the product as a white solid 1.60 g , yield: 64.5%. LC-MS: $m / z 249.1\left[\mathrm{M}+\mathrm{H}^{+}\right] .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta(\mathrm{ppm}) 10.62(\mathrm{~s}, 1 \mathrm{H}), 10.33(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ (dt, $J=7.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 12 \mathrm{H})$.

2-hydroxy-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde (B6):

To a solution of 2-bromo-6-hydroxybenzaldehyde ($2.01 \mathrm{~g}, 10.0 \mathrm{mmol}$) and $4,4,4^{\prime}, 4^{\prime}, 5,5,5^{\prime}, 5^{\prime}$ 'octamethyl-2,2'-bi(1,3,2-dioxaborolane) ($3.05 \mathrm{~g}, 12.0 \mathrm{mmol}$) in $1,4-$ dioxane (20 mL) were added $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(163.3 \mathrm{mg}, 0.20 \mathrm{mmol})$, potassium acetate $(2.94 \mathrm{~g}, 30.0 \mathrm{mmol})$. The reaction mixture was degassed and purged with nitrogen, then the reaction mixture was stirred at $85^{\circ} \mathrm{C}$ for 18 h . After cooling to room temperature, the reaction mixture was diluted with water $(50 \mathrm{~mL})$ and extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous sodium chloride solution (50 mL), dried over sodium sulfate, filtered, and concentrated in vacuo. Purification via silica gel chromatography (gradient, 0-30\% ethyl acetate in petroleum ether) afforded the product as a yellow solid 700.0 mg , yield: 28.2%. LC-MS: $m / z 249.1\left[\mathrm{M}+\mathrm{H}^{+}\right] .{ }^{1} \mathrm{H}$ NMR. (400 MHz, DMSO- d_{6}) $\delta(\mathrm{ppm}) 11.02(\mathrm{~s}, 1 \mathrm{H}), 10.38(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=8.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{ddd}, J=7.1$, $3.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.32(\mathrm{~s}, 12 \mathrm{H})$.

3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde (B7):

To a solution of 3-bromobenzaldehyde ($1.83 \mathrm{~g}, 10.0 \mathrm{mmol}$) and 4,4,4',4, 5,5,5',5'-
 octamethyl-2,2'-bi(1,3,2-dioxaborolane) ($3.01 \mathrm{~g}, 11.87 \mathrm{mmol}$) in 1,4-dioxane (20 mL) were added $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(161.5 \mathrm{mg}, 0.20 \mathrm{mmol})$, potassium acetate $(2.91 \mathrm{~g}, 29.67$ mmol). The reaction mixture was degassed and purged with nitrogen, then the reaction mixture was stirred at $85{ }^{\circ} \mathrm{C}$ for 18 h . After cooling to room temperature, the reaction mixture was diluted with water $(50 \mathrm{~mL})$ and extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous sodium chloride solution (50 mL), dried over sodium sulfate, filtered, and concentrated in vacuo. Purification via silica gel chromatography (gradient, $0-30 \%$ ethyl acetate in petroleum ether) afforded the product as a white solid 1.80 g , yield:78.4 \%. LCMS: $m / z 233.1\left[\mathrm{M}+\mathrm{H}^{+}\right] .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta(\mathrm{ppm}) 10.07(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{dt}, J$ $=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.02-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 12 \mathrm{H})$.

1-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)ethan-1-one (B8):

To a solution of 1-(3-bromophenyl) ethan-1-one ($1.97 \mathrm{~g}, 10 \mathrm{mmol}$) and 4,4,4', $4^{\prime}, 5,5,5^{\prime}, 5^{\prime}-$ octamethyl-2,2'-bi(1,3,2-dioxaborolane) ($3.02 \mathrm{~g}, 11.88 \mathrm{mmol}$) in 1,4-dioxane (20 mL) were added $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(161.7 \mathrm{mg}, 0.20 \mathrm{mmol} \%)$, potassium acetate ($2.91 \mathrm{~g}, 29.69$ $\mathrm{mmol})$. The reaction mixture was degassed and purged with nitrogen, then the reaction mixture was stirred at $85^{\circ} \mathrm{C}$ for 18 h . After cooling to room temperature, the reaction mixture was diluted with water $(50 \mathrm{~mL})$ and extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous sodium chloride solution (50 mL), dried over sodium sulfate, filtered, and concentrated in vacuo. Purification via silica gel chromatography (gradient, 0-30\% ethyl acetate in petroleum ether) afforded the product as a white solid 1.60 g , yield: 65.7%, LC-MS: $m / z 247.1$ $\left[\mathrm{M}+\mathrm{H}^{+}\right] .{ }^{1} \mathrm{H}$ NMR. $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}) 8.22(\mathrm{dt}, J=1.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{dt}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.91$ $(\mathrm{dt}, J=7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 12 \mathrm{H})$

4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phthalaldehyde (B9):

A mixture of 3-bromo-4-methoxyphenol ($350.0 \mathrm{mg}, 1.64 \mathrm{mmol}$), B2pin $2(500.6 \mathrm{mg}, 1.81$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(120.0 \mathrm{mg}, 0.16 \mathrm{mmol})$ and potassium acetate $(483.0 \mathrm{mg}, 4.93$ mmol) were dissolved in 20 mL of dioxane. The reaction mixture was degassed and purged with nitrogen, then the reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 7 h . The product formation was confirmed by TLC and LC-MS. Upon solvent evaporation, the crude product was partitioned between ethyl acetate and water, and extracted using ethyl acetate ($3 \times 50 \mathrm{~mL}$). The combined organic extract was washed with brine, dried over anhydrous sodium sulfate and evaporated under reduced pressure. The crude product was purified by flash chromatography (hexane/ethyl acetate $0 \%-5 \%$) to give the target compound as a yellow solid 300.0 mg , yield: 70.2%, LC-MS: $m / z 261.1\left[\mathrm{M}+\mathrm{H}^{+}\right]$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm}) 10.52(\mathrm{~s}, 1 \mathrm{H}), 10.48(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{dd}, J=7.6,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d6) $\delta(\mathrm{ppm}) 193.90,193.72,139.82$, $138.71,136.62,136.00,129.52,85.01,27.51,25.30,25.14$.

4-(7H-pyrrolo[2,3-d] pyrimidin-4-yl) morpholine (B10):

Morpholine $(1.14 \mathrm{~g}, 13.10 \mathrm{mmol})$ and N, N-diisopropylethylamine $(3.43 \mathrm{~g}, 21.83 \mathrm{mmol})$ were
 added to a solution of 4-chloro-5-iodo-7 H -pyrrolo[2,3-d] pyrimidine-7-carboxylate (3.05 g, $8.06 \mathrm{mmol})$ in n-butanol $(20 \mathrm{~mL})$, and the reaction mixture was heated at reflux for 3 h , then concentrated under reduced pressure. Aqueous hydrochloric acid $(0.1 \mathrm{M}, 100 \mathrm{~mL})$ was added and the resulting solid was collected by filtration, washed with water $(20 \mathrm{~mL})$, and dried under vacuum to provide the product 4 -(7H-pyrrolo[2,3-d] pyrimidin-4-yl) morpholine as a yellow solid 1.70 g, Yield: 76.3\%, LC-MS: $m / z 205.1\left[\mathrm{M}+\mathrm{H}^{+}\right] .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta(\mathrm{ppm})$ 11.73 (s, 1H), $8.17(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=3.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.46(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=5.9,3.9 \mathrm{~Hz}$, $4 \mathrm{H}), 3.72(\mathrm{dd}, J=5.9,3.9 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}) 156.87,150.69,150.57,123.74,105.02$, 100.14, 65.88, 50.04.

4-(5-iodo-7H-pyrrolo[2,3- d] pyrimidin-4-yl)morpholine (B11): ${ }^{5}$

4 -(7H-pyrrolo[2,3- d] pyramidin-4-yl) morpholine ($204.0 \mathrm{mg}, 1.0 \mathrm{mmol}$) was dissolved in 5 mL of N, N-dimethylformamide which was stirred for about 20 min . N -iodosuccinimide (337.0 $\mathrm{mg}, 1.50 \mathrm{mmol}$) was added to the solution at room temperature and stirred for another 3 h . The mixture was quenched with saturated solution of sodium thiosulfate, and water was added to afford a yellow solid 277.0 mg , yield: 84.0%, LC-MS: $m / z 331.0\left[\mathrm{M}+\mathrm{H}^{+}\right] .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta(\mathrm{ppm}) 11.73(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=3.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.06$ $-3.81(\mathrm{~m}, 4 \mathrm{H}), 3.81-3.51(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm}) 156.87,150.57,123.74,105.02,100.14$, $65.88,56.01,50.04$.

tert-butyl 5-iodo-4-morpholino-7H-pyrrolo[2,3-d] pyrimidine-7-carboxylatestep (B12):

A solution of 4-(5-iodo-7H-pyrrolo[2,3-d] pyrimidin-4-yl) morpholine ($360.0 \mathrm{mg}, 1.10$ mmol) in dry tetrahydrofuran $(10 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ and treated with sodium hydride (60% in oil, $64.0 \mathrm{mg}, 1.60 \mathrm{mmol}$) in three portions. After the reaction mixture had stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , tert-butyldicarbonate ($357.0 \mathrm{mg}, 1.64 \mathrm{mmol}$) was added dropwise, and the reaction mixture was warmed to room temperature and allowed to stir for 3 h . The reaction was quenched with saturated aqueous sodium chloride solution $(20 \mathrm{~mL})$, and the organic layer was dried over sodium sulfate, filtered, and concentrated in vacuo. Silica gel chromatography (petroleum ether/ethyl acetate, $\mathrm{v} / \mathrm{v}, 10: 1$) afforded the product as a white solid 450.0 mg , yield: 95.9% LC-MS: $m / z 431.05\left[\mathrm{M}+\mathrm{H}^{+}\right] .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d 6$) $\delta(\mathrm{ppm}) 8.50(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{t}, J=4.7 \mathrm{~Hz}$, $4 \mathrm{H}), 3.47(\mathrm{t}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.59(\mathrm{~s}, 9 \mathrm{H})$

3-(triisopropylsilyl)prop-2-yn-1-amine (B14): ${ }^{6}$

A solution of propargylamine $(1.10 \mathrm{~g}, 20.0 \mathrm{mmol})$ in tetrahydrofuran $(50 \mathrm{~mL})$ was placed in a three-necked, 250 mL round-bottom flask equipped with a magnetic stirring bar and cooled to $-78^{\circ} \mathrm{C}$ while stirring in an argon atmosphere. N-Butyllithium $(2.5 \mathrm{M}$ in hexanes 9 mL) was added slowly through a septum by using a syringe, and the reaction was allowed to proceed for 15 min . The mixture was then warmed to $0^{\circ} \mathrm{C}$, and triisopropylsilyl chloride ($4.24 \mathrm{~g}, 22.0$ mmol) was added drop-wise. After stirring for 1.5 h at $0{ }^{\circ} \mathrm{C}$, the reaction mixture was diluted with saturated sodium bicarbonate solution $(50 \mathrm{~mL})$ and stirred for 5 min . The solution was diluted with water (100 mL), and extracted with diethyl ether. The combined organic phase was washed with brine, dried with anhydrous sodium sulfate, filtered, and the solvents evaporated. The dark-yellow oily residue was purified by flash chromatography on silica (ethyl acetate), to give amine as an oil 3.50 g , yield: 82.8%. LC-MS: $m / z 212.2\left[\mathrm{M}+\mathrm{H}^{+}\right] .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ SI_9

N-(3-(triisopropylsilyl) prop-2-yn-1-yl) morpholine-2-carboxamide (B16):

Step 1: To a solution of 4-(tert-butoxycarbonyl) morpholine-2-carboxylic $\operatorname{acid}(253.0 \mathrm{mg}, \quad 1.10 \mathrm{mmol})$, 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (191.3 mg, 2.0 mmol$)$ and 1Hydroxybenzotriazole ($269.70 \mathrm{mg}, 2.0 \mathrm{mmol}$) in N, N-dimethylformamide was add 3-(triisopropylsilyl) prop-2-yn-1-amine $(211.0 \mathrm{mg}, 1.0 \mathrm{mmol})$, and then the mixture was stirred for overnight under room temperature. The reaction mixture was diluted with water (50 mL) and extracted with EA (200 $\mathrm{mL})$. The combined organic phase was washed with brine (200 mL), dried with anhydrous sodium sulfate, filtered, and the solvents evaporated. The dark-yellow oil residue was purified by flash chromatography on silica (ethyl acetate), to give white solid tert-butyl 2-((3-(triisopropylsilyl) prop-2-yn-1-yl) carbamoyl) morpholine-4carboxylate 370.0 mg , yield: 87.3%. LC-MS: $m / z 425.2\left[\mathrm{M}+\mathrm{H}^{+}\right] .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 6.67(\mathrm{~s}, 1 \mathrm{H})$, $4.33(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{ddd}, J=32.5,11.1,3.3 \mathrm{~Hz}, 3 \mathrm{H}), 3.58(\mathrm{td}, J=11.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-$ $2.76(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.06(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 21 \mathrm{H})$.
Step 2: A solution of tert-butyl 2-((3-(triisopropylsilyl) prop-2-yn-1-yl) carbamoyl) morpholine-4-carboxylate in dichloromethane/trifluoroacetic acid ($\mathrm{v} / \mathrm{v}=1: 1$) was stirred at room temperature for 2 h . The reaction mixture was washed with water and the organic phase was concentrated under reduced pressure to afford the product as a yellow oil, the crude compound was use for nest step without further purify, yield 100%.

4-(7H-pyrrolo[2,3-d] pyrimidin-4-yl)-N-((triisopropylsilyl)ethynyl) morpholine-2-carboxamide (B17):

N-(3-(triisopropylsilyl) prop-2-yn-1-yl) morpholine-2-carboxamide (280.0 mg , 0.86 mmol) and N, N-diisopropylethylamine ($220.0 \mathrm{mg}, 1.72 \mathrm{mmol}$) were added to a solution of 4-chloro-5-iodo-7H-pyrrolo[2,3-d] pyrimidine (260.0 $\mathrm{mg}, 0.95 \mathrm{mmol})$ in n-butanol (30 mL), and the reaction mixture was heated at reflux for 6 h , then concentrated under reduced pressure. Aqueous hydrochloric acid ($0.1 \mathrm{M}, 100 \mathrm{~mL}$) was added and the resulting solid was collected by filtration, washed with water, and dried under vacuum to provide the product as a white solid 270.0 mg , yield: 70.9%. LC-MS: $m / z 442.2\left[\mathrm{M}+\mathrm{H}^{+}\right] .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta(\mathrm{ppm}) 11.79(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~s}$, $1 \mathrm{H}), 7.24(\mathrm{dd}, J=3.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dd}, J=3.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dq}, J=13.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=9.9$, $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dt}, J=11.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{td}, J=11.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=$ $10.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=13.2,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.08-0.96(\mathrm{~m}, 3+18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- $d 6$) $\delta(\mathrm{ppm})$ $168.85,156.87,152.54,150.92,122.37,105.96,102.93,100.97,81.62,75.17,65.96,47.46,45.49,29.24,18.89$, 11.10 .

4-(5-iodo-7H-pyrrolo[2,3- d] pyrimidin-4-yl)- N-((triisopropylsilyl)ethynyl) morpholine-2-carboxamide (B18):

 To a solution of 4-(7H-pyrrolo[2,3-d] pyrimidin-4-yl)-N-(3-(triisopropylsilyl) prop-2-yn-1-yl) morpholine-2-carboxamide (1.60 g , 3.62 mmol) in tetrahydrofuran (30 mL) was added N-Iodosuccinimide $(889.0 \mathrm{mg}, 3.99 \mathrm{mmol})$. The resulting mixture was stirred at ambient temperature for 1 h . The mixture was then concentrated and extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with saturated solution of sodium thiosulfate and brine, dried over anhydrous sodium sulfate and evaporated under reduced pressure. The crude product was purified by flash chromatography (dichloromethane/methanol $0 \%-2 \%$) to give the target compound as a yellow solid 770.0 mg, yield: 37.5%. LC-MS: $m / z 568.1\left[\mathrm{M}+\mathrm{H}^{+}\right] .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}) 11.79(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{t}, J=$
$5.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=3.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dq}, J=13.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=9.9,3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.03(\mathrm{dt}, J=11.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{td}, J=11.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=10.6,3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=13.2,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.08-0.96(\mathrm{~m}, 21 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}) 168.85$, $156.87,152.54,150.92,122.37,107.93,105.96,100.97,81.62,75.17,65.96,47.46,45.49,29.24,18.89,11.10$.
tert-butyl 5-iodo-4-(2-(((triisopropylsilyl)ethynyl)carbamoyl)morpholino)-7H-pyrrolo[2,3-d]pyrimidine-7-

carboxylate (B19): A solution of 4-(5-iodo-7H-pyrrolo[2,3- d]pyrimidin-4-yl)- N-(3-(triisopropylsilyl)prop-2-yn-1-yl)morpholine-2-carboxamide (770.0 $\mathrm{mg}, 1.36 \mathrm{mmol})$ in dry tetrahydrofuran $(20 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ and treated with sodium hydride (60% in oil, $64.0 \mathrm{mg}, 1.60 \mathrm{mmol}$) in three portions. After the reaction mixture had stirred at $0^{\circ} \mathrm{C}$ for 1 h , tert-butyldicarbonate (412.0 $\mathrm{mg}, 2.04 \mathrm{mmol}$) was added dropwise, and the reaction mixture was warmed to room temperature and allowed to stir for 3 h . The reaction was quenched with saturated aqueous sodium chloride solution $(20 \mathrm{~mL})$, and the organic layer was dried over sodium sulfate, filtered, and concentrated in vacuo. Silica gel chromatography (petroleum ether/ethyl acetate, v/v, 10:1) afforded the product as a white solid 850.0 mg , yield: 93.8%. LC-MS: $m / z 668.2\left[\mathrm{M}+\mathrm{H}^{+}\right] .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}) 8.52$ $(\mathrm{s}, 0 \mathrm{H}), 8.34(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=10.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{dt}, J=12.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-$ $4.01(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.27-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=13.0,10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.60(\mathrm{~s}, 9 \mathrm{H}), 1.03(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 21 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}) 168.56,160.63,152.74$, $146.42,130.93,109.87,105.91,85.32,81.66,74.94,65.97,53.30,51.22,29.20,27.99,18.90,11.10$.

2-hydroxy-5-(4-morpholino-7H-pyrrolo[2,3-d] pyrimidin-5-yl) benzaldehyde (A2):

A mixture of tert-butyl 5-iodo-4-morpholino-7H-pyrrolo[2,3-d]pyrimidine-7carboxylate $(215.0 \mathrm{mg}, 0.50 \mathrm{mmol}), 2-h y d r o x y-5-(4,4,5,5-$ tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde ($148 \mathrm{mg}, 0.6 \mathrm{mmol}$), XPhos Pd G2 ($39.0 \mathrm{mg}, 0.05$ $\mathrm{mmol})$ and potassium phosphate tribasic $(212.3 \mathrm{mg}, 1 \mathrm{mmol})$ was dissolved in 10 mL of dioxane and 1 mL of water and then stirred at $90^{\circ} \mathrm{C}$ in a sealed tube for 3 h . The product formation was confirmed by TLC and LC-MS. The crude product was partitioned between ethyl acetate and water, and extracted using ethyl acetate (3×30 $\mathrm{mL})$. The combined organic extract was washed with brine, dried over anhydrous sodium sulfate and evaporated under reduced pressure give the crude compound as an oil. The crude oil was dissolved in dichloromethane/trifluoroacetic acid ($5 \mathrm{~mL} / 3 \mathrm{~mL}$) and stirred at ambient temperature over 1 h . Upon solvent evaporation, the mixture was adjusted to $p \mathrm{H}=7$ and extracted using dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic extract was washed with brine, dried over anhydrous sodium sulfate and evaporated under reduced pressure. The crude product was purified by flash chromatography (dichloromethane/methanol $0-5 \%$) to give the target compound as a yellow solid 105.0 mg , yield: 64.8%. HRMS (ESI^{+}) calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}\left(\left[\mathrm{M}+\mathrm{H}^{+}\right]\right): 325.1301$, found 325.1295. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta(\mathrm{ppm}) 12.07(\mathrm{~s}, 1 \mathrm{H}), 9.46(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.23(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{t}, J=4.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.30-3.10(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta(\mathrm{ppm}) 191.60,160.44,159.87,153.49,150.67,136.38,128.37,127.19,122.74$, $122.66,118.01,115.02,103.14,65.88,50.04$. Noted: after coupling the target compound and the compound with Boc protection were obtained at the same time, the ratio of target compound and the compound with Boc protection was about 4:6.

2-hydroxy-4-(4-morpholino-7H-pyrrolo[2,3- d] pyrimidin-5-yl) benzaldehyde (A3):

A mixture of tert-butyl 5-iodo-4-morpholino-7H-pyrrolo[2,3-d] pyrimidine-7carboxylate ($215.0 \mathrm{mg}, \quad 0.5 \mathrm{mmol}$), 2-hydroxy-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde ($148.8 \mathrm{mg}, 0.6 \mathrm{mmol}$), XPhos Pd G2 ($39.0 \mathrm{mg}, 0.05$ mmol) and potassium phosphate tribasic ($212.3 \mathrm{mg}, 1 \mathrm{mmol}$) was dissolved in 10 mL of dioxane and 1 mL of water and then stirred at $90^{\circ} \mathrm{C}$ in a sealed tube for 3 h . The product formation was confirmed by TLC and LC-MS. The crude product was partitioned between ethyl acetate and water, and extracted using ethyl acetate ($3 \times 30 \mathrm{~mL}$). The combined organic extract was washed with brine, dried over anhydrous sodium sulfate and evaporated under reduced pressure give the crude compound as an oil. The crude oil was dissolved in dichloromethane/trifluoroacetic acid ($5 \mathrm{~mL} / 3 \mathrm{~mL}$) and stirred at ambient temperature over 1 h . Upon solvent evaporation, the mixture was adjusted to $\mathrm{pH}=7$ and extracted using dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined organic extract was washed with brine, dried over anhydrous sodium sulfate and evaporated under reduced pressure. The crude product was purified by flash chromatography (dichloromethane/methanol 0-5\%) to give the target compound as a yellow solid 60.0 mg , yield: 37.0%. HRMS $\left(\mathrm{ESI}^{+}\right)$calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}\left(\left[\mathrm{M}^{+} \mathrm{H}^{+}\right]\right): 325.1301$, found 325.1300 . ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta(\mathrm{ppm}) 12.34$ (d, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 10.88(\mathrm{~s}, 1 \mathrm{H}), 10.24(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ (dd, $J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.16(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.49(\mathrm{~m}, 4 \mathrm{H}), 3.32-3.01(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm}) 191.79,161.19,160.20,153.98,150.98,143.80,130.21,124.69,120.53,119.61,116.37,115.42$, 102.53, 65.89, 49.80

2-hydroxy-6-(4-morpholino-7H-pyrrolo[2,3-d] pyrimidin-5-yl) benzaldehyde (A4):

A mixture of tert-butyl 5-iodo-4-morpholino-7H-pyrrolo[2,3- d] pyrimidine-7carboxylate $(215.0 \mathrm{mg}, \quad 0.5 \mathrm{mmol})$, 2-hydroxy-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde ($148.8 \mathrm{mg}, 0.6 \mathrm{mmol}$), XPhos Pd G2 ($39.0 \mathrm{mg}, 0.05$ $\mathrm{mmol})$ and potassium phosphate tribasic ($212.3 \mathrm{mg}, 1.0 \mathrm{mmol}$) was dissolved in 10 mL of dioxane and 1 mL of water and then stirred at $90^{\circ} \mathrm{C}$ in a sealed tube for 3 h . The product formation was confirmed by TLC and LC-MS. The crude product was partitioned between ethyl acetate and water, and extracted using ethyl acetate $(3 \times 30 \mathrm{~mL})$. The combined organic extract was washed with brine, dried over anhydrous sodium sulfate and evaporated under reduced pressure give the crude compound as an oil. The crude oil was dissolved in dichloromethane/trifluoroacetic acid ($5 \mathrm{~mL} / 3 \mathrm{~mL}$) and stirred at ambient temperature over 1 h . Upon solvent evaporation, the mixture was adjusted to $p \mathrm{H}=7$ and extracted using dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined organic extract was washed with brine, dried over anhydrous sodium sulfate and evaporated under reduced pressure. The crude product was purified by flash chromatography (dichloromethane/methanol 5\%) to give the target compound as a yellow solid 20.0 mg , yield: 12.3%. HRMS $\left(\mathrm{ESI}^{+}\right)$calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}\left(\left[\mathrm{M}+\mathrm{H}^{+}\right]\right): 325.1301$, found 325.1294. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta(\mathrm{ppm}) 12.44(\mathrm{~s}, 1 \mathrm{H}), 11.93(\mathrm{~s}, 1 \mathrm{H}), 9.65(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.75-$ $7.52(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~m}, 4 \mathrm{H}), 3.01(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm}) 197.73,162.08,160.00,153.24,151.03,140.30,137.26,125.39,122.20,118.45,116.33,111.19$, 105.54, 65.57, 49.93.

4-(4-morpholino-7H-pyrrolo [2,3-d] pyrimidin-5-yl) phthalaldehyde (A5):

A mixture of tert-butyl 5-iodo-4-morpholino-7H-pyrrolo[2,3-d] pyrimidine-7-carboxylate ($150 \mathrm{mg}, 0.35 \mathrm{mmol}$), 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phthalaldehyde (100 $\mathrm{mg}, 0.38 \mathrm{mmol})$, XPhos Pd G2 $(30.0 \mathrm{mg}$, $)$ and potassium phosphate tribasic ($160 \mathrm{mg}, 1.0$ mmol) was dissolved in 10 mL of dioxane and 1 mL of water and then stirred at $90^{\circ} \mathrm{C}$ in a sealed tube for 3 h . The product formation was confirmed by TLC and LC-MS. The crude
product was partitioned between ethyl acetate and water, and extracted using ethyl acetate ($3 \times 30 \mathrm{~mL}$). The combined organic extract was washed with brine, dried over anhydrous sodium sulfate and evaporated under reduced pressure give the crude compound as an oil. The crude oil was dissolved in dichloromethane/trifluoroacetic acid ($5 \mathrm{~mL} / 3 \mathrm{~mL}$) and stirred at ambient temperature over 1 h . Upon solvent evaporation, the mixture was adjusted to $p \mathrm{H}=7$ and extracted using dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined organic extract was washed with brine, dried over anhydrous sodium sulfate and evaporated under reduced pressure. The crude product was purified by flash chromatography (dichloromethane/methanol $0-5 \%$) to give the target compound as a yellow solid 7.0 mg , yield: 6.0%. HRMS (ESI^{+}) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}\left(\left[\mathrm{M}+\mathrm{H}^{+}\right]\right): 337.1301$ found $337.1302 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ $(\mathrm{ppm}) 12.36(\mathrm{~s}, 1 \mathrm{H}), 10.35(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.71(\mathrm{~m}$, $1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 3.60-3.42(\mathrm{~m}, 4 \mathrm{H}), 3.28-3.15(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d6) $\delta(\mathrm{ppm})$ $191.75,160.28,154.08,151.05,142.29,141.22,131.63,129.32,127.90,125.59,124.76,115.39,102.61,95.98$, 83.21, 65.60, 49.80.

3-(4-morpholino-7H-pyrrolo[2,3-d] pyrimidin-5-yl) phenol) (A6):

A mixture of tert-butyl 5-iodo-4-morpholino-7H-pyrrolo[2,3-d]pyrimidine-7-carboxylate
 ($215.0 \mathrm{mg}, 0.5 \mathrm{mmol}$), 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenol (131.98 mg , $0.6 \mathrm{mmol})$, XPhos Pd G2 $(39.0 \mathrm{mg}, 0.05 \mathrm{mmol})$ and potassium phosphate tribasic (212.3 $\mathrm{mg}, 1.0 \mathrm{mmol}$) was dissolved in 10 mL of dioxane and 1 mL of water and then stirred at $90^{\circ} \mathrm{C}$ in a sealed tube for 3 h . The product formation was confirmed by TLC and LC-MS. The crude product was partitioned between ethyl acetate and water, and extracted using ethyl acetate $(3 \times 30 \mathrm{~mL})$. The combined organic extract was washed with brine, dried over anhydrous sodium sulfate and evaporated under reduced pressure give the crude compound as an oil. The crude oil was dissolved in dichloromethane/trifluoroacetic acid $(5 \mathrm{~mL} / 3 \mathrm{~mL})$ and stirred at ambient temperature over 1 h . Upon solvent evaporation, the mixture was adjusted to $p \mathrm{H}=7$ and extracted using dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined organic extract was washed with brine, dried over anhydrous sodium sulfate and evaporated under reduced pressure. The crude product was purified by flash chromatography (dichloromethane/methanol $0-5 \%$) to give the target compound as a white solid 59.8 mg , yield: 40.4%. HRMS (ESI ${ }^{+}$) calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}\left(\left[\mathrm{M}+\mathrm{H}^{+}\right]\right): 297.1352$, found 297.1340. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta(\mathrm{ppm}) 12.07(\mathrm{~s}, 1 \mathrm{H}), 9.46(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.23(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{t}, J=4.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.30-3.10(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta(\mathrm{ppm}) 160.20,157.72,153.47,150.59,137.07,129.93,122.63,119.24,116.54$, 115.70, 113.70, 102.90, 65.95, 49.83.

3-(4-morpholino-7H-pyrrolo [2,3-d] pyrimidin-5-yl) benzenesulfonyl fluoride (A7):

A mixture of tert-butyl 5-iodo-4-morpholino-7H-pyrrolo[2,3-d] pyrimidine-7-
 carboxylate $(215.0 \mathrm{mg}, 0.5 \mathrm{mmol}), 3-(4,4,5,5-$ tetramethyl-1,3,2-dioxaborolan-2-yl) benzenesulfonyl fluoride ($176 \mathrm{mg}, 0.6 \mathrm{mmol}$), XPhos Pd G2 ($39.0 \mathrm{mg}, 0.05 \mathrm{mmol}$) and potassium phosphate tribasic ($212.3 \mathrm{mg}, 1.0 \mathrm{mmol}$) was dissolved in 10 mL of dioxane and 1 mL of water and then stirred at $90^{\circ} \mathrm{C}$ in a sealed tube for 3 h . The product formation was confirmed by TLC and LC-MS. The crude product was partitioned between ethyl acetate and water, and extracted using ethyl acetate $(3 \times 30 \mathrm{~mL})$. The combined organic extract was washed with brine, dried over anhydrous sodium sulfate and evaporated under reduced pressure give the crude compound as an oil. The crude oil was dissolved in dichloromethane/trifluoroacetic acid ($5 \mathrm{~mL} / 3 \mathrm{~mL}$) and stirred at ambient temperature over 1 h . Upon solvent evaporation, the mixture was adjusted to $p \mathrm{H}=7$ and extracted using dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined organic extract was washed with brine, dried over anhydrous sodium sulfate and evaporated under reduced pressure. The crude product was purified by flash chromatography SI_13
(dichloromethane $/$ methanol $0-5 \%$) to give the target compound as a yellow solid 37.7 mg , yield: 20.8%. HRMS (ESI^{+}) calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{FN}_{4} \mathrm{O}_{3} \mathrm{~S}\left(\left[\mathrm{M}+\mathrm{H}^{+}\right]\right): 363.0927$, found $363.0920 .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta(\mathrm{ppm})$ $12.43(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.08-8.01(\mathrm{~m}, 1 \mathrm{H})$, $7.88(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.40(\mathrm{~m}, 4 \mathrm{H}), 3.28-2.90(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm}) 160.42,153.97,151.13,137.70,135.55,132.22,131.22,127.55,126.02,125.24,113.55,102.89$, 65.66, 50.05. ${ }^{19} \mathrm{~F}$ NMR (376 MHz , DMSO) $\delta(\mathrm{ppm}) 66.23,66.08$.

3-(4-morpholino-7H-pyrrolo[2,3-d] pyrimidin-5-yl) phenyl acetate (A8):

To a solution of 3-(4-morpholino-7H-pyrrolo[2,3-d] pyrimidin-5-yl) phenol) (50.0 $\mathrm{mg}, 0.17 \mathrm{mmol})$ in N, N-dimethylformamide $(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added pyridine ($20.0 \mathrm{mg}, 0.26 \mathrm{mmol}$) followed by acetic anhydride ($51.68 \mathrm{mg}, 0.51 \mathrm{mmol}$). The solution was stood for 2 h at room temperature, then evaporated under reduced pressure and the residue partitioned between ethyl acetate (20 mL) and cold 1 M dilute hydrochloric acid $(10 \mathrm{~mL})$. The organic layer was washed with further cold dilute hydrochloric acid, water, brine, dried over sodium sulphate, filtered and the filtrate evaporated under reduced pressure to give crude compound and purify by pre-TLC to get target compound as a white solid 5.0 mg , yield: 7.8%. HRMS (ESI^{+}) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}\left(\left[\mathrm{M}+\mathrm{H}^{+}\right]\right): 339.1457$, found: _ (not detected - see Note below). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ Methanol $\left.-d_{4}\right) \delta(\mathrm{ppm}) 8.34(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-$ $7.29(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{ddd}, J=8.1,2.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.39(\mathrm{~m}, 4 \mathrm{H}), 3.30(\mathrm{t}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H})$, $2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ Methanol- d_{4}) $\delta(\mathrm{ppm}) 169.83,160.22,152.33,150.76,150.14,136.88$, $129.51,125.78,121.98,121.76,119.79,116.25,103.27,66.22,49.52,20.94$. Noted: this compound is unstable in solvent (dimethyl sulfoxide, dichloromethane/methanol) under room temperature for 24 h . As such, biochemical assays were not further pursued with this compound.

1-(3-(4-morpholino-7H-pyrrolo[2,3-d] pyrimidin-5-yl) phenyl) ethan-1-one (A9):

A mixture of tert-butyl 5 -iodo-4-morpholino-7 H -pyrrolo[2,3- d] pyrimidine-7carboxylate ($215.0 \mathrm{mg}, 0.5 \mathrm{mmol}$), 1-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)ethan-1-one ($147.58 \mathrm{mg}, 0.6 \mathrm{mmol}$), XPhos Pd G2 ($39.0 \mathrm{mg}, 0.05 \mathrm{mmol}$) and potassium phosphate tribasic ($212.3 \mathrm{mg}, 1.0 \mathrm{mmol}$) was dissolved in 10 mL of dioxane and 1 mL of water and then stirred at $90^{\circ} \mathrm{C}$ in a sealed tube for 3 h . The product formation was confirmed by TLC and LC-MS. The crude product was partitioned between ethyl acetate and water, and extracted using ethyl acetate ($3 \times 30 \mathrm{~mL}$). The combined organic extract was washed with brine, dried over anhydrous sodium sulfate and evaporated under reduced pressure give the crude compound as an oil. The crude oil was dissolved in dichloromethane/trifluoroacetic acid ($5 \mathrm{~mL} / 3 \mathrm{~mL}$) and stirred at ambient temperature over 1 h . Upon solvent evaporation, the mixture was adjusted to $\mathrm{pH}=7$ and extracted using dichloromethane ($3 \times 10 \mathrm{~mL}$).

The combined organic extract was washed with brine, dried over anhydrous sodium sulfate and evaporated under reduced pressure. The crude product was purified by flash chromatography (dichloromethane/methanol $0-5 \%$) to give the target compound as a white solid 127.0 mg , yield: 78.8%. $\mathrm{HRMS}\left(\mathrm{ESI}^{+}\right)$calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}\left(\left[\mathrm{M}+\mathrm{H}^{+}\right]\right)$: 323.1508, found 323.1502. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta(\mathrm{ppm}) 12.38-11.97(\mathrm{~m}, 1 \mathrm{H}), 8.40(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{t}, J$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{dt}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.58(\mathrm{~m}, 2 \mathrm{H}), 3.46-3.38(\mathrm{~m}, 4 \mathrm{H}), 3.20-$ $3.13(\mathrm{~m}, 4 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta(\mathrm{ppm}) 198.49,160.35,153.72,150.80,137.40,136.15$, 132.81, 129.44, 128.16, 126.49, 123.76, 115.39, 102.98, 65.83, 49.94, 27.37.

2-(methoxymethyl)-4-(4-morpholino-7H-pyrrolo[2,3-d] pyrimidin-5-yl) phenol (A10):

A mixture of tert-butyl 5-iodo-4-morpholino-7H-pyrrolo[2,3-d] pyrimidine-7carboxylate ($215.0 \mathrm{mg}, 0.5 \mathrm{mmol}$), 2-(hydroxymethyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenol ($149.58 \mathrm{mg}, 0.6 \mathrm{mmol}$), XPhos Pd G2 ($39.0 \mathrm{mg}, 0.05 \mathrm{mmol}$) and potassium phosphate tribasic $(212.3 \mathrm{mg}, 1.0 \mathrm{mmol})$ was dissolved in 10 mL of dioxane and 1 mL of water and then stirred at $90^{\circ} \mathrm{C}$ in a sealed tube for 3 h . The product formation was confirmed by TLC and LC-MS. The crude product was partitioned between ethyl acetate and water, and extracted using ethyl acetate $(3 \times 30 \mathrm{~mL})$. The combined organic extract was washed with brine, dried over anhydrous sodium sulfate and evaporated under reduced pressure give the crude compound as an oil. The crude oil was dissolved in dichloromethane/trifluoroacetic acid ($5 \mathrm{~mL} / 3 \mathrm{~mL}$) and stirred at ambient temperature over 1 h . Upon solvent evaporation, the mixture was adjusted to $p \mathrm{H}=7$ and extracted using dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined organic extract was washed with brine, dried over anhydrous sodium sulfate and evaporated under reduced pressure. The crude product was purified by flash chromatography (dichloromethane/methanol 0-5\%) to give the target compound as a white solid 37.0 mg , yield: 21.8\%. HRMS (ESI ${ }^{+}$) calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}\left(\left[\mathrm{M}+\mathrm{H}^{+}\right]\right): 341.1614$, found $341.1603 .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta(\mathrm{ppm}) 11.97(\mathrm{~s}, 1 \mathrm{H})$, $9.50(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 3.59$ $-3.42(\mathrm{~m}, 4 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}) 3.23-2.88(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta(\mathrm{ppm}) 160.37$, 153.91, 153.31, $150.45,129.36,128.31,126.60,124.87,121.87,116.48,115.47,103.18,69.32,65.88,58.30,49.94$

3-(4-morpholino-7H-pyrrolo[2,3- d] pyrimidin-5-yl) benzaldehyde (A11):

A mixture of tert-butyl 5-iodo-4-morpholino-7H-pyrrolo[2,3-d] pyrimidine-7carboxylate $(215.0 \mathrm{mg}, 0.5 \mathrm{mmol}), 3-(4,4,5,5-$ tetramethyl-1,3,2-dioxaborolan-2yl)benzaldehyde ($139.20 \mathrm{mg}, 0.60 \mathrm{mmol}$), XPhos Pd G2 ($39.0 \mathrm{mg}, 0.05 \mathrm{mmol}$) and potassium phosphate tribasic $(212.3 \mathrm{mg}, 1.0 \mathrm{mmol})$ was dissolved in 10 mL of dioxane and 1 mL of water and then stirred at $90^{\circ} \mathrm{C}$ in a sealed tube for 3 h . The product formation was confirmed by TLC and LC-MS. The crude product was partitioned between ethyl acetate and water, and extracted using ethyl acetate ($3 \times 30 \mathrm{~mL}$). The combined organic extract was washed with brine, dried over anhydrous sodium sulfate and evaporated under reduced pressure give the crude compound as an oil. The crude oil was dissolved in dichloromethane/trifluoroacetic acid ($5 \mathrm{~mL} / 3 \mathrm{~mL}$) and stirred at ambient temperature over 1 h . Upon solvent evaporation, the mixture was adjusted to $p \mathrm{H}=7$ and extracted using dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined organic extract was washed with brine, dried over anhydrous sodium sulfate and evaporated under reduced pressure. The crude product was purified by flash chromatography (dichloromethane/methanol $0-5 \%$) to give the target compound as a white solid 120.0 mg , yield: 77.9%. HRMS $\left(\mathrm{ESI}^{+}\right)$calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}\left(\left[\mathrm{M}+\mathrm{H}^{+}\right]\right): 309.1352$, found 309.1344. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}) 12.38$ $-12.25(\mathrm{~m}, 1 \mathrm{H}), 10.12(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{dt}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{dt}, J=7.7$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.40(\mathrm{~m}, 4 \mathrm{H}), 3.22-3.11(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta(\mathrm{ppm}) 193.89,160.39,153.77,150.87,136.81,136.57,134.17,129.91,128.98,128.13$, $123.95,115.00,102.98,65.85,49.93$

4-(5-(3-formyl-4-hydroxyphenyl)-7H-pyrrolo[2,3- d]pyrimidin-4-yl)-N-(prop-2-yn-1-yl)morpholine-2-

carboxamide (ABPA2): A mixture of tert-butyl 5-iodo-4-(2-((3-(triisopropylsilyl)prop-2-yn-1-yl)carbamoyl)morpholino)-7H-pyrrolo[2,3- d]pyrimidine-7-carboxylate ($200.0 \mathrm{mg}, 0.3 \mathrm{mmol}$), 2-hydroxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde ($89.2 \mathrm{mg}, 0.36 \mathrm{mmol}$), XPhos Pd G2 ($25.0 \mathrm{mg}, 0.03$ mmol) and potassium phosphate tribasic $(190.8 \mathrm{mg}, 0.9 \mathrm{mmol})$ was dissolved in 10 mL of dioxane and 1 mL of water. The reaction mixture was degassed and purged with nitrogen, then the reaction mixture was stirred at $90^{\circ} \mathrm{C}$

for 3 h . The product formation was confirmed by TLC and LC-MS. The crude product was partitioned between ethyl acetate and water, and extracted using ethyl acetate $(3 \times 30 \mathrm{~mL})$. The combined organic extract was washed with brine, dried over anhydrous sodium sulfate and evaporated under reduced pressure give the crude compound as an oil. The crude oil was dissolved in dichloromethane/trifluoroacetic acid ($5 \mathrm{~mL} / 3 \mathrm{~mL}$) and stirred at ambient temperature over 1 h . Upon solvent evaporation, the mixture was adjusted to $p \mathrm{H}=7$ and extracted using ethyl acetate $(3 \times 10 \mathrm{~mL})$. The combined organic extract was washed with brine, dried over anhydrous sodium sulfate and evaporated under reduced pressure. The crude product was purified by flash chromatography (dichloromethane/methanol $0 \%-5 \%$) to give 4-(5-(3-formyl-4-hydroxyphenyl)-7 H-pyrrolo[2,3- d] pyrimidin-4-yl)-N-(3-(triisopropylsilyl) prop-2-yn-1-yl) morpholine-2-carboxamide as a yellow solid 130.0 mg , yield: 77.3%.

To a solution of 4-(5-(3-hydroxyphenyl)-7H-pyrrolo[2,3- d] pyrimidin-4-yl)-N-(3-(triisopropylsilyl) prop-2-yn-1-yl) morpholine-2-carboxamide ($130.0 \mathrm{mg}, 0.24 \mathrm{mmol}$) in 5 mL of tetrahydrofuran was added 0.6 mL of tetrabutylammonium fluoride (TBAF) 1.0 M in tetrahydrofuran (0.96 mmol). The reaction mixture was stirred for 0.5 h at room temperature. The crude product was partitioned between ethyl acetate $(20 \mathrm{~mL})$ and a dilute solution of $\mathrm{NaCl}(180 \mathrm{~mL})$, and extracted using dilute NaCl solution $(20 \times 180 \mathrm{~mL})$ to remove TBAF completely. The organic extract was washed with brine, dried over anhydrous sodium sulfate and evaporated under reduced pressure. The crude product was purified via preparative HPLC (column, SHIMADZU shim-psck GIS C18, $5 \mu \mathrm{~m}$; mobile phase A, 1% FA in water, mobile phase B, acetonitrile; gradient, $10-90 \%$ B) to give 4-(5-(3-formyl-4-hydroxyphenyl)$7 H$-pyrrolo [2,3- d]pyrimidin-4-yl)- N-(prop-2-yn-1-yl)morpholine-2-carboxamide as a yellow solid 43.0 mg , yield: 44.1%. HRMS (ESI^{+}) calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{4}\left(\left[\mathrm{M}+\mathrm{H}^{+}\right]\right): 406.1515$ found $406.1511 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) $11.31(\mathrm{~s}, 1 \mathrm{H}), 10.00(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{dd}, J=8.5,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.25(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dt}, J=13.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=5.5,2.6$ $\mathrm{Hz}, 2 \mathrm{H}), 3.91-3.73(\mathrm{~m}, 3 \mathrm{H}), 3.52(\mathrm{td}, J=11.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{td}, J=13.5,12.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=13.3$, $10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 196.91,168.66,166.30,160.99,160.43$, $152.67,149.99,137.84,133.28,127.42,121.82,120.96,118.35,115.93,104.15,79.32,74.96,72.14,66.31,51.80$, 49.20, 28.90

3-(4-(2-(prop-2-yn-1-ylcarbamoyl)morpholino)-7H-pyrrolo[2,3-d]pyrimidin-5-yl)benzenesulfonyl fluoride

(ABPA7): A mixture of tert-butyl 5-iodo-4-(2-((3-(triisopropylsilyl)prop-
2-yn-1-yl)carbamoyl)morpholino)-7 H -pyrrolo[2,3- d]pyrimidine-7carboxylate $(200.0 \mathrm{mg}, \quad 0.3 \mathrm{mmol}), 3-(4,4,5,5$-tetramethyl-1,3,2-dioxaborolan-2-yl) benzenesulfonyl fluoride ($102.85 \mathrm{mg}, 0.36 \mathrm{mmol}$), XPhos Pd G2 ($25.8 \mathrm{mg}, 0.03 \mathrm{mmol}$) and potassium phosphate tribasic $(190.0 \mathrm{mg}, 0.9 \mathrm{mmol})$ was dissolved in 10 mL of dioxane and 1 mL of water

The reaction mixture was degassed and purged with nitrogen, then the reaction mixture was stirred at $90{ }^{\circ} \mathrm{C}$ for 3 h . The product formation was confirmed by TLC and LC-MS. The crude product was partitioned between ethyl acetate and water, and extracted using ethyl acetate $(3 \times 30 \mathrm{~mL})$. The combined organic extract was washed with brine, dried over anhydrous sodium sulfate and evaporated under reduced pressure give the crude compound as an oil. The crude oil was dissolved in dichloromethane/trifluoroacetic acid ($5 \mathrm{~mL} / 3 \mathrm{~mL}$) and stirred at ambient temperature over 1 h . Upon solvent evaporation, the mixture was adjusted to $p \mathrm{H}=7$ and extracted using ethyl acetate $(3 \times 10 \mathrm{~mL})$. The combined organic extract was washed with brine, dried over anhydrous sodium sulfate and evaporated under reduced pressure. The crude product was purified by flash chromatography (dichloromethane/methanol $0 \%-5 \%$) to give 3-(4-(2-((3-(triisopropylsilyl) prop-2-yn-1-yl) carbamoyl) morpholino)-7H-pyrrolo[2,3-d] pyrimidin-5-yl)
benzenesulfonyl fluoride as a yellow 80.0 mg , yield: 44.5%.
To a solution of 3-(4-(2-((3-(triisopropylsilyl) prop-2-yn-1-yl) carbamoyl) morpholino)-7H-pyrrolo[2,3-d] pyrimidin-5-yl) benzenesulfonyl fluoride ($80 \mathrm{mg}, 0.13 \mathrm{mmol}$) in 5 mL of tetrahydrofuran was added 0.6 mL of tetrabutylammonium fluoride (TBAF) 1.0 M in tetrahydrofuran ($0.52 \mathrm{mmol}, 4$ equiv.). The reaction mixture was stirred for 0.5 h at room temperature. The crude product was partitioned between ethyl acetate (20 mL) and a dilute solution of $\mathrm{NaCl}(180 \mathrm{~mL})$, and extracted using dilute NaCl solution $(20 \times 180 \mathrm{~mL})$ to remove TBAF completely. The organic extract was washed with brine, dried over anhydrous sodium sulfate and evaporated under reduced pressure. The crude product was purified via preparative HPLC (column, SHIMADZU shim-psck GIS C18, $5 \mu \mathrm{~m}$; mobile phase A, 1% FA in water; mobile phase B, acetonitrile; gradient, $10-90 \%$ B) to give 3-(4-(2-(prop-2-yn-1ylcarbamoyl) morpholino)-7 H -pyrrolo[2,3- d] pyrimidin- 5 -yl) benzenesulfonyl fluoride as a yellow solid 8.0 mg , yield: 13.5%. $\mathrm{HRMS}\left(\mathrm{ESI}^{+}\right)$calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{FN}_{5} \mathrm{O}_{4} \mathrm{~S}\left(\left[\mathrm{M}+\mathrm{H}^{+}\right]\right): 444.1142$ found 444.1133 . ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 10.86(\mathrm{~s}, 1 \mathrm{H}), 8.56(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.04-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.37(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dt}, J=13.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=5.4,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{dd}, J=$ $11.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=10.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{td}, J=11.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-2.95$ $(\mathrm{m}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=13.1,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 168.28$, $160.22,153.58,151.13,136.97,134.41,133.35130 .19,128.24,126.30,122.50,114.94,103.41,78.98,74.35,71.80$, $65.82,52.10,48.45,28.53 .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 65.78$.

3. Other Experimental Details.

3.1 Cell Culture and anti-proliferative assay

A549 cells and HEK293 were cultured in DMEM (Sigma, D1152) supplemented with 1% PenicillinStreptomycin and 10% Fetal Bovine Serum and $3.7 \mathrm{~g} / \mathrm{L}$ sodium bicarbonate. K562 were cultured in RMPI-1640 (Biowest, L0500) supplemented with 1% Penicillin-Streptomycin and 10% Fetal Bovine Serum.

Cells were plated at a density of 5,000 (for K562 and HEK293 cells) cells per well in 96-well cell culture plates for 24 h , then cells were treated with a dilution series of test compounds for 72 hours. Cell viability was determined by CellTiter Glo (Promega, G7572) and the luminescence signal was recorded with Cytation 5 imaging reader (BioTek). The results were converted to cell numbers using a standard curve. Cell viability inhibition (IC ${ }_{50}$) values were determined by Graph Pad Prism version 8.

3.2 Biochemical Assay

Buffer composition:

40 mM Tris; $20 \mathrm{mM} \mathrm{MgCl} 2 ; 0.5 \mathrm{mM}$ DTT and 0.10% BSA.

LRRK2 biochemical assay:

The compounds were 50 -fold serially diluted from 2 mM stocks for 10 doses in kinase buffer, to obtain 10 different concentrations of $10000,2500,625,156,39,10,2.44,0.61,0.15$ and $0.04 \mathrm{nM} .1 \mu \mathrm{~L}$ of the compound solution was transferred into each well of a 384 -well assay plate. The enzyme master mix was prepared by diluting the stock enzyme (full-length LRRK2, Cat. No. L10-11G from Signalchem; LRRK2-G2019S, Cat. NO. 2341536B from ThermoFisher) until the final kinase concentration was $5 \mathrm{nM} .2 \mu \mathrm{~L}$ of the kinase solution was next transferred into each well of the assay plate, and further incubated with the compound. The incubation time was adjust according to experimental design (1 h in most cases for kinase inhibition assays, and $0 \mathrm{~min}, 30 \mathrm{~min}, 1 \mathrm{~h}, 2 \mathrm{~h}, 6 \mathrm{~h}$ and 12 h for time-dependent kinase inhibition assays). Next, $1 \mu \mathrm{~L}$ of a mixture containing the substrate ($2.5 \mu \mathrm{M}$) and ATP (50 $\mu \mathrm{M})$ was added into each reaction well, and incubation was continued at room temperature for 60 min . Separately, a solution containing Sa-XL 665 and TK-antibody-Cryptate in HTRF detection buffer (Cat. No.62TK0PEC; Cisbio Bioassays) was prepared according to vendor's protocol, and $8 \mu \mathrm{~L}$ of this solution was added into each well of the above assay plate, followed by further incubation at room temperature for 40 min . Finally, the assay plate was transferred to a Biotek Microplate reader for reading. The IC_{50} values were calculated using GraphPad Prism by plotting the enzyme activity against $\log [$ inhibitor].

AURKA biochemical assay:

The enzymatic activities against AURKA were tested using the AURKA Kinase Enzyme System (Carna, 05101). First, $2 \times$ ATP \& Substrate solution and $2 \times$ kinase \& Metal solution were prepared using assay buffer. Then, Transfer 25 nL compound to 384 assay plate by Echo 655 . Next, add $2.5 \mu \mathrm{~L}$ of $2 \times$ kinase \& Metal solution were mixed and incubated in a polystyrene coated 384 assay plate for 10 minutes at $25^{\circ} \mathrm{C}$. Next, $2.5 \mu \mathrm{~L}$ of $2 \times$ Substrate \& ATP solution were added to the well, and incubated at $25^{\circ} \mathrm{C}$ for 50 minutes. Followed $2 \times$ XL665 \& Antibody solution were prepared with detection buffer. Finally, $5 \mu \mathrm{~L}$ of Kinase Detection Reagent was added to the well, and incubated for 60 minutes at $25^{\circ} \mathrm{C}$. The fluorescence signals of 620 nm (Cryptate) and 665 nm (XL665) were read by microtiter-plate reader.

3.3 Cellular inhibition by WB/cell-based LRRK2 inhibition assay

A549 cells were equally dispensed and adhered into 6 -well plates with a density of 3×10^{5} cells per well for overnight ($37^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$). The cells were then incubated with compounds at a series of concentrations $(0.08,0.4$, $2,10,50 \mu \mathrm{M})$ or DMSO for 1.5 hours. After incubation, cells were washed by PBS and lysed by RIPA lysis buffer (no 89900, ThermoFisher) containing protease inhibitor (no. S8820, Merck) and phosphatase inhibitors (no. 4906845001, Merck). Protein in cell lysate was quantified by Bradford assay kit (FD.2003, Fdbio Science). Primary
antibodies used in this study include Rab10 antibody (ab237703, Abcam), Phospho-Rab10 (Thr73) antibody (ab230261, Abcam), β-Tubulin antibody (AF7011, Affinity Biosciences). The Millipore immobilon Western chemiluminescence substrate was used for signal development. Blots were imaged in an Amersham Imager 600 (GE Healthcare). For the quantitation of protein, band intensities were measured by using the software ImageJ.

3.4 KINOMEscan ${ }^{\circledR}$

Kinomescan results were provided by Thermo Fisher Scientific (USA) at a cost, compound A2 (0.2 $\mu \mathrm{M})$ was tested against selected 100 representative kinases widely located in the different kinase families. Kinomescan ${ }^{\circledR}$ Data Analysis: First, all tested kinases were divided into three ranges according to the inhibition rate ($>95 \%, 60-95 \%$, $40-60 \%,<40 \%$). All data in each range were set to be unified Value (the size of the circle), and then all preprocessed data (kinase name and corresponding value) were imported into KinMap (www.kinhub.org) for mapping. Selectivity Score (S-score) was calculated by dividing the number of hits at certain percent control ($\% \mathrm{Ctrl}$) by the total number of kinases being tested.

3.5 In vitro pure LRRK2 protein labeling

LRRK2 was diluted to $0.1 \mu \mathrm{M}$ with PBS. LRRK2 $(10 \mu \mathrm{~L})$ was treated with different probes (ABPA2, ABPA7 and Flurorescein-5-EXN-hydroxysuccinimide ester, $1 \mu \mathrm{~L}, 20 \mu \mathrm{M}$ stock in DMSO), followed by addition of $\mathrm{NaCNBH}_{3}(1 \mu \mathrm{~L}, 750 \mathrm{mM})$ or $\operatorname{PBS}(1 \mu \mathrm{~L})$ to sample treated with probes, then the samples were incubated at room temperature for 12 h . After incubation, the samples were treated with a freshly premixed click chemistry reaction cocktail $\left(100 \mu \mathrm{M}\right.$ Rhodamine- N_{3} from 1 mM stock solution in DMSO, 0.1 mM THPTA from 10 mM stock solution in DMSO, 1 mM TCEP from 100 mM stock solution in deionized water, and $1 \mathrm{mM} \mathrm{CuSO}_{4}$ from 100 mM stock solution in deionized water) and incubated at room temperature for 1 h . The samples were added with $5 \times$ loading buffer and heated for 10 min at $95^{\circ} \mathrm{C}$. Sample was separated by $\operatorname{SDS}-\mathrm{PAGE}(8 \% \mathrm{gel})$ and then visualized by the GE Healthcare Typhoon 9410 scanner (Cy3 and Cy5 laser channels).

3.6 Protein expression and purification

Genes encoding human AURKA (127-401) were cloned into a modified pRSF-Duet vector, preceded by a His6SUMO tag. The fusion proteins were over-expressed in E. coli BL21(DE3) cells, which were induced by addition of 0.4 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) at an OD_{600} of 0.8 and then grown at $20^{\circ} \mathrm{C}$ for 16 h . The cells were harvested and lysed in buffer containing 50 mM Tris- $\mathrm{HCl}(p \mathrm{H} 8.0), 1 \mathrm{M} \mathrm{NaCl}, 25 \mathrm{mM}$ imidazole, 0.5 mM $\beta-M E$ and 1 mM PMSF. The fusion proteins were first purified using a Ni-NTA column. The protein was washed using washing buffer (25 mM imidazole, $1 \mathrm{M} \mathrm{NaCl}, 25 \mathrm{mM}$ Tris and $p \mathrm{H} 8.0$). Then the AURKA protein was eluted with elution buffer (250 mM imidazole, $1 \mathrm{M} \mathrm{NaCl}, 25 \mathrm{mM}$ Tris and $p \mathrm{H} 8.0$). The His $6-\mathrm{SUMO}$ tag was cleaved by treatment with ULP1 and the tag-less protein was fractioned by using Ni-NTA column again and a Superdex 75 sizeexclusion column (GE Healthcare) pre-equilibrated with a buffer containing $25 \mathrm{mM} \operatorname{HEPES}(p \mathrm{H} 8.0), 300 \mathrm{mM} \mathrm{NaCl}$ and 1% glycerol. The final purified AURKA protein was concentrated to $25 \mathrm{mg} / \mathrm{mL}$ and stored at $-80^{\circ} \mathrm{C}$.

3.7 Intact protein mass spectrometry analysis

AURKA domain $(10 \mu \mathrm{M})$ was incubated with different covalent inhibitors $(100 \mu \mathrm{M})$ in PBS (total volume was $65 \mu \mathrm{~L}$) indicated for 12 h . After incubation, the sample was moved to centrifugal filters (10 kDa , Merck) for replacing the solution with deionized water (0.1% formic acid). After collecting the $27 \sim 40 \mu \mathrm{~L}$ of sample, the samples were analyzed by LC-MS (Dionex LC coupled to QExactive-Orbitrap, Thermo Fisher Scientific Inc). Deconvolution of multiple charged ions was processed with BioPharma Finder Software (Thermo Fisher Scientific Incm USA).

To obtain AURKA in complex with an inhibitor, the protein was incubated with a compound at a molar ration of $1: 10$ at $37^{\circ} \mathrm{C}$ for 12 h , then clarified by centrifugation at 12000 rpm at $25^{\circ} \mathrm{C}$ for 2 min . Crystallization was carried out using hanging-drop diffusion method. The hanging drops were prepared by mixing $1 \mu \mathrm{~L}$ of the protein-compound mix solution with $1 \mu \mathrm{~L}$ of the reservoir fluid containing the precipitating agents. If additive solution (improve crystal appearance) was required for crystals, its volume always was $0.2 \mu \mathrm{~L}$. The crystals of AURKA-A2 appeared in a buffer containing $1.5 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}, 0.1 \mathrm{M}$ HEPES $(p \mathrm{H} 7.0)$ and $4 \% \mathrm{v} / \mathrm{v}$ 1,3-propanediol. Crystals grew to their maximum size in $\sim 15 \mathrm{~d}$. The crystals mentioned above all appeared at 293 K . Before being flash frozen in liquid nitrogen, the crystals were cryo-protected using the precipitant solution supplemented with glycerol to a final concentration of $27 \%(\mathrm{v} / \mathrm{v})$. Datasets were collected on the beam-line BL17B and BL19U1 at the Shanghai Synchrotron Radiation Facility. The data were indexed, integrated and scaled using the HKL3000 package. The structural solution was obtained by molecular replacement using PHASER in Phenix and the structure of the kinase domain of AURKA as the search model (PDB ID: 3E5A). Iterative rounds of model building in COOT and refinement in Phenix were carried out. The atomic coordinates and structural factors of AURKA-A2 have been deposited into the Protein Data Bank under the accession code 8JXM.

3.9 In-gel fluorescence scanning in live K562 cells

K562 cells were treated with DMSO, or $2 \mu \mathrm{M}$ of a probe (ABPA2, ABPA7 and XO44) at $37{ }^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$ for 2 h. For competition experiments, cells were pre-treated with a cell medium containing a competitor at $37{ }^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$ for 2 h , before addition of the probe. Following incubation at $37{ }^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$ for another 2 h . the labeled cells were collected by centrifugation, washed twice with cold PBS, and lysed in lysis buffer (100 mM HEPES, 150 mM NaCl , $0.1 \% \mathrm{NP}-40 \mathrm{pH} 7.5,2 \mathrm{mM}$ PMSF, $2 \times$ EDTA-free complete protease inhibitors). For ABPA2 labeling, 50 mM sodium cyanoborohydride was added, and the reduction was done by incubating the sample on ice for 60 min with sonication, followed by before lysate clarification with centrifugation. The lysates were centrifuged at $21330 \mathrm{~g} / 4^{\circ} \mathrm{C}$ for 30 min . Protein quantification was performed using a Bio-Rad Bradford Protein Assay. The proteomes were next precipitated by adding 5 volumetric times of methanol/chloroform $(\mathrm{v} / \mathrm{v}=4: 1)$ and 3 volumetric times of deionized water. Upon further centrifugation at 10000 g for 10 min , the precipitated protein pellets were washed with cold methanol and re-dissolved in $0.4 \% ~(w / v)$ SDS/PBS by sonication. The procedures were also used for preparation of pull-down (PD) samples descripted below. The concentrations of the proteomes were normalized to $2.5 \mathrm{mg} / \mathrm{mL}$ with PBS. Then a freshly premixed click chemistry reaction cocktail descripted was added to the samples, followed by further incubation at room temperature for 1 h . The samples were added with $5 \times$ SDS-loading buffer and heated for 10 min at $95^{\circ} \mathrm{C}$. Around $48 \mu \mathrm{~g}$ (per gel lane) of proteome was separated by SDS-PAGE (12% gel) and visualized on a GE Healthcare Typhoon 9410 scanner (Cy3 and Cy5 laser channels). Fluorescence images were shown in gray scale.

3.10 Large-scale pull-down (PD) in live A549/K562 cells

The proteomes ($5 \mathrm{mg} / \mathrm{mL}, 1.5 \mathrm{~mL}$) were prepared according to procedures descripted above. Following probe labeling, freshly premixed click reagents (final concentration: $100 \mu \mathrm{M}$ Biotin-PEG3- ${ }_{3}, 100 \mu \mathrm{M}$ THPTA, 1 mM TCEP and 1 mM CuSO 4) were added, and the samples were incubated at room temperature for 1 h . After click reaction, the proteomes were precipitated and re-dissolved in 0.5 mL of 0.4% (w/v) SDS/PBS by sonication, followed by dilution to 0.2% SDS/PBS with PBS. The same number of proteomes were collected and incubated with high-capacity Neutravidin agarose beads (Thermo \#29204, $100 \mu \mathrm{~L}$ for each sample) preequilibrated in PBS, and the resulting mixture was rotated at $4^{\circ} \mathrm{C}$ overnight. The beads were washed with $1 \% \mathrm{NP}-40,0.1 \% \mathrm{SDS}$ in deionized water ($3 \times 10 \mathrm{~min}$, room temperature), 6 M urea in $\mathrm{PBS}\left(3 \times 30 \mathrm{~min}, 4^{\circ} \mathrm{C}\right)$ and cold $\mathrm{PBS}(3 \times 10 \mathrm{~min}$, room temperature). For Western blotting (WB) experiments, 10% of beads prepared above were added with 2 x loading buffer and heated at $95^{\circ} \mathrm{C}$ for 30 min . Next, the beads were spun down, and the collected samples were separated on 8% SDS-PAGE
before being transferred onto PVDF membranes. The membranes were blocked with 5\% BSA in Tris-buffered saline with 0.1% Tween-20 (TBST) for 1 h at room temperature. The membranes were incubated with anti-LRRK2 (\#ab170993, Abcam); anti-LRRK2 (\#ab172378, Abcam); anti-LRRK2 (phosphor S935, \#ab172382, Abcam); total AURKA (\#ab13824, Abcam); anti-Phospho-AURKA antibody (T288, \#3079S, Cell Signaling Technology); GAPDH (\#sc-166574, Santa Cruz), followed by washing with TBST ($3 \times 15 \mathrm{~min}$). Then the indicated membrane was incubated with HRP-conjugated anti-rabbit (\#7074P2, Cell Signaling Technology) or HRP-conjugated anti-mouse (\#626520, Invitrogen) for 1 h at room temperature, followed by washing with TBST ($3 \times 15 \mathrm{~min}$). The blot was developed by using ECL SelectTM Western Blotting Detection Reagent (\#RPN2235, Cytiva) and recorded by using GE ImageQuant LAS 500.

3.11 Cellular phosphorylation assay

$7 \times 10^{5} \mathrm{~K} 562$ cells were seeded into a 12 -well plate and pre-incubated with Nocodazole $(0.1 \mu \mathrm{~g} / \mathrm{mL})$ in the cellincubator for 17 h , then the cells were treated with AURKA inhibitor $(0-10 \mu \mathrm{M})$ followed by further incubation for 3 h . After that, cells were collected, washed with cold PBS twice, then lysed in lysis buffer (RIPA buffer (Thermo Fisher 8990), 1 mM PMSF, 5 mM sodium fluoride, 1 mM sodium orthovandate, $1 \times$ EDTA-free cComplete protease inhibitors) on ice for 0.5 h . The cell lysates were centrifuged at $21330 \mathrm{~g} / 4^{\circ} \mathrm{C}$ for 0.5 h , and the supernatant was collected. The protein concentration was normalized by using Bradford assay. $5 \times$ standard SDS loading buffer was added to the sample, followed by heating at $95^{\circ} \mathrm{C}$ for 10 min . Equal amounts of proteins were then resolved on 10% SDS-PAGE gels and transferred to PVDF membranes. The membranes were blocked with 5% BSA in TBST (0.1% Tween-20) for 1 h at room temperature. The indicated membrane was incubated with different primary antibodies at room temperature for 1 h . These antibodies included total AURKA (\#ab13824, Abcam); anti-Phospho-AURKA antibody (T288, \#3079S, Cell Signaling Technology); GAPDH (\#sc-166574, Santa Cruz), followed by washing with TBST ($3 \times 15 \mathrm{~min}$). Then the indicated membrane was incubated with HRP-conjugated anti-rabbit (\#7074P2, Cell Signaling Technology) or HRP-conjugated anti-mouse (\#626520, Invitrogen) for 1 h at room temperature, followed by washing with TBST ($3 \times 15 \mathrm{~min}$). The blot was developed by using ECL SelectTM Western Blotting Detection Reagent (\#RPN2235, Cytiva) and recorded by using GE ImageQuant LAS 500.

3.12 Cellular washout assay

The cellular washout assay was verified by cell viability assay and detection of the phosphorylation level of AURKA (T288):

Cell viability assay
$1.2 \times 10^{6} \mathrm{~K} 562$ cells per well were equally dispensed into a 24 -well plate with a final volume of 1 mL per well and incubated for overnight at $37{ }^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$. The cells were then incubated with compounds at the final assay concentration of $20 \mu \mathrm{M}$, or DMSO for 8 h (in duplicate). After incubation, the cell mixture of 1 mL per well was divided into 10 aliquots of $100 \mu \mathrm{~L}$, then $3 \times 100 \mu \mathrm{~L}$ of cells from the 1 mL was added to the 96 -well plate (100 $\mu \mathrm{L} /$ well , which were classified as "no-wash" group. For the "wash-out" group, the remaining cells were transferred to a 1.5 mL Eppendorf tube and centrifuged at 1500 rpm for 5 min . Upon removal of supernatant, collected cells were washed twice with 1 mL of drug-free culture medium for 5 min . Finally, cells were resuspended in equal volume of culture medium and $3 \times 100 \mu \mathrm{~L}$ of cells was added to the same 96 -well plate ($100 \mu \mathrm{~L} /$ well $)$. Cellular viability was measured after 64 h in both "wash-out" and "non-wash" samples by using anti-proliferation assay (CellTiter Glo kit, Promega, G7572). Viability is represented as \% viable relative to the DMSO control.

Cellular phosphorylation assay:

$7 \times 10^{5} \mathrm{~K} 562$ cells were seeded into a 12 -well plate and pre-incubated with Nocodazole $(0.1 \mu \mathrm{~g} / \mathrm{mL})$ in the cellincubator for 17 h , then the cells were treated with AURKA inhibitors ($\mathbf{A 2}: 20 \mu \mathrm{M} ; \mathrm{VX} 680: 1 \mu \mathrm{M}$) and incubated
for further 4 h . For samples under wash-out condition, the cells were collected and washed with warm medium for twice, then the cells were re-suspended in drug-free medium and re-plated in 12 -well plate, and incubated at $37{ }^{\circ} \mathrm{C} / 5 \%$ CO_{2} for 6 h . After incubation, cells were collected and washed with cold PBS twice, then lysed in lysis buffer (RIPA buffer (Thermo Fisher 8990), 1 mM PMSF, 5 mM sodium fluoride, 1 mM sodium orthovandate, $1 \times$ EDTA-free cComplete protease inhibitors) on ice for 0.5 h . The cell lysates were centrifuged at $21330 \mathrm{~g} / 4{ }^{\circ} \mathrm{C}$ for 0.5 h , and the supernatant was collected. The protein concentration was normalized by using Bradford assay. $5 \times$ standard SDS loading buffer was added to the sample, followed by heating at $95^{\circ} \mathrm{C}$ for 10 min . Equal amounts of proteins were then resolved on 10% SDS-PAGE gels and transferred to PVDF membranes. The membranes were blocked with 5% BSA in TBST (0.1% Tween-20) for 1 h at room temperature. The indicated membrane was incubated with different primary antibodies at room temperature for 1 h . These antibodies included total AURKA (\#ab13824, Abcam); anti-Phospho-AURKA antibody (T288, \#3079S, Cell Signaling Technology); GAPDH (\#sc-166574, Santa Cruz), followed by washing with TBST ($3 \times 15 \mathrm{~min}$). Then the indicated membrane was incubated with HRP-conjugated anti-rabbit (\#7074P2, Cell Signaling Technology) or HRP-conjugated anti-mouse (\#626520, Invitrogen) for 1 h at room temperature, followed by washing with TBST ($3 \times 15 \mathrm{~min}$). The blot was developed by using ECL SelectTM Western Blotting Detection Reagent (\#RPN2235, Cytiva) and recorded by using GE ImageQuant LAS 500.

3.13 Molecular docking study

The putative covalent binding modes of LRRK2/AURKA and compound $\mathbf{A 2}$ were obtained by using procedures described below. The X-ray structures of LRRK2/AURKA (PDB ID: 7HLW/3E5A) was downloaded from PDB (www.rcsb.org) and used as the acceptor proteins for docking, respectively. The protein was prepared by using the protein preparation wizard in Maestro release 2018-2 (www.schrodinger.com) with standard settings. This included bond order assignments, protonation state assignment using Epik $\mathrm{pH}=7.0 \pm 2.0$, optimization of the hydrogen bond network, remove water and constrained minimization with the OPLS3 force field. The small molecule file (.mol) was preprocessed by using the "Ligprep", and then the receptor grid was generated after the protein was ready. After that, Ligand Docking was carried out, the desired small molecule was docked into the ATP-binding pocket with the default algorithm, and the conformation with the highest scores was selected as no-covalent docking result. Then, confined the ligand to the enclosing box and chose the reaction type through the SMART (.CDOCK), SMART (.CDOCK): "Arylfluorosulfate warhead forms sulfonamide with the $\varepsilon-\mathrm{NH}_{2}$ of catalytic lysine" was edited according to the instruction of Schrodinger (https://www.schrodinger.com/science-articles/covdock). Finally, "Covalent Docking" was processed to obtain the predicted covalent binding modes of compounds with the SRC/AURKA by using the Ligand Docking core. Results are shown with PyMOL.

4. Results and Discussion.

Fig S1. Dendrogram showing KinomeScan ${ }^{\mathrm{TM}}$ of compound PF-06447475 (A1) at 1000 nM against 460 kinases (left), ${ }^{1}$ and compound $\mathbf{A 2}$ at 200 nM against 100 kinases (right).

Fig S2. The in vitro inhibition potency of compound LRRK2-IN-1, A1-A11 against LRRK2 ${ }^{\text {WT }}$ (10 min) LRRK2 ${ }^{\mathrm{G} 2019 \mathrm{~S}}(10 \mathrm{~min})$, and compound LRRK2-IN-1, A1, A2, A6, A7 and A10 against LRRK2 ${ }^{\mathrm{G} 2019 \mathrm{~S}}$ (1 h)

Fig S3. Cellular inhibition in A549 of various compounds. Incubation conditions: $37^{\circ} \mathrm{C}$ for 1.5 h

Fig S4. Time-dependent IC 50 plots and values of A3 and A4 against Recombinant Human Protein LRRK2 ${ }^{\text {WT }}$

(C)

ABPA2
LRRK2
Control

(D)

ABPA2: $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{CHO}$
ABPA7: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{SO}_{2} \mathrm{~F}$

Fig. S5. (A) Cellular inhibition of A1-A11. (B) Time-dependent IC50 plots and values of A2 against recombinant LRRK2WT. (C) Gel-based LRRK2 labelling with control (Fluorescein-5-EX N-hydroxysuccinimide ester) and ABPA2. (D) Pull-down/Western blotting experiments against endogenous LRRK2.

In order to explore the inhibition of selected compounds against endogenous LRRK2, a preliminary screening of phosphorylation level of Rab10 (T73) in compound-treated A549 cells was conducted. Active endogenous LRRK2 is known to phosphorylate Rab10. ${ }^{7}$ After treating cells with each compound for 1.5 h (Fig. S5A), A2, A6 and A11 show similar cellular activity to LRRK2-IN-1 and A1, while A5 and A10 showed a complete loss in cellular activity. These results are consistent with the in vitro results (Table 1 in the maintext). Time-dependent cellular inhibition was also carried out (Fig. S3); surprisingly, amongst the three SA-containing inhibitors, only A2 maintained comparable LRRK2 cellular inhibition compared to A1. We next assessed the potential covalent binding mode of A2, by carring out detailed time-dependent in vitro IC_{50} determination (Fig. S 4 and S 5 B). Unexpectedly, the IC_{50} of compound A2 did not show a time-dependent decrease in IC50 values (Table S2). Its corresponding activity-based probe, ABPA2, also failed to covalently label recombinant LRRK2 (Fig. S5C) and endogenous LRRK2 from live A549 cells (Fig. S5D). Our results thus indicated the newly designed SA-containing A2 mostly engaged LRRK2 non-covalently.

Fig S6. Putative noncovalent/covalent binding mode of compounds in LRRK2 and AURKA domain. (A): A1 in AURKA domain; (B): A2 in LRRK2 domain; (C): A2 in AURKA domain; (D): Putative covalent binding mode of compound A2 in AURKA domain (AURKA, PDB: 3E5A; LRRK2, PDB: 7LHW)

Fig S7. Intact protein MS analysis of AURKA-A7 complex

Fig S8. Anti-proliferative activity of A7 against K562 cells, and compounds A2 and A7 against HEK293 cells

Fig S9. Cellular phosphorylation assay (A7)

Table S2. Time-dependent kinase inhibition assays of A2, A3 and A4 against LRRK2 (IC50/nM)

	0 h	0.5 h	1 h	2 h	6 h
LRRK2-IN-1	4.58 ± 1.14	5.15 ± 0.31	6.15 ± 1.15	6.98 ± 0.43	8.01 ± 0.43
A2	5.94 ± 0.35	5.26 ± 0.68	6.87 ± 6.16	6.02 ± 2.24	5.43 ± 0.55
A3	30.21 ± 5.00	29.02 ± 2.41	36.74 ± 2.2	54.10 ± 2.65	53.76 ± 22.10
A4	19.60 ± 2.64	20.02 ± 0.11	37.84 ± 12.02	38.67 ± 7.87	36.39 ± 4.22

Table S3. Kinome Scan ${ }^{\mathrm{TM}}$ results of A2 $(200 \mathrm{nM})$, and PF-06447475 (1000 nM; extracted from reference 1)

	PF-06447475 (A1, $\mathbf{1} \boldsymbol{\mu M})^{1}$	A2 $(0.2 \mu \mathrm{M})$
KINOMEscan Gene Symbol	Inhibition (\%)	Inhibition (\%)
AAK1	86	75
ABL1(H396P)-nonphosphorylated	66	87
ABL1(T315I)-nonphosphorylated	27	73
ACVR1	0	66
ACVR2A	23	11
ACVRL1	0	34
AMPK-alpha1	29	102
AURKA	43	100
AURKB	74	103
AURKC	57	96
BLK	28	102
BMPR1B	69	91
BRAF	20	10
BRAF(V600E)	31	10
BRK	28	62
BTK	0	93
CAMKK2	22	44
CASK	34	51
CDK11(Inactive)	1	87
CDK11	52	80
CHEK1	6	60
CHEK2	0	53
CLK1	37	53
CLK4	62	88
SI_27		

CSNK2A2	55	8
DAPK1	11	7
DYRK1B	30	18
EGFR (G719C)	16	13
EGFR (L858R, T790M)	0	67
EPHA3	34	-2
ERBB2	27	12
FER	16	99
FGFR4	26	74
FGR	0	98
FLT3 (D835Y)	35	81
FRK	12	49
FYN	14	82
GRK7	63	25
HIPK2	35	68
HIPK3	53	30
ICK	4	31
IRAK1	77	96
IRAK4	31	85
ITK	0	43
JAK1(JH1domain-catalytic)	0	13
JAK 2(JH1domain-catalytic)	29	14
JAK JH1 JH2	1	10
JAK JH1 JH2 (V617F)	1	11
JAK3 (JH1domain-catalytic)	97.3	56
KIT	0	54
LIMK1	7	92
LRRK2	57	95
LRRK2 FL	1	92
LRRK2 (G2019S)	25	96
LRRK2 (G2019S) FL	1	97
LRRK2 (I2020T)	1	86
LRRK2 (R1441C)	1	91
MAP3K2	79	98
MAP4K5	47	101
MAPK15 (ERK7)	1	74
MARK2	57	95
MAST1	27	31
MEK1	87	97
MEK2	81	84
MEK5	86	69
MINK	54	75
MLCK	7	22
MST1R	5	27
MST4	93	101
NUAK2	1	79
p38-delta	30	14
PAK7	34	12
SI_28		

PHKG2	60	22
PKN2	65	51
PLK4	67	99
PRKCE	88	34
PRKCH	59	47
RET (V804M)	42	26
RIPK2	16	5
RPS6KA4(Kin.Dom.2-C-		
terminal)	0	74
RSK1(Kin.Dom.1-N-terminal)	0	84
RSK2(Kin.Dom.1-N-terminal)	54	91
SGK	35	93
SRC	0	40
SRC N1	1	65
SRPK1	67	30
STK16	40	49
STK33	93.6	98
TAOK1	64	42
TAOK3	21	17
TGFBR1	55	91
TNIK	68	93
TNK1	35	59
ULK1	31	57
ULK2	75	60
ULK3	0	96
WEE1	56.2	4
YES		80
YSK1	YSK4	

/: no result.

Table S4. Selectivity Scores for PF-06447475 from KinomeScan ${ }^{\text {TM }}$ results ${ }^{1}$

Compound	Selectivity Scores Type	Number of Hits	Number of kinase	Screening Concentration (nM)	Selectivity Score
PF-06447475	$\mathrm{S}(30)$	50	386	1000	0.13

Table S5. X-Ray data collection and refinement statistics for X-ray structures of AURKA-A2 complex

	AURKA-A2 (8JMX)
Data collection	
Space group	P6122
Cell dimensions	
$a, b, c(\AA)$	85.263, 85.263, 168.357
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	90.00, 90.00, 120.00
Resolution (\AA)	44.70-2.95(3.05-2.95) ${ }^{\text {a }}$
$R_{\text {merge }}$	0.358(1.028)
$I / \sigma(I)$	24.0(1.8)
$C C_{1 / 2}$	0.999(0.925)
Completeness (\%)	100.0(100.0)
Redundancy	24.0(26.0)
Refinement	
Resolution (\AA)	44.7-2.95
No. reflections	7161
$R_{\text {work }} / R_{\text {friee }}$	0.2139/0.2983
No. atoms	
Protein	1933
Ligand	23
Water	0
B factors	
Protein	87.60
Ligand	69.90
Water	0
R.m.s.deviations	
Bond lengths (\AA)	0.008
Bond angles (${ }^{\circ}$)	1.19

${ }^{a}$ Values in parentheses are for highest-resolution shell

5. Reference:

1 J. L. Henderson, B. L. Kormos, M. M. Hayward, K. J. Coffman, J. Jasti, R. G. Kurumbail, T. T. Wager, P. R. Verhoest, G. S. Noell, Y. Chen, E. Needle, Z. Berger, S. J. Steyn, C. Houle, W. D. Hirst and P. Galatsis, J. Med. Chem., 2015, 58, 419-432.
2 V. Pandarus, G. Gingras, F. Béland, R. Ciriminna and M. Pagliaro, BEILSTEIN J ORG CHEM, 2014, 10, 897-901.
3 (a) J. A. H. Inkster, K. Liu, S. Ait-Mohand, P. Schaffer, B. Guérin, T. J. Ruth and T. Storr, CHEM-EUR J, 2012, 18, 11079-11087; (b) T. S.-B. Lou and M. C. Willis, Tetrahedron, 2020, 76, 130782.
4 Y. J. Jang, O. G. Tsay, D. P. Murale, J. A. Jeong, A. Segev and D. G. Churchill, Chem. Commun., 2014, 50, 75317534.

5 J. H. Cho, L. C. Bassit, F. Amblard and R. F. Schinazi, Nucleosides, Nucleotides \& Nucleic Acids, 2020, 39, 671687.

6 V. Vaněk, J. Pícha, B. Fabre, M. Buděšínský, M. Lepšík and J. Jiráček, Eur. J. Org. Chem., 2015, 2015, 36893701.
7. T. Kuwahara and T. Iwatsubo, Front Neuros. SWitz., 2020, 14, 227.

6. NMR Spectra

Fig. S9. The ${ }^{1} \mathrm{H}$-NMR spectrum and ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{A 2}$

Fig. S10. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound A3

Fig. S11. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound A 4

Fig. S12. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound A 5

윤 순
$\begin{array}{ll}\text { LO } & \infty \\ 0 & \infty \\ 0 & \dot{+} \\ 1 & 1\end{array}$

Fig. S13. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum and ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{A 6}$
$\underbrace{\text { N }}$

10
0
0
0
1

110	200	190	180	170	160	150	140	130	120	$\begin{array}{c}10 \\ f 1(\mathrm{ppm})\end{array}$	100
210											

Fig. S14. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum, ${ }^{13} \mathrm{C}-\mathrm{NMR}$ and ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ spectrum of compound $\mathbf{A 7}$

Fig. S15. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum and ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{A 8}$

Fig. S16. The ${ }^{1} \mathrm{H}$-NMR spectrum and ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{A 9}$

Fig. S17. The ${ }^{1} \mathrm{H}$-NMR spectrum and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound A10

Fig. S18. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound $\mathbf{A 1 1}$

Fig. S19. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum and ${ }^{13} \mathrm{C}$-NMR spectrum of compound ABPA2

$\stackrel{\sim}{\sim}$	N	¢¢¢ ¢ ¢		안
$\stackrel{\infty}{\bullet}$	¢\％¢ ¢		$\stackrel{\infty}{\wedge} \stackrel{\ominus}{\dot{\circ}}$	へiّ
।	$1 \leq 1$	\11才）	11」1	11

Fig. S20. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum, ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum and ${ }^{19} \mathrm{~F}$ spectrum of compound ABPA7

Fig. S21. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound $\mathbf{B} 1$

Fig. S22. The ${ }^{1} \mathrm{H}-$ NMR spectrum of compound $\mathbf{B 2}$

Fig. S23. The ${ }^{1} \mathrm{H}$-NMR spectrum and ${ }^{19} \mathrm{~F}$-NMR spectrum of compound B3

Fig. S24. The ${ }^{1} \mathrm{H}-$ NMR spectrum of compound $\mathbf{B 5}$

Fig. S25. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound B6

Fig. S26. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{B} 7$

Fig. S27. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound B8

$\stackrel{\vdots}{i}$
らロッ
ヘヘ が બ્へ

Fig．S28．The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum and ${ }^{13} \mathrm{C}$－NMR spectrum of compound $\mathbf{B 9}$

Fig. S29. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound B10

Fig. S30. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound B12

Fig. S31. The ${ }^{1} \mathrm{H}$-NMR spectrum and ${ }^{13} \mathrm{C}$-NMR spectrum of compound B15

Fig. S32. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound $\mathbf{B 1 7}$

Fig. S33. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound B18
$\underset{\sim}{N}$
$\underbrace{\infty} \boldsymbol{\sim}$

Fig. S34. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum and ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{B} 19$.

7. Raw data of electrophoretic gels and blots

Fig. S35. Raw WB data for fig. 2A, cellular inhibition of A1-A11, the maker was Precision Plus Protein ${ }^{\mathrm{TM}}$ Dual Color Standards, 1610374, BIO-RAD, compound \mathbf{R} was not used in this manuscript, all the data of compound R was cut off from the Fig.2A

Fig. S36. Raw WB data for cellular inhibition in A549 of compound lrrk2-IN-1 and compound A1 (PF-06447475) in fig. S3, the maker was Precision Plus Protein ${ }^{\mathrm{TM}}$ Dual Color Standards, 1610374, BIO-RAD.

Fig. S37. Raw WB data for cellular inhibition in A549 of compound A2 in fig. S3, the maker was Precision Plus Protein ${ }^{\mathrm{TM}}$ Dual Color Standards, 1610374, BIO-RAD.

Fig. S38. Raw WB data for cellular inhibition in A549 of compound A3 in fig. S3, the maker was Precision Plus Protein ${ }^{\text {TM }}$ Dual Color Standards, 1610374, BIO-RAD.

Fig. S39. Raw WB data for cellular inhibition in A549 of compound A4 in fig. S3, the maker was Precision Plus Protein ${ }^{\mathrm{TM}}$ Dual Color Standards, 1610374, BIO-RAD.

Fig. S40. Raw WB data for cellular inhibition in A549 of compound A6 in fig. S3, the maker was Precision Plus Protein ${ }^{\text {TM }}$ Dual Color Standards, 1610374, BIO-RAD.

Fig. S41. Raw WB data for cellular inhibition in A549 of compound A7 in fig. S3, the maker was Precision Plus Protein ${ }^{\mathrm{TM}}$ Dual Color Standards, 1610374, BIO-RAD.

Fig. S42. Raw WB data for cellular inhibition in A549 of compound A9 in fig. S3, the maker was Precision Plus Protein ${ }^{\mathrm{TM}}$ Dual Color Standards, 1610374, BIO-RAD.

Fig. S43. Raw WB data for cellular inhibition in A549 of compound A11 in fig. S3, the maker was Precision Plus Protein ${ }^{\text {TM }}$ Dual Color Standards, 1610374, BIO-RAD.

Fig. S44. Raw data for fig. 2C, gel-based recombinant LRRK2 labelling with control (Fluorescein-5-EX Nhydroxysuccinimide ester) and ABPA2, the maker was PageRuler Plus Prestained Protein Ladder (Thermo Scientific, 26619).

Fig. S45. Raw date for fig. 2D, Pull-down/Western blotting experiments against endogenous LRRK2, the maker was PageRuler Plus Prestained Protein Ladder (Thermo Scientific, 26619)

Fig. S46. Raw data for fig. 4B, WB analysis of A2 on inhibition of AURKA autophosphorylation (T288), the maker was PageRuler Plus Prestained Protein Ladder (Thermo Scientific, 26616).

Fig. S47. Raw date for fig. S8, WB analysis of A7 on inhibition of AURKA autophosphorylation (T288), the exposure time for the first gel was 1 min , the exposure time for the second gel was 5 min ; the maker was PageRuler Plus Prestained Protein Ladder (Thermo Scientific, 26616).

Fig. S48. Raw date for fig. 4D, Washout experiments in live K562 cells (A2: $20 \mu \mathrm{M}$, VX $680: 1 \mu \mathrm{M}$), determined by WB of AURKA (T288) autophosphorylation, the maker was PageRuler Plus Prestained Protein Ladder (Thermo Scientific, 26616).

Fig. S49. Raw date for fig. 4E, gel-based proteome labelling by ABPA2 and ABPA7 (left: fluorescence, right: CBB) the maker was PageRuler Plus Prestained Protein Ladder (Thermo Scientific, 26616).

Fig. S50. Raw date for fig. 4F, Pull-down/WB experiments against endogenous AURKA, Competitor: A2 or A7, the second gel and the thirthe maker was PageRuler Plus Prestained Protein Ladder (Thermo Scientific, 26616).

8. Original HRMS and summar table.

Table S6. Summary of HRMS (ESI ${ }^{+}$) for compound $\mathbf{A 2}$ to compound A11

Compound	Chemical Structure	HRMS (ESI')
A2		$\begin{gathered} \text { calcd for } \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}\left(\left[\mathrm{M}+\mathrm{H}^{+}\right]\right) \text {: } \\ 325.1301 \\ \text { found: } 325.1295 \end{gathered}$
A3		$\begin{gathered} \text { calcd for } \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}\left(\left[\mathrm{M}+\mathrm{H}^{+}\right]\right) \text {: } \\ 325.1301 \\ \text { found: } 325.1300 \end{gathered}$
A4		$\begin{gathered} \text { calcd for } \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}\left(\left[\mathrm{M}+\mathrm{H}^{+}\right]\right) \text {: } \\ 325.1301 \\ \text { found: } 325.1294 \end{gathered}$
A5		$\begin{gathered} \text { calcd for } \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}\left(\left[\mathrm{M}+\mathrm{H}^{+}\right]\right) \text {: } \\ 337.1301 \\ \text { found: } 337.1302 \end{gathered}$
A6)		$\begin{gathered} \hline \text { calcd for } \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}\left(\left[\mathrm{M}+\mathrm{H}^{+}\right]\right) \text {: } \\ 297.1352 \\ \text { found: } 297.1340 \end{gathered}$
A7		$\begin{gathered} \text { calcd for } \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{FN}_{4} \mathrm{O}_{3} \mathrm{~S}\left(\left[\mathrm{M}+\mathrm{H}^{+}\right]\right) \text {: } \\ 363.0927 \\ \text { found:363.0920 } \end{gathered}$
A8		calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}\left(\left[\mathrm{M}+\mathrm{H}^{+}\right]\right)$: 339.1457 found: not detected (compoundnot stable)
A9		$\begin{gathered} \text { calcd for } \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}\left(\left[\mathrm{M}+\mathrm{H}^{+}\right]\right) \text {: } \\ 323.1508 \\ \text { found: } 323.1502 \end{gathered}$

([M10

Fig. S51. The HRMS spectrum of compound A2

Fig. S52. The HRMS spectrum of compound A3

Fig. S53. The HRMS spectrum of compound A4

Fig. S54. The HRMS spectrum of compound A5

Fig. S55. The HRMS spectrum of compound A6

Fig. S56. The HRMS spectrum of compound A7

Fig. S57. The HRMS spectrum of compound A9

Fig. S58. The HRMS spectrum of compound A10

Fig. S59. The HRMS spectrum of compound A11

Fig. S60. The HRMS spectrum of compound ABPA2

Fig. S61. The HRMS spectrum of compound ABPA7

[^0]: ${ }^{\text {a }}$ School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China. E-mail: gaolq@mail.sysu.edu.cn;
 ${ }^{\mathrm{b}}$ Department of Chemistry, National University of Singapore, 117543, Singapore. E-mail: chmyaosq@,nus.edu.sg; chmtg@nus.edu.sg;
 ${ }^{\text {c }}$ School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China. E-mail: 13632107756@163.com

