Supporting Information

Visible light-mediated $\mathbf{C}\left(\mathrm{sp}^{3}\right)$-H bond functionalization inside an all-organic nanocavity
Debojyoti Roy, Sunandita Paul and Jyotishman Dasgupta *

\qquad

1. Materials and Methods
2. Supplementary Figures...6-39

S1: ${ }^{1} \mathrm{H}$ NMR spectra of DB.2 PF_{6}.
S2: ${ }^{1} \mathrm{H}$ NMR spectra of ExBox. $4 \mathrm{PF}_{6}$ synthesized in Microwave chamber.
S3: ${ }^{1} \mathrm{H}$ NMR spectra of 1-MePy in ExBox.4PF ${ }_{6}$
S4: ${ }^{1} \mathrm{H}$ NMR spectra of 1-MePy in ExBox.4PF 6 showing peak area integration
S5: ${ }^{1} \mathrm{H}$ NMR spectra of 9-MA in ExBox.4 PF_{6} showing peak area integration
S6: ${ }^{1} \mathrm{H}$ NMR spectra of 9-MA in ExBox.4PF 6
S7: ${ }^{1} \mathrm{H}$ NMR spectra of 1-MeNap in ExBox.4PF6
S8: ${ }^{1} \mathrm{H}$ NMR spectra showing displacement of 1 MeNap from ExBox after Pyrene addition
S9: Uv-Vis absorption titration of 1MePy in ExBox and calculation of binding constant
S10: ${ }^{1} \mathrm{H}$ NMR spectra of photoproduct of 1-MePy in ExBox.4PF 6 after 460 nm LED illumination
S11: GCMS trace of photoproduct of 1-MeNap in ExBox.4PF 6 after 460 nm LED illumination
S12: GCMS trace of photoproduct of 9-MA in ExBox.4PF 6 after 520 nm LED illumination
S13: ${ }^{1} \mathrm{H}$ NMR spectra of photoproduct of 9-MA in ExBox.4PF 6 after 520 nm LED illumination
S14: GCMS trace of photoreaction 9-MA under inert condition after 520 nm LED illumination
S15: GCMS trace of photoreaction of 9-MA, 1-MeNap, Toluene without cavity
S16: GCMS trace of reaction of 9-MA, 1-MeNap, Toluene without light
S17: GCMS trace of photoreaction of 1-MeNap, Toluene with DB.2PF ${ }_{6}$
S18: GCMS trace of photoreaction of Cumene in ExBox with 400 nm LED
S19: GCMS trace of photoproduct of Toluene in ExBox.4PF ${ }_{6}$ after 400 nm LED illumination
S20: GCMS trace of photoproduct of 2-MeThiophene in ExBox.4PF 6 after 400 nm LED illumination
S21: GCMS trace of photoreaction of Ethyl, Propyl and Butylbenzene in ExBox after 400 nm LED illumination

S22: Spectral shift in NIR region for 1-MePy, 9-MA, 1-MeNap in ExBox.4PF 6 from Transient absorption spectroscopy.

S23: SVD of Transient absorption data of 1-MePy in ExBox.4PF 6 after addition of $\mathbf{2 0}$ \% water in ACN
S24: SVD of Transient absorption data of 9-MA in ExBox.4PF ${ }_{6}$ in visible region.
S25: SVD of Transient absorption data of 1-MeNap in ExBox.4PF ${ }_{6}$ in visible region.
S26: Normalized Single wavelength kinetics of 1-MePy in ExBox.4PF 6 with and without water addition from TA data.

S27: Computed transitions for 1-MePy radical cation using TD-DFT
S28: Computed transitions for 1-MePy neutral radical using TD-DFT
S29: Primary KIE measurements with 9-MA and d $\mathbf{1 2}^{2-9-M A}$ in ExBox.4PF 6
S30: Wavelength dependant Transient absorption measurements for 9-MA and 9-MA in ExBox.4PF 6

S31: GCMS trace of photoproducts of 1-MeNap in ExBox.4PF ${ }_{6}$ in different ACN: Water Ratio
S32: Steady state absorption of ExBox, 1-MePy and 1-MePy in ExBox
S33: Steady state absorption of ExBox, 1-MeNap and 1-MeNap in ExBox
S34: Normalized Absorption and Emission spectra of ExBox.4PF 6
S35: ESIMS of ExBox.4PF
S36: ${ }^{1} \mathrm{H}$ NMR spectra during photoreaction of 1-MePy in ExBox.4PF ${ }_{6}$ after 460 nm LED illumination
S37: ${ }^{1} \mathrm{H}$ NMR spectra of control reaction of 1-MePy after 460 nm LED illumination
S38: Normalized Single wavelength kinetics of 1-MePy in ExBox.4PF ${ }_{6}$ at 461 nm
S39: Normalized Single wavelength kinetics of 1-MePy in ExBox.4PF ${ }_{6}$ at 1140 nm
S40: Population analysis of 1-MePy in ExBox.4PF 6 after SVD
S41: Example of Photoreaction protocol of 9-MA in ExBox.4PF ${ }_{6}$ with 520 nm LED
S42: SVD of Transient absorption data of 1-MePy in ExBox.4PF ${ }_{6}$ after addition of 20 \% $\mathrm{D}_{2} \mathrm{O}$ in CAN
S43: SVD of Transient absorption data of 1-MeNap in ExBox.4PF ${ }_{6}$ in $\mathrm{CD}_{3} \mathrm{CN}$.
S44: UV-Vis titration of 1MePy in Acetonitrile without ExBox addition.
S45: ${ }^{1} \mathrm{H}$ NMR spectra of 1-MeNap in ExBox.4PF ${ }_{6}$ showing peak area integration
S46: Single crystal x-ray structure of 9-MA in ExBox.4PF 6
S47: HOMO-LUMO electron densities of 9-MA in ExBox.4PF ${ }_{6}$
Supporting Table 1-5: Output details of DFT calculations
3. References. 41

Materials and Methods:

Chemicals Used: Ex-Bipy (1,4-Di(4-pyridyl)benzene), 1-Methylpyrene (1-MePy) from TCI Chemicals Pvt. Ltd . $\alpha, \alpha \dot{\alpha}$ Di-bromo-p-xylene, Pyrene, 1-Methylnaphthalene(1-MeNap), 9-Methylanthracene (9MA) , Toluene ,2-Methylthiophene purchased from Sigma-Aldrich respectively. All reagents were used as supplied for the reactions.

Microwave synthesis: All synthesis was carried out in a microwave chamber (ETHOS, Nano catalysis lab, TIFR). The ramp profile was given as 10 min delay to reach to $80^{\circ} \mathrm{C}$ from room temperature and then up to 2 hours $80^{\circ} \mathrm{C}$ was maintained.

NMR Characterization: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded on Varian-600 (600 MHz) spectrometer.
Steady State Absorption and Emission: Steady state absorption measurements were performed using a commercial JASCO V-670 spectrophotometer. Steady state emission measurements were done in Flourolog-3 (Horiba Jobin Yvon Inc) spectrofluorometer with Xe lamp as excitation source and PMT detector.

Ultrafast Transient Absorption Spectroscopy: All time-resolved measurements were done using transient absorption spectrometer. Femtosecond laser pulses were generated in the oscillator (Coherent Micra-5 Mode-locked Ti: sapphire Laser system) with bandwidth of $\sim 100 \mathrm{~nm}$ at 80 MHz repetition rate. The laser pulses were amplified in Coherent Legend Elite Ultrafast Amplifier Laser system to get $\sim 30 \mathrm{fs} / 3.5 \mathrm{~mJ}$ with repetition rate of 1 kHz and bandwidth of $\sim 65 \mathrm{~nm}$. The amplifier output is divided into two parts to generate pump and probe pulses. For 400 nm pump pulse, the amplifier output was focused to a BBO crystal to generate frequency doubled output of the fundamental 800 nm beam. For 520 nm pump pulse, the amplifier output was directed to an optical parametric amplifier (Coherent OPeraASolo Ultrafast Optical Parametric Amplifier system). The whitelight probe continuum (420-1400 nm) was generated by focusing amplified output on a 2-mm thick sapphire, which is then directed to a multichannel detector procured from Ultrafast Systems. The pump and probe pulses were temporally and spatially overlapped within the sample. All the measurements were done in 1-mm flow cuvette with a peristaltic pump to attain flow rates that minimize the photo degradation of the samples. The temporal resolution obtained in our transient absorption set up was ~ 100 fs.

Kinetic Data Fitting Procedure: Single wavelength kinetic fits for transient absorption was fitted using multi-exponential decay constants in convolution with the respective instrument response function (IRF). It was done in Igor Pro5 Wavemetrics software to get the lifetime and amplitude of each decay component. The equation used was:

$$
y=A_{0}+\Sigma_{i} A_{i} \exp \left(-t / \tau_{i}\right)
$$

Global Analysis of TA data: Global analysis of the TA data was done using Glotaran 1.5.1 software. Single value decomposition was done to obtain the Evolution associated spectra (EAS) and their corresponding lifetimes.

Synthesis of ExBox.4PF ${ }_{6}$:

Step1: The ExBox cavity was synthesized in 2-steps as described below. The first step was nucleophilic displacement reaction between α, $\dot{\alpha}$ di-bromo-p-xylene, Ex-Bipy, followed by an anion exchange to give DB• $2 \mathrm{PF}_{6}$ (scheme 1). The reaction was kept on stirring for two days as per the reported protocol ${ }^{1}$. The obtained product material was characterized by ${ }^{1} \mathrm{H} \mathrm{NMR}$ in $\mathrm{CD}_{3} \mathrm{CN}$. Figure 1 shows the recorded NMR spectra of $\mathrm{DB}^{2} \cdot \mathrm{PF}_{6}$ in $\mathrm{CD}_{3} \mathrm{CN} . \delta_{\mathrm{H}} 8.86 \mathrm{ppm}(\mathrm{J}=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 8.36 \mathrm{ppm}(\mathrm{J}=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 8.14 \mathrm{ppm}(\mathrm{s}$, $4 \mathrm{H}), 7.56 \mathrm{ppm}(\mathrm{J}=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.50 \mathrm{ppm}(\mathrm{J}=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 5.78 \mathrm{ppm}(\mathrm{s}, 4 \mathrm{H}), 4.63 \mathrm{ppm}(\mathrm{s}, 4 \mathrm{H})$.

Step2: A vast range of organic synthesis like transition metal mediated C-C coupling, nucleophilic substitutions, Diels-Alder cycloadditions can be carried out inside a microwave chamber, resulting in better yields with very short reaction time. This strategy catalyzes reactions in many cases. Taking inspiration from these efforts, the final step of the synthesis was tried in microwave chamber rather than in oil bath for 17 days in the presence of a template (pyrene) to give ExBox. $4 \mathrm{PF}_{6}$ as prescribed in published literature ${ }^{4}$. A quick check told us that carrying out the reaction at $80^{\circ} \mathrm{C}$ leads to the synthesis of ExBox ${ }^{4+}$ using Tetrabutylammonium lodide takes around 18 hours for completion. To do it much more efficiently we tried the synthesis in microwave chamber, and got the desired product within 2 hours at $80^{\circ} \mathrm{C}$. This led to the reduction in time from 17 days to 2 hours for the second step. After the successful workup steps, we got crude material with 34% yield. The material was characterized by ${ }^{1} \mathrm{H}$ NMR in $\mathrm{CD}_{3} \mathrm{CN}$ shown in Figure 2. $\delta_{\mathrm{H}} 8.78 \mathrm{ppm}\left(\mathrm{J}=6.4 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{H}_{\alpha}\right), 8.18 \mathrm{ppm}\left(\mathrm{J}=6.4 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{H}_{\beta}\right), 7.94$ ppm (s, 8H, H_{γ}), $7.62 \mathrm{ppm}(\mathrm{s}, 8 \mathrm{H}, \mathrm{Ph}), 5.7 \mathrm{ppm}\left(\mathrm{s}, 8 \mathrm{H}, \mathrm{CH}_{2}\right)$.

Sample preparation: Solid cage powder was weighed and dissolved in acetonitrile to prepare a 2.5 mM solution. To make a solution of host-guest complex, 3-4 equivalents of solid/liquid guest were added to the cage solution, and stirred in dark for 1 hour in a glass vial at room temperature and ambient pressure. The solution was then syringe filtered to remove the excess guests in solution (if any).

Crystallization: Slow vapor diffusion of $\mathrm{iPr}_{2} \mathrm{O}$ into the solution of 9-MA and ExBox.4PF ${ }_{6}$ in Acetonitrile yielded orange-red single crystals within 2 days.

Computational details: DFT calculations are performed in the Gaussian 09 program ${ }^{2}$. All the ground state structures are optimized and the optimized geometries of the molecules are confirmed to have
zero imaginary frequencies from vibrational analysis. Using these structures as starting points the absorption wavelengths and oscillator strengths were calculated by TD-DFT formalism ${ }^{3}$.

Step 1

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{DB} .2 \mathrm{PF}_{6}$ in $\mathrm{CD}_{3} \mathrm{CN}$. S denotes NMR solvent impurities.

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectra of ExBox. $4 \mathrm{PF}_{6}$ in $\mathrm{CD}_{3} \mathrm{CN}$. S denotes NMR solvent impurities.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectra of ExBox ${ }^{4+}$, 1-MePy and 1-MePy \subset ExBox ${ }^{4+}$ in $\mathrm{CD}_{3} \mathrm{CN}$. Up field shift of guest molecule peaks after incarceration shown in red trace.

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectra of $1 \mathrm{MePy} \subset$ ExBox host-guest complex in CD3CN, 600 MHz showing peak area integrations.

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectra of 9-MA \subset ExBox host-guest complex in CD3CN, 600 MHz showing peak area integrations.

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectra of ExBox ${ }^{4+}$, 9-MA and 9-MA $\subset E x B o x^{4+}$ in $\mathrm{CD}_{3} \mathrm{COCD}_{3}$. Up field shift of guest molecule peaks after incarceration shown in blue trace.

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectra of ExBox ${ }^{4+}$, 1-MeNap and 1-MeNap \subset ExBox ${ }^{4+}$ in $\mathrm{CD}_{3} \mathrm{CN}$. Up field shift of guest molecule peaks after incarceration shown in blue trace.

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectra showing replacement of 1 MeNap guest from the cavity after addition of Pyrene.

Model for binding of guest derivatives to Host molecule:

The concentration of Host-Guest bound species could be defined as the product of free species concentration with their binding constants
$[H G]=K_{1}[H][G]$
$\left[H G_{2}\right]=K_{2}[H G][G]=K_{2}\left(K_{1}[H][G]\right)[G]=K_{1} K_{2}[H][G]^{2}$
$\left[H G_{N}\right]=K_{1} K_{2} \ldots \ldots . . . K_{N}[H][G]^{N}$

Total Host Concentration $=$ Total bound + Total free $=\left([H G]+\left[H G_{2}\right]+\right.$ \qquad $\left.+\left[H G_{i}\right]\right)+([H])$
$n=$ moles of bound Host/moles of total Host
$n=[H G]+\left[H G_{2}\right]+$ \qquad $.+\left[H G_{i}\right] /[H]+[H G]+[H G 2]+$ \qquad $+\left[H G_{i}\right]$
$n=K_{1}[H][G]+K_{1} K_{2}[H][G]^{2}+K_{1} K_{2} K_{3}[H][G]^{3}+\ldots \ldots+K_{1} K_{2} \ldots \ldots . . . K_{N}[H][G]^{N} /[H]+K_{1}[H][G]+K_{1} K_{2}[H][G]^{2}+$ $K_{1} K_{2} K_{3}[H][G]^{3}+\ldots \ldots . . .+K_{1} K_{2} \ldots \ldots . . . K_{N}[H][G]^{N}$
$n=K_{1}[G]+K_{1} K_{2}[G]^{2}+K_{1} K_{2} K_{3}[G]^{3}+\cdots K_{1} K_{2} K_{3} \ldots K_{M}[G] N / 1+K_{1}[G]+K_{1} K_{2}[G]^{2}+K_{1} K_{2} K_{3}[G]^{3}+\cdots K_{1} K_{2} K_{3} \ldots K_{N}[G]^{N} \ldots$
For $n=2$ we can write
$n=K_{1}[G]+K_{1} K_{2}[G]^{2} / 1+K_{1}[G]+K_{1} K_{2}[G]^{2}$
where, K_{1}, K_{2}, are the binding constants for all corresponding binding steps, n is the fraction of Host bound, and [G] is the concentration of added Guest.

We plot Normalized Absorbace vs [G] and fit it with the above-mentioned equation to get the individual binding constant values.

Figure S9. (a) Uv-Vis titration of 1MePy \subset ExBox (2.5 mM) host-guest complex. (b) Fitting curve of change in absorbance intensity of CT transitions (at 475 nm) with guest concentrations.

Figure S10. ${ }^{1} \mathrm{H}$ NMR trace photoreactions of 1-MePy \subset ExBox $^{4+}$ with 460 nm LED after TLC separation and compared with Pyrene carboxaldehyde in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S11. GCMS traces of photoproducts of 1-Menapᄃ ExBox ${ }^{4+}$ in $\mathrm{CH}_{3} \mathrm{CN} . \mathrm{m} / \mathrm{z}=232$ corresponds to ExBipy unit from ExBox ${ }^{4+}$ cavity.

142

156

Figure S12. GCMS traces of photoproducts of $9-\mathrm{MACExBox}{ }^{4+}$ in $\mathrm{CH}_{3} \mathrm{CN} . \mathrm{RT}(\mathrm{min})=7.61$ and 8.73 corresponds to hydroxylated product ($\mathrm{m} / \mathrm{z}=226$).

192

206

208

226

Figure S13. ${ }^{1} \mathrm{H}$ NMR trace of photoproduct of 9-MAС ExBox ${ }^{4+}$. S denotes NMR solvent impurity and * denotes impurity from Ethyl acetate used for chromatographic separation.

$$
\mathrm{m} / \mathrm{z}=226
$$

(From LCMS direct injection)

Figure S14. GCMS traces of photoproducts of 9-MAC ExBox ${ }^{4+}$ in $\mathrm{CH}_{3} \mathrm{CN}$ under inert conditions.

192

Figure S15. GCMS traces of photoproducts of 1-MeNap. 9-MA and Toluene in $\mathrm{CH}_{3} \mathrm{CN}$.

92
142
192
208

Figure S16. GCMS traces of reactions of 1-MeNap $\subset E_{\text {EBox }}{ }^{4+}, 9-\mathrm{MA} \subset \mathrm{ExBox}^{4+}$ and Toluene \subset ExBox ${ }^{4+}$ in absence of light.

92

142

192

Figure S17. GCMS traces of photoproducts of 1-MeNap. Toluene in presence of DB.2PF ${ }_{6}$ in $\mathrm{CH}_{3} \mathrm{CN}$.

92

106

142

156

Time (hr)	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5
12	14.08	5.02	38.86	9.89	32.14
24	9.8	4.48	48.98	10.95	25.79
40	0	2.59	86.32	6.42	4.68
52	0	2	91.90	4.17	1.93

Figure S18. GCMS Traces and Percentage of Photoproducts of Cumene oxidation inside ExBox.

Figure S19. GCMS traces of photoproducts of TolueneC ExBox ${ }^{4+}$ in $\mathrm{CH}_{3} \mathrm{CN} . \mathrm{m} / \mathrm{z}=232$ corresponds to ExBipy unit from ExBox ${ }^{4+}$ cavity.

92

106

Figure S20. GCMS traces of photoproducts of 2-Methylthiophenec ExBox ${ }^{4+}$ in $\mathrm{CH}_{3} \mathrm{CN}$.

112

Figure S21. GCMS Traces of Photoproducts of Ethylbenzene, Propylbenzene and Butylbenzene in ExBox with 400 nm LED after 24 hours.

Figure S22. SVD of Transient absorption of 9-MAСExBox ${ }^{4+}$, 1-MePy $\subset \mathrm{ExBox}^{4+}$, 1-MeNap $\subset \mathrm{ExBox}^{4+}$ in $\mathrm{CH}_{3} \mathrm{CN}$ with a 3-state sequential model at 100 ps (NIR region).

Figure S23. SVD of Transient absorption of 1-MePy $\subset \mathrm{ExBox}^{4+}$ in 20% Water $+\mathrm{CH}_{3} \mathrm{CN}(\mathrm{ACN})$ with a 3 -state sequential model. $\lambda_{\text {exc }}=520 \mathrm{~nm}^{5}$.

Figure S24. SVD of Transient absorption of 9-MA $\subset \mathrm{ExBox}^{4+}$ in $\mathrm{CH}_{3} \mathrm{CN}$ with a 3-state sequential model 4. $\lambda_{\text {exc }}=520 \mathrm{~nm}$.

Figure S25. SVD of Transient absorption of 1-MeNap $\subset \mathrm{ExBox}^{4+}$ in $\mathrm{CH}_{3} \mathrm{CN}$ with a 3-state sequential model. $\lambda_{\text {exc }}=400 \mathrm{~nm}$.

Figure S26. Normalized single wavelength kinetics of Transient absorption of 1-MePy \subset ExBox ${ }^{4+}$ in $\mathrm{CH}_{3} \mathrm{CN}(\mathrm{ACN})$ and 20% water $+\mathrm{CH}_{3} \mathrm{CN}(\mathrm{ACN})$ mixture showing faster decay of radical cation after water addition (Blue Dots).

Figure S27. Calculated most-probable transition of 1-MePy radical cation in Acetonitrile dielectric medium from TD-DFT.

Figure S28. Calculated most-probable transition of 1-MePy neutral radical in Acetonitrile dielectric medium from TD-DFT.

Figure S29. Normalized single wavelength kinetics of Transient absorption of 9-MA \subset ExBox ${ }^{4+}$ and $\mathrm{d}_{12} 9-\mathrm{MA} \subset \mathrm{ExBox}^{4+}$ in $\mathrm{CH}_{3} \mathrm{CN}$ showing slower decay in $\mathrm{d}_{12} 9-\mathrm{MA}$ as guest.

Figure S30. Wavelength dependant Transient absorption spectra showing selective photoexcitation of host-guest complex in $\mathrm{CH}_{3} \mathrm{CN}$ with 520 nm excitation ${ }^{6}$.

Figure S31. GCMS traces of photoproducts of 1-MeNapC ExBox ${ }^{4+}$ in different Water: $\mathrm{CH}_{3} \mathrm{CN}$ (ACN) ratio.

Figure S32. Steady state absorption spectra of ExBox ${ }^{4+}$, 1-MePy and 1-MePy $\subset \mathrm{ExBox}^{4+}$ in ACN. Formation of CT complex shown by red trace in 1-MePyᄃ ExBox ${ }^{4+}$.

Figure S33. Steady state absorption spectra of ExBox ${ }^{4+}$, 1-MeNap and 1-Menapᄃ ExBox ${ }^{4+}$ in ACN. Formation of CT complex shown by red trace in 1-MeNapC ExBox ${ }^{4+}$.

Figure S34. Normalized steady state absorption and emission spectra of ExBox ${ }^{4+}$ in ACN.

Figure S35. ESI-MS of EXBOX. $4 \mathrm{PF}_{6}$ in $\mathrm{ACN} . \mathrm{m} / \mathrm{z}=1107.218\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+}, \mathrm{m} / \mathrm{z}=481.127\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}$

Figure S36. ${ }^{1} \mathrm{H}$ NMR trace of photoreaction of 1-MePyᄃ ExBox ${ }^{4+}$. Cavity proton peaks are marked with red (a-e), Showing stability of photocatalyst after reaction. S-denotes NMR solvent

Figure S37. ${ }^{1} \mathrm{H}$ NMR traces of control photoreactions of 1-Methylpyrene at 460 nm LED source. Control reactions shows no aldehyde formation after direct excitation or use of DB. $2 \mathrm{PF}_{6}$ as a catalyst.

Figure S38. Single wavelength kinetics of Transient absorption of 1-MePy \subset ExBox ${ }^{4+}$ in visible region at 461 nm .

Time, ps
Figure S39. Single wavelength kinetics of Transient absorption of 1-MePy \subset ExBox ${ }^{4+}$ in NIR region at 1140 nm .

Figure S40. Population analysis of Transient absorption of 1-MePy $\subset \mathrm{ExBox}^{4+}$ in $\mathrm{CH}_{3} \mathrm{CN}$ after SVD analysis with a 3 -state sequential model.

Figure S41.: Visible light triggered photoreaction protocol via Host-guest CT excitation with commercially available LEDs, Light Intensity 50-175 mW/cm².

Figure S42. SVD of Transient absorption of 1-MePy $\subset \mathrm{ExBox}^{4+}$ in $20 \% \mathrm{D}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{CN}(\mathrm{ACN})$ with a 3state sequential model. $\lambda_{\text {exc }}=520 \mathrm{~nm}$.

Figure S43. SVD of Transient absorption of 1-MeNap $\subset \mathrm{ExBox}^{4+}$ in $\mathrm{CD}_{3} \mathrm{CN}$ with a 3-state sequential model. $\lambda_{\text {exc }}=400 \mathrm{~nm}$.

Figure S44. UV-Vis titration of 1MePy in Acetonitrile without ExBox addition.

Figure S45. ${ }^{1} \mathrm{H}$ NMR spectra of 1-MeNap \subset ExBox host-guest complex in CD3CN, 600 MHz showing peak area integrations.

Crystal Parameters. [$\left.\mathrm{C}_{48} \mathrm{H}_{40} \mathrm{~N}_{4} \subset \mathrm{C}_{15} \mathrm{H}_{12} \cdot\left(\mathrm{PF}_{6}\right)_{4}\right] .\left(\mathrm{C}_{15} \mathrm{H}_{12}\right) .\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$; Orange ($0.24 \times 0.12 \times 0.02 \mathrm{~mm}$); Monoclinic, $P-1(2), a=12.374(5), b=16.879(5), c=19.484(8) \AA, \alpha=66.889(3), \beta=79.115(3), \gamma=$ $85.113(3)^{\circ}, V=3675.6(3) \AA^{3}, Z=2, T=150(10) \mathrm{K}, \rho_{\text {calc }}=1.553 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=0.217 \mathrm{~mm}^{-1}$. Of a total of 159688 reflections which were collected, 12931 were unique ($R_{\text {int }}=0.1403$). Final $R_{1}\left(F^{2}>2 \sigma F^{2}\right.$) $=0.0622$ and $w R_{2}=0.1917$.

Figure S46. Single crystal structure of 9-MA $\subset E x B o x .4 \mathrm{PF}_{6}$ host guest complex. Pink colour denotes ExBox ${ }^{4+}$ unit, cyan and white corresponds to $9-\mathrm{MA}$ molecules, rest are counter anions ($\mathrm{PF}_{6}{ }^{-}$) and solvent molecules ($\mathrm{CH}_{3} \mathrm{CN}$).

HOMO

LUMO

Figure S47. HOMO-LUMO electron densities of 9-MA \subset ExBox (1:1) host guest complex. Initial coordinates taken from crystal structure. wb97xd/6-311G(d,p) basis set used for calculation .

Supporting Table 1:

1-MePy radical cation optimized geometry coordinates in Acetonitrile
$\begin{array}{lllll}C & 2.78267700 & -0.37454500 & -0.00000200\end{array}$
$\begin{array}{lllll}C & 1.38752600 & -0.74024200 & -0.00000300\end{array}$
$\begin{array}{lllll}C & 0.39068500 & 0.28666900 & -0.00000200\end{array}$
$\begin{array}{llll}C & 0.77239700 & 1.66344200 & -0.00000100\end{array}$
$\begin{array}{llll}C & 2.16009300 & 1.98608400 & 0.00000100\end{array}$
$\begin{array}{llll}C & 3.12805300 & 0.98856600 & 0.00000100\end{array}$
$\begin{array}{lllll}C & 0.96386900 & -2.09607300 & -0.00000300\end{array}$
$\begin{array}{lllll}C & -0.38282300 & -2.43135600 & -0.00000100\end{array}$
C $\quad-1.38624600-1.42773500-0.00000100$
$\begin{array}{lllll}C & -0.98901100 & -0.05633400 & -0.00000200\end{array}$
$\begin{array}{llll}C & -1.98409300 & 0.97051400 & 0.00000000\end{array}$
$\begin{array}{lllll}C & -1.57580200 & 2.33101300 & -0.00000100\end{array}$
$\begin{array}{lllll}C & -0.22951300 & 2.66803300 & -0.00000100\end{array}$
$\begin{array}{lllll}C & -2.77476000 & -1.74795600 & 0.00000100\end{array}$
$\begin{array}{lllll}C & -3.74284600 & -0.74254100 & 0.00000300\end{array}$
$\begin{array}{llll}C & -3.35907900 & 0.60061600 & 0.00000200\end{array}$
C $\quad 3.86324100-1.41891600 \quad 0.00000400$
$\begin{array}{llll}\mathrm{H} & 2.45758100 & 3.02931700 & 0.00000200\end{array}$
$\begin{array}{llll}\mathrm{H} & 4.17628600 & 1.26311500 & 0.00000200\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.70140500 & -2.88844400 & -0.00000300\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.67806200 & -3.47492500 & -0.00000100\end{array}$
$\begin{array}{lllll}\mathrm{H} & -2.33056100 & 3.10954500 & -0.00000100\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.06855500 & 3.71074100 & -0.00000100\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.07318300 & -2.79087800 & 0.00000100\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.79388500 & -1.00395900 & 0.00000500\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.11217500 & 1.38151600 & 0.00000400\end{array}$
$\begin{array}{llll}\mathrm{H} & 4.85145400 & -0.95537400 & -0.00005000\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.79321600 & -2.06800100 & 0.88163700\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.79315600 & -2.06808600 & -0.88156100\end{array}$

Supporting Table 2:

1-MePy neutral radical optimized geometry coordinates in Acetonitrile
$\begin{array}{lllll}C & 2.82571900 & -0.50093600 & -0.00001200\end{array}$
$\begin{array}{lllll}C & 1.40059800 & -0.81750400 & -0.00000300\end{array}$
$\begin{array}{llll}C & 0.44144800 & 0.24521000 & 0.00001300\end{array}$
$\begin{array}{llll}C & 0.86627900 & 1.61699800 & 0.00001300\end{array}$
$\begin{array}{lllll}C & 2.26204600 & 1.90160500 & -0.00001400\end{array}$
$\begin{array}{lllll}C & 3.19451600 & 0.89382100 & -0.00002600\end{array}$
$\begin{array}{lllll}C & 0.91715700 & -2.16103900 & -0.00001500\end{array}$
$\begin{array}{lllll}C & -0.42672700 & -2.44959300 & -0.00000100\end{array}$
C $\quad-1.41037200 \quad-1.40957200 \quad 0.00001700$
$\begin{array}{lllll}C & -0.96104800 & -0.05019900 & 0.00001800\end{array}$
$\begin{array}{llll}C & -1.92537600 & 1.01301000 & 0.00000800\end{array}$
$\begin{array}{llll}C & -1.45774600 & 2.36944900 & 0.00000500\end{array}$
$\begin{array}{llll}C & -0.11304800 & 2.65385100 & 0.00000700\end{array}$
$\begin{array}{lllll}C & -2.79786000 & -1.68057400 & -0.00000200\end{array}$
$\begin{array}{lllll}C & -3.72684400 & -0.63841600 & -0.00001400\end{array}$
$\begin{array}{lllll}C & -3.30010800 & 0.69358100 & -0.00000800\end{array}$
C $\quad 3.82949300-1.46329200 \quad 0.00003700$
$\begin{array}{lllll}H & 2.58169000 & 2.93956200 & -0.00001300\end{array}$
$\begin{array}{llll}\mathrm{H} & 4.25302500 & 1.13560700 & -0.00006300\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.62566900 & -2.98070500 & -0.00004100\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.76194200 & -3.48244900 & 0.00000900\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.18987300 & 3.17112300 & 0.00000500\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.22714200 & 3.68529800 & 0.00001100\end{array}$
$\begin{array}{lllll}\mathrm{H} & -3.13398600 & -2.71298200 & -0.00001400\end{array}$
$\begin{array}{lllll}\mathrm{H} & -4.78852800 & -0.86280900 & -0.00003100\end{array}$
$\begin{array}{llll}\mathrm{H} & -4.02840800 & 1.49897700 & -0.00000900\end{array}$
$\begin{array}{llll}\mathrm{H} & 4.87154800 & -1.16196700 & 0.00003500\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.63489400 & -2.52805600 & -0.00002700\end{array}$

Supporting Table 3:

The TD-DFT oscillator strengths and the excitation energies computed using the optimized geometry of 1-MePy radical cation in Acetonitrile.

Excitation energies	Oscillator
	Strengths:

Excited State 1: $1.2772 \mathrm{eV} 970.78 \mathrm{~nm} \quad \mathrm{f}=0.0005$
Excited State 2: 1.8106 eV $684.75 \mathrm{~nm} \quad \mathrm{f}=0.0304$
Excited State 3: $2.0672 \mathrm{eV} 599.76 \mathrm{~nm} \quad \mathrm{f}=0.0143$
Excited State 4: 2.7274 eV $454.59 \mathrm{~nm} \quad \mathrm{f}=0.0489$
Excited State 5: $2.8770 \mathrm{eV} 430.95 \mathrm{~nm} \quad \mathrm{f}=0.3488$
Excited State 6: 3.4892 eV $355.34 \mathrm{~nm} \quad \mathrm{f}=0.0440$
Excited State 7: 3.6068 eV $343.75 \mathrm{~nm} \quad \mathrm{f}=0.0000$
Excited State 8: $3.6502 \mathrm{eV} 339.67 \mathrm{~nm} \quad \mathrm{f}=0.0004$
Excited State 9: 3.7067 eV $334.48 \mathrm{~nm} \quad \mathrm{f}=0.0000$
Excited State 10: 3.8508 eV $321.97 \mathrm{~nm} \mathrm{f}=0.0002$

Supporting Table 4:

The TD-DFT oscillator strengths and the excitation energies computed using the optimized geometry of 1-MePy neutral radical in Acetonitrile.

Excitation energies Oscillator
Strengths:
Excited State 1: $1.9610 \mathrm{eV} 632.24 \mathrm{~nm} \quad \mathrm{f}=0.0020$
Excited State 2: $2.6275 \mathrm{eV} 471.88 \mathrm{~nm} \quad \mathrm{f}=0.0034$
Excited State 3: $2.8047 \mathrm{eV} 442.05 \mathrm{~nm} \quad \mathrm{f}=0.3693$
Excited State 4: $3.0734 \mathrm{eV} 403.41 \mathrm{~nm} \quad \mathrm{f}=0.0257$
Excited State 5: $3.1520 \mathrm{eV} 393.35 \mathrm{~nm} \quad \mathrm{f}=0.0536$
Excited State 6: 3.2021 eV $387.19 \mathrm{~nm} \quad \mathrm{f}=0.0279$
Excited State 7: 3.5066 eV $353.57 \mathrm{~nm} \quad \mathrm{f}=0.1188$
Excited State 8: $3.7071 \mathrm{eV} 334.45 \mathrm{~nm} \quad \mathrm{f}=0.0022$
Excited State 9: $3.9231 \mathrm{eV} 316.03 \mathrm{~nm} \quad \mathrm{f}=0.0009$

Excited State 10: 4.1849 eV 296.26 nm f= 0.0043

Supporting Table 5:

9-MA in ExBox optimized geometry coordinates

N
$\begin{array}{lllll}\mathrm{N} & -5.68157400 & -3.23646700 & -0.07103100\end{array}$
N
N
$\begin{array}{llll}C & -7.14393200 & 1.48400400 & 0.04035500\end{array}$
$\begin{array}{llll}\text { C } & -7.21455900 & 0.75836400 & 1.22750600\end{array}$
$\begin{array}{llll}H & -7.26835100 & 1.27036300 & 2.18243200\end{array}$
$\begin{array}{lllll}\text { C } & -7.24458900 & -0.63002100 & 1.20042500\end{array}$
$\begin{array}{lllll}H & -7.32056200 & -1.17587300 & 2.13496600\end{array}$
C $\quad-7.20496300-1.31124200 \quad-0.01411100$
C $\quad-7.20185500-0.58374000-1.20294100$
$\begin{array}{lllll}\mathrm{H} & -7.24364600 & -1.09404100 & -2.15941600\end{array}$
$\begin{array}{lllll}\text { C } & -7.17101700 & 0.80384100 & -1.17558700\end{array}$
$\begin{array}{lllll}\mathrm{H} & -7.19069100 & 1.35274100 & -2.11139000\end{array}$
$\begin{array}{llll}C & -6.99735900 & 2.98833300 & 0.07066200\end{array}$
H
$\begin{array}{llll}\mathrm{H} & -7.45520100 & 3.42747700 & 0.95670100\end{array}$
$\begin{array}{lllll}\text { C } & -4.88436800 & 3.53080400 & -1.06929300\end{array}$
$\begin{array}{lllll}\mathrm{H} & -5.47601500 & 3.51201900 & -1.97497500\end{array}$
$\begin{array}{lllll}C & -3.52076100 & 3.70385200 & -1.08640700\end{array}$
H
$\begin{array}{llll}C & -2.79343500 & 3.69322100 & 0.10829100\end{array}$
C
$\begin{array}{llll}H & -3.03925300 & 3.62856000 & 2.26254700\end{array}$
$\begin{array}{lllll}\text { C } & -4.88551500 & 3.39643000 & 1.25935500\end{array}$
$\begin{array}{llll}H & -5.48011900 & 3.28984000 & 2.15681300\end{array}$
C $\quad-7.11659700-2.82015900-0.04069500$
$\begin{array}{llll}\mathrm{H} & -7.57115000 & -3.27368000 & 0.83969000\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.25424900 & -4.97920100 & 1.59641500\end{array}$
$\begin{array}{lllll}C & 0.64498400 & -4.41663200 & 0.80590200\end{array}$
$\begin{array}{lllll}C & 1.34183300 & -3.74158400 & -0.20055900\end{array}$
$\begin{array}{lllll}C & 0.61708300 & -3.09749700 & -1.20533500\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.12765100 & -2.54193800 & -1.98169700\end{array}$
C $\quad-0.76496400-3.10008000-1.18905000$
$\begin{array}{lllll}\mathrm{H} & -1.29826600 & -2.54458000 & -1.95073300\end{array}$
$\begin{array}{lllll}C & 2.96140500 & 3.69374600 & 0.06179300\end{array}$

C

H

C

C	7.02058000	-2.93352800	-0.18813500

H	7.47248700	-3.36686500	-1.07994600
H	7.47513400	-3.40977500	0.68023600
C	1.04589500	-0.26606500	0.86938200
C	2.15507000	-0.41180200	1.76738600
H	1.97625500	-0.63606400	2.81060600
C	3.43848000	-0.23648500	1.34757400
H	4.25533700	-0.33315300	2.05447600
C	3.72513900	0.06778400	-0.01147000
H	4.75464400	0.17606900	-0.33187700
C	2.70599900	0.23644300	-0.89499700
H	2.90864900	0.48281400	-1.93261800
C	1.34170500	0.10796900	-0.48497400
C	0.30562100	0.33671500	-1.38363600
H	0.53514600	0.60680100	-2.40998000
C	-1.02333000	0.22021700	-0.98800600
C	-1.32792200	-0.15722700	0.35991700
C	-0.29222800	-0.43587900	1.27382000
C	-2.08981600	0.43482900	-1.91600400
H	-1.84067800	0.68704000	-2.94166400
C	-3.38863700	0.31245600	-1.52972600
H	-4.19038700	0.46202900	-2.24445700
C	-3.70078300	-0.00127200	-0.17873900
H	-4.73815000	-0.06248000	0.12855500
C	-2.71057100	-0.22883800	0.72835500
H	-2.97796600	-0.46004700	1.75178000
C	-0.63944500	-0.89956100	2.66578800
H	0.19976000	-1.36888400	3.17289100
H	-1.43664400	-1.64466300	2.63841400
H	-0.98445900	-0.07511600	3.29859000

$\begin{array}{lllll}C & -1.02333000 & 0.22021700 & -0.98800600\end{array}$
$\begin{array}{lllll}C & -1.32792200 & -0.15722700 & 0.35991700\end{array}$
$\begin{array}{lllll}C & -0.29222800 & -0.43587900 & 1.27382000\end{array}$
$\begin{array}{lllll}C & -2.08981600 & 0.43482900 & -1.91600400\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.84067800 & 0.68704000 & -2.94166400\end{array}$
$\begin{array}{lllll}C & -3.38863700 & 0.31245600 & -1.52972600\end{array}$

References:

1. Barnes, J. C.; Juricek, M.; Strutt, N. L.; Frasconi, M.; Sampath, S.; Giesener, M. A.; McGrier, P. L.; Bruns, C. J.; Stern, C. L.; Sarjeant, A. A.; Stoddart, J. F., ExBox: A Polycyclic Aromatic Hydrocarbon Scavenger. J. Am. Chem. Soc. 2013, 135 (1), 183-192.
2. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01. (Gaussian Inc., 2013)
3. Shen, L.; Zhang, H. Y.; Ji, H. F., Successful application of TD-DFT in transient absorption spectra assignment. Org. Lett. 2005, 7 (2), 243-246.
4. Das, A.; Mandal, I.; Venkatramani, R.; Dasgupta, J., Ultrafast photoactivation of C-H bonds inside water-soluble nanocages. Sci. Adv. 2019, 5 (2), 13.
5. Oyama, M.; Matsui, J., Kinetic analysis of the reactions of 1-substituted pyrene cation radicals with water in acetonitrile. J. Electroanal. Chem. 2004, 570 (1), 77-82.
6. Young, R. M.; Dyar, S. M.; Barnes, J. C.; Juricek, M.; Stoddart, J. F.; Co, D. T.; Wasielewski, M. R., Ultrafast Conformational Dynamics of Electron Transfer in ExBox ${ }^{4+}$ Perylene. J. Phys. Chem. A

2013, 117 (47), 12438-12448

