Supporting Information

Single-atom Cu Anchored on Mo₂C Boosts Nitrite

Electroreduction to Ammonia

Guohui Wang¹, Ruiyuan Ma², Nana Zhang¹, Yali Guo¹, Ke Chu¹* ¹School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China ²School of Architecture and Urban Planning, Lanzhou Jiaotong University, Lanzhou 730070, China

17 January 2024

Note added after first publication: This Supplementary Information file replaces that originally published on 01 November 2023. An incorrect SEM image was originally included in Fig. S14(b) in error. The correct image has been included in this updated version. The discussion and conclusions of the paper are not affected.

Experimental Section

Materials

Na₂SO₄ (\geq 99.0%), NaNO₂ (\geq 99.0%), C₅FeN₆Na₂O (\geq 99.0%), NH₄Cl (\geq 99.5%), N₂H₄ (\geq 99.0%), C₇H₅NaO₃ (\geq 99%), NaClO (5%), C₆H₅O₇Na₃ (\geq 98%), NaOH (\geq 96%), (NH₄)₆Mo₇O₂₄ (\geq 99.5%), C₄H₆N₂ (\geq 98%), Zn(NO₃)₂·6H₂O (\geq 99.0%), Cu(NO₃)₂·3H₂O (\geq 99.99%), H₂SO₄ (\geq 99.0%), H₂O₂ (\geq 99.0%), HCl (\geq 99.0%), C₂H₅OH (\geq 99.0%) and Nafion (5 wt.%) were provided from Sigma-Aldrich Chemical Reagent Co., Ltd. and Sinopharm Chemical Reagent Co., Ltd. Carbon cloth was purchased from Hengqiu Technology Co., Ltd. Ar (\geq 99.99%) was purchased from Lanzhou Xinwanke, Co., Ltd. All the reagents were analytical grade without further purification.

Synthesis of Mo₂C and Cu₁/Mo₂C nanosheets

Two solutions were prepared : solution 1 was prepared by dissolving 4 g $(NH_4)_6Mo_7O_{24}$ and 2.6 g $C_4H_6N_2$ in 80 ml of deionized water under stirring for 4 h, and solution 2 was prepared by dissolving 1.2 g $Zn(NO_3)_2 \cdot 6H_2O$ in 40 ml of deionized water under stirring for 10 min. Then two solutions are mixed, stirred for 4 h to obtain a white precipitate. The obtained precipitates were collected by centrifugation, washed with deionized water and ethanol several times, and vacuum-dried at 80°C overnight. Afterwards, the white precipitates were transferred into a tube furnace and annealed at 850°C in a flowing Ar atmosphere for 1 h, obtaining Mo₂C. To prepare Cu_1/Mo_2C , an impregnation solution was prepared by dissolving 0.04 g $Cu(NO_3)_2 \cdot 3H_2O$ in 50 mL deionized water. Mo₂C powder was then dipped into the impregnation solution for 2 h and then taken out and dried at 80 °C, obtaining Cu_1/Mo_2C .

Characterization

X-ray diffraction (XRD) pattern was recorded on a Rigaku D/max 2400 diffractometer. Scanning electron microscopy (SEM) was carried out on a ZEISS GeminiSEM-500 microscope. Transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) were carried out on a

Tecnai G^2 F20 microscope. Synchrotron radiation-based X-ray absorption spectroscopy (XAS) measurements were conducted at the BL14W1 beamline in Shanghai Synchrotron Radiation Facility (SSRF).

Electrochemical measurements

Electrochemical measurements were performed on a CHI-660E electrochemical workstation with a standard three-electrode system, where catalyst coated on carbon cloth (CC, 0.5 mg cm⁻²) was used as working electrode, graphite rod as counter electrode and Ag/AgCl as reference electrode. All potentials were referenced to reversible hydrogen electrode (RHE) according to the equation: E (V vs. RHE) = E (V vs. Ag/AgCl) + 0.198 V + 0.059 × pH. The NO₂RR measurements were carried out in 0.5 M Na₂SO₄ + 0.1 M NaNO₂ electrolyte using an H-type two-compartment electrochemical cell separated by a Nafion 211 membrane. The Nafion membranes were pretreated by boiling in 5% H₂O₂ solution for 1 h, in 0.5 M H₂SO₄ for 1 h and in deionized water for 1 h. Prior to NO₂RR electrolysis, the cathodic compartment was purged with Ar for 30 min. After each chronoamperometry test for 1 h, the produced NH₃ and other possible by-products (NO₂⁻ and N₂H₄) were analyzed by various colorimetric methods using UV-vis absorbance spectrophotometer (MAPADA P5), while the gas products were analyzed by gas chromatography (Shimadzu GC2010).

Determination of NH₃

The NH₃ concentration was determined by the indophenol blue method[1]. Firstly, the diluted sample solution (2 mL) was sequentially added to 2 mL of 1 M NaOH coloring solution containing 5% salicylic acid and 5% sodium citrate, 1 mL oxidizing solution of NaClO (4.5%) and 0.2 mL catalyst solution of C₅FeN₆Na₂O (1 wt%). After standing in the dark for 2 h at room temperature, the absorbance values of NH₃ concentrations were expressed as absorption peaks at 655 nm and the concentration-absorbance curves were calibrated with different concentrations of standard NH₄Cl solutions.

NH₃ yield rate was calculated by the following equation:

NH₃ yield rate (µmol h⁻¹ cm⁻²) =
$$\frac{c_{\rm NH_3} \times V}{t \times A}$$
 (1)

NH₃-Faradaic efficiency (FE_{NH3}) was calculated by the following equation:

$$FE_{NH3}(\%) = \frac{6 \times F \times c_{NH_3} \times V}{M \times Q} \times 100\%$$
(2)

where c_{NH3} is the measured NH₃ concentration, V (mL) is the volume of the electrolyte, t (h) is the reduction time and A (cm⁻²) is the mass loading of the catalyst on CC (1 × 1 cm²). M molar mass of NH₃, F (96500 C mol⁻¹) is the Faraday constant, and Q (C) is the quantity of applied electricity.

Determination of N_2H_4

The concentration of N_2H_4 was determined by Watt and Chrisp method[2]. Coloring solution was prepared by mixing 300 mL C_2H_5OH , 5.99 g $C_9H_{11}NO$ and 30 mL HCl. Then, 5 mL color solution was added into 5 mL electrolyte. After the incubation for 20 min at room temperature, the mixed solution was subjected to UV-vis measurement using the absorbance at 455 nm wavelength. The concentration-absorbance curves were calibrated by the standard N_2H_4 solution with a series of concentrations.

Nuclear magnetic resonance (NMR) measurement

¹H nuclear magnetic resonance (NMR) measurement was performed to confirm the source of generated NH₃. After chronoamperometry tests in Ar-saturated 0.1 M NaOH with 0.1 M $^{15}NO_2^-$ at -0.6 V for 1 h, 4 mL of electrolyte was removed from the electrochemical reaction vessel, which was concentrated to 1 mL and further acidized to pH 2. The obtained electrolyte was mixed with 0.1 mL of deuterium oxide (D₂O) containing 100 ppm of dimethyl sulphoxide (DMSO) and 70 µL of D₂O for NMR spectroscopy measurement (500 MHz Bruker superconducting-magnet NMR spectrometer.

Calculation details

DFT calculations were carried out using a Cambridge sequential total energy package (CASTEP). The generalized gradient approximation (GGA) with the Perdew–Burke–Ernzerhof (PBE) exchange-correlation function was utilized in the

calculations. The DFT-D correction method was considered for van der Waals forces. During the geometry optimization, the convergence tolerance was set to be 1.0×10^{-5} eV for energy and 0.02 eV Å⁻¹ for force. The 2×2×1 Monkhorst-Pack mesh was used in Brillouin zone sampling. The electron wave functions were expanded using plane waves with a cutoff energy of 400 eV. Mo₂C (001) was modeled by a 5 × 5 supercell, and a vacuum region of 15 Å was used to separate adjacent slabs.[3]

The Gibbs free energy (ΔG , 298 K) of reaction steps is calculated by[4]: $\Delta G = \Delta E + \Delta Z P E - T \Delta S \qquad (3)$

where ΔE is the adsorption energy, ΔZPE is the zero-point energy difference and $T\Delta S$ is the entropy difference between the gas phase and adsorbed state. The entropies of free gases were acquired from the NIST database.

Fig. S1. Characterizations of pristine Mo₂C: (a) SEM image, (b) TEM image.

Fig. S2. XPS Cu 2p spectra of Cu_1/Mo_2C .

The XPS Cu 2p spectrum of Cu_1/Mo_2C indicates that the valence state of Cu is between +0 and +2, consistent with the XAS result.

Fig. S3. Calculated work functions of Mo_2C and Cu_1/Mo_2C .

Fig. S4. (a) UV-vis absorption spectra of NH_4^+ assays after incubated for 2 h at ambient conditions. (b) Calibration curve used for the calculation of NH_3 concentrations.

Fig. S5. (a) UV-vis absorption spectra of N_2H_4 assays after incubated for 20 min at ambient conditions. (b) Calibration curve used for calculation of N_2H_4 concentrations.

Fig. S6. Chronoamperometry curves of Cu₁/Mo₂C after 1 h electrolysis at various potentials.

Fig. S7. Amounts of produced NH₃ on Cu₁/Mo₂C under different conditions: (1) electrolysis in NO₂⁻-containing solution at -0.6 V, (2) electrolysis in NO₂⁻-free solution at -0.6 V; (3) electrolysis in NO₂⁻-containing solution at open-circuit potential (OCP).

Fig. S8. NH_3 yield rates and FE_{NH3} during alternating cycle tests in 0.5 M Na_2SO_4 solution with and without NO_2^- at -0.6 V.

Fig. S9. ¹H NMR spectra of the electrolyte after electrolysis on Cu_1/Mo_2C at -0.6 V using $^{15}NO_2^-$ as feeding agents.

Fig. S10. Electrochemical double-layer capacitance (C_{dl}) measurements at different scanning rates of 10~100 mV s⁻¹ for (a, b) Mo₂C and (c, d) Cu₁/Mo₂C.

Fig. S11. Comparison of the ECSA-normalized NH $_3$ yield rates and FE $_{\rm NH3}$ between Mo $_2$ C and Cu $_1$ /Mo $_2$ C at -0.6 V.

Fig. S12. Long-term durability test of Cu_1/Mo_2C during 10 h electrolysis at -0.6 V.

Fig. S13. Amount of produced NH₃ after NO₂RR electrolysis at various times (1-6 h) on Cu_1/Mo_2C at -0.6 V.

Fig. S14 (a) XRD pattern, (b) SEM image and (c) Cu K-edge EXAFS spectrum of Cu₁/Mo₂C after NO₂RR test.

Fig. S15.Optimized structures of NO₂ adsorption models on (a) Cu alone and (b) both Cu and its adjacent Mo atoms.

It is noted that we have examined the optimized adsorption models of $*NO_2$ on Cu_1/Mo_2C , and it is shown in Fig. S15 that $*NO_2$ absorbed on both Cu atom and its adjacent Mo atoms has the lower adsorption energy compared to $*NO_2$ on Cu atom alone, indicating that Cu-Mo serves as the dual active centers to absorb and activate the $*NO_2$.

Fig. S16. Optimized structures of NO₂RR intermediates on bare Mo₂C.

Table S1. Cu K-edge EXAFS fitting results of Cu₁/Mo₂C

Sample	Shell	CN	R (Å)	$\sigma^2(10^{-3} \text{ Å})$	$\Delta E_0 (eV)$	R factor
Cu_1/Mo_2C	Cu-Mo	2.8	2.76	6.1	-3.7	0.007

CN is the coordination number, R is interatomic distance, σ^2 is Debye-Waller factor, ΔE_0 is edge-energy shift, R factor is used to value the goodness of the fitting.

<i>Catalysts</i> Electrolytes		NH3 yield (µmol h ⁻¹ cm ⁻²)	FE _{NH3} /%	Potential (V vs RHE)	Ref.
P-TiO ₂ /TP	0.1 M Na ₂ SO ₄ (0.1 M NO ₂ ⁻)	560.8	90.6	-0.6 V	[5]
CoP NA/TM	0.1 M PBS (500 ppm NO ₂ ⁻)	132.7±3.0	90.0±2.3	-0.2 V	[6]
ITO@TiO ₂ /TP	0.5 M LiClO ₄ (0.1 M NO ₂ ⁻)	411.3	82.6	-0.5 V	[7]
Pd/CuO NOs	0.1 M K ₂ SO ₄ (0.01 M NO ₂ ⁻)	53.3	91.8	-1.5 V	[8]
Ni ₂ P/NF	0.1 M PBS (200 ppm NO ₂ ⁻)	158.1 ± 5.4	90.2±3.0	-0.3 V	[9]
CF@Cu ₂ O	0.1 M PBS (0.1 M NO ₂ ⁻)	441.8	94.2	-0.6 V	[10]
$MoS_2 NSs$	0.5 M Na ₂ SO ₄ (0.1 M NO ₂ ⁻)	528.8	93.52	-0.5 V	[11]
Ni-TiO ₂ /TP	0.1 M NaOH (0.1 M NO ₂ ⁻)	380.27	94.89	-0.5 V	[12]
NiS ₂ @TiO ₂ /TM	0.1 M NaOH (0.1 M NO ₂ ⁻)	485.4	92.1	-0.5 V	[13]
MoO ₂ /MP-12	0.5 M Na ₂ SO ₄ (0.1 M NO ₂ ⁻)	510.5	94.5±0.2	-0.8 V	[14]
Cu ₃ P NA/CF	0.1 M PBS (0.1 M NO ₂ ⁻)	95.7±2.1	91.2±2.5	-0.5 V	[15]
CoB@TiO ₂ /TP	B@TiO ₂ /TP 0.1 M Na ₂ SO ₄ (400 ppm NO ₂ ⁻)		95.2	-0.7 V	[16]
Ag@NiO/CC	0.1 M NaOH (0.1 M NO ₂ ⁻)	235.4	97.7	-0.4 V	[17]
Cu ₁ /Mo ₂ C	0.5 M NaOH (0.1 M NO ₂ ⁻)	472.9	91.5	-0.6 V	This work

Table S2. Comparison of optimum NH₃ yield and Faradic efficiency (FE) for recently reported state-of-the-art NO₂RR electrocatalysts at ambient conditions

Supplementary references

- [1]. D. Zhu, L. Zhang, R. E. Ruther and R. J. Hamers, Nat. Mater., 2013, 12, 836-841.
- [2]. G. W. Watt and J. D. Chrisp, Anal. Chem., 1952, 24, 2006-2008.
- [3]. S.-H. Joo, J. W. Bae, W.-Y. Park, Y. Shimada, T. Wada, H. S. Kim, A. Takeuchi, T. J. Konno, H. Kato and I. V. Okulov, *Adv. Mater.*, 2020, **32**, 1906160.
- [4]. A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl and J. K. Nørskov, *Energy Environ*. Sci., 2010, 3, 1311-1315.
- [5]. L. Ouyang, X. He, S. Sun, Y. Luo, D. Zheng, J. Chen, Y. Li, Y. Lin, Q. Liu and A. M. Asiri, J. Mater. Chem. A, 2022, 10, 23494-23498.
- [6]. G. Wen, J. Liang, Q. Liu, T. Li, X. An, F. Zhang, A. A. Alshehri, K. A. Alzahrani, Y. Luo, Q. Kong and X. Sun, *Nano Res.*, 2022, 15, 972-977.
- [7]. S. Li, J. Liang, P. Wei, Q. Liu, L. Xie, Y. Luo and X. Sun, *EScience*, 2022, 2, 382-388.
- [8]. S. Liu, L. Cui, S. Yin, H. Ren, Z. Wang, Y. Xu, X. Li, L. Wang and H. Wang, *Appl. Catal. B*, 2022, **319**, 121876.
- [9]. G. Wen, J. Liang, L. Zhang, T. Li, Q. Liu, X. An, X. Shi, Y. Liu, S. Gao, A. M. Asiri, Y. Luo, Q. Kong and X. Sun, J. Colloid Interf. Sci., 2022, 606, 1055-1063.
- [10]. Q. Chen, X. An, Q. Liu, X. Wu, L. Xie, J. Zhang, W. Yao, M. S. Hamdy, Q. Kong and X. Sun, *Chem. Commun.*, 2022, **58**, 517-520.
- [11]. L. Yi, P. Shao, H. Li, M. Zhang, X. Peng, K. Chen, X. Liu and Z. Wen, J. Power Sources, 2023, 559, 232668.
- [12]. Z. Cai, C. Ma, D. Zhao, X. Fan, R. Li, L. Zhang, J. Li, X. He, Y. Luo, D. Zheng, Y. Wang, B. Ying, S. Sun, J. Xu, Q. Lu and X. Sun, *Mater. Today Energy*, 2023, **31**, 101220.
- [13]. X. He, L. Hu, L. Xie, Z. Li, J. Chen, X. Li, J. Li, L. Zhang, X. Fang, D. Zheng, S. Sun, J. Zhang, A. Ali Alshehri, Y. Luo, Q. Liu, Y. Wang and X. Sun, J. Colloid Interf. Sci., 2023, 634, 86-92.
- [14]. G. Wang, Q. Chen, X. An, Q. Liu, L. Xie, J. Zhang, W. Yao, X. Liu, S. Sun, X. Sun and Q. Kong, *Colloid. Surface. A*, 2023, 657, 130549.
- [15]. J. Liang, B. Deng, Q. Liu, G. Wen, Q. Liu, T. Li, Y. Luo, A. A. Alshehri, K. A. Alzahrani and D. Ma, *Green Chem.*, 2021, 23, 5487-5493.
- [16]. L. Hu, D. Zhao, C. Liu, Y. Liang, D. Zheng, S. Sun, Q. Li, Q. Liu, Y. Luo, Y. Liao, L. Xie and X. Sun, *Inorg. Chem. Front.*, 2022, 9, 6075-6079.
- [17]. Q. Liu, G. Wen, D. Zhao, L. Xie, S. Sun, L. Zhang, Y. Luo, A. A. Alshehri, M. S. Hamdy, Q. Kong and X. Sun, J. Colloid Interf. Sci., 2022, 623, 513-519.