### **Supporting Information**

### Formal (4+2) cycloaddition of azoalkenes with trifluoromethylimidoyl

### sulfoxonium ylides: synthesis of trifluoromethyl pyridazine derivatives

Jie Wang, Shan-Shan Wang, Jun Xiao, Yu-Jie He, Xin-Yan Wu, Xingguang Li\* and Pei-Nian Liu\*

Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China \*Correspondence and requests for materials should be addressed to Liu PN (e-mail:

\*Correspondence and requests for materials should be addressed to Liu PN (e-mail: liupn@ecust.edu.cn) and Li XG (e-mail: lixingguang@ecust.edu.cn)

### **Table of contents**

| 1. General information                                           | S2  |
|------------------------------------------------------------------|-----|
| 2. Optimization of the reaction conditions                       | S2  |
| 3. Synthesis of the substrates and products                      | S4  |
| 4. Scale-up reactions and control experiments                    |     |
| 5. Crystal data and structural refinement of compounds 3e and 4e | S39 |
| 6. References                                                    | S67 |
| 7. Copies of the NMR spectra                                     | S68 |

### 1. General information

Unless otherwise noted, all reactions were carried out under air. All reagents were from commercial sources and used as received without further purification. All solvents were dried by standard techniques and distilled prior to use. Column chromatography was performed on silica gel (200-300 meshes) using petroleum ether (bp. 60~90 °C) and ethyl acetate as eluent. Chemical shifts ( $\delta$ , ppm) in the <sup>1</sup>H NMR spectra were recorded using TMS as internal standard or internally referenced to CDCl<sub>3</sub> ( $\delta$  = 7.26 ppm), while the <sup>13</sup>C NMR spectra were internally CDCl<sub>3</sub> ( $\delta$  = 77.16 ppm). All coupling constants (*J*) are reported in Hz. The following abbreviations were used to describe peak splitting patterns when appropriate: s = singlet, d = doublet, dd = double doublet, ddd = double doublet of doublets, t = triplet, dt = double triplet, q = quatriplet, m = multiplet, br = broad. HRMS all data were obtained using ESI-TOF (Electrospray ionization-time of flight) or Waters GCT Premier mass spectrometerusing EI-TOF (electronionization-time of flight). The X-ray diffraction patterns was recorded on a Bruker D8 Venture (Ga) Single Crystal XRD system. All melting points were measured with the samples after column chromatography and uncorrected.

### 2. Optimization of the reaction conditions

| Ph N O<br>F <sub>3</sub> C | EtO <sub>2</sub> C              | Ph、<br>Conditions → F <sub>3</sub> C <sup>*</sup> | N CO <sub>2</sub> Et                       | EtO <sub>2</sub> CO <sub>2</sub> Me<br>N-N CF <sub>3</sub><br>NH<br>Ph |
|----------------------------|---------------------------------|---------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------|
| 1a                         | 2a                              |                                                   | 3a                                         | 4a                                                                     |
| Entry                      | Base                            | Solvent                                           | $\operatorname{Yield}^{b}(\mathbf{3a},\%)$ | Yield ( <b>4a</b> , %)                                                 |
| 1                          | Na <sub>2</sub> CO <sub>3</sub> | DCM                                               | 21                                         | ND                                                                     |
| 2                          | $K_2CO_3$                       | DCM                                               | 17                                         | ND                                                                     |
| 3                          | $Cs_2CO_3$                      | THF                                               | 5                                          | ND                                                                     |
| 4                          | KOH                             | THF                                               | ND                                         | ND                                                                     |
| 5                          | Et <sub>3</sub> N               | DCM                                               | 25                                         | ND                                                                     |
| 6                          | DIPEA                           | DCM                                               | 23                                         | ND                                                                     |
|                            |                                 | ~ ~                                               |                                            |                                                                        |

### Table S1. Optimization of direct (4+2) cycloaddition conditions<sup>a</sup>

| 7  | DMAP              | DCM     | 16 | ND |
|----|-------------------|---------|----|----|
| 8  | KOtBu             | THF     | 12 | ND |
| 9  | KHMDS             | THF     | 7  | ND |
| 10 | Et <sub>3</sub> N | THF     | 22 | ND |
| 11 | Et <sub>3</sub> N | Toluene | 26 | ND |
| 12 | Et <sub>3</sub> N | $CCl_4$ | 24 | ND |
| 13 | Et <sub>3</sub> N | DMSO    | 11 | ND |

<sup>*a*</sup> Reaction conditions: **1a** (0.025 mmol), **2a** (2.0 equiv.), base (3.0 equiv.), solvent (1.0 mL), 50 °C, under air for 24 h. <sup>*b*</sup> Yields based on <sup>1</sup>H NMR analysis using phenyltrimethylsilane as the internal standard.

| l      | EtO <sub>2</sub> C              |                   | $rent$ $F_3C$ $F_3C$ | CO <sub>2</sub> Et             |
|--------|---------------------------------|-------------------|----------------------|--------------------------------|
| F      | 3℃ <sup>−</sup> ∕⊂ <sup>S</sup> | N,<br>N,<br>CO₂Me | t                    | N<br>NH<br>COoMe               |
|        | 1a                              | 2a                | 3                    | a                              |
| Entry  | Solvent                         | Time (h)          | Temp. (°C)           | $\operatorname{Yield}^{b}(\%)$ |
| 1      | Toluene                         | 12                | rt                   | 60                             |
| 2      | Chlorobenzene                   | 12                | rt                   | 29                             |
| 3      | Et <sub>2</sub> O               | 12                | rt                   | 65                             |
| 4      | THF                             | 12                | rt                   | 66                             |
| 5      | DCM                             | 12                | rt                   | 74                             |
| 6      | DCE                             | 12                | rt                   | 67                             |
| 7      | CHCl <sub>3</sub>               | 12                | rt                   | 72                             |
| 8      | CCl <sub>4</sub>                | 12                | rt                   | 77(71) <sup>c</sup>            |
| 9      | EtOAc                           | 12                | rt                   | 34                             |
| 10     | MeCN                            | 12                | rt                   | 62                             |
| 11     | DMF                             | 12                | rt                   | 59                             |
| 12     | DMSO                            | 12                | rt                   | 25                             |
| 13     | MeOH                            | 12                | rt                   | 47                             |
| 14     | HFIP                            | 12                | rt                   | 72                             |
| $15^d$ | $\mathrm{CCl}_4$                | 12                | rt                   | 48                             |
| 16     | $\mathrm{CCl}_4$                | 36                | 10                   | 30                             |
| 17     | $CCl_4$                         | 8                 | 50                   | 35                             |

## Table S2. Optimization of conjugate addition reaction conditions <sup>a</sup>

<sup>*a*</sup> Reaction conditions: **1a** (0.025 mmol), **2a** (2.0 equiv.), solvent (1.0 mL), rt, under air.

<sup>b</sup> Yields based on <sup>1</sup>H NMR analysis using phenyltrimethylsilane as the internal standard.
<sup>c</sup> Isolated yield in parentheses. <sup>d</sup> The reaction performed with **1a** (0.025 mmol), **2a** (1.5 equiv.).

ÇO₂Me

|       | $F_{3C}$ $CO_{2}Et$ $N_{N}$ $CO_{2}Et$ $N_{N}$ $N_{H}$ $CO_{2}Et$ $N_{N}$ $N_{H}$ $CO_{2}Et$ $N_{N}$ $N_{H}$ $CO_{2}Et$ $N_{N}$ $N_{H}$ $N_{H$ | D <sub>2</sub> Me <u>Conditions</u> | $\rightarrow$ $EtO_2C$ | 2Me<br>CF₃<br>−NH<br>Ph        |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------|--------------------------------|
| Entry | Base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Solvent                             | Temp (°C)              | $\operatorname{Yield}^{b}(\%)$ |
| 1     | Na <sub>2</sub> CO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Acetone                             | 70                     | 30                             |
| 2     | Et <sub>3</sub> N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CCl <sub>4</sub>                    | 70                     | 65(56) <sup>c</sup>            |
| 3     | $K_2CO_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $CCl_4$                             | 70                     | 40                             |
| 4     | DIPEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CCl <sub>4</sub>                    | 70                     | 50                             |
| 5     | Et <sub>3</sub> N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DMF                                 | 70                     | Mess                           |
| 6     | Et <sub>3</sub> N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HFIP                                | 70                     | Mess                           |
| 7     | Et <sub>3</sub> N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MeCN                                | 70                     | 27                             |
| 8     | Et <sub>3</sub> N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Acetone                             | 70                     | 54                             |
| 9     | Et <sub>3</sub> N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Toluene                             | 70                     | 50                             |
| 10    | Et <sub>3</sub> N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chlorobenzene                       | 70                     | 61                             |
| 11    | Et <sub>3</sub> N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $Et_2O$                             | 70                     | 58                             |
| 12    | Et <sub>3</sub> N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | THF                                 | 70                     | 51                             |
| 13    | Et <sub>3</sub> N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DCM                                 | 70                     | 30                             |
| 14    | Et <sub>3</sub> N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DCE                                 | 70                     | 51                             |

Table S3. Optimization of intramolecular cyclization conditions<sup>a</sup>

<sup>*a*</sup> Reaction conditions: **3a** (0.025 mmol), solvent (1.0 mL), base (3.0 equiv.), 70 °C, under air for 24 h. <sup>*b*</sup> Yields based on <sup>1</sup>H NMR analysis using phenyltrimethylsilane as the internal standard. <sup>*c*</sup> Isolated yield in parentheses.

### 3. Synthesis of the substrates and products

The imidoyl sulfoxonium ylides 1a-n,<sup>1</sup> were synthesized according to the published procedures, the azoalkenes 2a-b,<sup>2</sup> 2c,<sup>3</sup> and 2d-g,<sup>2</sup> were synthesized according to the published procedures.

# General Procedure A: the preparation of imidoyl sulfoxonium ylides 2a-l



**Step 1**: To a solution of triphenylphosphine (60 mmol, 3.0 equiv.) in CCl<sub>4</sub> (100 mL), triethylamine (24 mmol, 1.2 equiv.) and fluorinated carboxylic acid (20 mmol, 1.0 equiv.) were added dropwise at 0  $^{\circ}$ C. After stirring for 10 min at 0  $^{\circ}$ C, aniline (20 mmol, 1.0 equiv.) was added. The mixture was refluxed on an oil bath for 4 h and then cooled at room temperature, and then filtered under reduced pressure. The filtrate was concentrated under vacuum, and the resulting residue was purified by flash chromatography on silica gel with petroleum ether.

**Step 2**: Trimethylsulfoxonium iodide (3.0 equiv.) was suspended in THF (150 mL) in a 250 mL round bottom flask. *t*-BuOK (3.0 equiv.) was added and the mixture was stirred at room temperature for 2 hours. After, fluorinated acetimidoyl chloride (1.0 equiv.) was added. The mixture was stirred at room temperature for 3 hours and then filtered through a plug of celite before all volatiles were removed under vacuum. Purification by flash chromatography (PE/EA = 3:1) afforded products.



(*E*)-3-(dimethyl(oxo)- $\lambda^6$ -sulfaneylidene)-1,1,1-trifluoro-*N*-phenylpropan-2-imine (1a) was prepared from aniline and 2,2,2-trifluoroacetic acid according to the General Procedure A (eluent: PE/EA = 3:1) as colorless crystal in 59% yield (3.1 g, 2 steps). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.25 (t, *J* = 7.6 Hz, 2H), 6.99 (t, *J* = 7.4 Hz, 1H), 6.80 (d, *J* = 7.6 Hz, 2H), 4.10 (s, 1H), 3.44 (s, 6H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -62.63.



(*E*)-3-(dimethyl(oxo)- $\lambda^6$ -sulfaneylidene)-1,1,1-trifluoro-*N*-(*p*-tolyl)propan-2-imine (1b) was prepared from *p*-toluidine and 2,2,2-trifluoroacetic acid according to the General Procedure A (eluent: PE/EA = 3:1) as colorless crystal in 63% yield (3.5 g, 2 steps).

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)** δ 7.06 (d, *J* = 7.6 Hz, 2H), 6.70 (d, *J* = 7.4 Hz, 2H), 4.08 (s, 1H), 3.43 (s, 6H), 2.30 (s, 3H).

<sup>19</sup>**F** NMR (**376** MHz, CDCl<sub>3</sub>) δ -62.58.



(*E*)-3-(dimethyl(oxo)- $\lambda^6$ -sulfaneylidene)-1,1,1-trifluoro-*N*-(4methoxyphenyl)propan-2-imine (1c) was prepared from 4-methoxyaniline and 2,2,2trifluoroacetic acid according to the General Procedure A (eluent: PE/EA = 3:1) as colorless crystal in 66% yield (3.9 g, 2 steps).

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)** δ 6.85 – 6.70 (m, 4H), 4.08 (s, 1H), 3.78 (s, 3H), 3.43 (s, 6H).

<sup>19</sup>F NMR (**376** MHz, CDCl<sub>3</sub>) δ -62.56.



(*E*)-3-(dimethyl(oxo)- $\lambda^6$ -sulfaneylidene)-1,1,1-trifluoro-*N*-(4-

**fluorophenyl)propan-2-imine (1d)** was prepared from 4-fluoroaniline and 2,2,2-trifluoroacetic acid according to the General Procedure A (eluent: PE/EA = 3:1) as

colorless crystal in 56% yield (3.1 g, 2 steps).

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)** δ 6.94 (t, *J* = 7.8 Hz, 2H), 6.74 (t, *J* = 7.6 Hz, 2H), 4.15 (s, 1H), 3.46 (s, 6H).

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -62.56, -75.61.



(*E*)-3-(dimethyl(oxo)- $\lambda^6$ -sulfaneylidene)-1,1,1-trifluoro-*N*-(4-

**nitrophenyl)propan-2-imine** (1e) was prepared from 4-nitroaniline and 2,2,2-trifluoroacetic acid according to the General Procedure A (eluent: PE/EA = 3:1) as colorless crystal in 51% yield (3.1 g, 2 steps).

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)** δ 8.13 (d, *J* = 9.2 Hz, 2H), 6.85 (d, *J* = 8.8 Hz, 2H), 4.31 (s, 1H), 3.51 (s, 6H).

<sup>19</sup>F NMR (**376** MHz, CDCl<sub>3</sub>) δ -63.27.



 $(E) \textbf{-3-} (dimethyl(oxo) \textbf{-} \lambda^6 \textbf{-sulfaneylidene}) \textbf{-1,1,1-trifluoro-} N \textbf{-} (\textbf{\textit{m-tolyl}}) \textbf{propan-2-}$ 

**imine (1f)** was prepared from *m*-toluidine and 2,2,2-trifluoroacetic acid according to the General Procedure A (eluent: PE/EA = 3:1) as colorless crystal in 64% yield (3.5 g, 2 steps).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.14 (t, J = 7.6 Hz, 1H), 6.81 (d, J = 7.4 Hz, 1H), 6.67 - 6.58 (m, 2H), 4.09 (s, 1H), 3.44 (s, 6H), 2.31 (s, 3H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -62.63.



(*E*)-*N*-(3-bromophenyl)-3-(dimethyl(oxo)- $\lambda^6$ -sulfaneylidene)-1,1,1-

**trifluoropropan-2-imine** (1g) was prepared from 3-bromoaniline and 2,2,2-trifluoroacetic acid according to the General Procedure A (eluent: PE/EA = 3:1) as colorless crystal in 41% yield (2.8 g, 2 steps).

<sup>1</sup>**H NMR (400 MHz, CDCl**<sub>3</sub>) δ 7.10 (d, *J* = 3.6 Hz, 2H), 6.96 (s, 1H), 6.72 (t, *J* = 3.2 Hz, 1H), 4.15 (s, 1H), 3.45 (s, 6H).

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -62.65.



(*E*)-3-(dimethyl(oxo)- $\lambda^6$ -sulfaneylidene)-1,1,1-trifluoro-*N*-(*o*-tolyl)propan-2imine (1h) was prepared from *o*-toluidine and 2,2,2-trifluoroacetic acid according to the General Procedure A (eluent: PE/EA = 3:1) as colorless crystal in 59% yield (3.3 g, 2 steps).

<sup>1</sup>**H NMR (400 MHz, CDCl**<sub>3</sub>) δ 7.18 – 7.04 (m, 2H), 6.92 (t, *J* = 7.4 Hz, 1H), 6.66 (s, 1H), 4.11 (s, 1H), 3.49 (s, 6H), 2.12 (s, 3H).

<sup>19</sup>**F NMR (376 MHz, CDCl**<sub>3</sub>) δ -64.33.



(*E*)-3-(dimethyl(oxo)- $\lambda^6$ -sulfaneylidene)-1,1,1-trifluoro-*N*-(2-

**fluorophenyl)propan-2-imine (1i)** was prepared from 2-fluoroaniline and 2,2,2-trifluoroacetic acid according to the General Procedure A (eluent: PE/EA = 3:1) as colorless crystal in 44% yield (2.3 g, 2 steps).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.04 – 6.97 (m, 2H), 6.96 – 6.91 (m, 1H), 6.87 (t, J = 8.0 Hz, 1H), 4.21 (s, 1H), 3.52 (s, 6H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -64.93.



(*E*)-3-(dimethyl(oxo)- $\lambda^6$ -sulfaneylidene)-1,1,1-trifluoro-*N*-phenethylpropan-2imine (2j) was prepared from 2-phenylethan-1-amine and 2,2,2-trifluoroacetic acid according to the General Procedure A (eluent: PE/EA = 3:1) as colorless crystal in 46% yield (2.7 g, 2 steps).

<sup>1</sup>**H NMR (400 MHz, CDCl**<sub>3</sub>) δ 7.92 – 7.17 (m, 5H), 3.86 (s, 1H), 3.78 (t, *J* = 7.2 Hz, 2H), 3.19 (s, 6H), 2.92 (t, *J* = 6.8 Hz, 2H).

<sup>19</sup>F NMR (**376** MHz, CDCl<sub>3</sub>) δ -65.93.



(Z)-1-chloro-3-(dimethyl(oxo)-  $\lambda^6$ -sulfaneylidene)-1,1-difluoro-N-phenylpropan-2-imine (1k) was prepared from aniline and 2-chloro-2,2-difluoroacetic acid according to the General Procedure A (eluent: PE/EA = 3:1) as colorless crystal in 42% yield (2.3 g, 2 steps).

<sup>1</sup>**H NMR (400 MHz, CDCl**<sub>3</sub>) δ 7.25 (t, *J* = 7.2 Hz, 2H), 6.98 (t, *J* = 7.2 Hz, 1H), 6.83 (d, *J* = 7.6 Hz, 2H), 4.08 (s, 1H), 3.42 (s, 6H).

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -51.20.



 $(Z) - 1 - bromo - 3 - (dimethyl(oxo) - \lambda^6 - sulfaneylidene) - 1, 1 - difluoro - N - phenylpropan-$ 

**2-imine (11)** was prepared from aniline and 2-bromo-2,2-difluoroacetic acid according to the General Procedure A (eluent: PE/EA = 3:1) as colorless crystal in 48% yield (3.1 g, 2 steps).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.25 (t, J = 7.6 Hz, 2H), 6.98 (t, J = 7.6 Hz, 1H), 6.86 (d, J = 7.8 Hz, 2H), 4.03 (s, 1H), 3.41 (s, 6H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -47.19.

#### General Procedure B: the preparation of imidoyl sulfoxonium ylides

### 2m and 2n.

**Step 1**: To a dry round-bottom flask containing aniline solution (20 mmol, 1 equiv.) in THF (100 mL) and triethylamine (26 mmol, 1.3 equiv.) at 0  $\,^{\circ}$ C was added the acyl chloride substrates (22 mmol, 1.1 equiv.) dropwise. The reaction mixture was increased to room temperature, and stirred for 12 h. The resulting mixture was filtered to remove NH<sub>4</sub>Cl salt, and the solvent was evaporated. The resulting solid was washed with hexane to obtain the *N*-phenylbenzamide or *N*-phenylpivalamide in quantitative yield. *N*-phenylbenzamide or *N*-phenylpivalamide (1.0 equiv.) was then added to a flask coupled to a reflux system. This substrate was dissolved in thionyl chloride (10 mL) and heated in a preheated oil bath at 80  $\,^{\circ}$ C for 4 h. At the end of the reaction, the thionyl chloride was evaporated and the resulting mixture was washed with hexane, filtered, and concentrated on a rotary evaporator. The *N*-phenylbenzimidoyl chloride or *N*-phenylpivalimidoyl chloride obtained was then used directly in the next step without further purification.

**Step 2**: Trimethylsulfoxonium iodide (3.0 equiv.) was suspended in THF (100 mL) in a 250 mL round bottom flask, *t*-BuOK (3.0 equiv.) was added and the mixture was stirred at room temperature for 2 hours. After, fluorinated acetimidoyl chloride (1.0 equiv.) was added. The mixture was stirred at room temperature for 3 hours and then filtered through a plug of celite before all volatiles were removed under vacuum. Purification by flash chromatography (PE/EA = 3:1) afforded products.



(*E*)-2-(dimethyl(oxo)- $\lambda^6$ -sulfaneylidene)-*N*,1-diphenylethan-1-imine (1m) was prepared from aniline and benzoyl chloride according to the General Procedure B (eluent: PE/EA = 3:1) as colorless crystal in 42% yield (2.3 g, 2 steps).

<sup>1</sup>**H NMR (400 MHz, CDCl**<sub>3</sub>) δ 7.21 (s, 5H), 7.05 (t, *J* = 7.8 Hz, 2H), 6.78 (t, *J* = 7.4 Hz, 1H), 6.61 (d, *J* = 7.4 Hz, 2H), 3.87 (s, 1H), 3.55 (s, 6H).



(*E*)-1-(dimethyl(oxo)- $\lambda^6$ -sulfaneylidene)-3,3-dimethyl-*N*-phenylbutan-2-imine (1n) was prepared from aniline and pivaloyl chloride according to the General Procedure B (eluent: PE/EA = 3:1) as colorless crystal in 38% yield (1.9 g, 2 steps). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.23 – 7.16 (m, 2H), 6.88 (tt, *J* = 7.6, 1.4 Hz, 1H), 6.75 – 6.72 (m, 2H), 3.75 (s, 1H), 3.25 (s, 6H), 1.14 (s, 9H).

### General procedure C: the preparation of azoalkenes 2a-g



**Step 1**: To a stirred solution of **A** (20 mmol, 1.0 equiv.) in dry THF (100 mL, 1.0 M) was added hydrazine (20 mmol, 1.0 equiv.). After that, the suspension was stirred at room temperature under  $N_2$  for 48 h; the solid was filtered and washed with petroleum ether to give **C**.

**Step 2**: To a suspension of hydrazone **C** (1.0 equiv.) in THF (20 mL) was added a 1 N sodium bicarbonate solution (1.7 equiv.). After stirring at room temperature for 45 min, the red organic phase was separated and dried over anhydrous magnesium sulfate.

The mixture was evaporated under reduced pressure and purified by column chromatography (PE/EA = 10:1) to afford the pure product **2** as a bright red liquid.



Methyl (*E*)-2-((*E*)-4-ethoxy-4-oxobut-2-en-2-yl)diazene-1-carboxylate (2a) was prepared from ethyl 2-chloro-3-oxobutanoate and methyl hydrazinecarboxylate according to the General Procedure C (eluent: PE/EA = 10:1) as red liquid in 78% yield (3.1 g, 2 steps).

<sup>1</sup>**H NMR (400 MHz, CDCl**<sub>3</sub>) δ 6.98 (s, 1H), 4.31 (q, *J* = 7.2 Hz, 2H), 4.05 (s, 3H), 2.26 (s, 3H), 1.36 (t, *J* = 7.2 Hz, 3H).



*Tert*-butyl (*E*)-2-((*E*)-4-ethoxy-4-oxobut-2-en-2-yl)diazene-1-carboxylate (2b) was prepared from ethyl 2-chloro-3-oxobutanoate and *tert*-butyl hydrazinecarboxylate according to the General Procedure C (eluent: PE/EA = 10:1) as red liquid in 71% yield (3.4 g, 2 steps).

<sup>1</sup>**H NMR (400 MHz, CDCl**<sub>3</sub>) δ 6.93 (s, 1H), 4.29 (q, *J* = 7.2 Hz, 2H), 2.25 (s, 3H), 1.63 (s, 9H), 1.35 (t, *J* = 7.2 Hz, 3H).



Benzyl (E)-2-((E)-4-ethoxy-4-oxobut-2-en-2-yl)diazene-1-carboxylate (2c) was

prepared from ethyl 2-chloro-3-oxobutanoate and benzyl hydrazinecarboxylate according to the General Procedure C (eluent: PE/EA = 10:1) as red liquid in 62% yield (3.4 g, 2 steps).

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)** δ 7.48 – 7.37 (m, 5H), 6.97 (s, 1H), 5.43 (s, 2H), 4.30 (q, *J* = 7.2 Hz, 2H), 2.24 (s, 3H), 1.35 (t, *J* = 7.2 Hz, 3H).



Methyl (*E*)-2-((*E*)-1-ethoxy-1-oxohex-2-en-3-yl)diazene-1-carboxylate (2d) was prepared from ethyl 2-chloro-3-oxohexanoate and methyl hydrazinecarboxylate according to the General Procedure C (eluent: PE/EA = 10:1) as red liquid in 21% yield (957.6 mg, 2 steps).

<sup>1</sup>**H NMR (400 MHz, CDCl**<sub>3</sub>) δ 7.08 (s, 1H), 4.17 (q, *J* = 7.2 Hz, 2H), 3.81 (s, 3H), 2.22 (t, *J* = 7.8 Hz, 2H), 1.28 – 1.25 (m, 5H), 0.88 (t, *J* = 6.6 Hz, 3H).



Methyl (*E*)-2-((*E*)-4-methoxy-4-oxobut-2-en-2-yl)diazene-1-carboxylate (2e) was prepared from methyl 2-chloro-3-oxobutanoate and methyl hydrazinecarboxylate according to the General Procedure C (eluent: PE/EA = 10:1) as red liquid in 54% yield (2.0 g, 2 steps).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 6.99 (s, 1H), 4.05 (s, 3H), 3.85 (s, 3H), 2.26 (s, 3H).



S13

Methyl (*E*)-2-((*E*)-4-isopropoxy-4-oxobut-2-en-2-yl)diazene-1-carboxylate (2f) was prepared from isopropyl 2-chloro-3-oxobutanoate and methyl hydrazinecarboxylate according to the General Procedure C (eluent: PE/EA = 10:1) as red liquid in 55% yield (2.4 g, 2 steps).

<sup>1</sup>**H NMR (400 MHz, CDCl**<sub>3</sub>) δ 6.95 (s, 1H), 5.19 – 5.13 (m, 1H), 4.05 (s, 3H), 2.24 (s, 3H), 1.34 (s, 3H), 1.32 (s, 3H).



Methyl (Z)-2-(3-chloro-4-ethoxy-4-oxobutan-2-ylidene)hydrazine-1-carboxylate (2g) was prepared from ethyl 2-chloro-3-oxobutanoate and methyl hydrazinecarboxylate according to the General Procedure C Step 1 (eluent: PE/EA = 3:1) as white solid in 89% yield (4.2 g).

<sup>1</sup>**H NMR (400 MHz, CDCl**<sub>3</sub>) δ 7.89 (s, 1H), 5.12 (s, 1H), 4.26 (q, *J* = 7.0 Hz, 2H), 3.82 (s, 3H), 1.94 (s, 3H), 1.28 (t, *J* = 7.0 Hz, 3H).

#### **General Procedure D**



To a stirred solution of imidoyl sulfoxonium ylides **1** (0.3 mmol, 1 equiv.), 1,2diaza-1,3-dienes **2** (0.6 mmol, 2 equiv.) in CCl<sub>4</sub> (3 mL) and the reaction mixture was stirred at room temperature for 12 h, which was monitored by TLC. After reaction finished, the reaction solution was evaporated under reduced pressure and purified by column chromatography (PE/EA = 3:1) to afford the pure product **3**.



Methyl (*E*)-2-((3*Z*,5*Z*)-3-(ethoxycarbonyl)-6,6,6-trifluoro-5-(phenylimino)hex-3en-2-ylidene)hydrazine-1-carboxylate (3a) was prepared as pale yellow solid from (*E*)-3-(dimethyl(oxo)- $\lambda^6$ -sulfaneylidene)-1,1,1-trifluoro-*N*-phenylpropan-2-imine (0.3 mmol) and methyl (*E*)-2-((*E*)-4-ethoxy-4-oxobut-2-en-2-yl)diazene-1-carboxylate (0.6 mmol) according to the General Procedure D (12 h, eluent: PE/EA = 3:1) in 71% yield (82 mg).

**Mp**: 100-101 °C.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.91 (s, 1H), 7.33 (t, *J* = 7.8 Hz, 2H), 7.18 (t, *J* = 7.4 Hz, 1H), 6.99 (d, *J* = 7.6 Hz, 2H), 6.48 (s, 1H), 4.22 (q, *J* = 7.2 Hz, 2H), 3.81 (s, 3H), 1.86 (s, 3H), 1.29 (t, *J* = 7.2 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  164.6, 154.1 (q,  $J_{C-F} = 39.0$  Hz), 146.8, 144.9, 141.7, 129.1 (2C), 128.7, 126.8, 125.6, 120.8 (2C), 116.1 (q,  $J_{C-F} = 302.2$  Hz), 62.4, 53.4, 13.8, 13.6.

<sup>19</sup>**F** NMR (**376** MHz, CDCl<sub>3</sub>) δ -69.32.

**HRMS (ESI, TOF) m/z**:  $[M+Na]^+$  calcd for  $C_{17}H_{18}F_3N_3NaO_4$  408.1142, found: 408.1149.



Methyl (*E*)-2-((3*Z*,5*Z*)-3-(ethoxycarbonyl)-6,6,6-trifluoro-5-(*p*-tolylimino)hex-3en-2-ylidene)hydrazine-1-carboxylate (3b) was prepared as pale yellow oil from (*E*)-3-(dimethyl(oxo)- $\lambda^6$ -sulfaneylidene)-1,1,1-trifluoro-*N*-(*p*-tolyl)propan-2-imine (0.3 mmol) and methyl (*E*)-2-((*E*)-4-ethoxy-4-oxobut-2-en-2-yl)diazene-1-carboxylate (0.6 mmol) according to the General Procedure D (12 h, eluent: PE/EA = 3:1) in 63% yield (75 mg).

<sup>1</sup>**H NMR (400 MHz, CDCl**<sub>3</sub>) δ 7.87 (s, 1H), 7.13 (d, *J* = 8.0 Hz, 2H), 6.92 (d, *J* = 8.0 Hz, 2H), 6.49 (s, 1H), 4.21 (q, *J* = 7.2 Hz, 2H), 3.82 (s, 3H), 2.33 (s, 3H), 1.89 (s, 3H), 1.28 (t, *J* = 7.2 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  164.8, 153.3 (q,  $J_{C-F} = 36.9$  Hz), 145.1, 144.1, 141.6, 137.0, 129.7 (2C), 129.3, 126.0, 121.3 (2C), 119.3 (q,  $J_{C-F} = 267.3$  Hz), 62.3, 53.3, 21.2, 13.8, 13.6.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -69.10.

**HRMS (EI, TOF) m/z**: [M]<sup>+</sup> calcd for C<sub>18</sub>H<sub>20</sub>F<sub>3</sub>N<sub>3</sub>O<sub>4</sub> 399.1406, found 399.1404.



Methyl(E)-2-((3Z,5Z)-3-(ethoxycarbonyl)-6,6,6-trifluoro-5-((4-methoxyphenyl)imino)hex-3-en-2-ylidene)hydrazine-1-carboxylate(3c)wasprepared as pale yellow oil from (E)-3-(dimethyl(oxo)- $\lambda^6$ -sulfaneylidene)-1,1,1-trifluoro-N-(4-methoxyphenyl)propan-2-imine(0.3 mmol) and methyl(E)-2-((E)-4-ethoxy-4-oxobut-2-en-2-yl)diazene-1-carboxylate(0.6 mmol) according to the GeneralProcedure D(12 h, eluent: PE/EA = 3:1) in 53% yield (66 mg).

<sup>1</sup>**H NMR (400 MHz, CDCl**<sub>3</sub>)  $\delta$  8.25 (s, 1H), 7.04 (d, *J* = 8.8 Hz, 2H), 6.85 (d, *J* = 9.2 Hz, 2H), 6.49 (s, 1H), 4.19 (q, *J* = 7.2 Hz, 2H), 3.78 (s, 3H), 3.79 (s, 3H), 1.92 (s, 3H), 1.26 (t, *J* = 7.2 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 164.9, 159.0, 152.0 (q, *J*<sub>C-F</sub> = 34.6 Hz), 145.3, 141.6, 139.5, 125.9, 123.8 (2C), 120.4, 119.4 (q, *J*<sub>C-F</sub> = 276.9 Hz), 114.3 (2C), 62.2, 55.5, 53.3, 13.8, 13.5.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -68.84.

HRMS (EI, TOF) m/z: [M]<sup>+</sup> calcd for C<sub>18</sub>H<sub>20</sub>F<sub>3</sub>N<sub>3</sub>O<sub>5</sub> 415.1355, found 415.1357



Methyl (*E*)-2-((3*Z*,5*Z*)-3-(ethoxycarbonyl)-6,6,6-trifluoro-5-((4fluorophenyl)imino)hex-3-en-2-ylidene)hydrazine-1-carboxylate (3d) was prepared as pale yellow oil from (*E*)-3-(dimethyl(oxo)- $\lambda^6$ -sulfaneylidene)-1,1,1-trifluoro-*N*-(4fluorophenyl)propan-2-imine (0.3 mmol) and methyl (*E*)-2-((*E*)-4-ethoxy-4-oxobut-2en-2-yl)diazene-1-carboxylate (0.6 mmol) according to the General Procedure D (12 h, eluent: PE/EA = 3:1) in 60% yield (73 mg).

<sup>1</sup>**H NMR (400 MHz, CDCl**<sub>3</sub>) δ 8.39 (s, 1H), 7.02 – 7.00 (m, 4H), 6.44 (s, 1H), 4.19 (q, *J* = 7.2 Hz, 2H), 3.78 (s, 3H), 1.90 (s, 3H), 1.26 (t, *J* = 7.2 Hz, 3H).

<sup>13</sup>**C NMR (100 MHz, CDCl**<sub>3</sub>)  $\delta$  164.5, 161.4 (d,  $J_{C-F} = 245.4 \text{ Hz}$ ), 154.1 (q,  $J_{C-F} = 35.7 \text{ Hz}$ ), 144.7, 142.6, 141.9, 125.4, 122.9 (d,  $J_{C-F} = 8.4 \text{ Hz}$ , 2C), 119.0 (q,  $J_{C-F} = 277.3 \text{ Hz}$ ), 119.3 (d,  $J_{C-F} = 19.3 \text{ Hz}$ ), 116.0 (d,  $J_{C-F} = 22.7 \text{ Hz}$ , 2C), 62.3, 53.2, 13.7, 13.5.

<sup>19</sup>F NMR (**376** MHz, CDCl<sub>3</sub>) δ -69.39, -115.25.

**HRMS (ESI, TOF) m/z**:  $[M+Na]^+$  calcd for  $C_{17}H_{17}F_4N_3NaO_4$  426.1047, found 426.1055.



Methyl (*E*)-2-((3*Z*,5*Z*)-3-(ethoxycarbonyl)-6,6,6-trifluoro-5-((4nitrophenyl)imino)hex-3-en-2-ylidene)hydrazine-1-carboxylate (3e) was prepared as pale yellow solid from (*E*)-3-(dimethyl(oxo)- $\lambda^6$ -sulfaneylidene)-1,1,1-trifluoro-*N*-(4-nitrophenyl)propan-2-imine (0.3 mmol) and methyl (*E*)-2-((*E*)-4-ethoxy-4-oxobut-2-en-2-yl)diazene-1-carboxylate (0.6 mmol) according to the General Procedure D (12

h, eluent: PE/EA = 3:1) in 43% yield (56 mg).

**Mp:** 108-109 °C.

<sup>1</sup>**H NMR (400 MHz, CDCl**<sub>3</sub>) δ 8.18 (d, *J* = 8.8 Hz, 2H), 6.97 (bs, 2H) , 6.46 (s, 1H), 4.22 (q, *J* = 7.2 Hz, 2H), 3.76 (s, 3H), 1.92 (s, 3H), 1.26 (t, *J* = 7.2 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 165.3, 164.8, 155.1 (q, *J*<sub>C-F</sub> = 34.6 Hz), 154.3, 152.7, 145.5, 144.6, 134.3, 124.9 (2C), 118.6 (q, *J*<sub>C-F</sub> = 299.9 Hz), 110.7 (2C), 62.3, 60.4, 53.3, 13.9.

<sup>19</sup>F NMR (**376** MHz, CDCl<sub>3</sub>) δ -73.85.

**HRMS (EI, TOF) m/z**: [M]<sup>+</sup> calcd for C<sub>17</sub>H<sub>17</sub>F<sub>3</sub>N<sub>4</sub>O<sub>6</sub> 430.1100, found 430.1097.



Methyl (*E*)-2-((3*Z*,5*Z*)-3-(ethoxycarbonyl)-6,6,6-trifluoro-5-(*m*-tolylimino)hex-3en-2-ylidene)hydrazine-1-carboxylate (3f) was prepared as pale yellow oil from (*E*)-3-(dimethyl(oxo)- $\lambda^6$ -sulfaneylidene)-1,1,1-trifluoro-*N*-(*m*-tolyl)propan-2-imine (0.3 mmol) and methyl (*E*)-2-((*E*)-4-ethoxy-4-oxobut-2-en-2-yl)diazene-1-carboxylate (0.6 mmol) according to the General Procedure D (12 h, eluent: PE/EA = 3:1) in 72% yield (86 mg).

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.45 (s, 1H), 7.18 (t, *J* = 7.8 Hz, 1H), 6.97 (d, *J* = 7.2 Hz, 1H), 6.78 (s, 1H), 6.76 (d, *J* = 7.6 Hz, 1H), 6.44 (s, 1H), 4.19 (q, *J* = 7.2 Hz, 2H), 3.77 (s, 3H), 2.31 (s, 3H), 1.87 (s, 3H), 1.27 (t, *J* = 7.2 Hz, 3H).

<sup>13</sup>**C NMR (100 MHz, CDCl<sub>3</sub>)**  $\delta$  164.5, 153.8 (q,  $J_{C-F} = 36.3$  Hz), 146.6, 144.9, 141.3, 138.9, 128.8, 128.4, 127.4, 126.0, 121.5, 118.0 (q,  $J_{C-F} = 287.3$  Hz), 117.5, 62.2, 53.2, 21.3, 13.7, 13.5.

<sup>19</sup>F NMR (**376** MHz, CDCl<sub>3</sub>) δ -69.29.

**HRMS (ESI, TOF) m/z**:  $[M+Na]^+$  calcd for  $C_{18}H_{20}F_3N_3NaO_4$  422.1298, found 422.1305.



Methyl (*E*)-2-((3*Z*,5*Z*)-5-((3-bromophenyl)imino)-3-(ethoxycarbonyl)-6,6,6trifluorohex-3-en-2-ylidene)hydrazine-1-carboxylate (3g) was prepared as pale yellow oil from (*E*)-*N*-(3-bromophenyl)-3-(dimethyl(oxo)- $\lambda^6$ -sulfaneylidene)-1,1,1trifluoropropan-2-imine (0.3 mmol) and methyl (*E*)-2-((*E*)-4-ethoxy-4-oxobut-2-en-2yl)diazene-1-carboxylate (0.6 mmol) according to the General Procedure D (12 h, eluent: PE/EA = 3:1) in 54% yield (75 mg). <sup>1</sup>**H NMR (400 MHz, CDCl**<sub>3</sub>)  $\delta$  7.93 (s, 1H), 7.31 (d, *J* = 7.6 Hz, 1H), 7.20 (t, *J* = 7.8 Hz, 1H), 7.14 (s, 1H), 6.89 (d, *J* = 7.6 Hz, 1H), 6.46 (s, 1H), 4.23 (q, *J* = 7.2 Hz, 2H), 3.82 (s, 3H), 1.88 (s, 3H), 1.30 (t, *J* = 7.2 Hz, 3H).

<sup>13</sup>**C NMR (100 MHz, CDCl<sub>3</sub>)**  $\delta$  164.5, 155.5 (q,  $J_{C-F} = 36.3$  Hz), 148.1, 144.7, 142.4, 130.5, 130.2, 129.4, 125.1, 123.6, 122.7, 118.9 (q,  $J_{C-F} = 277.6$  Hz), 118.9, 62.5, 53.4, 13.9, 13.7

<sup>19</sup>F NMR (**376** MHz, CDCl<sub>3</sub>) δ -69.64.

**HRMS (EI, TOF) m/z**: [M]<sup>+</sup> calcd for C<sub>17</sub>H<sub>17</sub>BrF<sub>3</sub>N<sub>3</sub>O<sub>4</sub> 463.0355, found 463.0350.



Methyl (*E*)-2-((3*Z*,5*Z*)-3-(ethoxycarbonyl)-6,6,6-trifluoro-5-(*o*-tolylimino)hex-3en-2-ylidene)hydrazine-1-carboxylate (3h) was prepared as pale yellow oil from (*E*)-3-(dimethyl(oxo)- $\lambda^6$ -sulfaneylidene)-1,1,1-trifluoro-*N*-(*o*-tolyl)propan-2-imine (0.3 mmol) and methyl (*E*)-2-((*E*)-4-ethoxy-4-oxobut-2-en-2-yl)diazene-1-carboxylate (0.6 mmol) according to the General Procedure D (12 h, eluent: PE/EA = 3:1) in 42% yield (50 mg).

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)** δ 7.81 (s, 1H), 7.20 (d, *J* = 6.0 Hz, 1H), 7.13 – 7.10 (m, 2H), 6.77 (d, *J* = 6.0 Hz, 1H), 6.40 (s, 1H), 4.23 (q, *J* = 7.2 Hz, 2H), 3.81 (s, 3H), 2.21 (s, 3H), 1.85 (s, 3H), 1.28 (t, *J* = 7.2 Hz, 3H).

<sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  164.7, 153.6 (q,  $J_{C-F} = 34.7$  Hz), 145.5, 145.2, 141.8, 130.8, 129.8, 126.6, 126.3, 125.9, 125.0, 119.1 (q,  $J_{C-F} = 288.3$  Hz), 118.7, 62.2, 53.6, 17.6, 13.8, 13.5.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -68.80.

**HRMS (EI, TOF) m/z**: [M]<sup>+</sup> calcd for C<sub>18</sub>H<sub>20</sub>F<sub>3</sub>N<sub>3</sub>O<sub>4</sub> 399.1406, found: 399.1404.



Methyl (*E*)-2-((3*Z*,5*Z*)-3-(ethoxycarbonyl)-6,6,6-trifluoro-5-((2fluorophenyl)imino)hex-3-en-2-ylidene)hydrazine-1-carboxylate (3i) was prepared as pale yellow oil from (*E*)-3-(dimethyl( $\infty$ o)- $\lambda$ <sup>6</sup>-sulfaneylidene)-1,1,1-trifluoro-*N*-(2fluorophenyl)propan-2-imine (0.3 mmol) and methyl (*E*)-2-((*E*)-4-ethoxy-4-oxobut-2en-2-yl)diazene-1-carboxylate (0.6 mmol) according to the General Procedure D (12 h, eluent: PE/EA = 3:1) in 61% yield (77 mg).

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.40 (s, 1H), 7.15 – 7.05 (m, 3H), 6.98 (t, *J* = 7.8 Hz, 1H), 6.48 (s, 1H), 4.14 (q, *J* = 7.2 Hz, 2H), 3.77 (s, 3H), 1.87 (s, 3H), 1.25 (t, *J* = 7.2 Hz, 3H).

<sup>13</sup>**C NMR** (**150 MHz, CDCl**<sub>3</sub>)  $\delta$  164.4, 157.7 (q,  $J_{C-F} = 36.1$  Hz), 151.6 (d,  $J_{C-F} = 249.0$  Hz), 144.9, 142.0, 134.4 (d,  $J_{C-F} = 12.5$  Hz), 127.9 (d,  $J_{C-F} = 7.8$  Hz), 124.5 (d,  $J_{C-F} = 4.5$  Hz), 124.1, 122.9, 118.9 (q,  $J_{C-F} = 277.7$  Hz), 116.4 (d,  $J_{C-F} = 20.1$  Hz), 115.8 (d,  $J_{C-F} = 12.8$  Hz), 62.3, 53.2, 13.7, 13.3.

<sup>19</sup>F NMR (**376** MHz, CDCl<sub>3</sub>) δ -70.00, -123.42.

**HRMS (ESI, TOF) m/z**:  $[M+Na]^+$  calcd for  $C_{17}H_{17}F_4N_3NaO_4$  426.1047, found: 426.1052.



Methyl (*E*)-2-((3*Z*,5*Z*)-3-(ethoxycarbonyl)-6,6,6-trifluoro-5-(phenethylimino)hex-3-en-2-ylidene)hydrazine-1-carboxylate (3j) was prepared as pale yellow oil from (*E*)-3-(dimethyl(oxo)- $\lambda^6$ -sulfaneylidene)-1,1,1-trifluoro-*N*-phenethylpropan-2-imine (0.3 mmol) and methyl (*E*)-2-((*E*)-4-ethoxy-4-oxobut-2-en-2-yl)diazene-1-carboxylate (0.6 mmol) according to the General Procedure D (12 h, eluent: PE/EA = 3:1) in 63% yield (78 mg). <sup>1</sup>**H** NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.26 (t, *J* = 7.2 Hz, 2H), 7.19 (t, *J* = 7.4 Hz, 1H), 7.15 (d, *J* = 7.2 Hz, 2H), 5.82 (s, 1H), 4.19 (q, *J* = 7.2 Hz, 2H), 3.79 – 3.75 (m, 5H), 2.97 (t, *J* = 7.2 Hz, 2H), 1.89 (s, 3H), 1.23 (t, *J* = 7.2 Hz, 3H).

<sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  164.9, 154.6 (q,  $J_{C-F} = 34.8$  Hz), 145.0, 142.1, 139.1, 129.1 (2C), 128.8, 128.5 (2C), 126.4, 123.4, 118.9 (q,  $J_{C-F} = 277.1$  Hz), 62.0, 55.2, 53.2, 36.0, 13.7, 12.7.

<sup>19</sup>F NMR (**376** MHz, CDCl<sub>3</sub>) δ -57.53.

**HRMS (ESI, TOF) m/z**:  $[M+Na]^+$  calcd for  $C_{19}H_{22}F_3N_3NaO_4$  436.1455, found: 436.1462.



Methyl (*E*)-2-((3*Z*,5*Z*)-6-chloro-3-(ethoxycarbonyl)-6,6-difluoro-5-(phenylimino)hex-3-en-2-ylidene)hydrazine-1-carboxylate (3k) was prepared as pale yellow oil from (*Z*)-1-chloro-3-(dimethyl(oxo)- $\lambda^6$ -sulfaneylidene)-1,1-difluoro-*N*-phenylpropan-2-imine (0.3 mmol) and methyl (*E*)-2-((*E*)-4-ethoxy-4-oxobut-2-en-2yl)diazene-1-carboxylate (0.6 mmol) according to the General Procedure D (12 h, eluent: PE/EA = 3:1) in 62% yield (75 mg).

<sup>1</sup>**H NMR (400 MHz, CDCl**<sub>3</sub>) δ 7.92 (s, 1H), 7.32 (t, *J* = 7.6 Hz, 2H), 7.16 (t, *J* = 7.2 Hz, 1H), 6.98 (d, *J* = 7.6 Hz, 2H), 6.58 (s, 1H), 4.15 (q, *J* = 7.2 Hz, 2H), 3.81 (s, 3H), 1.86 (s, 3H), 1.26 (t, *J* = 7.2 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  164.5, 156.7 (t,  $J_{C-F} = 29.7$  Hz), 146.6, 145.0, 141.6, 129.0 (2C), 126.5, 125.8, 122.9, 121.4 (t,  $J_{C-F} = 276.2$  Hz), 120.7 (2C), 62.2, 53.3, 13.8, 13.6.

<sup>19</sup>**F NMR (376 MHz, CDCl<sub>3</sub>)** δ -57.53.

**HRMS (EI, TOF) m/z**: [M]<sup>+</sup> calcd for C<sub>17</sub>H<sub>18</sub>ClF<sub>2</sub>N<sub>3</sub>O<sub>4</sub> 401.0954, found: 401.0956.



Methyl (*E*)-2-((3*Z*,5*Z*)-6-bromo-3-(ethoxycarbonyl)-6,6-difluoro-5-(phenylimino)hex-3-en-2-ylidene)hydrazine-1-carboxylate (3l) was prepared as pale yellow oil from (*Z*)-1-bromo-3-(dimethyl(oxo)- $\lambda^6$ -sulfaneylidene)-1,1-difluoro-*N*phenylpropan-2-imine (0.3 mmol) and methyl (*E*)-2-((*E*)-4-ethoxy-4-oxobut-2-en-2yl)diazene-1-carboxylate (0.6 mmol) according to the General Procedure D (12 h, eluent: PE/EA = 3:1) in 59% yield (79 mg).

<sup>1</sup>**H NMR** (**600 MHz**, **CDCl**<sub>3</sub>) δ 8.16 (s, 1H), 7.31 (t, *J* = 7.8 Hz, 2H), 7.16 (t, *J* = 7.2 Hz, 1H), 6.97 (d, *J* = 7.8 Hz, 2H), 6.59 (s, 1H), 4.14 (q, *J* = 7.2 Hz, 2H), 3.79 (s, 3H), 1.87 (s, 3H), 1.26 (t, *J* = 7.2 Hz, 3H).

<sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  164.4, 157.6 (t,  $J_{C-F} = 26.85$  Hz), 146.4, 144.9, 141.5, 128.9 (2C), 128.5, 126.4, 125.5, 120.6 (2C), 118.3 (t,  $J_{C-F} = 292.6$  Hz), 62.1, 53.2, 13.7, 13.6.

<sup>19</sup>F NMR (565 MHz, CDCl<sub>3</sub>) δ -53.54.

**HRMS (ESI, TOF) m/z**:  $[M+Na]^+$  calcd for  $C_{17}H_{18}BrF_2N_3NaO_4$  468.0341, found 468.0345.



*Tert*-butyl (*E*)-2-((3*Z*,5*Z*)-3-(ethoxycarbonyl)-6,6,6-trifluoro-5-(phenylimino)hex-3-en-2-ylidene)hydrazine-1-carboxylate (3m) was prepared as pale yellow oil from (*E*)-3-(dimethyl(oxo)- $\lambda^6$ -sulfaneylidene)-1,1,1-trifluoro-*N*-phenylpropan-2-imine (0.3 mmol) and *tert*-butyl (*E*)-2-((*E*)-4-ethoxy-4-oxobut-2-en-2-yl)diazene-1-carboxylate (0.6 mmol) according to the General Procedure D (12 h, eluent: PE/EA = 3:1) in 60% yield (77 mg). <sup>1</sup>**H NMR (400 MHz, CDCl**<sub>3</sub>) δ 7.74 (s, 1H), 7.33 (t, *J* = 7.8 Hz, 2H), 7.18 (t, *J* = 7.4 Hz, 1H), 6.99 (d, *J* = 7.6 Hz, 2H), 6.48 (s, 1H), 4.21 (q, *J* = 7.2 Hz, 2H), 1.85 (s, 3H), 1.49 (s, 9H), 1.29 (d, *J* = 7.2 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  164.8, 154.3 (q,  $J_{C-F} = 34.2$  Hz), 146.8, 143.9, 141.9, 129.1 (2C), 128.7, 126.7, 125.0, 120.8 (2C), 120.6 (q,  $J_{C-F} = 256.4$  Hz), 82.1, 62.3, 28.3 (3C), 14.5, 13.9.

<sup>19</sup>F NMR (**376** MHz, CDCl<sub>3</sub>) δ -69.38.

**HRMS (EI, TOF) m/z**: [M]<sup>+</sup> calcd for C<sub>20</sub>H<sub>24</sub>F<sub>3</sub>N<sub>3</sub>O<sub>4</sub> 427.1719, found: 427.1721.



3n

Benzyl (*E*)-2-((3*Z*,5*Z*)-3-(ethoxycarbonyl)-6,6,6-trifluoro-5-(phenylimino)hex-3en-2-ylidene)hydrazine-1-carboxylate (3n) was prepared as pale yellow oil from (*E*)-3-(dimethyl(oxo)- $\lambda^6$ -sulfaneylidene)-1,1,1-trifluoro-*N*-phenylpropan-2-imine (0.3 mmol) and benzyl (*E*)-2-((*E*)-4-ethoxy-4-oxobut-2-en-2-yl)diazene-1-carboxylate (0.6 mmol) according to the General Procedure D (12 h, eluent: PE/EA = 3:1) in 55% yield (76 mg).

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)** δ 7.86 (s, 1H), 7.38 – 7.30 (m, 7H), 7.17 (t, *J* = 7.4 Hz, 1H), 6.98 (d, *J* = 7.6 Hz, 2H), 6.49 (s, 1H), 5.23 (s, 2H), 4.18 (q, *J* = 7.2 Hz, 2H), 1.85 (s, 3H), 1.25 (t, *J* = 7.2 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  171.3, 164.6, 153.7 (q,  $J_{C-F} = 34.2$  Hz), 146.7, 144.9, 141.8, 135.6, 129.1 (2C), 128.7 (2C), 128.6 (2C), 126.8, 125.6, 120.8 (2C), 119.1 (q,  $J_{C-F} = 295.5$  Hz), 68.0, 62.3, 14.3, 13.8.

<sup>19</sup>F NMR (**376** MHz, CDCl<sub>3</sub>) δ -69.36.

**HRMS (EI, TOF) m/z**: [M]<sup>+</sup> calcd for C<sub>23</sub>H<sub>22</sub>F<sub>3</sub>N<sub>3</sub>O<sub>4</sub> 461.1562, found 461.1560.



Methyl (*E*)-2-((4*Z*,6*Z*)-4-(ethoxycarbonyl)-7,7,7-trifluoro-6-(phenylimino)hept-4en-3-ylidene)hydrazine-1-carboxylate (30) was prepared as pale yellow oil from (*E*)-3-(dimethyl(oxo)- $\lambda^6$ -sulfaneylidene)-1,1,1-trifluoro-*N*-phenylpropan-2-imine (0.3 mmol) and methyl (*E*)-2-((*E*)-1-ethoxy-1-oxohex-2-en-3-yl)diazene-1-carboxylate (0.6 mmol) according to the General Procedure D (12 h, eluent: PE/EA = 3:1) in 58% yield (70 mg).

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.02 (s, 1H), 7.32 (t, *J* = 7.8 Hz, 2H), 7.17 (t, *J* = 7.6 Hz, 1H), 6.97 (d, *J* = 7.6 Hz, 2H), 6.38 (s, 1H), 4.24 (q, *J* = 7.2 Hz, 2H), 3.81 (s, 3H), 2.24 (t, *J* = 8.0 Hz, 2H) ,1.32 – 1.26 (m, 5H), 0.82 (t, *J* = 7.2 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 164.8, 154.6 (q, *J*<sub>C-F</sub> = 33.0 Hz), 147.1, 146.4, 141.2, 129.1 (2C), 126.6, 125.0, 123.3, 120.5 (2C), 116.2 (q, *J*<sub>C-F</sub> = 286.4 Hz), 62.3, 53.4, 28.6, 18.8, 14.0, 13.9.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -69.26.

**HRMS (ESI, TOF) m/z**:  $[M+Na]^+$  calcd for  $C_{19}H_{22}F_3N_3NaO_4$  436.1455, found: 436.1462.



Methyl (*E*)-2-((3*Z*,5*Z*)-6,6,6-trifluoro-3-(methoxycarbonyl)-5-(phenylimino)hex-3-en-2-ylidene)hydrazine-1-carboxylate (3p) was prepared as pale yellow oil from (*E*)-3-(dimethyl(oxo)- $\lambda^6$ -sulfaneylidene)-1,1,1-trifluoro-*N*-phenylpropan-2-imine (0.3 mmol) and methyl (*E*)-2-((*E*)-4-methoxy-4-oxobut-2-en-2-yl)diazene-1-carboxylate (0.6 mmol) according to the General Procedure D (12 h, eluent: PE/EA = 3:1) in 64% yield (71 mg). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.85 (s, 1H), 7.34 (t, J = 7.6 Hz, 2H), 7.19 (t, J = 7.4 Hz, 1H), 6.98 (d, J = 7.6 Hz, 2H), 6.49 (s, 1H), 3.82 (s, 3H), 3.76 (s, 3H), 1.87 (s, 3H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) δ 165.0, 154.1 (t,  $J_{C-F} = 35.25$  Hz), 146.7, 144.8, 141.4, 129.1 (2C), 128.8, 126.9, 126.0, 120.8 (2C), 119.1 (t,  $J_{C-F} = 277.2$  Hz), 52.8, 29.8, 13.6. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -69.31.

**HRMS (EI, TOF) m/z**: [M]<sup>+</sup> calcd for C<sub>16</sub>H<sub>16</sub>F<sub>3</sub>N<sub>3</sub>O<sub>4</sub> 371.1093, found: 371.1090.



Methyl (*E*)-2-((3*Z*,5*Z*)-6,6,6-trifluoro-3-(isopropoxycarbonyl)-5-(phenylimino)hex-3-en-2-ylidene)hydrazine-1-carboxylate (3q) was prepared as pale yellow oil from (*E*)-3-(dimethyl( $\infty o$ )- $\lambda^6$ -sulfaneylidene)-1,1,1-trifluoro-*N*phenylpropan-2-imine (0.3 mmol) and methyl (*E*)-2-((*E*)-4-isopropoxy-4-oxobut-2-en-2-yl)diazene-1-carboxylate (0.6 mmol) according to the General Procedure D (12 h, eluent: PE/EA = 3:1) in 63% yield (75 mg).

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)** δ 8.00 (s, 1H), 7.33 (t, *J* = 7.8 Hz, 2H), 7.18 (t, *J* = 7.4 Hz, 1H), 7.00 (d, *J* = 7.6 Hz, 2H), 6.40 (s, 1H), 5.09 (p, *J* = 6.4 Hz, 1H), 3.80 (s, 3H), 1.85 (s, 3H), 1.29 (s, 3H), 1.28 (s, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 164.4, 154.1 (q, *J*<sub>C-F</sub> = 34.9 Hz), 146.8, 145.0, 142.2, 129.1 (2C), 128.7, 126.8, 125.0, 120.8 (2C), 119.1 (q, *J*<sub>C-F</sub> = 296.8 Hz), 70.6, 53.3, 21.5 (2C), 13.4.

<sup>19</sup>F NMR (**376** MHz, CDCl<sub>3</sub>) δ -69.12.

**HRMS (EI, TOF) m/z**: [M]<sup>+</sup> calcd for C<sub>18</sub>H<sub>20</sub>F<sub>3</sub>N<sub>3</sub>O<sub>4</sub> 399.1406, found: 399.1403.

#### **General Procedure E**



To a stirred solution of alkenyl imines **3** (0.3 mmol, 1.0 equiv.) in CCl<sub>4</sub> (3.0 mL) was added Et<sub>3</sub>N (0.75 mmol, 3.0 equiv.) and the reaction mixture was stirred in a preheated oil bath at 70 °C, which was monitored by TLC. After reaction finished, the reaction solution was evaporated under reduced pressure and purified by column chromatography (PE/EA = 10:1) to afford the pure product **4**.



**4-Ethyl 1-methyl 3-methyl-6-(phenylamino)-6-(trifluoromethyl)pyridazine-1,4(6H)-dicarboxylate** (4a) was prepared as pale yellow solid from methyl (*E*)-2-((3*Z*,5*Z*)-3-(ethoxycarbonyl)-6,6,6-trifluoro-5-(phenylimino)hex-3-en-2-

ylidene)hydrazine-1-carboxylate (0.3 mmol) according to the General Procedure E (24 h, eluent: PE/EA = 10:1) in 56% yield (65 mg).

**Mp**: 133-134 °C

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)** δ 7.19 (t, *J* = 8.0 Hz, 2H), 6.97 (t, *J* = 7.6 Hz, 1H), 6.83 (d, *J* = 7.8 Hz, 2H), 6.77 (s, 1H), 5.75 (s, 1H), 4.35 – 4.23 (m, 2H), 3.81 (s, 3H), 2.32 (s, 3H), 1.33 (t, *J* = 7.2 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 163.1, 154.6, 141.9, 139.8, 134.2, 129.4 (2C), 128.0, 123.4 (q, *J*<sub>C-F</sub> = 289.9 Hz), 122.8, 120.0 (2C), 74.1 (q, *J*<sub>C-F</sub> = 30.9 Hz), 62.2, 54.3, 21.4, 14.2.

<sup>19</sup>F NMR (**376** MHz, CDCl<sub>3</sub>) δ -77.87.

**HRMS (ESI, TOF) m/z**:  $[M+Na]^+$  calcd for  $C_{17}H_{18}F_3N_3NaO_4$  408.1142, found: 408.1148.



**4-Ethyl 1-methyl 3-methyl-6-(p-tolylamino)-6-(trifluoromethyl)pyridazine-1,4(6H)-dicarboxylate (4b)** was prepared as pale yellow solid from methyl (*E*)-2-((3*Z*,5*Z*)-3-(ethoxycarbonyl)-6,6,6-trifluoro-5-(*p*-tolylimino)hex-3-en-2-

ylidene)hydrazine-1-carboxylate (0.3 mmol) according to the General Procedure E (24 h, eluent: PE/EA = 10:1) in 53% yield (64 mg).

Mp: 136-137 °C

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)** δ 7.00 (d, *J* = 8.0 Hz, 2H), 6.76 – 6.74 (m, 3H), 5.70 (s, 1H), 4.34 – 4.23 (m, 2H), 3.83 (s, 3H), 2.30 (s, 3H), 2.25 (s, 3H), 1.34 (t, *J* = 7.2 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  163.1, 154.7, 139.8, 139.1, 134.3, 132.7, 129.9 (2C), 127.9, 123.4 (q,  $J_{C-F} = 289.9$  Hz), 120.8 (2C), 74.5 (q,  $J_{C-F} = 31.6$  Hz), 62.2, 54.3, 21.4, 20.7, 14.2.

<sup>19</sup>F NMR (**376** MHz, CDCl<sub>3</sub>) δ -77.70.

**HRMS (ESI, TOF) m/z**:  $[M+Na]^+$  calcd for  $C_{18}H_{20}F_3N_3NaO_4$  422.1298, found: 422.1306.



4-Ethyl1-methyl6-((4-methoxyphenyl)amino)-3-methyl-6-(trifluoromethyl)pyridazine-1,4(6H)-dicarboxylate (4c) was prepared as pale yellowoilfrommethyl<math>(E)-2-((3Z,5Z)-3-(ethoxycarbonyl)-6,6,6-trifluoro-5-((4-methoxyphenyl)imino)hex-3-en-2-ylidene)hydrazine-1-carboxylate

according to the General Procedure E (24 h, eluent: PE/EA = 10:1) in 51% yield (64 mg).

<sup>1</sup>**H NMR (400 MHz, CDCl**<sub>3</sub>) δ 6.84 (d, *J* = 9.2 Hz, 2H), 6.77 – 6.72 (m, 3H), 5.69 (s, 1H), 4.31 – 4.24 (m, 2H), 3.87 (s, 3H), 3.74 (s, 3H), 2.26 (s, 3H), 1.33 (t, *J* = 7.2 Hz, 3H).

<sup>13</sup>**C NMR (150 MHz, CDCl<sub>3</sub>)**  $\delta$  163.1, 156.4, 155.0, 139.7, 134.5, 134.0, 127.6, 124.4 (q,  $J_{C-F} = 289.7$  Hz) 124.1 (2C), 114.6 (2C), 75.3 (q,  $J_{C-F} = 30.6$  Hz), 62.1, 55.5, 54.4, 21.3, 14.2.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -77.36.

**HRMS (ESI, TOF) m/z**: [M]<sup>-</sup> calcd for C<sub>18</sub>H<sub>19</sub>F<sub>3</sub>N<sub>3</sub>O<sub>5</sub> 414.1282, found: 414.1276.



**4-Ethyl 1-methyl 6-((4-fluorophenyl)amino)-3-methyl-6-(trifluoromethyl)pyridazine-1,4(6H)-dicarboxylate (4d)** was prepared as pale yellow solid from methyl (*E*)-2-((3Z,5Z)-3-(ethoxycarbonyl)-6,6,6-trifluoro-5-((4fluorophenyl)imino)hex-3-en-2-ylidene)hydrazine-1-carboxylate (0.3 mmol) according to the General Procedure E (24 h, eluent: PE/EA = 10:1) in 65% yield (79 mg).

**Mp**: 133-134 °C

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)** δ 6.91 (t, *J* = 8.6 Hz, 2H), 6.85 – 6.81 (m, 2H), 6.72 (s, 1H), 5.75 (s, 1H), 4.35 – 4.24 (m, 2H), 3.85 (s, 3H), 2.29 (s, 3H), 1.34 (t, *J* = 7.2 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.0, 159.3 (d,  $J_{C-F} = 241.1$  Hz), 154.9, 139.8, 137.7 (d,  $J_{C-F} = 29$  Hz), 133.7, 128.1, 123.3 (q,  $J_{C-F} = 289.5$  Hz), 123.0 (d,  $J_{C-F} = 79.0$  Hz, 2C) 116.1 (d,  $J_{C-F} = 22.3$  Hz, 2C), 74.6 (q,  $J_{C-F} = 30.6$  Hz), 62.3, 54.4, 21.3, 14.2. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -77.59, -119.92.

**HRMS (EI, TOF) m/z**: [M]<sup>+</sup> calcd for C<sub>17</sub>H<sub>17</sub>F<sub>4</sub>N<sub>3</sub>O<sub>4</sub> 403.1155, found: 403.1159.



4-Ethyl1-methyl3-methyl-6-((4-nitrophenyl)amino)-6-(trifluoromethyl)pyridazine-1,4(6H)-dicarboxylate (4e) was prepared as pale yellowsolidfrommethyl(E)-2-((3Z,5Z)-3-(ethoxycarbonyl)-6,6,6-trifluoro-5-((4-nitrophenyl)imino)hex-3-en-2-ylidene)hydrazine-1-carboxylate (0.3 mmol) accordingto the General Procedure E (24 h, eluent: PE/EA = 10:1) in 64% yield (83 mg).Mp: 143-144 °C.

<sup>1</sup>**H NMR (400 MHz, CDCl**<sub>3</sub>) δ 8.09 (d, *J* = 9.2 Hz, 2H), 6.83 (d, *J* = 9.2 Hz, 2H), 6.71 (s, 1H), 6.06 (s, 1H), 4.39 – 4,27 (m, 2H), 3.78 (s, 3H), 2.38 (s, 3H), 1.36 (t, *J* = 7.2 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.7, 154.1, 148.2, 142.1, 140.1, 132.8, 129.1, 125.7 (2C), 123.1 (q, *J*<sub>C-F</sub> = 290.5 Hz), 116.9 (2C), 72.9 (q, *J*<sub>C-F</sub> = 31.6 Hz), 62.6, 54.6, 21.4, 14.2.

<sup>19</sup>F NMR (400 MHz, CDCl<sub>3</sub>) δ -78.08.

**HRMS (ESI, TOF) m/z**:  $[M+Na]^+$  calcd for  $C_{17}H_{17}F_3N_4NaO_6$  453.0992, found: 453.0999.



**4-Ethyl 1-methyl 3-methyl-6-(m-tolylamino)-6-(trifluoromethyl)pyridazine-1,4(6H)-dicarboxylate (4f)** was prepared as pale yellow solid from methyl (*E*)-2-((3Z,5Z)-3-(ethoxycarbonyl)-6,6,6-trifluoro-5-(*m*-tolylimino)hex-3-en-2ylidene)hydrazine-1-carboxylate (0.3 mmol) according to the General Procedure E (24 h, eluent: PE/EA = 10:1) in 55% yield (66 mg).

**Mp**: 89-90 °C

<sup>1</sup>**H NMR (400 MHz, CDCl**<sub>3</sub>)  $\delta$  7.07 (t, *J* = 7.8 Hz, 1H), 6.79 (d, *J* = 7.6 Hz, 1H), 6.76 (s, 1H), 6.68 (s, 1H), 6.61 (d, *J* = 8.0 Hz, 1H), 5.72 (s, 1H), 4.33 – 4.25 (m, 2H), 3.82 (s, 3H), 2.32 (s, 3H), 2.25 (s, 3H), 1.34 (t, *J* = 7.2 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.1, 154.6, 141.8, 139.9, 139.3, 134.2, 129.1, 128.0, 126.3 (q, *J*<sub>C-F</sub> = 289.7 Hz), 123.7, 121.2, 116.6, 74.1 (q, *J*<sub>C-F</sub> = 30.8 Hz), 62.2, 54.4, 21.6, 21.4, 14.2.

<sup>19</sup>**F NMR (376 MHz, CDCl**<sub>3</sub>) δ -77.86.

**HRMS (EI, TOF) m/z**: [M]<sup>+</sup> calcd for C<sub>18</sub>H<sub>20</sub>F<sub>3</sub>N<sub>3</sub>O<sub>4</sub> 399.1406, found: 399.1402.



4g

**4-Ethyl 1-methyl 6-((3-bromophenyl)amino)-3-methyl-6-(trifluoromethyl)pyridazine-1,4(6H)-dicarboxylate (4g)** was prepared as pale yellow solid from methyl (*E*)-2-((3Z,5Z)-5-((3-bromophenyl)imino)-3-(ethoxycarbonyl)-6,6,6-trifluorohex-3-en-2-ylidene)hydrazine-1-carboxylate (0.3 mmol) according to the General Procedure E (24 h, eluent: PE/EA = 10:1) in 56% yield (78 mg).

**Mp**: 95-96 °C.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)**  $\delta$  7.17 – 6.96 (m, 3H), 6.79 – 6.66 (m, 2H), 5.79 (s, 1H), 4.31 (q, *J* = 7.2 Hz, 2H), 3.83 (s, 3H), 2.33 (s, 3H), 1.35 (t, *J* = 7.2 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.9, 154.6, 143.3, 140.0, 133.4, 130.6, 128.3, 125.8, 123.3 (q, *J*<sub>C-F</sub> = 290.3 Hz), 123.2, 123.0, 118.0, 73.9 (q, *J*<sub>C-F</sub> = 31.3 Hz), 62.3, 54.5, 21.3, 14.2.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -77.82.

**HRMS (ESI, TOF) m/z**: [M+Na]<sup>+</sup> calcd for C<sub>17</sub>H<sub>17</sub>BrF<sub>3</sub>N<sub>3</sub>NaO<sub>4</sub> 486.0247, found: 486.0239.



**4-Ethyl 1-methyl 3-methyl-6-(o-tolylamino)-6-(trifluoromethyl)pyridazine-1,4(6H)-dicarboxylate** (**4h**) was prepared as pale yellow solid from methyl (*E*)-2-((3*Z*,5*Z*)-3-(ethoxycarbonyl)-6,6,6-trifluoro-5-(*o*-tolylimino)hex-3-en-2-

ylidene)hydrazine-1-carboxylate (0.3 mmol) according to the General Procedure E (24 h, eluent: PE/EA = 10:1) in 51% yield (61 mg).

**Mp**: 95-96 °C

<sup>1</sup>**H NMR (400 MHz, CDCl**<sub>3</sub>) δ 7.15 (d, *J* = 7.2 Hz, 1H), 7.01 (t, *J* = 7.6 Hz, 1H), 6.88 (t, *J* = 7.2 Hz, 1H), 6.67 (d, *J* = 8.0 Hz, 1H), 6.65 (s, 1H), 5.45 (s, 1H), 4.32 – 4.20 (m, 2H), 3.79 (s, 3H), 2.37 (s, 3H), 2.27 (s, 3H), 1.31 (t, *J* = 7.2 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.0, 154.4, 140.3, 140.1, 134.4, 131.1, 129.0, 128.4, 126.6, 123.6 (q, *J*<sub>C-F</sub> = 290.2 Hz), 122.0, 116.6, 73.5 (q, *J*<sub>C-F</sub> = 30.9 Hz), 62.2, 54.3, 21.5, 17.9, 14.1.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -78.70.

**HRMS (EI, TOF) m/z**: [M]<sup>+</sup> calcd for C<sub>18</sub>H<sub>20</sub>F<sub>3</sub>N<sub>3</sub>O<sub>4</sub> 399.1406, found: 399.1409.



4i

4-Ethyl1-methyl6-((2-fluorophenyl)amino)-3-methyl-6-(trifluoromethyl)pyridazine-1,4(6H)-dicarboxylate (4i) was prepared as pale yellowsolid from was prepared as pale yellow solid from methyl (<math>E)-2-((3Z,5Z)-3-(ethoxycarbonyl)-6,6,6-trifluoro-5-((2-fluorophenyl)imino)hex-3-en-2-

ylidene)hydrazine-1-carboxylate (0.3 mmol) according to the General Procedure E (24 h, eluent: PE/EA = 10:1) in 54% yield (65 mg).

**Mp**: 91-92 °C

<sup>1</sup>**H NMR (400 MHz, CDCl**<sub>3</sub>)  $\delta$  7.08 – 7.02 (m, 1H), 6.93 – 6.89 (m, 2H), 6.80 – 6.75 (m, 2H), 5.80 (s, 1H), 4.35 – 4.24 (m, 2H), 3.81 (s, 3H), 2.34 (s, 3H), 1.34 (t, *J* = 7.2 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  163.0, 154.6 (d,  $J_{C-F} = 242.4$  Hz), 154.3, 139.9, 133.7, 130.3 (d,  $J_{C-F} = 11.0$  Hz), 128.3, 124.3 (d,  $J_{C-F} = 3.9$  Hz), 122.7 (d,  $J_{C-F} = 7.5$  Hz), 120.5 (q,  $J_{C-F} = 267.3$  Hz), 118.8 (d,  $J_{C-F} = 1.2$  Hz), 115.9 (d,  $J_{C-F} = 19.4$  Hz), 73.6 (q,  $J_{C-F} = 30.0$  Hz), 62.3, 54.4, 21.3, 14.2.

<sup>19</sup>F NMR (**376** MHz, CDCl<sub>3</sub>) δ -77.84, -129.27.

**HRMS (EI, TOF) m/z**: [M]<sup>+</sup> calcd for C<sub>17</sub>H<sub>17</sub>F<sub>4</sub>N<sub>3</sub>O<sub>4</sub> 403.1155, found: 403.1160.



4j

**4-Ethyl 1-methyl 3-methyl-6-(phenethylamino)-6-(trifluoromethyl)pyridazine-1,4(6H)-dicarboxylate (4j)** was prepared as pale yellow solid from was prepared as pale yellow solid from methyl (*E*)-2-((3Z,5Z)-3-(ethoxycarbonyl)-6,6,6-trifluoro-5-(phenethylimino)hex-3-en-2-ylidene)hydrazine-1-carboxylate (0.3 mmol) according to the General Procedure E (24 h, eluent: PE/EA = 10:1) in 44% yield (55 mg).

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)**  $\delta$  7.30 (t, *J* = 7.2 Hz, 2H), 7.23 (d, *J* = 7.2 Hz, 1H), 7.19 – 7.17 (m, 2H), 6.53 (s, 1H), 4.35 – 4.24 (m, 2H), 3.81 (s, 3H), 2.90 – 2.68 (m, 4H), 2.26 (s, 3H), 1.35 (t, *J* = 7.2 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  163.2, 155.0, 140.2, 139.2, 133.7, 128.8 (2C), 128.6 (2C), 128.4, 126.6, 123.4 (q,  $J_{C-F} = 288.7$  Hz) 76.1 (q,  $J_{C-F} = 30.6$  Hz) 62.1, 54.2, 45.1, 36.4, 21.3, 14.2.

<sup>19</sup>F NMR (**376** MHz, CDCl<sub>3</sub>) δ -78.01.

**HRMS (EI, TOF) m/z**: [M]<sup>+</sup> calcd for C<sub>19</sub>H<sub>22</sub>F<sub>3</sub>N<sub>3</sub>O<sub>4</sub> 413.1562, found: 413.1553.



**4-Ethyl 1-methyl 6-(chlorodifluoromethyl)-3-methyl-6-(phenylamino)pyridazine-1,4(6H)-dicarboxylate (4k)** was prepared as pale yellow solid from was prepared as pale yellow solid from methyl (*E*)-2-((3Z,5Z)-6-chloro-3-(ethoxycarbonyl)-6,6-difluoro-5-(phenylimino)hex-3-en-2-ylidene)hydrazine-1-carboxylate (0.3 mmol) according to the General Procedure E (24 h, eluent: PE/EA = 10:1) in 57% yield (69 mg).

Mp: 124-125 °C

<sup>1</sup>**H NMR (400 MHz, CDCl**<sub>3</sub>) δ 7.19 (t, *J* = 7.2 Hz, 2H), 6.96 (t, *J* = 7.2 Hz, 1H), 6.83 – 6.82 (m, 3H), 5.77 (s, 1H), 4.35 – 4.24 (m, 2H), 3.80 (s, 3H), 2.35 (s, 3H), 1.33 (t, *J* = 7.2 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  163.1, 154.5, 142.2, 140.6, 135.2 (d,  $J_{C-F} = 2.5$  Hz), 130.3 (t,  $J_{C-F} = 308.6$  Hz), 129.4 (2C), 127.9, 122.6, 119.7 (2C), 71.8 (t,  $J_{C-F} = 29.9$  Hz), 62.2, 54.4, 21.4, 14.2.

<sup>19</sup>F NMR (**376** MHz, CDCl<sub>3</sub>) δ -62.82 (d, J = 160.2 Hz), -65.64 (d, J = 160.2 Hz) HRMS (EI, TOF) m/z: [M]<sup>+</sup> calcd for C<sub>17</sub>H<sub>18</sub>ClF<sub>2</sub>N<sub>3</sub>O<sub>4</sub> 401.0954, found: 401.0945.



**4-Ethyl 1-methyl 6-(bromodifluoromethyl)-3-methyl-6-(phenylamino)pyridazine-1,4(6H)-dicarboxylate (4l)** was prepared as pale yellow solid from was prepared as pale yellow solid from methyl (*E*)-2-((3Z,5Z)-6-bromo-3-(ethoxycarbonyl)-6,6-difluoro-5-(phenylimino)hex-3-en-2-ylidene)hydrazine-1-carboxylate (0.3 mmol) according to the General Procedure E (24 h, eluent: PE/EA = 10:1) in 61% yield (81 mg).

**Mp**: 94-95 °C

<sup>1</sup>**H NMR (400 MHz, CDCl**<sub>3</sub>) δ 7.19 (t, *J* = 7.6 Hz, 2H), 6.96 (t, *J* = 7.6 Hz, 1H), 6.86 (s, 1H), 6.82 (d, *J* = 7.6 Hz, 2H), 5.74 (s, 1H), 4.36 – 4.24 (m, 2H), 3.79 (s, 3H), 2.36 (s, 3H), 1.34 (t, *J* = 7.2 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  163.2, 154.5, 142.1, 140.9, 135.6 (d,  $J_{C-F} = 2.5$  Hz), 129.4 (2C), 127.7, 125.6 (t,  $J_{C-F} = 319.7$  Hz), 122.5, 119.7 (2C), 77.8 (t,  $J_{C-F} = 22.3$  Hz), 62.2, 54.4, 21.4, 14.2.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -57.40 (d, J = 158.3 Hz), -59.85 (d, J = 157.9 Hz).

**HRMS (ESI, TOF) m/z**:  $[M+Na]^+$  calcd for  $C_{17}H_{18}BrF_2N_3NaO_4$  468.0341, found: 468.0346.



1-(*Tert*-butyl) 4-ethyl 3-methyl-6-(phenylamino)-6-(trifluoromethyl)pyridazine-1,4(6H)-dicarboxylate (4m) was prepared as pale yellow solid from was prepared as pale yellow oil from *tert*-butyl (*E*)-2-((3Z,5Z)-3-(ethoxycarbonyl)-6,6,6-trifluoro-5-(phenylimino)hex-3-en-2-ylidene)hydrazine-1-carboxylate (0.3 mmol) according to the General Procedure E (24 h, eluent: PE/EA = 10:1) in 55% yield (47 mg).

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)**  $\delta$  7.19 (t, *J* = 8.0 Hz, 2H), 6.94 (t, *J* = 7.4 Hz, 1H), 6.79 (d, *J* = 8.0 Hz, 2H), 6.72 (s, 1H), 5.48 (s, 1H), 4.34 – 4.23 (m, 2H), 2.32 (s, 3H), 1.40 (s, 9H), 1.33 (t, *J* = 7.2 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  163.3, 152.5, 142.1, 139.2, 134.2, 129.4 (2C), 128.2, 123.5 (q,  $J_{C-F} = 290.2$  Hz), 122.3, 119.3 (2C), 83.8, 73.8 (q,  $J_{C-F} = 30.7$  Hz), 62.1, 27.9 (3C), 21.4, 14.2.

<sup>19</sup>F NMR (**376** MHz, CDCl<sub>3</sub>) δ -78.20.

**HRMS (ESI, TOF) m/z**:  $[M+Na]^+$  calcd for  $C_{20}H_{24}F_3N_3NaO_4$  450.1611, found: 450.1618.



**1-Benzyl 4-ethyl 3-methyl-6-(phenylamino)-6-(trifluoromethyl)pyridazine-1,4(6H)-dicarboxylate** (**4n**) was prepared as pale yellow solid from was prepared as pale yellow oil from benzyl (*E*)-2-((3Z,5Z)-3-(ethoxycarbonyl)-6,6,6-trifluoro-5-(phenylimino)hex-3-en-2-ylidene)hydrazine-1-carboxylate (0.3 mmol) according to the General Procedure E (24 h, eluent: PE/EA = 10:1) in 61% yield (84 mg).

<sup>1</sup>**H NMR (400 MHz, CDCl**<sub>3</sub>) δ 7.29 – 7.27 (m, 3H), 7.23 – 7.21 (m, 2H), 7.15 (t, *J* = 7.2 Hz, 2H), 6.96 (t, *J* = 7.2 Hz, 1H), 6.77 – 6.74 (m, 3H) , 5.66 (s, 1H), 5.31 – 5.17 (m, 2H), 4.35 – 4.23 (m, 2H), 2.31 (s, 3H), 1.33 (t, *J* = 7.2 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  163.1, 154.0, 141.8, 139.8, 135.6, 134.2, 129.4 (2C), 128.6 (2C), 128.3, 128.1, 127.9 (2C), 123.4 (q, *J*<sub>C-F</sub> = 289.9 Hz), 122.7, 119.9 (2C), 74.1 (q, *J*<sub>C-F</sub> = 31.0 Hz), 68.6, 62.2, 21.4, 14.2.

<sup>19</sup>F NMR (**376** MHz, CDCl<sub>3</sub>) δ -77.94.

**HRMS (EI, TOF) m/z**: [M]<sup>+</sup> calcd for C<sub>23</sub>H<sub>22</sub>F<sub>3</sub>N<sub>3</sub>O<sub>4</sub> 461.1562, found: 461.1548.



40

**4-Ethyl 1-methyl 6-(phenylamino)-3-propyl-6-(trifluoromethyl)pyridazine-1,4(6H)-dicarboxylate (40)** was prepared as pale yellow solid from was prepared as pale yellow oil from methyl (E)-2-((5Z,7Z)-5-(ethoxycarbonyl)-8,8,8-trifluoro-7-(phenylimino)oct-5-en-4-ylidene)hydrazine-1-carboxylate (0.3 mmol) according to the General Procedure E (24 h, eluent: PE/EA = 10:1) in 54% yield (67 mg).

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.19 (t, *J* = 8.0 H, 2H), 6.96 (t, *J* = 7.6 Hz, 1H), 6.83 (d, *J* = 8.0 Hz, 2H), 6.70 (s, 1H), 5.74 (s, 1H), 4.35 – 4.23 (m, 2H), 3.79 (s, 3H), 2.85 – 2.78 (m, 1H), 2.58 – 2.51 (m, 1H), 1.54 – 1.42 (m, 2H), 1.33 (t, *J* = 7.2 Hz, 3H), 0.93 (t, *J* = 8.0 Hz, 3H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.4, 154.7, 143.6, 141.9, 134.1, 129.4 (2C), 128.2, 123.5 (q, *J*<sub>C-F</sub> = 290.0 Hz), 122.7, 119.9 (2C), 73.9 (q, *J*<sub>C-F</sub> = 30.9 Hz), 62.2, 54.3, 35.7, 21.1, 14.2, 13.6.

<sup>19</sup>F NMR (**376** MHz, CDCl<sub>3</sub>) δ -78.13.

**HRMS (ESI, TOF) m/z**:  $[M+Na]^+$  calcd for  $C_{19}H_{22}F_3N_3NaO_4$  436.1455, found: 436.1461.



**Dimethyl** 3-methyl-6-(phenylamino)-6-(trifluoromethyl)pyridazine-1,4(6H)dicarboxylate (4p) was prepared as pale yellow solid from was prepared as pale yellow solid from methyl (E)-2-((3Z,5Z)-6,6,6-trifluoro-3-(methoxycarbonyl)-5-(phenylimino)hex-3-en-2-ylidene)hydrazine-1-carboxylate (0.3 mmol) according to the General Procedure E (24 h, eluent: PE/EA = 10:1) in 64% yield (71 mg). **Mp**: 145-146 °C

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.21 (t, J = 7.8 Hz, 2H), 6.97 (t, J = 7.8 Hz, 1H), 6.82 (d, J = 7.6 Hz, 2H), 6.79 (s, 1H), 5.74 (s, 1H), 3.84 (s, 3H), 3.81 (s, 3H), 2.33 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.4, 154.6, 141.8, 139.8, 134.6, 129.4 (2C), 127.7, 123.4 (q,  $J_{C-F} = 289.8$  Hz), 122.8, 119.9 (2C), 74.0 (q,  $J_{C-F} = 31.0$  Hz), 54.4, 52.9, 21.4. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -77.90.

**HRMS (ESI, TOF) m/z**:  $[M+Na]^+$  calcd for  $C_{16}H_{16}F_3N_3NaO_4$  394.0985, found: 394.0990.



4q
**4-Isopropyl 1-methyl 3-methyl-6-(phenylamino)-6-(trifluoromethyl)pyridazine-1,4(6H)-dicarboxylate (4q)** was prepared as pale yellow solid from was prepared as pale yellow oil from methyl (E)-2-((3Z,5Z)-6,6,6-trifluoro-3-(isopropoxycarbonyl)-5-(phenylimino)hex-3-en-2-ylidene)hydrazine-1-carboxylate (0.3 mmol) according to the General Procedure E (24 h, eluent: PE/EA = 10:1) in 58% yield (70 mg).

<sup>1</sup>**H NMR (400 MHz, CDCl**<sub>3</sub>) δ 7.19 (t, *J* = 7.8 Hz, 2H), 6.97 (t, *J* = 7.4 Hz, 1H), 6.84 (d, *J* = 7.6 Hz, 2H), 6.72 (s, 1H), 5.76 (s, 1H), 5.14 (p, *J* = 6.4 Hz, 1H), 3.81 (s, 3H), 2.31 (s, 3H), 1.31 (t, *J* = 6.4 Hz, 6H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.7, 154.6, 141.9, 139.9, 133.8, 129.4 (2C), 128.4, 123.4 (q, *J*<sub>C-F</sub> = 289.8 Hz), 122.8, 120.1 (2C), 74.2 (q, *J*<sub>C-F</sub> = 31.0 Hz), 70.2, 54.3, 21.8 (2C), 21.4.

<sup>19</sup>F NMR (**376** MHz, CDCl<sub>3</sub>) δ -77.84.

HRMS (EI, TOF) m/z: [M]<sup>+</sup> calcd for C<sub>18</sub>H<sub>20</sub>F<sub>3</sub>N<sub>3</sub>O<sub>4</sub> 399.1406, found: 399.1400.

#### 4. Scale-up reactions and control experiments



To a stirred solution of imidoyl sulfoxonium ylides **1a** (3.0 mmol, 1 equiv.), 1,2diaza-1,3-diene **2a** (6.0 mmol, 2 equiv.) in CCl<sub>4</sub> (30 mL) and the reaction mixture was stirred at room temperature for 12 h, which was monitored by TLC After reaction finished, the reaction solution was evaporated under reduced pressure and purified by column chromatography (PE/EA = 3:1) to afford the pure product **3a** (850 mg, 74%) as a pale yellow solid.



To a stirred solution of imidoyl sulfoxonium ylides **1a** (1.0 mmol, 1 equiv.), 1,2diaza-1,3-diene **2a** (2.0 mmol, 2 equiv.) in DCM(10 mL) and the reaction mixture was stirred at room temperature for 12 h, which was monitored by TLC After reaction finished, the reaction solution was evaporated under reduced pressure and purified by column chromatography (PE/EA = 3:1) to afford the pure product **3a** (262 mg, 74%) as a pale yellow solid.



To a stirred solution of alkenyl imine **3a** (3.0 mmol, 1.0 equiv.) in CCl<sub>4</sub> (30 mL) was added Et<sub>3</sub>N (9.0 mmol, 3.0 equiv.) and the reaction mixture was stirred in a preheated oil bath at 70 °C, which was monitored by TLC. After reaction finished, the reaction solution was evaporated under reduced pressure and purified by column chromatography (PE/EA = 10:1) to afford the pure product **4a** (624 mg, 54%) as a pale yellow solid.



To a stirred solution of alkenyl imine **3a** (1.0 mmol, 1.0 equiv.) in chlorobenzene (10 mL) was added  $Et_3N$  (3.0 mmol, 3.0 equiv.) and the reaction mixture was stirred in a preheated oil bath at 70 °C, which was monitored by TLC. After reaction finished, the reaction solution was evaporated under reduced pressure and purified by column chromatography (PE/EA = 10:1) to afford the pure product **4a** (196 mg, 51%) as a pale yellow solid.



To a stirred solution of imidoyl sulfoxonium ylides **1a** (0.3 mmol, 1 equiv.), **2a** (0.6 mmol, 2 equiv.) in CCl<sub>4</sub> (3 mL) was added Et<sub>3</sub>N (0.9 mmol, 3.0 equiv.) and the reaction mixture was stirred at 70 °C (oil bath). After reaction finished, the reaction solution was evaporated under reduced pressure and purified by column chromatography (PE/EA = 3:1) to afford the pure product **3a** (21 mg, 18%) as a pale yellow solid.

### 5. Crystal data and structural refinement of compounds 3e and 4e

Single crystal of compound **3e** was obtained by slow evaporation from CH<sub>2</sub>Cl<sub>2</sub> solution.



**Figure S1.** Crystal data and structure refinement of product **3e** (with thermal ellipsoils shown at the 50% probability level)

| Table I. Crystal data and structure refin | tement for <b>3e</b> .              |
|-------------------------------------------|-------------------------------------|
| Identification code                       | 3e                                  |
| CCDC                                      | 2272116                             |
| Empirical formula                         | $C_{17} \ H_{17} \ F_3 \ N_4 \ O_6$ |
| Formula weight                            | 430.34                              |
|                                           |                                     |

| Temperature                              | 213(2) K                   |                  |
|------------------------------------------|----------------------------|------------------|
| Wavelength                               | 0.71073 Å                  |                  |
| Crystal system                           | Triclinic                  |                  |
| Space group                              | P -1                       |                  |
| Unit cell dimensions                     | a = 7.8993(5) Å            | a= 113.990(2) °. |
|                                          | b = 11.6888(7) Å           | b= 103.914(2) °  |
|                                          | c = 12.4066(8)  Å          | g = 90.572(2) °. |
| Volume                                   | 1008.35(11) $\text{\AA}^3$ |                  |
| Z                                        | 2                          |                  |
| Density (calculated)                     | 1.417 Mg/m <sup>3</sup>    |                  |
| Absorption coefficient                   | $0.126 \text{ mm}^{-1}$    |                  |
| F(000)                                   | 444                        |                  |
| Crystal size                             | 0.150 x 0.120 x 0.06       | $0 \text{ mm}^3$ |
| Theta range for data collection          | 1.865 to 24.995 °.         |                  |
| Index ranges                             | -9<=h<=9, -13<=k<          | =13, -14<=l<=14  |
| Reflections collected                    | 12518                      |                  |
| Independent reflections                  | 3550 [R(int) = 0.048       | 0]               |
| Completeness to theta = $25.242^{\circ}$ | 97.2 %                     |                  |
| Absorption correction                    | Semi-empirical from        | equivalents      |
| Max. and min. transmission               | 0.7456 and 0.5861          |                  |
| Refinement method                        | Full-matrix least-squ      | ares on $F^2$    |
| Data / restraints / parameters           | 3550 / 56 / 324            |                  |
| Goodness-of-fit on $F^2$                 | 1.074                      |                  |
| Final R indices [I>2sigma(I)]            | R1 = 0.0661, wR2 =         | 0.1262           |
| R indices (all data)                     | R1 = 0.1088, wR2 =         | 0.1492           |
| Extinction coefficient                   | n/a                        |                  |
| Largest diff. peak and hole              | 0.436 and -0.279 e.Å       | -3               |

|       | X        | У        | Z        | U(eq) |
|-------|----------|----------|----------|-------|
| F(1)  | 6223(7)  | 3740(6)  | 10(5)    | 78(2) |
| F(2)  | 8925(10) | 4138(6)  | 984(8)   | 90(2) |
| F(3)  | 7846(9)  | 5165(8)  | 4(7)     | 71(2) |
| F(1') | 6922(13) | 3508(8)  | 447(8)   | 77(2) |
| F(2') | 9284(13) | 4624(8)  | 1033(13) | 75(3) |
| F(3') | 7137(13) | 4961(13) | -152(11) | 74(3) |
| O(1)  | 842(3)   | 6162(2)  | 6492(2)  | 50(1) |
| O(2)  | 3154(4)  | 7479(2)  | 6752(2)  | 65(1) |
| O(3)  | 5446(3)  | 7984(2)  | 4169(2)  | 50(1) |
| O(4)  | 7542(3)  | 7112(2)  | 5038(2)  | 51(1) |
| O(5)  | 12105(4) | 9849(3)  | 650(3)   | 95(1) |
| O(6)  | 14175(4) | 9118(3)  | 1525(3)  | 78(1) |
| N(1)  | 2310(3)  | 5682(3)  | 5046(3)  | 40(1) |
| N(2)  | 3626(3)  | 6027(2)  | 4666(2)  | 37(1) |
| N(3)  | 7747(4)  | 6756(3)  | 2411(3)  | 48(1) |
| N(4)  | 12628(4) | 9229(3)  | 1210(3)  | 52(1) |
| C(1)  | 2012(4)  | 6447(3)  | 6136(3)  | 42(1) |
| C(2)  | 2890(7)  | 8335(4)  | 7921(4)  | 98(2) |
| C(3)  | 3880(4)  | 5253(3)  | 3640(3)  | 34(1) |
| C(4)  | 5309(4)  | 5761(3)  | 3324(3)  | 34(1) |
| C(5)  | 5782(4)  | 5124(3)  | 2290(3)  | 37(1) |
| C(6)  | 7096(4)  | 5612(3)  | 1880(3)  | 40(1) |
| C(7)  | 7558(5)  | 4660(3)  | 754(3)   | 45(1) |
| C(8)  | 6181(5)  | 7055(3)  | 4239(3)  | 43(1) |
| C(9)  | 2901(4)  | 3973(3)  | 2812(3)  | 45(1) |
| C(10) | 8977(4)  | 7317(3)  | 2058(3)  | 41(1) |
| C(11) | 8401(5)  | 7998(3)  | 1379(3)  | 50(1) |
| C(12) | 9587(5)  | 8614(3)  | 1087(3)  | 49(1) |
| C(13) | 11354(4) | 8562(3)  | 1508(3)  | 40(1) |
| C(14) | 11955(4) | 7923(3)  | 2207(3)  | 44(1) |

**Table 2.** Atomic coordinates (  $x \ 10^4$ ) and equivalent isotropic displacement parameters ( $\mathring{A}^2 x \ 10^3$ )

for 3e U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

| C(15)  | 10762(5) | 7301(3) | 2484(3) | 47(1) |
|--------|----------|---------|---------|-------|
| C(16)  | 6307(13) | 9237(7) | 5091(8) | 74(2) |
| C(17)  | 7299(14) | 9809(8) | 4534(9) | 92(3) |
| C(17') | 9419(10) | 8940(7) | 5577(7) | 62(2) |
| C(16') | 8167(9)  | 8368(6) | 5995(6) | 48(2) |
|        |          |         |         |       |

| F(1)-C(7)   | 1.351(6)  |
|-------------|-----------|
| F(2)-C(7)   | 1.275(8)  |
| F(3)-C(7)   | 1.346(8)  |
| F(1')-C(7)  | 1.300(9)  |
| F(2')-C(7)  | 1.329(11) |
| F(3')-C(7)  | 1.281(12) |
| O(1)-C(1)   | 1.212(4)  |
| O(2)-C(1)   | 1.323(4)  |
| O(2)-C(2)   | 1.455(4)  |
| O(3)-C(8)   | 1.261(4)  |
| O(3)-C(16)  | 1.470(8)  |
| O(4)-C(8)   | 1.255(4)  |
| O(4)-C(16') | 1.447(7)  |
| O(5)-N(4)   | 1.206(4)  |
| O(6)-N(4)   | 1.215(4)  |
| N(1)-N(2)   | 1.359(3)  |
| N(1)-C(1)   | 1.363(4)  |
| N(1)-H(1)   | 0.826(18) |
| N(2)-C(3)   | 1.292(4)  |
| N(3)-C(6)   | 1.263(4)  |
| N(3)-C(10)  | 1.410(4)  |
| N(4)-C(13)  | 1.468(4)  |
| C(2)-H(2A)  | 0.9700    |
| C(2)-H(2B)  | 0.9700    |
| C(2)-H(2C)  | 0.9700    |
| C(3)-C(4)   | 1.472(4)  |
| C(3)-C(9)   | 1.496(4)  |
| C(4)-C(5)   | 1.342(4)  |
| C(4)-C(8)   | 1.503(4)  |
| C(5)-C(6)   | 1.463(4)  |
| C(5)-H(5)   | 0.9400    |
| C(6)-C(7)   | 1.521(4)  |
| C(9)-H(9A)  | 0.9700    |
| C(9)-H(9B)  | 0.9700    |
| C(9)-H(9C)  | 0.9700    |

 Table 3. Bond lengths [Å] and angles [ ] for 3e.

| C(10)-C(11)      | 1.385(5)  |
|------------------|-----------|
| C(10)-C(15)      | 1.385(5)  |
| C(11)-C(12)      | 1.375(5)  |
| C(11)-H(11)      | 0.9400    |
| C(12)-C(13)      | 1.379(4)  |
| C(12)-H(12)      | 0.9400    |
| C(13)-C(14)      | 1.367(4)  |
| C(14)-C(15)      | 1.372(4)  |
| C(14)-H(14)      | 0.9400    |
| C(15)-H(15)      | 0.9400    |
| C(16)-C(17)      | 1.472(11) |
| C(16)-H(16A)     | 0.9800    |
| C(16)-H(16B)     | 0.9800    |
| C(17)-H(17A)     | 0.9700    |
| C(17)-H(17B)     | 0.9700    |
| C(17)-H(17C)     | 0.9700    |
| C(17')-C(16')    | 1.487(9)  |
| C(17')-H(17D)    | 0.9700    |
| C(17')-H(17E)    | 0.9700    |
| C(17')-H(17F)    | 0.9700    |
| C(16')-H(16C)    | 0.9800    |
| C(16')-H(16D)    | 0.9800    |
|                  |           |
| C(1)-O(2)-C(2)   | 115.3(3)  |
| C(8)-O(3)-C(16)  | 116.2(4)  |
| C(8)-O(4)-C(16') | 114.1(4)  |
| N(2)-N(1)-C(1)   | 120.7(3)  |
| N(2)-N(1)-H(1)   | 128.2(16) |
| C(1)-N(1)-H(1)   | 111.0(15) |
| C(3)-N(2)-N(1)   | 118.2(3)  |
| C(6)-N(3)-C(10)  | 125.5(3)  |
| O(5)-N(4)-O(6)   | 122.5(3)  |
| O(5)-N(4)-C(13)  | 119.1(3)  |
| O(6)-N(4)-C(13)  | 118.3(3)  |
| O(1)-C(1)-O(2)   | 125.1(3)  |
| O(1)-C(1)-N(1)   | 121.9(3)  |
| O(2)-C(1)-N(1)   | 113.0(3)  |
| O(2)-C(2)-H(2A)  | 109.5     |

| O(2)-C(2)-H(2B)  | 109.5    |
|------------------|----------|
| H(2A)-C(2)-H(2B) | 109.5    |
| O(2)-C(2)-H(2C)  | 109.5    |
| H(2A)-C(2)-H(2C) | 109.5    |
| H(2B)-C(2)-H(2C) | 109.5    |
| N(2)-C(3)-C(4)   | 112.4(3) |
| N(2)-C(3)-C(9)   | 127.0(3) |
| C(4)-C(3)-C(9)   | 120.6(3) |
| C(5)-C(4)-C(3)   | 122.5(3) |
| C(5)-C(4)-C(8)   | 122.5(3) |
| C(3)-C(4)-C(8)   | 115.0(3) |
| C(4)-C(5)-C(6)   | 125.2(3) |
| C(4)-C(5)-H(5)   | 117.4    |
| C(6)-C(5)-H(5)   | 117.4    |
| N(3)-C(6)-C(5)   | 121.6(3) |
| N(3)-C(6)-C(7)   | 123.0(3) |
| C(5)-C(6)-C(7)   | 115.4(3) |
| F(3')-C(7)-F(1') | 111.5(7) |
| F(3')-C(7)-F(2') | 108.3(8) |
| F(1')-C(7)-F(2') | 103.1(7) |
| F(2)-C(7)-F(3)   | 105.5(6) |
| F(2)-C(7)-F(1)   | 108.0(5) |
| F(3)-C(7)-F(1)   | 102.0(5) |
| F(2)-C(7)-C(6)   | 114.6(5) |
| F(3')-C(7)-C(6)  | 112.0(7) |
| F(1')-C(7)-C(6)  | 113.0(5) |
| F(2')-C(7)-C(6)  | 108.4(6) |
| F(3)-C(7)-C(6)   | 113.0(5) |
| F(1)-C(7)-C(6)   | 112.7(4) |
| O(4)-C(8)-O(3)   | 125.7(3) |
| O(4)-C(8)-C(4)   | 116.8(3) |
| O(3)-C(8)-C(4)   | 117.4(3) |
| C(3)-C(9)-H(9A)  | 109.5    |
| C(3)-C(9)-H(9B)  | 109.5    |
| H(9A)-C(9)-H(9B) | 109.5    |
| C(3)-C(9)-H(9C)  | 109.5    |
| H(9A)-C(9)-H(9C) | 109.5    |
| H(9B)-C(9)-H(9C) | 109.5    |

| 119.6(3) |
|----------|
| 119.4(3) |
| 120.7(3) |
| 120.4(3) |
| 119.8    |
| 119.8    |
| 118.6(3) |
| 120.7    |
| 120.7    |
| 122.1(3) |
| 119.0(3) |
| 118.9(3) |
| 118.9(3) |
| 120.5    |
| 120.5    |
| 120.4(3) |
| 119.8    |
| 119.8    |
| 109.0(6) |
| 109.9    |
| 109.9    |
| 109.9    |
| 109.9    |
| 108.3    |
| 109.5    |
| 109.5    |
| 109.5    |
| 109.5    |
| 109.5    |
| 109.5    |
| 109.5    |
| 109.5    |
| 109.5    |
| 109.5    |
| 109.5    |
| 109.5    |
| 106.2(5) |
| 110.5    |
|          |

| C(17')-C(16')-H(16C) | 110.5 |
|----------------------|-------|
| O(4)-C(16')-H(16D)   | 110.5 |
| C(17')-C(16')-H(16D) | 110.5 |
| H(16C)-C(16')-H(16D) | 108.7 |

|       | $U^{11}$ | $U^{22}$ | U <sup>33</sup> | U <sup>23</sup> | <b>U</b> <sup>13</sup> | $U^{12}$ |  |
|-------|----------|----------|-----------------|-----------------|------------------------|----------|--|
|       |          |          |                 |                 |                        |          |  |
| F(1)  | 70(3)    | 76(3)    | 52(3)           | -15(2)          | 32(2)                  | -22(3)   |  |
| F(2)  | 96(4)    | 88(5)    | 68(3)           | 13(4)           | 21(3)                  | 57(4)    |  |
| F(3)  | 99(5)    | 67(3)    | 46(3)           | 13(2)           | 37(3)                  | -15(3)   |  |
| F(1') | 104(5)   | 51(4)    | 67(5)           | -1(3)           | 57(4)                  | -11(4)   |  |
| F(2') | 60(4)    | 57(5)    | 86(4)           | -6(4)           | 43(3)                  | 13(3)    |  |
| F(3') | 94(6)    | 84(5)    | 35(3)           | 18(3)           | 14(4)                  | 11(5)    |  |
| O(1)  | 37(1)    | 70(2)    | 47(2)           | 21(1)           | 24(1)                  | 2(1)     |  |
| O(2)  | 85(2)    | 44(2)    | 66(2)           | 5(1)            | 50(2)                  | -7(1)    |  |
| O(3)  | 57(2)    | 39(1)    | 58(2)           | 19(1)           | 22(1)                  | 14(1)    |  |
| O(4)  | 59(2)    | 44(1)    | 44(2)           | 20(1)           | 1(1)                   | -1(1)    |  |
| O(5)  | 83(2)    | 127(3)   | 128(3)          | 102(3)          | 36(2)                  | 9(2)     |  |
| O(6)  | 52(2)    | 85(2)    | 108(2)          | 48(2)           | 31(2)                  | -4(2)    |  |
| N(1)  | 34(2)    | 47(2)    | 44(2)           | 17(2)           | 22(1)                  | 4(1)     |  |
| N(2)  | 36(1)    | 43(2)    | 41(2)           | 22(1)           | 21(1)                  | 12(1)    |  |
| N(3)  | 55(2)    | 44(2)    | 47(2)           | 14(2)           | 31(2)                  | 2(2)     |  |
| N(4)  | 56(2)    | 53(2)    | 54(2)           | 22(2)           | 26(2)                  | 1(2)     |  |
| C(1)  | 42(2)    | 44(2)    | 47(2)           | 21(2)           | 22(2)                  | 12(2)    |  |
| C(2)  | 145(5)   | 55(3)    | 86(4)           | -6(3)           | 80(3)                  | -10(3)   |  |
| C(3)  | 29(2)    | 40(2)    | 38(2)           | 21(2)           | 12(1)                  | 9(1)     |  |
| C(4)  | 33(2)    | 37(2)    | 36(2)           | 18(2)           | 12(1)                  | 9(1)     |  |
| C(5)  | 35(2)    | 38(2)    | 40(2)           | 16(2)           | 14(2)                  | 3(2)     |  |
| C(6)  | 40(2)    | 42(2)    | 38(2)           | 15(2)           | 16(2)                  | 7(2)     |  |
| C(7)  | 48(2)    | 46(2)    | 44(2)           | 16(2)           | 24(2)                  | 4(2)     |  |
| C(8)  | 56(2)    | 40(2)    | 40(2)           | 16(2)           | 27(2)                  | 3(2)     |  |
| C(9)  | 39(2)    | 52(2)    | 44(2)           | 15(2)           | 17(2)                  | -1(2)    |  |
| C(10) | 49(2)    | 37(2)    | 38(2)           | 11(2)           | 24(2)                  | 3(2)     |  |
| C(11) | 40(2)    | 63(2)    | 57(2)           | 31(2)           | 19(2)                  | 9(2)     |  |
| C(12) | 52(2)    | 58(2)    | 52(2)           | 33(2)           | 21(2)                  | 13(2)    |  |
| C(13) | 45(2)    | 40(2)    | 37(2)           | 13(2)           | 20(2)                  | 1(2)     |  |
| C(14) | 43(2)    | 50(2)    | 45(2)           | 22(2)           | 16(2)                  | 8(2)     |  |
| C(15) | 55(2)    | 48(2)    | 51(2)           | 30(2)           | 21(2)                  | 11(2)    |  |

**Table 4**. Anisotropic displacement parameters  $(\text{\AA}^2 \text{x } 10^3)$  for **3e** The anisotropic displacement factor exponent takes the form:  $-2p^2[\text{ h}^2 a^{*2}U^{11} + ... + 2 \text{ h k } a^* \text{ b}^* \text{ U}^{12}]$ 

| C(16)  | 114(6) | 41(4) | 61(5) | 7(4)  | 36(4) | 10(4)  |  |
|--------|--------|-------|-------|-------|-------|--------|--|
| C(17)  | 122(7) | 55(5) | 80(6) | 4(4)  | 41(5) | -18(5) |  |
| C(17') | 74(5)  | 48(4) | 54(4) | 11(3) | 18(4) | -18(4) |  |
| C(16') | 56(4)  | 41(4) | 41(4) | 13(3) | 11(3) | -5(3)  |  |
|        |        |       |       |       |       |        |  |

\_

S49

|        | Х        | У        | Z        | U(eq)  |
|--------|----------|----------|----------|--------|
| H(2A)  | 1780     | 8670     | 7783     | 147    |
| H(2B)  | 3841     | 9022     | 8338     | 147    |
| H(2C)  | 2873     | 7881     | 8423     | 147    |
| H(5)   | 5224     | 4298     | 1789     | 45     |
| H(9A)  | 3619     | 3333     | 2905     | 68     |
| H(9B)  | 2631     | 3867     | 1969     | 68     |
| H(9C)  | 1817     | 3887     | 3025     | 68     |
| H(11)  | 7192     | 8039     | 1117     | 60     |
| H(12)  | 9201     | 9062     | 611      | 59     |
| H(14)  | 13167    | 7911     | 2492     | 53     |
| H(15)  | 11158    | 6861     | 2966     | 56     |
| H(16A) | 7106     | 9159     | 5790     | 89     |
| H(16B) | 5423     | 9773     | 5387     | 89     |
| H(17A) | 8340     | 9392     | 4422     | 137    |
| H(17B) | 7644     | 10699    | 5066     | 137    |
| H(17C) | 6567     | 9714     | 3746     | 137    |
| H(17D) | 10307    | 8385     | 5367     | 93     |
| H(17E) | 9978     | 9749     | 6229     | 93     |
| H(17F) | 8789     | 9060     | 4864     | 93     |
| H(16C) | 8758     | 8328     | 6768     | 58     |
| H(16D) | 7185     | 8868     | 6120     | 58     |
| H(1)   | 1580(40) | 5050(20) | 4680(20) | 61(13) |

**Table 5**. Hydrogen coordinates (  $x \ 10^4$ ) and isotropic displacement parameters ( $\mathring{A}^2 x \ 10^3$ ) for **3e** 

\_

| C(1)-N(1)-N(2)-C(3)   | 178.3(3)  |
|-----------------------|-----------|
| C(2)-O(2)-C(1)-O(1)   | -2.5(5)   |
| C(2)-O(2)-C(1)-N(1)   | 179.6(3)  |
| N(2)-N(1)-C(1)-O(1)   | 179.7(3)  |
| N(2)-N(1)-C(1)-O(2)   | -2.4(4)   |
| N(1)-N(2)-C(3)-C(4)   | 178.4(2)  |
| N(1)-N(2)-C(3)-C(9)   | -1.7(5)   |
| N(2)-C(3)-C(4)-C(5)   | -179.1(3) |
| C(9)-C(3)-C(4)-C(5)   | 1.0(4)    |
| N(2)-C(3)-C(4)-C(8)   | 0.1(4)    |
| C(9)-C(3)-C(4)-C(8)   | -179.9(3) |
| C(3)-C(4)-C(5)-C(6)   | 175.2(3)  |
| C(8)-C(4)-C(5)-C(6)   | -3.9(5)   |
| C(10)-N(3)-C(6)-C(5)  | -178.0(3) |
| C(10)-N(3)-C(6)-C(7)  | -0.3(6)   |
| C(4)-C(5)-C(6)-N(3)   | -9.0(5)   |
| C(4)-C(5)-C(6)-C(7)   | 173.2(3)  |
| N(3)-C(6)-C(7)-F(2)   | 86.1(6)   |
| C(5)-C(6)-C(7)-F(2)   | -96.1(5)  |
| N(3)-C(6)-C(7)-F(3')  | -61.4(6)  |
| C(5)-C(6)-C(7)-F(3')  | 116.4(6)  |
| N(3)-C(6)-C(7)-F(1')  | 171.7(5)  |
| C(5)-C(6)-C(7)-F(1')  | -10.5(6)  |
| N(3)-C(6)-C(7)-F(2')  | 58.0(7)   |
| C(5)-C(6)-C(7)-F(2')  | -124.2(7) |
| N(3)-C(6)-C(7)-F(3)   | -34.9(6)  |
| C(5)-C(6)-C(7)-F(3)   | 142.9(4)  |
| N(3)-C(6)-C(7)-F(1)   | -149.8(4) |
| C(5)-C(6)-C(7)-F(1)   | 28.0(5)   |
| C(16')-O(4)-C(8)-O(3) | 5.7(5)    |
| C(16')-O(4)-C(8)-C(4) | -171.2(4) |
| C(16)-O(3)-C(8)-O(4)  | 1.9(6)    |
| C(16)-O(3)-C(8)-C(4)  | 178.7(4)  |
| C(5)-C(4)-C(8)-O(4)   | -86.7(4)  |
| C(3)-C(4)-C(8)-O(4)   | 94.2(3)   |
| C(5)-C(4)-C(8)-O(3)   | 96.2(4)   |

Table 6. Torsion angles [ ] for 3e.

| C(3)-C(4)-C(8)-O(3)     | -83.0(3)  |
|-------------------------|-----------|
| C(6)-N(3)-C(10)-C(11)   | 99.3(4)   |
| C(6)-N(3)-C(10)-C(15)   | -87.1(5)  |
| C(15)-C(10)-C(11)-C(12) | 2.5(5)    |
| N(3)-C(10)-C(11)-C(12)  | 176.2(3)  |
| C(10)-C(11)-C(12)-C(13) | -1.5(5)   |
| C(11)-C(12)-C(13)-C(14) | -0.3(5)   |
| C(11)-C(12)-C(13)-N(4)  | -179.4(3) |
| O(5)-N(4)-C(13)-C(14)   | -176.0(3) |
| O(6)-N(4)-C(13)-C(14)   | 4.9(5)    |
| O(5)-N(4)-C(13)-C(12)   | 3.2(5)    |
| O(6)-N(4)-C(13)-C(12)   | -175.9(3) |
| C(12)-C(13)-C(14)-C(15) | 0.9(5)    |
| N(4)-C(13)-C(14)-C(15)  | -180.0(3) |
| C(13)-C(14)-C(15)-C(10) | 0.2(5)    |
| C(11)-C(10)-C(15)-C(14) | -1.9(5)   |
| N(3)-C(10)-C(15)-C(14)  | -175.4(3) |
| C(8)-O(3)-C(16)-C(17)   | 101.3(7)  |
| C(8)-O(4)-C(16')-C(17') | -90.6(6)  |

| D-HA               | d(D-H)    | d(HA)   | d(DA)     | <(DHA) |
|--------------------|-----------|---------|-----------|--------|
| C(2)-H(2B)O(6)#1   | 0.97      | 2.59    | 3.486(5)  | 153.4  |
| C(2)-H(2C)F(1')#2  | 0.97      | 2.52    | 3.487(10) | 172.0  |
| C(9)-H(9C)O(1)#3   | 0.97      | 2.33    | 3.293(4)  | 175.0  |
| C(12)-H(12)O(5)#4  | 0.94      | 2.45    | 3.387(5)  | 174.3  |
| C(14)-H(14)O(3)#5  | 0.94      | 2.37    | 3.188(4)  | 145.0  |
| C(16)-H(16B)O(3)#6 | 0.98      | 2.59    | 3.404(8)  | 141.0  |
| N(1)-H(1)O(1)#3    | 0.826(18) | 2.17(2) | 2.959(4)  | 160(3) |

**Table 7.** Hydrogen bonds for 3e [Å and ].

| Symmetry transformations | used to generate | equivalent atoms: |
|--------------------------|------------------|-------------------|
|--------------------------|------------------|-------------------|

#1 -x+2,-y+2,-z+1 #2 -x+1,-y+1,-z+1 #3 -x,-y+1,-z+1 #4 -x+2,-y+2,-z #5 x+1,y,z #6 -x+1,-y+2,-z+1 Single crystal of compound **4e** was obtained by slow evaporation from CH<sub>2</sub>Cl<sub>2</sub> solution.



**Figure S2.** Crystal data and structure refinement of product **4e** (with thermal ellipsoils shown at the 50% probability level)

| Table I. Crystal data and structur |                         |                  |
|------------------------------------|-------------------------|------------------|
| Identification code                | <b>4e</b>               |                  |
| CCDC                               | 2272117                 |                  |
| Empirical formula                  | $C_{17}H_{17}F_3N_4O_6$ |                  |
| Formula weight                     | 430.35                  |                  |
| Temperature                        | 293(2) K                |                  |
| Wavelength                         | 0.71073 Å               |                  |
| Crystal system                     | Triclinic               |                  |
| Space group                        | P -1                    |                  |
| Unit cell dimensions               | a = 9.0815(8)  Å        | a= 95.562(3) °.  |
|                                    | b = 9.9989(9) Å         | b= 100.951(3) °. |
|                                    | c = 11.2070(10)  Å      | g = 93.877(3) °. |

Table 1. Crystal data and structure refinement for 4e.

| Volume                                                                          | 990.55(15) Å <sup>3</sup>                                          |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Z                                                                               | 2                                                                  |
| Density (calculated)                                                            | 1.443 Mg/m <sup>3</sup>                                            |
| Absorption coefficient                                                          | 0.128 mm <sup>-1</sup>                                             |
| F(000)                                                                          | 444                                                                |
| Crystal size                                                                    | 0.200 x 0.160 x 0.060 mm <sup>3</sup>                              |
| Theta range for data collection<br>Index ranges<br>Reflections collected        | 2.653 to 25.993 °.<br>-11<=h<=11, -12<=k<=12, -13<=l<=13<br>17758  |
| Independent reflections<br>Completeness to theta = $25,242^{\circ}$             | 3884 [R(int) = 0.0811]<br>99.7 %                                   |
| Absorption correction<br>Max. and min. transmission                             | Semi-empirical from equivalents<br>0.7456 and 0.5477               |
| Refinement method                                                               | Full-matrix least-squares on F <sup>2</sup>                        |
| Data / restraints / parameters                                                  | 3884 / 0 / 275                                                     |
| Goodness-of-fit on F <sup>2</sup>                                               | 1.037                                                              |
| Final R indices [I>2sigma(I)]<br>R indices (all data)<br>Extinction coefficient | R1 = 0.0561, wR2 = 0.1288<br>R1 = 0.0989, wR2 = 0.1546<br>0.051(6) |
| Largest diff. peak and hole                                                     | $0.365 \text{ and } -0.315 \text{ e.}\text{\AA}^{-3}$              |

|       | Х       | у       | Z        | U(eq)  |  |
|-------|---------|---------|----------|--------|--|
| F(1)  | 7082(2) | -208(2) | 6654(2)  | 87(1)  |  |
| F(2)  | 8634(2) | 1503(2) | 7327(2)  | 81(1)  |  |
| F(3)  | 7635(2) | 438(2)  | 8561(2)  | 81(1)  |  |
| O(1)  | 3903(2) | -224(2) | 6074(2)  | 71(1)  |  |
| O(2)  | 2497(2) | 66(2)   | 7500(2)  | 75(1)  |  |
| O(3)  | 884(2)  | 5319(2) | 3119(2)  | 78(1)  |  |
| O(4)  | 940(2)  | 6316(2) | 4922(2)  | 73(1)  |  |
| O(5)  | 6795(4) | 4936(3) | 11072(2) | 125(1) |  |
| O(6)  | 7946(2) | 5335(2) | 9602(2)  | 71(1)  |  |
| N(1)  | 4593(2) | 1382(2) | 9024(2)  | 52(1)  |  |
| N(2)  | 4787(2) | 1187(2) | 7825(2)  | 50(1)  |  |
| N(3)  | 5721(2) | 2115(2) | 6134(2)  | 50(1)  |  |
| N(4)  | 1358(3) | 5473(2) | 4229(2)  | 57(1)  |  |
| C(1)  | 5389(3) | 2348(3) | 9759(2)  | 49(1)  |  |
| C(2)  | 6411(3) | 3314(2) | 9340(2)  | 44(1)  |  |
| C(3)  | 6685(3) | 3083(2) | 8221(2)  | 45(1)  |  |
| C(4)  | 6079(3) | 1815(2) | 7376(2)  | 45(1)  |  |
| C(5)  | 7361(3) | 872(3)  | 7458(3)  | 57(1)  |  |
| C(6)  | 4611(3) | 2951(2) | 5712(2)  | 44(1)  |  |
| C(7)  | 4312(3) | 3072(3) | 4459(2)  | 50(1)  |  |
| C(8)  | 3240(3) | 3875(3) | 3972(2)  | 53(1)  |  |
| C(9)  | 2476(3) | 4596(3) | 4741(2)  | 48(1)  |  |
| C(10) | 2761(3) | 4497(3) | 5974(2)  | 50(1)  |  |
| C(11) | 3810(3) | 3668(3) | 6461(2)  | 49(1)  |  |
| C(12) | 5164(4) | 2414(3) | 11059(2) | 73(1)  |  |
| C(13) | 3724(3) | 280(3)  | 7044(3)  | 55(1)  |  |
| C(14) | 1318(4) | -866(4) | 6747(4)  | 107(1) |  |
| C(15) | 7068(3) | 4595(3) | 10117(2) | 53(1)  |  |
| C(16) | 8708(4) | 6583(3) | 10303(3) | 74(1)  |  |
| C(17) | 9374(4) | 7357(4) | 9433(4)  | 95(1)  |  |

**Table 2**. Atomic coordinates (  $x \ 10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for **4e** U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

S57

| F(1)-C(5)   | 1.315(3) |
|-------------|----------|
| F(2)-C(5)   | 1.319(3) |
| F(3)-C(5)   | 1.334(3) |
| O(1)-C(13)  | 1.199(3) |
| O(2)-C(13)  | 1.324(3) |
| O(2)-C(14)  | 1.448(4) |
| O(3)-N(4)   | 1.227(3) |
| O(4)-N(4)   | 1.219(3) |
| O(5)-C(15)  | 1.169(3) |
| O(6)-C(15)  | 1.301(3) |
| O(6)-C(16)  | 1.462(3) |
| N(1)-C(1)   | 1.288(3) |
| N(1)-N(2)   | 1.384(3) |
| N(2)-C(13)  | 1.388(3) |
| N(2)-C(4)   | 1.487(3) |
| N(3)-C(6)   | 1.396(3) |
| N(3)-C(4)   | 1.433(3) |
| N(3)-H(3)   | 0.8600   |
| N(4)-C(9)   | 1.458(3) |
| C(1)-C(2)   | 1.465(4) |
| C(1)-C(12)  | 1.506(3) |
| C(2)-C(3)   | 1.326(3) |
| C(2)-C(15)  | 1.496(4) |
| C(3)-C(4)   | 1.511(3) |
| C(3)-H(3A)  | 0.9300   |
| C(4)-C(5)   | 1.541(4) |
| C(6)-C(11)  | 1.391(3) |
| C(6)-C(7)   | 1.398(3) |
| C(7)-C(8)   | 1.371(4) |
| C(7)-H(7)   | 0.9300   |
| C(8)-C(9)   | 1.385(3) |
| C(8)-H(8)   | 0.9300   |
| C(9)-C(10)  | 1.371(3) |
| C(10)-C(11) | 1.374(4) |
| C(10)-H(10) | 0.9300   |
| C(11)-H(11) | 0.9300   |

 Table 3. Bond lengths [Å] and angles [ ] for 4e.

| C(12)-H(12A)     | 0.9600     |
|------------------|------------|
| C(12)-H(12B)     | 0.9600     |
| C(12)-H(12C)     | 0.9600     |
| C(14)-H(14A)     | 0.9600     |
| C(14)-H(14B)     | 0.9600     |
| C(14)-H(14C)     | 0.9600     |
| C(16)-C(17)      | 1.491(5)   |
| C(16)-H(16A)     | 0.9700     |
| C(16)-H(16B)     | 0.9700     |
| C(17)-H(17A)     | 0.9600     |
| C(17)-H(17B)     | 0.9600     |
| C(17)-H(17C)     | 0.9600     |
| C(13)-O(2)-C(14) | 115.6(2)   |
| C(15)-O(6)-C(16) | 117.9(2)   |
| C(1)-N(1)-N(2)   | 119.3(2)   |
| N(1)-N(2)-C(13)  | 115.6(2)   |
| N(1)-N(2)-C(4)   | 124.15(19) |
| C(13)-N(2)-C(4)  | 120.2(2)   |
| C(6)-N(3)-C(4)   | 123.58(19) |
| C(6)-N(3)-H(3)   | 118.2      |
| C(4)-N(3)-H(3)   | 118.2      |
| O(4)-N(4)-O(3)   | 123.4(2)   |
| O(4)-N(4)-C(9)   | 118.5(2)   |
| O(3)-N(4)-C(9)   | 118.0(2)   |
| N(1)-C(1)-C(2)   | 121.8(2)   |
| N(1)-C(1)-C(12)  | 114.9(3)   |
| C(2)-C(1)-C(12)  | 123.3(2)   |
| C(3)-C(2)-C(1)   | 119.1(2)   |
| C(3)-C(2)-C(15)  | 119.4(2)   |
| C(1)-C(2)-C(15)  | 121.3(2)   |
| C(2)-C(3)-C(4)   | 123.1(2)   |
| C(2)-C(3)-H(3A)  | 118.5      |
| C(4)-C(3)-H(3A)  | 118.5      |
| N(3)-C(4)-N(2)   | 114.3(2)   |
| N(3)-C(4)-C(3)   | 110.3(2)   |
| N(2)-C(4)-C(3)   | 107.83(19) |
| N(3)-C(4)-C(5)   | 107.1(2)   |

| N(2)-C(4)-C(5)      | 110.2(2)   |
|---------------------|------------|
| C(3)-C(4)-C(5)      | 106.90(19) |
| F(1)-C(5)-F(2)      | 107.3(2)   |
| F(1)-C(5)-F(3)      | 106.6(2)   |
| F(2)-C(5)-F(3)      | 106.2(2)   |
| F(1)-C(5)-C(4)      | 114.5(2)   |
| F(2)-C(5)-C(4)      | 111.8(2)   |
| F(3)-C(5)-C(4)      | 110.0(2)   |
| C(11)-C(6)-N(3)     | 124.0(2)   |
| C(11)-C(6)-C(7)     | 118.9(2)   |
| N(3)-C(6)-C(7)      | 117.1(2)   |
| C(8)-C(7)-C(6)      | 120.7(2)   |
| C(8)-C(7)-H(7)      | 119.7      |
| C(6)-C(7)-H(7)      | 119.7      |
| C(7)-C(8)-C(9)      | 119.3(2)   |
| C(7)-C(8)-H(8)      | 120.4      |
| C(9)-C(8)-H(8)      | 120.4      |
| C(10)-C(9)-C(8)     | 120.9(2)   |
| C(10)-C(9)-N(4)     | 119.8(2)   |
| C(8)-C(9)-N(4)      | 119.4(2)   |
| C(9)-C(10)-C(11)    | 120.0(2)   |
| C(9)-C(10)-H(10)    | 120.0      |
| C(11)-C(10)-H(10)   | 120.0      |
| C(10)-C(11)-C(6)    | 120.3(2)   |
| C(10)-C(11)-H(11)   | 119.9      |
| C(6)-C(11)-H(11)    | 119.9      |
| C(1)-C(12)-H(12A)   | 109.5      |
| C(1)-C(12)-H(12B)   | 109.5      |
| H(12A)-C(12)-H(12B) | 109.5      |
| C(1)-C(12)-H(12C)   | 109.5      |
| H(12A)-C(12)-H(12C) | 109.5      |
| H(12B)-C(12)-H(12C) | 109.5      |
| O(1)-C(13)-O(2)     | 124.9(3)   |
| O(1)-C(13)-N(2)     | 123.5(3)   |
| O(2)-C(13)-N(2)     | 111.6(2)   |
| O(2)-C(14)-H(14A)   | 109.5      |
| O(2)-C(14)-H(14B)   | 109.5      |
| H(14A)-C(14)-H(14B) | 109.5      |

| O(2)-C(14)-H(14C)   | 109.5    |
|---------------------|----------|
| H(14A)-C(14)-H(14C) | 109.5    |
| H(14B)-C(14)-H(14C) | 109.5    |
| O(5)-C(15)-O(6)     | 122.4(3) |
| O(5)-C(15)-C(2)     | 124.4(3) |
| O(6)-C(15)-C(2)     | 113.2(2) |
| O(6)-C(16)-C(17)    | 106.8(3) |
| O(6)-C(16)-H(16A)   | 110.4    |
| C(17)-C(16)-H(16A)  | 110.4    |
| O(6)-C(16)-H(16B)   | 110.4    |
| C(17)-C(16)-H(16B)  | 110.4    |
| H(16A)-C(16)-H(16B) | 108.6    |
| C(16)-C(17)-H(17A)  | 109.5    |
| C(16)-C(17)-H(17B)  | 109.5    |
| H(17A)-C(17)-H(17B) | 109.5    |
| C(16)-C(17)-H(17C)  | 109.5    |
| H(17A)-C(17)-H(17C) | 109.5    |
| H(17B)-C(17)-H(17C) | 109.5    |
|                     |          |

|       | $U^{11}$ | $U^{22}$ | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | $U^{12}$ |  |
|-------|----------|----------|-----------------|-----------------|-----------------|----------|--|
| F(1)  | 81(1)    | 71(1)    | 97(1)           | -36(1)          | 1(1)            | 26(1)    |  |
| F(2)  | 57(1)    | 76(1)    | 113(2)          | 0(1)            | 28(1)           | 12(1)    |  |
| F(3)  | 88(1)    | 80(1)    | 76(1)           | 15(1)           | 11(1)           | 35(1)    |  |
| O(1)  | 71(1)    | 71(1)    | 63(1)           | -28(1)          | 16(1)           | -4(1)    |  |
| O(2)  | 60(1)    | 84(2)    | 76(1)           | -21(1)          | 21(1)           | -9(1)    |  |
| O(3)  | 76(1)    | 107(2)   | 50(1)           | 20(1)           | 5(1)            | 16(1)    |  |
| O(4)  | 80(1)    | 65(1)    | 77(2)           | 6(1)            | 19(1)           | 19(1)    |  |
| O(5)  | 192(3)   | 109(2)   | 71(2)           | -47(2)          | 68(2)           | -54(2)   |  |
| O(6)  | 89(2)    | 58(1)    | 59(1)           | -16(1)          | 17(1)           | -12(1)   |  |
| N(1)  | 64(1)    | 51(1)    | 43(1)           | 4(1)            | 15(1)           | 7(1)     |  |
| N(2)  | 57(1)    | 49(1)    | 42(1)           | -6(1)           | 12(1)           | 1(1)     |  |
| N(3)  | 59(1)    | 57(1)    | 35(1)           | -7(1)           | 15(1)           | 14(1)    |  |
| N(4)  | 56(1)    | 62(2)    | 55(2)           | 11(1)           | 12(1)           | 3(1)     |  |
| C(1)  | 62(2)    | 49(2)    | 37(1)           | 4(1)            | 10(1)           | 12(1)    |  |
| C(2)  | 52(1)    | 45(1)    | 35(1)           | -2(1)           | 5(1)            | 14(1)    |  |
| C(3)  | 51(1)    | 43(1)    | 39(1)           | -1(1)           | 7(1)            | 6(1)     |  |
| C(4)  | 50(1)    | 46(1)    | 40(1)           | -5(1)           | 10(1)           | 6(1)     |  |
| C(5)  | 61(2)    | 52(2)    | 53(2)           | -8(1)           | 8(1)            | 9(1)     |  |
| C(6)  | 49(1)    | 44(1)    | 38(1)           | -6(1)           | 11(1)           | -1(1)    |  |
| C(7)  | 62(2)    | 51(2)    | 36(1)           | -6(1)           | 16(1)           | 3(1)     |  |
| C(8)  | 65(2)    | 58(2)    | 34(1)           | 0(1)            | 11(1)           | 0(1)     |  |
| C(9)  | 48(1)    | 52(2)    | 42(1)           | 1(1)            | 9(1)            | 1(1)     |  |
| C(10) | 53(2)    | 56(2)    | 40(1)           | -5(1)           | 13(1)           | 9(1)     |  |
| C(11) | 53(2)    | 61(2)    | 32(1)           | -3(1)           | 10(1)           | 6(1)     |  |
| C(12) | 100(2)   | 77(2)    | 42(2)           | 6(2)            | 21(2)           | -3(2)    |  |
| C(13) | 58(2)    | 50(2)    | 55(2)           | -8(1)           | 12(1)           | 7(1)     |  |
| C(14) | 67(2)    | 123(3)   | 114(3)          | -35(3)          | 16(2)           | -30(2)   |  |
| C(15) | 65(2)    | 55(2)    | 36(1)           | -8(1)           | 8(1)            | 8(1)     |  |
| C(16) | 78(2)    | 60(2)    | 72(2)           | -18(2)          | -3(2)           | -7(2)    |  |
| C(17) | 96(3)    | 70(2)    | 103(3)          | 7(2)            | -8(2)           | -17(2)   |  |

**Table 4**. Anisotropic displacement parameters ( $\text{\AA}^2 x \ 10^3$ ) for **4e**. The anisotropic displacement factor exponent takes the form:  $-2p^2$ [  $\text{\AA}^2 a^{*2} U^{11} + ... + 2 \text{ h k } a^* \text{ b}^* U^{12}$ ]

|        | Х     | У     | Z     | U(eq) |
|--------|-------|-------|-------|-------|
| H(3)   | 6218  | 1761  | 5621  | 60    |
| H(3A)  | 7278  | 3733  | 7943  | 54    |
| H(7)   | 4846  | 2602  | 3949  | 60    |
| H(8)   | 3029  | 3936  | 3135  | 63    |
| H(10)  | 2244  | 4990  | 6481  | 60    |
| H(11)  | 3984  | 3586  | 7294  | 59    |
| H(12A) | 4718  | 3229  | 11260 | 109   |
| H(12B) | 6119  | 2406  | 11600 | 109   |
| H(12C) | 4510  | 1650  | 11147 | 109   |
| H(14A) | 967   | -512  | 5988  | 160   |
| H(14B) | 499   | -984  | 7167  | 160   |
| H(14C) | 1708  | -1720 | 6587  | 160   |
| H(16A) | 9490  | 6382  | 10963 | 89    |
| H(16B) | 7996  | 7101  | 10651 | 89    |
| H(17A) | 8585  | 7575  | 8801  | 142   |
| H(17B) | 10050 | 6821  | 9075  | 142   |
| H(17C) | 9917  | 8174  | 9864  | 142   |

**Table 5**. Hydrogen coordinates (  $x \ 10^4$ ) and isotropic displacement parameters ( $\mathring{A}^2 x \ 10^3$ ) for **4e**.

| C(1)-N(1)-N(2)-C(13)  | -169.7(2) |
|-----------------------|-----------|
| C(1)-N(1)-N(2)-C(4)   | 14.1(3)   |
| N(2)-N(1)-C(1)-C(2)   | 4.8(4)    |
| N(2)-N(1)-C(1)-C(12)  | -176.1(2) |
| N(1)-C(1)-C(2)-C(3)   | -9.5(4)   |
| C(12)-C(1)-C(2)-C(3)  | 171.5(3)  |
| N(1)-C(1)-C(2)-C(15)  | 166.4(2)  |
| C(12)-C(1)-C(2)-C(15) | -12.5(4)  |
| C(1)-C(2)-C(3)-C(4)   | -4.5(4)   |
| C(15)-C(2)-C(3)-C(4)  | 179.5(2)  |
| C(6)-N(3)-C(4)-N(2)   | 57.9(3)   |
| C(6)-N(3)-C(4)-C(3)   | -63.7(3)  |
| C(6)-N(3)-C(4)-C(5)   | -179.7(2) |
| N(1)-N(2)-C(4)-N(3)   | -147.6(2) |
| C(13)-N(2)-C(4)-N(3)  | 36.3(3)   |
| N(1)-N(2)-C(4)-C(3)   | -24.6(3)  |
| C(13)-N(2)-C(4)-C(3)  | 159.3(2)  |
| N(1)-N(2)-C(4)-C(5)   | 91.8(3)   |
| C(13)-N(2)-C(4)-C(5)  | -84.3(3)  |
| C(2)-C(3)-C(4)-N(3)   | 144.7(2)  |
| C(2)-C(3)-C(4)-N(2)   | 19.3(3)   |
| C(2)-C(3)-C(4)-C(5)   | -99.2(3)  |
| N(3)-C(4)-C(5)-F(1)   | -53.3(3)  |
| N(2)-C(4)-C(5)-F(1)   | 71.6(3)   |
| C(3)-C(4)-C(5)-F(1)   | -171.5(2) |
| N(3)-C(4)-C(5)-F(2)   | 69.0(3)   |
| N(2)-C(4)-C(5)-F(2)   | -166.1(2) |
| C(3)-C(4)-C(5)-F(2)   | -49.2(3)  |
| N(3)-C(4)-C(5)-F(3)   | -173.3(2) |
| N(2)-C(4)-C(5)-F(3)   | -48.4(3)  |
| C(3)-C(4)-C(5)-F(3)   | 68.5(3)   |
| C(4)-N(3)-C(6)-C(11)  | 5.2(4)    |
| C(4)-N(3)-C(6)-C(7)   | -175.4(2) |
| C(11)-C(6)-C(7)-C(8)  | -0.5(4)   |
| N(3)-C(6)-C(7)-C(8)   | -179.9(2) |
| C(6)-C(7)-C(8)-C(9)   | 1.5(4)    |

 Table 6. Torsion angles [ ] for 4e.

| C(7)-C(8)-C(9)-C(10)   | -1.1(4)   |
|------------------------|-----------|
| C(7)-C(8)-C(9)-N(4)    | 178.7(2)  |
| O(4)-N(4)-C(9)-C(10)   | 15.8(4)   |
| O(3)-N(4)-C(9)-C(10)   | -163.9(2) |
| O(4)-N(4)-C(9)-C(8)    | -164.0(2) |
| O(3)-N(4)-C(9)-C(8)    | 16.2(4)   |
| C(8)-C(9)-C(10)-C(11)  | -0.4(4)   |
| N(4)-C(9)-C(10)-C(11)  | 179.8(2)  |
| C(9)-C(10)-C(11)-C(6)  | 1.5(4)    |
| N(3)-C(6)-C(11)-C(10)  | 178.3(2)  |
| C(7)-C(6)-C(11)-C(10)  | -1.0(4)   |
| C(14)-O(2)-C(13)-O(1)  | 0.7(5)    |
| C(14)-O(2)-C(13)-N(2)  | 179.8(3)  |
| N(1)-N(2)-C(13)-O(1)   | -162.9(3) |
| C(4)-N(2)-C(13)-O(1)   | 13.5(4)   |
| N(1)-N(2)-C(13)-O(2)   | 18.0(3)   |
| C(4)-N(2)-C(13)-O(2)   | -165.6(2) |
| C(16)-O(6)-C(15)-O(5)  | 5.2(5)    |
| C(16)-O(6)-C(15)-C(2)  | -177.2(2) |
| C(3)-C(2)-C(15)-O(5)   | 173.7(3)  |
| C(1)-C(2)-C(15)-O(5)   | -2.3(4)   |
| C(3)-C(2)-C(15)-O(6)   | -3.9(3)   |
| C(1)-C(2)-C(15)-O(6)   | -179.8(2) |
| C(15)-O(6)-C(16)-C(17) | -168.9(3) |
|                        |           |

| D-HA               | d(D-H) | d(HA) | d(DA)    | <(DHA) |  |
|--------------------|--------|-------|----------|--------|--|
| C(14)-H(14C)O(4)#1 | 0.96   | 2.54  | 3.275(4) | 133.8  |  |
| C(11)-H(11)N(2)    | 0.93   | 2.64  | 3.130(4) | 113.3  |  |
| C(11)-H(11)O(5)#2  | 0.93   | 2.48  | 3.135(3) | 127.7  |  |
| C(3)-H(3A)O(3)#3   | 0.93   | 2.42  | 3.306(3) | 159.0  |  |
| N(3)-H(3)O(1)#4    | 0.86   | 2.31  | 3.052(3) | 145.3  |  |

**Table 7.** Hydrogen bonds for **4e** [Å and ].

#1 x,y-1,z #2 -x+1,-y+1,-z+2 #3 -x+1,-y+1,-z+1 #4 -x+1,-y,-z+1

### 6. References

- 1 S. Wen, Y. Chen, Q. Tian, Y. Zhang and G. Cheng, J. Org. Chem., 2022, 87, 1124-1132.
- 2. A. G. Schultz and W. K. Hagmann, J. Org. Chem., 1978, 43, 3391-3393.
- 3. O. A. Attanasi, G. Favi, G. Giorgi, R. Majer, F. R. Perrulli and S. Santeusanio, *Org. Biomol. Chem.*, 2014, **12**, 4610-4619.

# 7. Copies of the NMR spectra



### <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 3a

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) spectrum of 3a





## <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) spectrum of 3b

---69.102







<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3c



<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) spectrum of 3c






<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 3e



### <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3e



<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) spectrum of 3e

---73.855



-10

-20

0

-30

-40



-90 -100 -110 -120 -130 -140 -150 -160 fl (ppm)

-170 -180 -190

-200



-50

-60 -70 -80









<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3g



# <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) spectrum of 3g

---69.639













### <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) spectrum of 3i



5.0 4.5 fl (ppm)

6.5

6.0 5.5

10.0 9.5 9.0 8.5 8.0 7.5 7.0

4.0 3.5

2. 0

2.5

1.5 1.0 0.5 0.0 -0.





<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) spectrum of 3j



### <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 3k



<sup>19</sup>F NMR (565 MHz, CDCl<sub>3</sub>) spectrum of 3k



<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) spectrum of 3l





31

0 -10

-20

#### S85

-30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm)





### <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3m



### <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) spectrum of 3m



0

-10 -20

-40 -50 -60

-30

-70 -80



-90 -100 -110 -120 -130 -140 -150 f1 (ppm)

-160

-170

-180 -190 -200





<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) spectrum of 3n





<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 30



## <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) spectrum of 30







<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 3q







### <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) spectrum of 3q

---69.118



0

-10 -20

-30 -40



-90 -100 -110 -120 -130 -140 -150 fl (ppm)

-160

-170

-180 -190 -200

### <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 4a

-50

-60 -70

-80









### <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) spectrum of 4b



### <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 4c

-50

-40

-60

-70 -80 -90

-160

-170

-180 -190 -200

0

-10

-20

-30





S97



## <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 4d



#### <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) spectrum of 4d





# <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) spectrum of 4e

--78.076





<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 4f



#### <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) spectrum of 4f



6.5

6.0

5.5 5.0 fl (ppm)

7.5

9.0 8.5 8.0

10. 0

9.5

4.0

4.5

3.5

3.0

2.5 2.0 1. 0

0.5

0.0

1.5

## <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 4g



# <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) spectrum of 4g

--77.819







## <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 4h



### <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) spectrum of 4h







0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm)







#### <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) spectrum of 4j

--78.013








<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) spectrum of 4k





<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 4l



### <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) spectrum of 41

-57.191 -57.612 -59.640 -60.060



Etc

ò

-10

-20 -30 -40



-90 -100 -110 -120 -130 f1 (ppm)

-140 -150

-160

-170 -180

-190 -200

### <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 4m

-50 -60 -70 -80







<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) spectrum of 4m

---78.199





<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 4n



#### <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) spectrum of 4n



# <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 40















<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 4q



## <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 4q



## <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) spectrum of 4q

