Supporting information

An electrochemical ratiometric biosensor for the detection of

dopamine based on MXene-Au nanocomposite

Wen-Jie Jing, Fei-Fei Li, Yu Liu, Rong-Na Ma, Wei Zhang, Lei Shang, Xiao-Jian Li, Qing-Wang Xue, Huai-Sheng Wang*, Li-Ping Jia*

College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng,

252000, China

*Corresponding author.

Email: jialiping@lcu.edu.cn; hswang@lcu.edu.cn.

1. Experimental sections

Regents and instruments

5 mg·mL⁻¹ multilayer $Ti_3C_2T_x$ MXene solution was purchased from Beike 2D Materials Co. Ltd (Suzhou, China). Methylene blue, HAuCl₄·3H₂O, and dopamine were bought from Aladdin Reagent (Shanghai) Co. Ltd. K₃[Fe(CN)₆], Na₂HPO₄, NaH₂PO₄, and KCl were purchased from Shanghai Macklin Biochemical Co., Ltd. The above reagents were analytically pure and used without further treatment. Milli-Q water purification system was employed to produce the ultrapure water (18.2 MΩ·cm) used in this work.

Transmission electron microscopy (TEM) images were observed on a JEM-2100 instrument. X-ray diffraction (XRD) measurements were conducted on a Rigaku Smartlab diffractometer with Cu K α radiation. All the electrochemical measurements were performed on a CHI660E electrochemical station (Shanghai CH Instruments Co. Ltd) with three-electrode system: modified glassy carbon electrode as working electrode, platinum wire as counter electrode and Ag/AgCl (3 M KCl) as reference electrode.

Synthesis of MXene-Au nanocomposite

MXene-Au was prepared based on the reported reference [24] with minor modification. First, 0.2 mL MXene solution (5 mg·mL⁻¹) was dropped into 4.8 mL water and sonicated for 30 min. Next, 1.0 mL HAuCl₄ (20 mM) was dropped into the above solution. After reacting for 5 min under continuously stirring, the mixture was centrifugated and washed three times with water. Finally, MXene-Au nanocomposite was obtained by drying the precipitate at 60°C for 12 h in vacuum.

Synthesis of MB-MXene-Au nanocomposite

1.0 mg MXene-Au nanocomposite was added into 1.0 mL 25 μ M methylene blue (MB) solution and sonicated for 1 h. The superfluous MB was removed by centrifugation and washing.

Fabrication of MB-MXene-Au/GCE

First, glassy carbon electrode (GCE) was polished with Al₂O₃ suspension on polishing cloth. After being washed with water and ethanol, the performance of GCE

was tested by scanning the cycle voltammetry of $[Fe(CN)_6]^{3-/4-}$ in 0.10 M KCl solution. Then the electrode was rinsed well with water and dried with nitrogen. Next, 6 µL 1 mg·mL⁻¹ MB-MXene-Au solution was dropped on the electrode surface and dried naturally. Finally, 6 µL 0.025% Nafion was added on MB-MXene-Au/GCE to immobilize MB-MXene-Au on the electrode firmly.

Electrochemical measurements

Nafion/MB-MXene-Au/GCE was immersed into 5 mL pH 6.0 PBS containing different concentration of dopamine for electrochemical detection.

Differential pulse voltammetry (DPV) was measured with the parameters: $+0.5 \sim$ -0.5V scan range, 4 mV potential increment, 50 mV pulse width, 50 mV amplitude, and 0.5 s pulse period. The electrochemical impedance spectroscopy (EIS) was carried out in 0.1 M KCl⁻solution containing 20 mM [Fe(CN)₆]^{3- /4-} with a frequency range from 0.1 Hz to 100 kHz. The amplitude of the applied sine wave potential was 5 mV and the formal potential of the system was set at +0.22 V.

2. Figures

Figure S1. Zeta potential of MXene-Au and MB-MXene-Au

Figure S2. Stability study of the ratiometric biosensor. (A) and (B) are the local enlargement of DPV for MB and DA, respectively.

Figure S3. Effect of $HAuCl_4$ concentration on the performance of the ratiometric biosensor.

3. Tables

Modified material	Detection technique	Linear range	Detection limit	Reference
Perylene diimide- $Ti_3C_2T_x$	DPV	100-1000 μΜ	0.24 μM	1
Ionic liquid/Ti ₃ C ₂ Cl ₂	DPV	10-2000 μM	0.70 μΜ	2
Ti ₃ C ₂ T _x /DNA/Pd/Pt	DPV	0.2-1000 μM	0.03 µM	3
Ti ₃ C ₂ /G-MWCNTs/ZnO	DPV	0.01-30 µM	3.3 nM	4
Ti ₃ C ₂ /Holey graphene	DPV	0.5-50 μM	0.06 µM	5
SWCNT	DPV	0.4-150.0 μM	0.22 μΜ	6
S-doped graphene	DPV	0.2-12 μM	0.015 µM	7
N-doped reduced GO	DPV	0.5-150 μM	0.41 µM	8
3D N-doped graphene	DPV	1-1000 μM	0.26 µM	9
MXene-ERHG ^a	DPV	0.3-35 μM	0.071 μM	10
Cu- MOFs-MWCNTs	Ratiometric DPV	0.3-40 μM	0.026 µM	11
MB ^b /BP ^c -CNT	Ratiometric DPV	0.5–350 μM	0.15 μM	12
MWCNT	Ratiometric DPV	1.0–20.0 µM	0.23 μM	13
MnO ₂ /MWCNT	Ratiometric DPV	1.0-50.0	0.8	14
p(XA) ^d /Au/Cu-TCPP	Ratiometric DPV	5 - 125 μΜ	1.0	15
MIPs ^e /pThi ^f /Au-Cu alloy	Ratiometric DPV	0.3–100 µM	0.1 µM	16
MB-MXene-Au	Ratiometric DPV	0.1–100 µM	0.04 μM	This work

Table S1. Comparison of of DA detection based on various modified nanomaterials

Note:

^aERHG: electrochemically reduced holey graphene;

^{*b*}MB: methylene blue;

^cBP: 4-(pyren-4-yl)-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)butanamide;

^{*d*}pXA: polyxanthurenic acid;

^eMIPs: molecularly imprinted polymers (MIPs);

^{*f*}pThi: polythionine.

References:

- 1 U. Amara, M.T. Mehran, B. Sarfaraz, K. Mahmood, A. Hayat, M. Nasir, S. Riaz, and M.H. Nawaz, *Microchim Acta.*, 2021, **188**, 230.
- U. Amara, B. Sarfraz, K. Mahmood, M.T. Mehran, N. Muhammad, A. Hayat, and M.H. Nawaz, *Microchim Acta.*, 2022, 189, 64.
- J. Zheng, B. Wang, A. Ding, B. Weng, and J. Chen, *J. Electroanal. Chem.*, 2018, 816, 189-194.

- 4 M. Ni, J. Chen, C. Wang, Y. Wang, L. Huang, W. Xiong, P. Zhao, Y. Xie, and J. Fei, *Microchem. J.*, 2022, **178**, 107410.
- 5 Y. Zhang, L. Zhang, C. Li, J. Han, W. Huang, J. Zhou, and Y. Yang, *Microchem. J.*, 2022, **181**, 107713.
- B. Habibi, M. Jahanbakhshi, and M.H. Pournaghi-Azar, *Electrochim. Acta.*, 2011, 56, 2888-2894.
- 7 M. Li, C. Liu, H. Zhao, H. An, H. Cao, Y. Zhang, and Z. Fan, *Carbon.*, 2015, 86, 197–206.
- 8 P. Wiench, Z. González, R. Menéndez, B. Grzyb, and G. Gryglewicz, Sensor. Actuator. B Chem., 2018, 257, 143–153.
- 9 J. Jiang, D. Ding, J. Wang, X. Lin, and G. Diao, Analyst., 2021, 146, 964–970.
- 10 L. Zhang, C. Li, Y. Yang, J. Han, W. Huang, J. Zhou, and Y. Zhang, *Talanta.*, 2022, 247, 123614.
- 11 S. Luo, Y. Wang, and X. Kan, *Microchem. J.*, 2022, **172**, 106903.
- 12 Y. Yang, H. Dong, H. Yin, Y. Zhang, Y. Zhou, M. Xu, and X. Wang, *Microchem. J.*, 2022, **178**, 107344..
- 13 L. Wang, Y. Wang, and Q. Zhuang, J. Electroanal. Chem., 2019, 851, 113446.
- 14 Y. Wang, L. Wang, and Q. Zhuang, J. Alloys Compd., 2019, 802, 326-334.
- 15 Z. Qiu, T. Yang, R. Gao, G. Jie, and W. Hou, J. Electroanal. Chem., 2019, 835, 123-129.
- 16 J. Yang, Y. Hu, and Y. Li, Biosens. Bioelectron., 2019, 135, 224-230