- Electronic Supplementary Information for

Bronsted acid-catalyzed annulation reaction of hydroxamic acids: synthesis of cyclopentane-fused isoxazolidines and their benzilic amide rearrangement

Swati Lekha Mondal, Vinod Bhajammanavar, Isai Ramakrishna and
Mahiuddin Baidya*

Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India

E-mail: mbaidya@iitm.ac.in

Contents

Page

1. General procedure S3
2. General procedure for synthesis of cyclopentane fused isoxazolidines $\mathbf{3}$ S4
3. Gram scale synthesis of compound 3a. S13
4. Synthesis of compound $\mathbf{4 a}$. S13
5. Synthesis of compound 5a S14
6. General procedure for synthesis of compound 6 S15
7. Crystallographic experimental data S19
8. NMR spectra of synthesized compounds S22

General procedure:

All non-aqueous reactions were carried out under an atmosphere of nitrogen in flamedried glassware and were stirred using a magnetic stir plate. All reactions were carried out using commercial grade solvent unless otherwise noted. $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{DCE}$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were dried over calcium hydride. Dry THF was prepared by distilling over sodium ketyl.

All reactions were monitored by thin layer chromatography (TLC) on WhatmanPartisil® K6F TLC plates (silica gel $60 \AA, 0.25 \mathrm{~mm}$ thickness) and visualized using a UV lamp (366 or 254 nm) or by use of one of the following visualization reagents: PMA: 10 g phosphomolybdic acid/ 100 mL ethanol; KMnO_{4} : 0.75 g potassium permanganate, $5 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}$, / 100 mL water. Products were isolated by column chromatography (Merck silica gel $100-200 \mu \mathrm{~m}$). Yields refer to chromatographically and spectroscopically homogenous materials unless noted otherwise. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker 400 or Bruker 500 MHz spectrometers. Chemical shift values (δ) are reported in ppm and calibrated to the residual solvent peak CDCl_{3} $\delta=7.2600 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}, \delta=77.16$ for ${ }^{13} \mathrm{C}$, DMSO $^{2} \mathrm{~d}_{6} \delta=2.500 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}, \delta=39.500 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$; or calibrated to tetramethylsilane ($\delta=0.00 \mathrm{ppm}$). All NMR spectra were recorded at ambient temperature (290 K) unless otherwise noted. ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift (multiplicity, coupling constant, integration). The following abbreviations are used to indicate multiplicities: s , singlet; d, doublet; t , triplet; q , quartet; quint, quintet; sext, sextet; sept, septet; m, multiplet; dd, doublet of doublet; dt, doublet of triplet; dq, doublet of quartet; td , triplet of doublet; tt , triplet of triplet; dq, doublet of quartet; br, broad; app, apparent. Mass spectra were recorded by electrospray ionization (ESI) method on a Q-TOF Micro with lock spray source. The crystal data were collected and integrated using a BrukerAxs kappa apex 2 CCD diffractometer, with graphite monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation.
The ω-formyl enone 1 was synthesized by following literature procedures (Adv. Synth. Catal. 2019, 361, 208; Org. Lett. 2005, 7, 18).

Pyrinodemin B ($\mathrm{n}=13$)
Pyrinodemin D ($\mathrm{n}=12$)

Pyrinodemin A (n=3)
Pyrinodemin C ($n=1$)

Alsmaphorazine A ($\mathrm{R}=\mathrm{OH}$) Alsmaphorazine $B(R=H)$

Setigerumine I

Flueggine A

Figure 1: Examples of natural products with cyclopentane fused isoxazolidine framework.

General procedure for synthesis of cyclopentane fused isoxazolidines 3

A $16 \times 100 \mathrm{~mm}$ oven dried reaction tube equipped with a magnetic stir was charged with ω formyl enones 1 ($0.20 \mathrm{mmol}, 1.0$ equiv), hydroxamic acids $\mathbf{2}(0.20 \mathrm{mmol}, 1.0$ equiv), and $\mathrm{H}_{3} \mathrm{PO}_{4}(20 \mathrm{~mol} \%)$. The reaction tube was capped with a rubber septum, evacuated, and backfilled with nitrogen gas. Then, anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ was added via syringe. The reaction mixture was allowed to stir for 20 h at room temperature. After completion of the reaction (TLC monitored), volatiles were removed under reduced pressure and the crude product was purified by silica gel column chromatography to provide pure products 3 .

	Compound 3a: Sticky liquid; eluent (5\% ethyl acetate in hexane) Yield: $86 \%(64 \mathrm{mg}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ ס $7.97-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.41(\mathrm{~m}$, $2 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.09(\mathrm{~m}, 2 \mathrm{H}), 5.11(\mathrm{~d}, J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-5.04(\mathrm{~m}, 1 \mathrm{H}), 4.96-4.92(\mathrm{~m}, 1 \mathrm{H}) 4.81-$ $4.78(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.45(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.89(\mathrm{~m}, 3 \mathrm{H}), 1.84$ $-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.64(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, $\left.\mathrm{CDCl}_{3}\right) \delta 195.2,157.0,135.6,134.9,133.6,128.9,128.7$, $128.3,128.0,127.9,86.3,67.7,65.1,47.9,34.1,32.0,25.6$. HRMS (ESI/TOF-Q) $\mathrm{m} / \mathrm{z}: \quad[\mathrm{M}+\mathrm{Na}]^{+}$Calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na}^{+}$374.1363; Found 374.1354.
	Compound 3b: Sticky liquid; eluent (5\% ethyl acetate in hexane) Yield: $83 \%(61 \mathrm{mg}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.86(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.11-7.09$ $(\mathrm{m}, 2 \mathrm{H}), 5.09-4.92(\mathrm{~m}, 3 \mathrm{H}), 4.81-4.77(\mathrm{~m}, 1 \mathrm{H}), 3.50-$ $3.45(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.87(\mathrm{~m}, 3 \mathrm{H}), 1.84-1.75$ (m, 2H), $1.69-1.62(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 194.9,157.1,144.6,135.8,132.5,129.5,129.1,128.3$, 128.0, 127.9, 86.4, 67.8, 65.2, 48.0, 34.2, 32.1, 25.7, 21.8. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calculated for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{Na}^{+}$388.1519; Found 388.1526.
	Compound 3c: Sticky liquid; eluent (5\% ethyl acetate in hexane) Yield: $80 \%(65 \mathrm{mg}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.88$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.15-7.13$ $(\mathrm{m}, 2 \mathrm{H}), 5.10-4.95(\mathrm{~m}, 3 \mathrm{H}), 4.81-4.77(\mathrm{~m}, 1 \mathrm{H}), 3.48-$ $3.44(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.96-1.87(\mathrm{~m}, 4 \mathrm{H})$, $1.85-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.64(\mathrm{~m}, 1 \mathrm{H}$, merged with water) , $0.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 195.0, 157.1, 148.3, 135.9, 132.9, 129.5, 129.0, 128.4, $128.1,128.0,86.3,67.8,65.2,48.2,45.6,34.2,32.1,30.2$, 25.7, 22.5. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{NO}_{4}{ }^{+} 408.2169$; Found 408.2180.
	Compound 3d: Sticky liquid; eluent (5\% ethyl acetate in hexane) Yield: $79 \%(60 \mathrm{mg}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.94(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{bs}, 2 \mathrm{H})$, 6.89 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.07-4.93(\mathrm{~m}, 3 \mathrm{H}), 4.80-4.76(\mathrm{~m}$, $1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.51-3.46(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.89(\mathrm{~m}, 3 \mathrm{H})$, $1.84-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.67(\mathrm{~m}, 1 \mathrm{H}$, merged with water). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 193.8,164.0,157.1,135.8$, 131.4, 128.3, 128.05, 127.96, 125.8, 114.0, 86.3, 67.8, 65.2, 55.6, 48.0, 34.2, 32.1, 25.7. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calculated for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{Na}^{+}$404.1468; Found 404.1473.

	Compound 3e: Sticky liquid; eluent (5\% ethyl acetate in hexane) Yield: $85 \%(63 \mathrm{mg}) .{ }^{\mathbf{1}} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.98$ (dd, $J=8.5,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.09-7.04$ $(\mathrm{m}, 4 \mathrm{H}), 5.03-4.91(\mathrm{~m}, 3 \mathrm{H}), 4.81-4.77(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.51(\mathrm{~m}$, $1 \mathrm{H}), 2.00-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.83-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.65(\mathrm{~m}$, $1 \mathrm{H}){ }^{13}{ }^{\mathbf{C}}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 193.7,166.0\left(\mathrm{~d},{ }^{1} J_{C-F}=\right.$ $255.8 \mathrm{~Hz}), 157.1,135.5,131.8\left(\mathrm{~d},{ }^{3} J_{C-F}=9.5 \mathrm{~Hz}\right) 131.5(\mathrm{~d}$, $\left.{ }^{4} J_{C-F}=3.1 \mathrm{~Hz}\right), 128.4,128.1(2 \times \mathrm{C}), 115.8\left(\mathrm{~d},{ }^{2} J_{C-F}=21.9\right.$ $\mathrm{Hz}), 86.6,67.9,65.3,47.5,34.1,32.0,25.7 .{ }^{19}$ F NMR (471 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta-104.05$. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calculated for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{FNO}_{4} \mathrm{Na}^{+}$392.1269; Found 392.1276.
	Compound 3f: Sticky liquid; eluent (5% ethyl acetate in hexane) Yield: $72 \%(56 \mathrm{mg}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 7.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-$ $7.21(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.02-4.89(\mathrm{~m}, 3 \mathrm{H})$, $4.79-4.77(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.51(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.86(\mathrm{~m}$, $3 \mathrm{H}), 1.84-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.64(\mathrm{~m}, 1 \mathrm{H}$, merged with water). ${ }^{13}$ C NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 194.1, 157.1, 140.2 , 135.4, 133.4, 130.5, 129.1, 128.4, 128.2, 128.1, 86.7, 68.0, 65.4, 47.4, 34.2, 32.1, 25.8. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{ClNO}_{4} \mathrm{Na}^{+} 408.0973$; Found 408.0970.
	Compound 3g: Sticky liquid; eluent (5\% ethyl acetate in hexane) Yield: $76 \%(65 \mathrm{mg}) .{ }^{\mathbf{1}} \mathrm{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 7.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-$ $7.22(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.01-4.89(\mathrm{~m}, 3 \mathrm{H})$, $4.82-4.77(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.52(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.84(\mathrm{~m}$, $3 \mathrm{H}), 1.80-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.65(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13}$ C NMR ($\mathbf{1 0 1}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 194.3,157.1,135.4,133.8,132.1,130.6$, 129.0, 128.5, 128.19, 128.16, 86.7, 68.0, 65.4, 47.4, 34.2, 32.1, 25.8. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{BrNO}_{4} \mathrm{Na}^{+} 452.0468$; Found 452.0452.
	Compound 3h: Sticky liquid; eluent (5\% ethyl acetate in hexane) Yield: $71 \%(67 \mathrm{mg}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.75$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.22$ $(\mathrm{m}, 3 \mathrm{H}), 7.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.00-4.88(\mathrm{~m}, 3 \mathrm{H}), 4.81-4.77$ $(\mathrm{m}, 1 \mathrm{H}), 3.56-3.51(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.88(\mathrm{~m}, 3 \mathrm{H}), 1.84-1.75(\mathrm{~m}$, $2 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 1 \mathrm{H}) \cdot{ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 194.6, 157.1, 138.0, 135.4, 134.3, 130.4, 128.5, 128.2, 128.1, 102.0, 86.6, 68.0, 65.4, 47.3, 34.2, 32.0, 25.8. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{INO}_{4} \mathrm{Na}^{+}$ 500.0329; Found 500.0341.

	Compound 3i: Sticky liquid; eluent (5\% ethyl acetate in hexane) Yield: $63 \%(54 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.13(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.06(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.17$ $(\mathrm{m}, 3 \mathrm{H}), 7.02(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 4.94-4.79(\mathrm{~m}$, $3 \mathrm{H}), 3.66-3.61(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.81-1.76(\mathrm{~m}, 2 \mathrm{H})$, 1.71 - $1.66(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 193.8$, 157.1, 150.3, 139.5, 135.1, 130.1, 128.4, 128.3, 128.1, 123.7, 87.3, 68.1, 65.7, 46.8, 34.1, 32.0, 25.8. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}^{+}$ 419.1214; Found 419.1214.
 3j	Compound 3j: Sticky liquid; eluent (5% ethyl acetate in hexane) Yield: $80 \%(58 \mathrm{mg}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 7.79(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.25$ $(\mathrm{m}, 5 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 2 \mathrm{H}), 5.14-5.01(\mathrm{~m}, 3 \mathrm{H}), 4.81-4.79(\mathrm{~m}$, $1 \mathrm{H}), 3.43-4.39(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.92(\mathrm{~m}, 3 \mathrm{H}), 1.86$ $-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.67(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 195.3,157.0,136.9,135.1,133.7,133.6,130.2$, 129.1, 129.0, 128.7, 128.3, 125.9, 86.4, 66.1, 65.2, 48.0, 34.2, 32.1, 25.7, 18.8. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calculated for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{Na}^{+}$388.1519; Found 388.1498.
	Compound 3k: Sticky liquid; eluent (5\% ethyl acetate in hexane) Yield: $62 \%(47 \mathrm{mg}) .{ }^{\mathbf{1}} \mathrm{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 7.70(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.28$ $(\mathrm{m}, 5 \mathrm{H}), 7.01-6.94(\mathrm{~m}, 2 \mathrm{H}), 5.25-5.13(\mathrm{~m}, 3 \mathrm{H}), 4.65-$ $4.61(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.28-3.23(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.92$ $(\mathrm{m}, 2 \mathrm{H}), 1.84-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.70-1.64(\mathrm{~m}, 1 \mathrm{H}$, merged with water). ${ }^{13}$ C NMR ($\mathbf{1 0 1} \mathbf{~ M H z , ~ C D C l} 3$) δ 198.4, 159.0, $136.4,134.7$ ($2 \times \mathrm{C}$), 131.4, 128.5, 128.2, 128.0, 125.4, 121.2, 111.6, 89.5, 67.7, 63.6, 55.8, 49.8, 34.5, 32.7, 25.5. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calculated for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{Na}^{+}$ 404.1468; Found 404.1484.
	Compound 31: Sticky liquid; eluent (5% ethyl acetate in hexane) Yield: $65 \%(55 \mathrm{mg}) .{ }^{\mathbf{1}} \mathrm{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 8.21(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.51(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $2 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=12.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.84-4.79(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.55(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.89(\mathrm{~m}$, $3 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.66(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) δ 194.0, 157.1, 135.7, 135.4, 132.3, 131.3 (q, $\left.{ }^{2} J_{C-F}=33.0 \mathrm{~Hz}\right), 129.9\left(\mathrm{q},{ }^{3} J_{C-F}=3.6 \mathrm{~Hz}\right), 129.4,128.4$, $128.2,128.1,125.9\left(\mathrm{q},{ }^{3} J_{C-F}=3.7 \mathrm{~Hz}\right), 123.7\left(\mathrm{q},{ }^{1} J_{C-F}=272\right.$ $\mathrm{Hz}) 86.8,68.0,65.5,47.3,34.2,32.0,25.8$. ${ }^{19}$ F NMR (471 $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta-62.8$. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calculated for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{4}{ }^{+}$420.1417; Found 420.1436.

	Compound 3m: Sticky liquid; eluent (5\% ethyl acetate in hexane) Yield: $78 \%(60 \mathrm{mg}) .{ }^{\mathbf{1}} \mathrm{H}$ NMR $(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3)$ $\delta 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.34(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.11-$ $7.09(\mathrm{~m}, 2 \mathrm{H}), 5.04-4.92(\mathrm{~m}, 3 \mathrm{H}), 4.84-4.79(\mathrm{~m}, 1 \mathrm{H}), 3.55$ $-3.50(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.89(\mathrm{~m}, 3 \mathrm{H}), 1.84-1.75(\mathrm{~m}, 2 \mathrm{H})$, $1.70-1.65(\mathrm{~m}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 193.9$, $157.1,136.5,135.4,134.9,133.5,130.0,128.9,128.3$, 128.1, 128.0, 127.1, 86.5, 67.9, 65.4, 47.4, 34.1, 32.0, 25.7. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{ClNO}_{4} \mathrm{Na}^{+} 408.0973$; Found 408.0981.
	Compound 3n: Sticky liquid; eluent (5\% ethyl acetate in hexane) Yield: $73 \%(61 \mathrm{mg}) .{ }^{\mathbf{1}} \mathrm{H}$ NMR $(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3)$ $\delta 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.97-$ $4.87(\mathrm{~m}, 3 \mathrm{H}), 4.82-4.77(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.52(\mathrm{~m}, 1 \mathrm{H}), 1.99$ $-1.84(\mathrm{~m}, 3 \mathrm{H}), 1.82-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.64(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathbf{~ M H z , ~ C D C l ~} 3$) $\delta 193.0,157.2,138.2,135.1$, 134.6, 133.3, 131.0, 130.7, 128.4, 128.24, 128.16, 128.1, 86.9, 68.1, 65.6, 47.0, 34.2, 32.0, 25.8. HRMS (ESI/TOFQ) $\mathrm{m} / \mathrm{z}: \quad[\mathrm{M}+\mathrm{Na}]^{+}$Calculated for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{NO}_{4} \mathrm{Na}^{+}$ 442.0583; Found 442.0593.
	Compound 30: Sticky liquid; eluent (5\% ethyl acetate in Hexane) Yield: $70 \%(56 \mathrm{mg}) .{ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\delta 8.54(\mathrm{~s}, 1 \mathrm{H}), 7.98-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.87-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.64$ $-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.13-6.93(\mathrm{~m}, 5 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 5.02-4.87$ $(\mathrm{m}, 3 \mathrm{H}), 3.60-3.55(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.94(\mathrm{~m}, 3 \mathrm{H}), 1.87-$ $1.81(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.67(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, $\left.\mathrm{CDCl}_{3}\right) \delta 195.2,157.2,135.9,135.5,132.6,132.4,131.3$, 130.0, 128.9, 128.7, 128.2, 127.95 ($2 \times$ C), 127.91, 127.0, 124.3, 86.6, 67.9, 65.4, 47.9, 34.3, 32.1, 25.8. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calculated for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{Na}^{+}$ 424.1519; Found 424.1535.
	Compound 3p: Sticky liquid; eluent (5\% Ethyl acetate in hexane) Yield: $74 \%(53 \mathrm{mg}) .{ }^{\mathbf{1}} \mathrm{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 7.91(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-$ $7.26(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.09(\mathrm{~m}, 1 \mathrm{H}$, merged with water), $5.13-5.02(\mathrm{~m}, 2 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H}), 4.76$ $-4.71(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.47(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.85(\mathrm{~m}, 3 \mathrm{H})$, $1.84-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.63(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 188.9,156.7,141.7,137.4,135.8$, 135.0, 134.0, 128.6, 128.5, 128.1, 87.2, 67.9, 64.9, 48.6, 34.1, 32.0, 25.6. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{SNO}_{4}{ }^{+}$358.1108; Found 358.1109.

	Compound 3q: Sticky liquid; eluent (5\% ethyl acetate in hexane) Yield: $77 \%(63 \mathrm{mg}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR $(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3)$ $\delta 7.35-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.08(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.79-4.76$ $(\mathrm{m}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 3.05-3.00(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{bs}, 3 \mathrm{H})$, $1.83-1.77(\mathrm{~m}, 6 \mathrm{H}), 1.69-1.66(\mathrm{~m}, 8 \mathrm{H}), 1.59-1.55(\mathrm{~m}$, 4H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 209.7,157.1,135.9$, 128.33, 128.27, 128.1, 82.7, 67.7, 65.3, 48.5, 45.8, 37.3, 36.3, 34.1, 31.9, 27.6, 25.6. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calculated for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{Na}^{+} 432.2145$; Found 432.2154.
	Compound 3r: Sticky liquid; eluent (5\% ethyl acetate in hexane) Yield: $75 \%(55 \mathrm{mg}) .{ }^{\mathbf{1}} \mathrm{H}$ NMR $(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3)$ $\delta 7.96(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 4 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 5.04-$ $5.01(\mathrm{~m}, 1 \mathrm{H}), 4.91-4.88(\mathrm{~m}, 1 \mathrm{H}), 4.80-4.76(\mathrm{~m}, 1 \mathrm{H}), 3.50$ $-3.45(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.86(\mathrm{~m}, 3 \mathrm{H}), 1.83-1.76$ $(\mathrm{m}, 2 \mathrm{H}), 1.68-1.62\left(\mathrm{~m}, 1 \mathrm{H}\right.$, merged with water). ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 195.3,157.2,137.8,135.1,133.6$, 132.7, $129.1(2 \times \mathrm{C})$, 128.8, 128.3, 86.4, 67.8, 65.2, 48.0, 34.2, 32.1, 25.7, 21.3. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calculated for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{Na}^{+}$388.1519; Found 388.1526.
	Compound 3s: Sticky liquid; eluent (5% ethyl acetate in hexane) Yield: $72 \%(56 \mathrm{mg}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.93(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{q}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.82-4.77$ $(\mathrm{m}, 1 \mathrm{H}), 3.50-3.45(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.88(\mathrm{~m}, 3 \mathrm{H}), 1.85-$ $1.75(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.65\left(\mathrm{~m}, 1 \mathrm{H}\right.$, merged with water). ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta 195.2,157.0,135.0,134.2$, 133.9, 133.7, 129.5, 129.0, 128.8, 128.6, 86.4, 67.0, 65.2, 48.0, 34.2, 32.1, 25.8. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{ClNO}_{4} \mathrm{Na}^{+}$408.0973; Found 408.0970.
	Compound 3t: Sticky liquid; eluent (5\% ethyl acetate in hexane) Yield: $70 \%(60 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 7.93(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.41$ (m, 2H), 7.32 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $5.12(\mathrm{~s}, 1 \mathrm{H}), 4.97-4.89(\mathrm{~m}, 2 \mathrm{H}), 4.80-4.77(\mathrm{~m}, 1 \mathrm{H}), 3.50$ $-3.44(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.89(\mathrm{~m}, 3 \mathrm{H}), 1.85-1.75(\mathrm{~m}, 2 \mathrm{H})$, $1.70-1.65\left(\mathrm{~m}, 1 \mathrm{H}\right.$, merged with water). ${ }^{13}$ C NMR ($\mathbf{1 0 1}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 195.2,157.0,135.0,134.7,133.7,131.5$, 129.8, 129.0, 128.8, 122.1, 86.4, 67.0, 65.2, 48.0, 34.2, 32.1, 25.8. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{BrNO}_{4} \mathrm{Na}^{+} 452.0468$; Found 452.0450.

	Compound 3u: Sticky liquid; eluent (5\% ethyl acetate in hexane) Yield: $72 \%(58 \mathrm{mg}) .{ }^{\mathbf{1}} \mathrm{H}$ NMR $(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3)$ $\delta 7.95-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.87-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.76(\mathrm{~m}$, $1 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 4 \mathrm{H}), 5.57(\mathrm{~d}, J=$ $12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 4.82-$ $4.78(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.45(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.87(\mathrm{~m}, 3 \mathrm{H}) 1.82$ $-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.62\left(\mathrm{~m}, 1 \mathrm{H}\right.$, merged with water). ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 195.4,157.1,134.9,133.6$ $(2 \times C), 131.6,131.2,129.1,128.9,128.7,128.6,127.2$, $126.5,125.9,125.3,123.7,86.4,66.0,65.2,48.0,34.2,32.1$, 25.7. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calculated for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{Na}^{+}$424.1519; Found 424.1519.
	Compound 3v: Sticky liquid; eluent (5\% ethyl acetate in Hexane) Yield: $76 \%(60 \mathrm{mg}) .{ }^{\mathbf{1}} \mathrm{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 8.00(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 4.80-4.76(\mathrm{~m}, 1 \mathrm{H}), 4.71(\mathrm{~d}$, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-4.54(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.48(\mathrm{~m}, 1 \mathrm{H})$, $2.03-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.88-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.65(\mathrm{~m}$, 1 H , merged with water). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 195.1, 154.4, 134.8, 133.9, 129.1, 128.9, 94.9, 86.3, 75.2, 65.1, 48.2, 34.1, 32.0, 25.7. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{Cl}_{3} \mathrm{NO}_{4} \mathrm{Na}^{+} 414.0037$; Found 414.0034.
	Compound 3w: Sticky liquid; eluent (5\% ethyl acetate in hexane) Yield: $73 \%(46 \mathrm{mg}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 8.07-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.46(\mathrm{~m}$, $2 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 4.81-4.77(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.53(\mathrm{~m}, 1 \mathrm{H})$, $1.96-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.71(\mathrm{~m}, 3 \mathrm{H}), 1.67-1.59(\mathrm{~m}$, $1 \mathrm{H}), 1.13$ (s, 9H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l} 3$) $\delta 194.7$, 156.8, 135.4, 133.6, 129.3, 128.7, 86.7, 81.8, 65.3, 46.8, 34.3, 32.1, 27.6, 25.9. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calculated for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{Na}^{+}$340.1519; Found 340.1517.
	Compound 3wa: Sticky liquid; eluent (5\% ethyl acetate in Hexane) Yield: $76 \%(50 \mathrm{mg}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ $\delta 7.96-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 2 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 4.79$ $-4.77(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.51(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.00-$ $1.90(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.63-1.15(\mathrm{~m}, 1 \mathrm{H}), 1.15$ (s, 9H). ${ }^{13}$ C NMR ($101 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 194.4, 156.8, 144.4 , 132.9, 129.4, 129.3, 86.6, 81.7, 65.2, 46.9, 34.3, 32.1, 27.6, 25.9, 21.8. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calculated for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{Na}^{+} 354.1676$; Found 354.1688

	Compound 3wb: Sticky liquid; eluent (5\% ethyl acetate in hexane) Yield: $75 \%(52 \mathrm{mg}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.01$ (s, $1 \mathrm{H}), 4.80-4.76(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.51(\mathrm{~m}, 1 \mathrm{H})$, $1.94-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.17(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) δ 193.3, 163.9, 156.9, 131.7 , 128.6, 113.9, 86.6, 81.7, 65.3, 55.7, 46.9, 34.3, 32.1, 27.7 25.9. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calculated for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{Na}^{+}$370.1625; Found 370.1632.
	Compound 3wc: Sticky liquid; eluent (5\% Ethyl acetate Hexane) Yield: $71 \%(50 \mathrm{mg}) .{ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.02(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.97(\mathrm{~s}$, $1 \mathrm{H}), 4.80-4.75(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.54(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.78$ $(\mathrm{m}, 4 \mathrm{H}), 1.71-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 193.7,156.7,140.1,133.9,130.8,129.0$, 86.8, 82.0, 65.4, 46.7, 34.3, 32.1, 27.7, 25.9. HRMS (ESI/TOF-Q) $\quad \mathrm{m} / \mathrm{z}: \quad[\mathrm{M}+\mathrm{Na}]^{+}$Calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{ClNO}_{4} \mathrm{Na}^{+}$374.1130; Found 374.1132.
	Compound 3wd: Sticky liquid; eluent (5\% Ethyl acetate Hexane) Yield: $69 \%(61 \mathrm{mg}) .{ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\delta 7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.96(\mathrm{~s}$, $1 \mathrm{H}), 4.79-4.75(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.53(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.89$ $(\mathrm{m}, 2 \mathrm{H}), 1.84-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.52-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{~s}$ 9H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 194.2, 156.7, 138.1 134.8, 130.7, 101.7, 86.8, 82.0, 65.4, 46.7, 34.3, 32.1, 27.7 25.9. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{INO}_{4} \mathrm{Na}^{+}$466.0486; Found 466.0496.
	Compound 3we: Sticky liquid; eluent (5\% ethyl acetate in hexane) Yield: $66 \%(51 \mathrm{mg}){ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.00(\mathrm{~s}$, $1 \mathrm{H}), 4.80-4.76(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.59(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.91$ $(\mathrm{m}, 2 \mathrm{H}), 1.86-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.68-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{~s}$ $\left.{ }^{9 H}\right) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 193.5,156.6,150.5$, 140.1, 130.4, 123.9, 87.2, 82.3, 65.7, 46.5, 34.2, 32.1, 27.8 25.9. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}^{+}$385.1370; Found 385.1380.

	Compound 3wf: Sticky liquid; eluent (5\% ethyl acetate in hexane) Yield: $62 \%(51 \mathrm{mg}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR $(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3)$ $\delta 8.34(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.64(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 4.81-4.78(\mathrm{~m}$, $1 \mathrm{H}), 3.63-3.59(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.78$ $(\mathrm{m}, 2 \mathrm{H}), 1.77-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13}$ C NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 193.6,156.7,136.1,132.6$, $131.4\left(\mathrm{q},{ }^{2} J_{C-F}=33.1 \mathrm{~Hz}\right), 129.9\left(\mathrm{q},{ }^{3} J_{C-F}=3.6 \mathrm{~Hz}\right), 129.4$, $126.3\left(\mathrm{q},{ }^{3} J_{C-F}=3.7 \mathrm{~Hz}\right), 123.77\left(\mathrm{q},{ }^{1} J_{C-F}=272.7 \mathrm{~Hz}\right), 87.0$, 82.1, 65.5, 46.6, 34.3, 32.1, 27.6, 25.9. ${ }^{19}$ F NMR (471 MHz , $\mathbf{C D C l}_{3}$) δ-62.85. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calculated for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{Na}^{+} 408.1393$; Found 408.1404.
	Compound 3wg: Sticky liquid; eluent (5\% ethyl acetate in hexane) Yield: $74 \%(57 \mathrm{mg}) .{ }^{\mathbf{1}} \mathrm{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 8.65(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.89(\mathrm{dd}, J=13.8,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.54(\mathrm{~m}, 2 \mathrm{H})$, $5.21(\mathrm{~s}, 1 \mathrm{H}), 4.87-4.82(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.59(\mathrm{~m}, 1 \mathrm{H}), 2.00$ $-1.77(\mathrm{~m}, 5 \mathrm{H}), 1.52-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 194.8,156.9,135.8,132.7,132.6$, 131.5, 129.9, 128.9, 128.6, 127.9, 127.0, 124.5, 86.8, 81.8, 65.4, 47.0, 34.4, 32.2, 27.6, 26.0. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calculated for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{Na}^{+}$390.1676; Found 390.1690.
	Compound 3xa: Sticky liquid; eluent (5\% ethyl acetate in hexane) Yield: $78 \%(94 \mathrm{mg}) .{ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 8.05(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 5.26(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 4.32$ $(\mathrm{s}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 1 \mathrm{H}), 1.94-1.69(\mathrm{~m}, 12 \mathrm{H}), 1.53-1.22(\mathrm{~m}, 12 \mathrm{H})$, $1.11-0.96(\mathrm{~m}, 8 \mathrm{H}), 0.90-0.80(\mathrm{~m}, 14 \mathrm{H}), 0.64(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13}$ C NMR ($\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}$) 195.1, 195.0 (C*), 157.1, 139.8, 139.7 (C*), 135.2, 133.7, 133.6 (C*), 129.3, 128.7, 122.55, 122.50 (C*), 86.90, 86.87 (C*), 76.2, 65.3, 56.7, 56.2, 50.0, 47.35, 47.30 (C*), 42.4, 39.8, 39.6 (C*), 37.9, 37.3, 36.9, 36.8 (C*), 36.6, 36.5 (C*), 36.3, 35.9, 34.3, 32.1, 32.0, 31.9 (C*), 28.3, 28.1, 27.6, 27.0, 25.9, 24.4, 23.9, 22.9, 22.7, 21.1, 19.3, 18.8, 11.9. [C* = signal from another diastereomer]; HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calculated for $\mathrm{C}_{41} \mathrm{H}_{59} \mathrm{NO}_{4} \mathrm{Na}^{+}$652.4336; Found 652.4334.

	Compound 3xb: Sticky liquid; eluent (5\% ethyl acetate in hexane) Yield: 84% (67 mg). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l 3) ~}$ $\delta 8.05(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{bs}, 1 \mathrm{H}), 4.42-4.38(\mathrm{~m}, 1 \mathrm{H}), 3.59-$ $3.56(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.74(\mathrm{~m}, 7 \mathrm{H}), 1.69-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{t}, J$ $=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.93-0.86(\mathrm{~m}, 2 \mathrm{H}), 0.79(\mathrm{t}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.72$ $(\mathrm{d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.63-0.57(\mathrm{~m}, 1 \mathrm{H}), 0.44-0.35(\mathrm{~m}, 1 \mathrm{H}){ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl ${ }_{3}$) $\delta 194.9,157.6,135.4,133.6,129.5$, 128.6, 86.9, 76.6, 65.6, 47.2, 47.0, 40.0, 34.4, 34.3, 32.2, 31.3, 26.2, 25.9, 23.4, 22.1, 20.8, 16.4. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calculated for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{Na}^{+} 422.2302$; Found 422.2298 .

Gram scale synthesis of compound 3a:

A 100 mL oven dried round bottom flask equipped with a magnetic stir was charged with formyl enone $\mathbf{1 a}(1.1 \mathrm{~g}, 5.5 \mathrm{mmol}, 1.0$ equiv), benzylhydroxycarbamate $\mathbf{2 a}(0.92 \mathrm{~g}, 5.5 \mathrm{mmol}$, 1.0 equiv), and $\mathrm{H}_{3} \mathrm{PO}_{4}(0.57 \mathrm{~mL}, 20 \mathrm{~mol} \%)$ under N_{2} atmosphere. Then, anhydrous DCM (18 mL) was added via syringe. The reaction mixture was allowed to stir for 24 h at room temperature. After completion of the reaction (TLC monitored), volatiles were removed under reduced pressure and the crude product was purified by silica gel column chromatography to provide pure product $\mathbf{3 a}(1.48 \mathrm{~g}, 77 \%)$.

Synthesis of compound 4a:

To an oven dried 16 mL sealed pressure tube equipped with a magnetic stir, was charged with the product $3 \mathbf{3}$ ($100 \mathrm{mg}, 0.28 \mathrm{mmol}, 1.0$ equiv). The tube was capped with a rubber septum,
evacuated and backfilled with nitrogen gas. Then, 4 mL of anhydrous THF was added and the reaction temperature cooled down to $0{ }^{\circ} \mathrm{C}$. Next, $\mathrm{LiAlH}_{4}(60.5 \mathrm{mg}, 1.68 \mathrm{mmol}, 6$ equiv) was added under N_{2}. While addition, effervescence evolved and waited till it ceases at $0^{\circ} \mathrm{C}$ and next the reaction mixture allowed to stir for 10 minutes at rt and the rubber septum was replaced with a cap under inert atmosphere. The reaction mixture was then heated to $80^{\circ} \mathrm{C}$ for 14 h . After completion of the reaction, the reaction mixture was cooled down to rt and slowly quenched with ice-cold water and $15 \% \mathrm{NaOH}(2 \mathrm{~mL})$ was added. The resulting suspension was brought to room temperature and then filtered. The filtrate was washed with DCM (3 X 6 mL). Then organic layer was washed with Brine $(6 \mathrm{~mL})$ and dried under $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatiles were evaporated under vacuum. Crude material was purified via column chromatography using 30% ethyl acetate in hexane to get pure $\mathbf{4 a}$ as oil ($57 \mathrm{mg}, 87 \%$ yield).

	Compound 4a: Oil; eluent (30% ethyl acetate in hexane) Yield: 87% (57 mg). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 7.32-7.18(\mathrm{~m}, 5 \mathrm{H}), 4.56(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.64(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~s}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 1 \mathrm{H}), 2.64$ $(\mathrm{s}, 3 \mathrm{H}), 1.66-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.09$ $-0.82(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 128.5$ $(2 \times \mathrm{C}), 128.2,127.2,88.3,76.6,51.1,44.5,31.1,29.9$, 24.6. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{2}{ }^{+}$234.1489; Found 234.1486.

Synthesis of compound 5a:

To an oven dried 25 mL round bottom flask, the product 3wa ($60 \mathrm{mg}, 0.18 \mathrm{mmol}, 1.0$ equiv) was dissolved in 2 mL MeOH. Next, $15 \mathrm{mg} 5 \% \mathrm{Pd} / \mathrm{C}$ in 1 mL of 5% aqueous AcOH was added. The round bottom flask was exposed to hydrogen gas by a hydrogen bladder and stirred at room temperature for 72 h . After completion, reaction mixture was filtered through a short celite pad and the solid was washed with dichloromethane. The filtrate was diluted with 2.5 mL of water, the aqueous layer was then extracted with dichloromethane (3 X 3 mL) and the
organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration under reduced pressure, the crude material was purified via column chromatography using 5\% ethyl acetate in hexane to get $\mathbf{5 a}$ as oil ($55 \mathrm{mg}, 92 \%$ yield).

	Compound, 5a: Sticky liquid; eluent (30\% ethyl acetate in hexane) Yield: $92 \%(55 \mathrm{mg}) .{ }^{\mathbf{1}} \mathrm{H}$ NMR $(\mathbf{4 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 7.27(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 4.69-4.65(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92$ $(\mathrm{d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$, $1.87-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{~s}, 9 \mathrm{H})$, $1.53-1.39\left(\mathrm{~m}, 2 \mathrm{H}\right.$, merged with water). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 157.7,138.3,135.3,129.5,127.7$, 93.4, 82.9, 73.2, 64.7, 48.2, 34.7, 32.5, 28.2, 25.6, 21.3. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{4}{ }^{+}$334.2013; Found 334.2016.

General procedure for synthesis of compound 6:

A 16 mL oven dried sealed pressure tube equipped with a magnetic stir was charged with product 3 ($0.2 \mathrm{mmol}, 1.0$ equiv). The reaction tube was capped with a rubber septum, evacuated, and backfilled with nitrogen gas. Then, 5 mL of freshly prepared sodium methoxide (25% solution) in anhydrous methanol was added and the rubber septum was replaced with a reaction tube cap under inert atmosphere. Then the mixture was heated at $80^{\circ} \mathrm{C}$ for 24 h . Next, the reaction mixture was cooled down to room temperature and slowly neutralized with aqueous HCl . The resulting suspension was washed with EtOAc (3 X 6 mL). Organic layer was washed with brine (6 mL) and dried under $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatiles were evaporated in vacuum. The crude material was purified via silica gel column chromatography using (35-45\% ethyl acetate: hexane) to get pure compound $\mathbf{6}$ as white solid.

	Compound, 6a: White solid; eluent (40% ethyl acetate in Hexane) Yield: $94 \%(57 \mathrm{mg}){ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, DMSO-d6) $\delta 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 1 \mathrm{H}), 2.72-2.69$ $(\mathrm{m}, 1 \mathrm{H}), 2.10-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.44(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- \boldsymbol{d}_{6}) $\delta 176.3$, 146.1, 128.0 , 126.9, 124.8, 78.2, 55.6, 51.6, 33.8, 26.0, 24.0. HRMS (ESI/TOF-Q) $\quad \mathrm{m} / \mathrm{z}: \quad[\mathrm{M}+\mathrm{Na}]^{+}$Calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{Na}^{+} 240.0995$; Found 240.0998.
	Compound, 6b: White solid; eluent (40% ethyl acetate in Hexane) Yield: 88% (41 mg). ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$ DMSO- d_{6}) $\delta 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}$ $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 1 \mathrm{H}), 2.69-2.67(\mathrm{~m}$, $1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.09-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.45(\mathrm{~m}, 5 \mathrm{H})$ ${ }^{13}$ C NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}) $\delta 176.4,143.1,135.8$, $128.5,124.8,78.0,55.5,51.5,33.8,25.9,23.9,20.6$ HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{Na}^{+}$254.1151; Found 254.1171.
	Compound, 6c: White solid; eluent (40% ethyl acetate in Hexane) Yield: $93 \%(51 \mathrm{mg}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, DMSO-d6) $\delta 7.88$ (s, 1H), 7.32 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.10$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 3.96-3.93(\mathrm{~m}, 1 \mathrm{H})$, $2.71-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.10$ $2.06(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.46(\mathrm{~m}, 5 \mathrm{H})$, $0.85(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, DMSO$\left.\boldsymbol{d}_{6}\right) \delta 176.4,143.4,139.6,128.5,124.6,78.0,55.5,51.5$, 44.2, 33.8, 29.7, 25.9, 23.9, 22.2 ($2 \times$ C). HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{2}{ }^{+}$ 274.1802; Found 274.1800.
	Compound, 6d: White solid; eluent (40\% ethyl acetate in Hexane) Yield: 87% (43 mg). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$ DMSO-d6) $\delta 7.83$ (s, 1H), 7.33 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.88$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $5.66(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{bs}, 1 \mathrm{H}), 3.73(\mathrm{~s}$ $3 \mathrm{H}), 2.71-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.64$ 1.46 (m, 5H). ${ }^{13}$ C NMR (101 MHz , DMSO- d_{6}) 176.4, 158.2, 138.0, 126.1, 113.3, 77.8, 55.4, 55.1, 51.4, 33.7, 25.9, 23.9. HRMS (ESI/TOF-Q) m/z $[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{3}{ }^{+}$248.1281; Found 248.1280.

	Compound, 6e: White solid; eluent (40% ethyl acetate in Hexane) Yield: 95% (43 mg). ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~}$ DMSO-d6) $\delta 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{t}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 1 \mathrm{H}), 2.71-2.68$ $(\mathrm{m}, 1 \mathrm{H}), 2.09-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.46(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.d_{6}\right) \delta 176.1,161.2\left(\mathrm{~d},{ }^{1} J_{C-F}=\right.$ $242.7 \mathrm{~Hz}), 142.2\left(\mathrm{~d},{ }^{4} J_{C-F}=2.8 \mathrm{~Hz}\right), 126.9\left(\mathrm{~d},{ }^{3} J_{C-F}=\right.$ 8.1 Hz), 114.7 ($\mathrm{d},{ }^{2} J_{C-F}=21.1 \mathrm{~Hz}$), $77.8,55.5,51.4$, 33.8, 25.9, 23.9. ${ }^{\mathbf{1}} \mathbf{F}$ NMR ($\mathbf{4 7 1} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}) δ 115.8. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{FNO}_{2}{ }^{+}$236.1081; Found 236.1080.
	Compound, $\mathbf{6 f}$: White solid; eluent (40% ethyl acetate in Hexane) Yield: $89 \%(45 \mathrm{mg}){ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, DMSO-d $\boldsymbol{d}_{\text {) }} \delta 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{q}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 5.93$ $(\mathrm{s}, 1 \mathrm{H}), 3.97(\mathrm{bs}, 1 \mathrm{H}), 2.70-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.05$ (m, 1H), $1.66-1.46(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d6) $\delta 176.3,145.5,131.9,128.4,127.3,78.3$, 55.9, 51.7, 34.2, 26.4, 24.3. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{ClNO}_{2}{ }^{+} 252.0786$; Found 252.0785.
	Compound, 6g: White solid; eluent (40% ethyl acetate in Hexane) Yield: $87 \%(57 \mathrm{mg}){ }^{\mathbf{1}}{ }^{\mathbf{H}}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, DMSO-d6) $\delta 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.22$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $5.90(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{bs}, 1 \mathrm{H}), 2.68-$ $2.63(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.43(\mathrm{~m}, 5 \mathrm{H})$. ${ }^{13}$ C NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, DMSO-d6) δ 175.8, 146.0, 136.7, 127.3, 92.8, 77.9, 55.5, 51.2, 33.8, 25.9, 23.9. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{INO}_{2}{ }^{+}$344.0142; Found 344.0141.
	Compound, 6h: White solid; eluent (40% ethyl acetate in Hexane) Yield: $91 \%(47 \mathrm{mg}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, DMSO-d6) $\delta 7.89$ (s, 1H), 7.42 ($\mathrm{s}, 1 \mathrm{H}$), $7.34-7.30(\mathrm{~m}$, 2H), $7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 3.97-3.95(\mathrm{~m}$, $1 \mathrm{H}), 2.72-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.66-$ $1.44(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 1} \mathrm{MHz}$, DMSO- \mathbf{d}_{6}) δ 176.4, 146.1, 128.1(2C), 127.0, 124.9(2C), 78.3, 55.7, 51.6, 33.9, 26.0, 24.0. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{ClNO}_{2}{ }^{+} 252.0786$; Found 252.0784.

	Compound, 6i: White solid; eluent (40% ethyl acetate in Hexane) Yield: $89 \%(44 \mathrm{mg}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, DMSO-d6) $\delta 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.99$ $(\mathrm{s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.70-2.68$ $(\mathrm{m}, 1 \mathrm{H}), 2.09-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.45(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- \boldsymbol{d}_{6}) δ 176.2, 159.1, 147.8, $129.1,116.9,112.0,110.8,78.1,55.6,55.0,51.5,33.8$, 26.0, 23.9. HRMS (ESI/TOF-Q) $\mathrm{m} / \mathrm{z}: \quad[\mathrm{M}+\mathrm{Na}]^{+}$ Calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{3}{ }^{+} 248.1281$; Found 248.1280.
	Compound, 6j: White solid; eluent (40% ethyl acetate in Hexane) Yield: 87% (44 mg). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~}$ DMSO-d \mathbf{d}_{6}) $87.98(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.29(\mathrm{~m}$, $3 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 4.01-3.98(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.68(\mathrm{~m}$, $1 \mathrm{H}), 2.10-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.57$ 1.48 (m, 3H). ${ }^{13}$ C NMR (101 MHz , DMSO-d6) δ 175.6, 148.6, 132.9, 130.0, 126.8, 124.9, 123.4, 77.9, 55.6, 51.1, 33.8, 25.9, 23.9. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{ClNO}_{2}{ }^{+} 252.0786$; Found 252.0782.
	Compound, $\mathbf{6 k}$: White solid; eluent (40% ethyl acetate in Hexane) Yield: 94\% (54 mg). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~}$ DMSO-d6) 88.03 (s, 1H), $7.60-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{bs}, 1 \mathrm{H}), 2.73-2.71$ $(\mathrm{m}, 1 \mathrm{H}), 2.07-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.54$ $-1.46(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, DMSO- d_{6}) δ 175.3, 147.2, 130.8, 130.4, 129.5, 127.1, 125.3, 77.7, 55.6, 50.9, 33.8, 26.0, 23.9. HRMS (ESI/TOF-Q) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calculated for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{NO}_{2}{ }^{+}$286.0396; Found 286.0395.

Crystallographic experimental data

Crystal Data for 3w:

Crystallization: Crystals of compound $\mathbf{3 w}$ were obtained through slow evaporation technique at room temperature from the solution in CDCl_{3}. Crystal structure of compound $\mathbf{3 w}$ has the CCDC number: 2243707 (Ellipsoid Probability 50\%).

Crystal data and structure refinement for $\mathbf{3 w}$.

Identification code	3 w	
Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{~N} \mathrm{O}_{4}$	
Formula weight	317.388	
Temperature	296.15 K	
Wavelength	$0.71073 \AA$	
Crystal system	Orthorhombic	
Space group	$\mathrm{Pna} 2_{1}$	
Unit cell dimensions	$\mathrm{b}=12.2934(5) \AA$	$\alpha=90^{\circ}$.
	$\mathrm{c}=9.7444(4) \AA(5) \AA$	$\beta=90^{\circ}$.
	$1718.71(12) \AA 3$	

Z	4
Density (calculated)	$1.227 \mathrm{~g} / \mathrm{m} 3$
Absorption coefficient	$0.086 \mathrm{~mm}-1$
$\mathrm{~F}(000)$	680.5
Crystal size	$0.25 \times 0.22 \times 0.1 \mathrm{~mm} 3$
Theta range for data collection/ ${ }^{\circ}$	4.36 to 49.98.
Index ranges	$-14 \leq \mathrm{h} \leq 14,-17 \leq \mathrm{k} \leq 15,-11 \leq 1 \leq 11$
Reflections collected	11670
Independent reflections	$3028\left[\mathrm{R}\right.$ int $\left.=0.0231, \mathrm{R}_{\text {sigma }}=0.0230\right]$
Data / restraints / parameters	$3028 / 1 / 94$
Goodness-of-fit on F2	1.697
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.1131, \mathrm{wR} 2=0.3572$
R indices (all data)	$\mathrm{R} 1=0.1239, \mathrm{wR} 2=0.3789$
Extinction coefficient	n / a
Largest diff. peak and hole	$0.62 /-0.42 \mathrm{e} . \mathrm{A}-3$

Crystal Data for 5a:

Crystals of compound 5a were obtained through slow evaporation technique at room temperature from the solution in CDCl_{3}. Crystal structure of compound 5a has the CCDC number: 2245191 (Ellipsoid Probability 50\%).

Crystal data and structure refinement for $\mathbf{5 a}$

Identification code	5a
Empirical formula	$\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N} \mathrm{O}_{4}$
Formula weight	333.41
Temperature	298(2) K
Wavelength	1.54178 A
Crystal system, space group	Monoclinic, C $2 / \mathrm{c}$
Unit cell dimensions	$\mathrm{a}=26.239(5) \AA \quad \alpha=90 \mathrm{deg}$.
	$\mathrm{b}=14.599(3) \AA \quad \beta=112.952(8)$ deg.
	$\mathrm{c}=10.4681(18) \AA \quad \gamma=90 \mathrm{deg}$.
Volume	3692.3(11) \AA^{3}
Z	8
Calculated density	$1.200 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.675 \mathrm{~mm}^{-1}$
F (000)	1440
Crystal size	$0.206 \times 0.198 \times 0.112 \mathrm{~mm}$
Theta range for data collection	3.537 to 68.245 deg .
Limiting indices	$-31<=\mathrm{h}<=31,-17<=\mathrm{k}<=17,-12<=1<=12$
Reflections collected / unique	$50618 / 3387[\mathrm{R}($ int $)=0.0495]$
Completeness to theta $=67.679$	100.0 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7531 and 0.6279
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3387 / 52 / 235
Goodness-of-fit on F^{2}	1.078

Final R indices [I>2sigma(I)]
$\mathrm{R} 1=0.0453, \mathrm{wR} 2=0.1286$
R indices (all data)
$\mathrm{R} 1=0.0557, \mathrm{wR} 2=0.1419$
Extinction coefficient
$0.00084(12)$
Largest diff. peak and hole
0.243 and -0.241 e. A^{-3}

3a
$500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3a
$126 \mathrm{MHz}, \mathrm{CDCl}_{3}$

京

3b
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^0]
$500 \mathrm{MHz}, \mathrm{CDC/3}$

M

3c
$126 \mathrm{MHz}, \mathrm{CDCl}_{3}$

200	190	0	170	160	0	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

3d
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3d
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^1]

3e
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3e
101 MHz, CDCl 3

3e
$471 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^2]
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3f
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3 g
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3 g
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3h
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3h
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

								烒						$\stackrel{H}{\substack{-1 \\ \hline}}$															
12	11.	11.	10.	1	1	1	15	1	7.5	7	1.	1	5.5	1	15	1	1.5	1.	1.5	1	15	1	1	1	1	1	15	1	
12.0	11.5	11.0	10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	$\stackrel{5.0}{51(p p}$		4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5	-1.0	-1.5	-2.0	-2

3i
$126 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3j
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3j
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

														60						
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \text { f1 (ppm) } \end{gathered}$	90	80	70	60	50	40	30	20	10	0

3k
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3k
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

31
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$126 \mathrm{MHz}, \mathrm{CDCl}_{3}$

31
$471 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$3 m$
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\stackrel{\text { \% }}{\text { \% }}$	$\stackrel{\square}{\square}$	 	N		$\begin{aligned} & x_{0}^{2} \\ & 0_{0}^{6} \\ & 11 \end{aligned}$	$\stackrel{2}{2}$	シi

3 m
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

3n
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3n
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

30
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

30
$126 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3p
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3p
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$3 q$
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$
(

3q
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

											1	1	1	1	1	1	1	1	
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{pm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

3s
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3s
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3t
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3t
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										f1 (ppm)										

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

	190	18	1	1		1	130	12			9		70		5	1		1		
200	190	180	170	160	150	140	130	120	110	$\begin{aligned} & 100 \\ & \text { f1 (ppm) } \end{aligned}$	90	80	70	60	50	40	30	20	10	0

$3 v$
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

	$\stackrel{\underset{\sim}{f}}{\substack{\underset{\sim}{6}}}$		\#	¢		\%	-	$\begin{gathered} \text { N } \\ \text { Ni } \\ \text { iju } \\ \end{gathered}$

3w
$500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$126 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3wa
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3wa
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |
| :--- |

粈

3wb
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\stackrel{3}{1}$	-			$\stackrel{\bar{i}}{\stackrel{\rightharpoonup}{3}}$	- ∞ N	¢	$\stackrel{\circ}{6}$	+	

$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3wd
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3wd
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3we
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

illn	M mul		
\%	1	\%	TT

3wg
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\underbrace{\infty}$

3xb (1:1 dr)
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

的

$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\mathrm{tBuO}_{2} \mathrm{C}$

5a
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$

6a
$\underbrace{\text { N. }}_{1}$
$101 \mathrm{MHz}, \mathrm{DMSO}_{6}$


```
~
```


$400 \mathrm{MHz}, \mathrm{DMSO}_{6}$

$101 \mathrm{MHz}, \mathrm{DMSO}_{6}$

$\underbrace{\infty}_{1} \underbrace{\text { mic }}_{\mid}$

$400 \mathrm{MHz}, \mathrm{DMSO}_{6}$

$100 \mathrm{MHz}, \mathrm{DMSO}_{6}$


```
| \/| \
```


6d
400 MHz , DMSO-d 6

6d
101 MHz, DMSO-d 6

$400 \mathrm{MHz}, \mathrm{DMSO}_{6}$

$\begin{aligned} & \text { 导 } \\ & \text { ex } \\ & \end{aligned}$	$\stackrel{\text { d }}{\substack{\text { ² }}}$			$\stackrel{\text { ¢ }}{\text { ¢ }}$		
	-		\checkmark	-		

$101 \mathrm{MHz}, \mathrm{DMSO}_{6}$

471 MHz, DMSO-d 6

					1	1	1		1			,								
0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200

$\underbrace{\circ}$
$\stackrel{9}{6}$

$400 \mathrm{MHz}, \mathrm{DMSO}_{6}$

$101 \mathrm{MHz}, \mathrm{DMSO}_{6}$

6 g
$400 \mathrm{MHz}, \mathrm{DMSO}_{6}$

6 g
101 MHz, DMSO-d 6

6h
$400 \mathrm{MHz}, \mathrm{DMSO}_{6}$

6h
101 MHz, DMSO-d 6

$6 i$

人
$400 \mathrm{MHz}, \mathrm{DMSO}_{6}$

$6 i$
$101 \mathrm{MHz}, \mathrm{DMSO}_{6}$

6j
$400 \mathrm{MHz}, \mathrm{DMSO}_{6}$

101 MHz, DMSO-d 6

$\stackrel{8}{i}$

$400 \mathrm{MHz}, \mathrm{DMSO}_{6}$

${ }^{2}$	a	\pm
$\stackrel{5}{2}$	\pm	
1	1	vir

$\stackrel{\text { ¢ }}{\text { ¢ }}$		

$101 \mathrm{MHz}, \mathrm{DMSO}_{6}$

[^0]: $\begin{array}{lllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^1]: $\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \underset{f 10}{100}(\mathrm{ppm}) & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^2]:

