Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2023

-Electronic Supplementary Information-

Enaminone-directed ruthenium(II)-catalyzed C–H activation and annulation of arenes with diazonaphthoquinones for polycyclic benzocoumarins

Sudeshna Mondal, Chandan Kumar Giri and Mahiuddin Baidya*

Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India mbaidya@iitm.ac.in

Table of Contents

1.	Gener	al information	S3
2.	Typic and D	al Ruthenium(II)-Catalyzed Annulation Between Enaminone (1) viazonaphthoquinone (2)	S4
3.	Post-s	ynthetic manipulations	
j	i. S	ynthesis of compounds 5a and 5b	S4
i	i. Sy	nthesis of compound 6	S 5
4.	Mechanistic Studies		
	i.	Deuterium Exchange Experiment	S 5
	ii.	Competition Experiment	S6
	iii.	Reaction with the Cationic Complex	S7
5.	X-ray	Crystal Data of Compound 3n	S7
6.	NMR	Spectroscopic Data of Synthesized Compounds	S9
7.	NMR	Spectra of Synthesized Compounds	S22

General Information:

All reactions were monitored by thin layer chromatography (TLC) on Merck 60 F 254 precoated silica plates and visualized using a UV lamp (366 or 254 nm) or by use of potassium permanganate, 5 g $K_2CO_3/100$ mL water. Products were isolated by column chromatography (Merck silica gel 100-200 µm).

¹³C and ¹H NMR spectra were recorded on a Bruker 400 MHz or Bruker 500 MHz spectrometers. Chemical shift values (δ) are reported in ppm and calibrated to the residual solvent peak- CDCl₃ δ = 7.26 ppm for ¹H, δ = 77.16 for ¹³C; DMSO-d₆ δ = 2.51 ppm for ¹H, δ = 39.5 ppm for ¹³C; or calibrated to tetramethyl silane (δ = 0.00). All NMR spectra were recorded at ambient temperature (290 K) unless otherwise noted. ¹H NMR spectra are reported as follows: chemical shift (multiplicity, coupling constant, integration). The following abbreviations are used to indicate multiplicities: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; dd, doublet of doublet; dt, doublet of triplet; dq, doublet of quartet; br, broad.

Mass spectra were recorded by electron spray ionization (ESI) method on a Q-TOF Micro with lock spray source. The crystal data were collected and integrated using a Bruker Axs kappa apex 2 CCD diffractometer, with graphite monochromated Mo-Kα radiation.

[Ru(*p*-cymene)Cl₂]₂ was purchased from Alfa Aesar company. Ketones, naphthol, hexafluoroisopropanol (HFIP), organic solvents, and inorganic bases were purchased from Avra chemicals, Spectrochem, and TCI chemicals, and all the compounds were utilized without further purification. All enaminones compounds were synthesized according to previous literature report (*Angew. Chem. Int. Ed.* 2016, **55**, 9384). Diazonaphthoquinones were prepared following previous literature report (*Org. Lett.* 2023, **25**, 2873).

For the complete list of reference 3:

3. (a) L. Ackermann and J. Pospech, Org. Lett., 2011, 13, 4153; (b) L. Ackermann and S. Fenner, Org. Lett., 2011, 13, 6548; (c) L. Ackermann, A. V. Lygin and N. Hofmann, Angew. Chem. Int. Ed., 2011, 50, 6379; (d) B. Li, J. Ma, N. Wang, H. Feng, S. Xu and B. Wang, Org. Lett., 2012, 14, 736; (e) H. Tan, H. Li, J. Wang and L. Wang, Chem. Eur. J., 2015, 21, 1904; (f) J. Wu, W. Xu, Z. X. Yu and J. Wang, J. Am. Chem. Soc., 2015, 137, 9489; (g) A. Bechtoldt, C. Tirler, K. Raghuvanshi, S. Warratz, C. Kornhaaß and L. Ackermann, Angew. Chem. Int. Ed., 2016, 55, 264; (h) A. Bechtoldt, M. E. Baumert, L. Vaccaro and L. Ackermann, Green Chem., 2018, 20, 398; (i) A. Mandal, G. Mehta, S. Dana and M. Baidya, Org. Lett., 2019, 21, 5879; (j) Q. Lu, S. Mondal, S. Cembellín, S. Greßies and F. Glorius, Chem. Sci., 2019, 10, 6560; (k) D. Chowdhury, S. Dana, A. Mandal and M. Baidya, Chem. Commun., 2019, 55, 11908; (l) S. Dana, P. Dey, S. A. Patil and M. Baidya, Chem Asian J., 2020, 15, 564; (m) S. Kumar, A. M. Nair, C. M. R. Volla, Org. Lett., 2020, 22, 2141; (n) D. Chowdhury, S. Dana, S. Maity and M. Baidya, Org. Lett., 2020, 22, 6760; (o) S. Dana, C. K. Giri and M. Baidya, Chem. Commun., 2020, 56, 13048; (p) C. K. Giri, S. Dana and M. Baidya, Chem Asian J., 2022, 17, e20200861; (r) N. Aravindan, V. Vinayagam and M. Jeganmohan, Org. Lett., 2022, 24, 5260.

Typical Ruthenium(II)-Catalyzed Annulation Between Enaminone (1) and Diazonaphthoquinone (2):

To an oven dried pressure tube $(10 \times 1.5 \text{ cm})$, corresponding enaminone **1** (0.2 mmol, 1.0 equiv), diazonaphthoquinone **2** (1.5 equiv), [Ru(*p*-cymene)Cl₂]₂ (5.0 mol %), K₂CO₃ (0.5 equiv) and 1-AdCOOH (0.2 equiv) were taken. Silver hexafluoroantimonate (20 mol %) was weighed in a glass vial inside the glove-box and then added to the reaction tube under the flow of nitrogen. Next, hexafluoroisopropanol (1.0 mL) was added and the reaction tube was capped. The reaction mixture was then stirred at 100 °C for 24 h. After completion of the reaction (monitored by TLC), it was allowed to cool to room temperature. The volatiles were first evaporated, and then the residue was dissolved in ethyl acetate and transferred into a separating funnel. It was then washed with saturated sodium bicarbonate solution and dried over anhydrous Na₂SO₄. After evaporation under reduced pressure, the resulting residue was purified by column chromatography on silica gel, using hexane and ethyl acetate as eluent, to obtain pure polycyclic benzocoumarin **3/4**.

Post-synthetic manipulations

Synthesis of compounds 5a and 5b:

To an oven-dried screw cap reaction tube $(10 \times 1.5 \text{ cm})$, corresponding coumarin (**3a** or **3b**, 0.2 mmol) in toluene (1.0 mL) was taken. Then, Lawesson's reagent (1.0 equiv) was added and the mixture was stirred for 3 h at 110 °C. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography with a gradient eluent of hexane/EtOAc = (95/05) to get pure compound (**5a** or **5b**).

Synthesis of compound 6:

To an oven-dried screw cap reaction tube $(10 \times 1.5 \text{ cm})$, compound **3a** (0.2 mmol) in EtOH (1.0 mL) was taken. Then NaBH₄ (1.5 equiv) was added and the mixture was stirred for 6 h at rt. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography with a gradient eluent of hexane/EtOAc = (95/25) to get pure compound **6**.

Mechanistic Studies:

To an oven-dried pressure tube $(10 \times 1.5 \text{ cm})$, enaminone **1a** (0.2 mmol, 1.0 equiv), diazonaphthoquinone **2a** (1.5 equiv), [Ru(*p*-cymene)Cl₂]₂ (5.0 mol %), K₂CO₃ (0.5 equiv), 1-AdCOOH (0.2 equiv) and AcOH-d₄ (10 equiv) were taken. Silver hexafluoroantimonate (20 mol %) was weighed in a glass vial inside the glove-box and then added to the tube under the flow of nitrogen. Then hexafluoroisopropanol (1.0 mL) was added and the reaction tube was capped. The reaction mixture was stirred at 100 °C for 12 h. After that, volatiles were first evaporated, and the residue was dissolved in ethyl acetate and transferred into a separating funnel. It was then washed with saturated sodium bicarbonate solution and dried over anhydrous Na₂SO₄. After evaporation under reduced pressure, the resulting residue was purified by column chromatography on silica gel with a gradient eluent of Hexane/EtOAc = (10/90) to get the pure product. The H/D-scrambling was observed through ¹H NMR spectroscopy.

(ii) Competition Experiment:

To an oven-dried pressure tube $(10 \times 1.5 \text{ cm})$, enaminones **1e** and **1n** (0.2 mmol, 1:1 mixture), diazonaphthoquinone (**2a**, 1.5 equiv), [Ru(*p*-cymene)Cl₂]₂ (5.0 mol %), K₂CO₃ (0.5 equiv), 1-AdCOOH (0.2 equiv) were taken. Silver hexafluoroantimonate (20 mol %) was weighed in a glass vial inside the glove box and then added to the reaction tube under the flow of nitrogen. Next, hexafluoroisopropanol (1 mL) was added and the reaction tube was capped. The reaction mixture was then stirred at 100 °C for 12 h. Afterwards, it was allowed to cool to room temperature. The volatiles were first evaporated, and then the residue was dissolved in ethyl acetate and transferred into a separating funnel. It was then washed with saturated sodium bicarbonate solution and dried over anhydrous Na₂SO₄. After evaporation under reduced pressure, the resulting residue was purified by column chromatography on silica gel, using

hexane and ethyl acetate as eluent to yield pure polycyclic benzocoumarins **3e** and **3n**. The ratio of yield of **3e** and **3n** was 1.4:1.

(iii) Reaction with the Cationic Complex:

To an oven-dried pressure tube $(10 \times 1.5 \text{ cm})$, enaminone **1a** (0.2 mmol, 1.0 equiv), diazonaphthoquinone **2a** (1.5 equiv), {[Ru(*p*-cymene)(MeCN)₃](SbF₆)₂} (5.0 mol %), K₂CO₃ (0.5 equiv), 1-AdCOOH (0.2 equiv) were taken. Next, hexafluoroisopropanol (1.0 mL) was added and the reaction tube was capped. The reaction mixture was then stirred at 100 °C for 24 h. After that, the volatiles were first evaporated, and then the residue was dissolved in ethyl acetate and transferred into a separating funnel. It was then washed with saturated sodium bicarbonate solution and dried over anhydrous Na₂SO₄. After evaporation under reduced pressure, the resulting residue was purified by column chromatography on silica gel, using hexane and ethyl acetate as eluent to yield pure polycyclic benzocoumarin **3a** (40 mg, 76%).

Crystallographic Experimental Section: Crystals of compound **3n** were obtained through a slow evaporation technique at room temperature from hexane/DCM solvent mixture.

X-ray crystal data of compound 3n: (CCDC 2284004, Ellipsoid Probability 50%)

Identification code	3n
Empirical formula	C18 H9 F3 O2
Formula weight	314.25

Temperature	298(2) K				
Wavelength	0.71073 A				
Crystal system, space group Triclinic, P-1					
Unit cell dimensions	$ \begin{array}{ll} a = 10.9295(9) \ A & alpha = 103.951(3) \ deg. \\ b = 11.7939(9) \ A & beta = 106.880(3) \ deg. \\ c = 17.2156(13) \ A & gamma = 91.212(3) \ deg. \end{array} $				
Volume	2050.9(3) A^3				
Z, Calculated density	6, 1.527 Mg/m^3				
Absorption coefficient	0.126 mm^-1				
F(000)	960				
Crystal size 0.207 x 0.119 x 0.049 mm					
Theta range for data collection 2.453 to 25.000 deg.					
Limiting indices	-12<=h<=12, -14<=k<=14, -20<=l<=20				
Reflections collected / unique $73634 / 7202 [R(int) = 0.2233]$					
Completeness to theta = $25.000 99.9 \%$					
Absorption correction Semi-empirical from equivalents					
Max. and min. transmission 0.7452 and 0.6607					
Refinement method Full-matrix least-squares on F^2					
Data / restraints / parameter	s 7202 / 204 / 678				
Goodness-of-fit on F ²	1.119				
Final R indices [I>2sigma(I)] $R1 = 0.1169, wR2 = 0.2837$				
R indices (all data)	R1 = 0.2058, wR2 = 0.3493				
Extinction coefficient	n/a				
Largest diff. peak and hole	0.322 and -0.479 e.A^-3				

NMR Spectroscopic Data of Synthesized Compounds

2-Methyl-5H-dibenzo[c,f]chromen-5-one (**3a**): White solid; Eluent: 5–10% EtOAc in Hexane; yield = 94% (49 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.70 (d, *J* = 8.7 Hz, 1H), 8.37 – 8.33 (m, 2H), 7.90 (d, *J* = 9.4 Hz, 1H), 7.85 (d, *J* = 8.9 Hz, 1H), 7.64 (dd, *J* = 9.3, 6.2 Hz, 1H), 7.54 – 7.51 (m, 1H), 7.43 – 7.39 (m, 2H), 2.58 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 161.4, 150.5, 145.4, 135.5, 131.7, 131.4, 130.8, 129.7, 129.5, 129.4, 127.7, 126.7, 125.4, 125.1, 120.0, 117.7, 112.6, 22.6 ppm; HRMS (ESI) m/z: [M+H]+ Calcd. For C₁₈H₁₃O₂⁺ 261.0910 Found 261.0919.

5H-Dibenzo[c,f]chromen-5-one (3b): White solid; Eluent: 5–10% EtOAc in Hexane; yield = 84% (42 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.76 (d, *J* = 8.6 Hz, 1H), 8.64 (d, *J* = 8.3 Hz, 1H), 8.50 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.95 – 7.87 (m, 3H), 7.68 – 7.61 (m, 2H), 7.57 – 7.53 (m, 1H), 7.48 (d, *J* = 10.2 Hz, 1H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 161.4, 150.5, 135.6, 134.4, 131.8, 131.7, 130.9, 129.7, 129.5, 128.3, 127.9, 126.5, 125.5, 125.2, 122.6, 117.7, 112.7 ppm; HRMS (ESI) m/z: [M+H]+ Calcd. For C₁₇H₁₁O₂+ 247.0754 Found 247.0765.

2-(Tert-butyl)-5H-dibenzo[c,f]chromen-5-one (3c): White solid; Eluent: 5–10% EtOAc in Hexane; yield = 86% (52 mg); Melting point: 160–162 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.75 (d, *J* = 8.7 Hz, 1H), 8.66 (s, 1H), 8.43 (d, *J* = 8.3 Hz, 1H), 7.94 (dd, *J* = 18.4, 8.5 Hz, 2H), 7.70 (d, *J* = 6.2 Hz, 2H), 7.58 – 7.54 (m, 1H), 7.51 – 7.48 (m, 1H), 1.48 (s, 9H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 161.5, 158.3, 150.5, 135.4, 131.8, 131.4, 130.6, 129.7, 129.5, 127.8, 126.1, 125.4, 125.1, 123.4, 120.0, 117.8, 113.2, 35.9, 31.3 ppm; HRMS (ESI) m/z: [M+H]+ Calcd. For C₂₁H₁₉O₂+303.1380 Found 303.1364

2-Isobutyl-5H-dibenzo[c,f]chromen-5-one (**3d**): White solid; Eluent: 5–10% EtOAc in Hexane; yield = 82% (50 mg); Melting point: 158–160 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.75 (d, *J* = 8.7 Hz, 1H), 8.42 – 8.40 (m, 2H), 7.94 (d, *J* = 8.1 Hz, 1H), 7.90 (d, *J* = 8.8 Hz, 1H), 7.70 – 7.65 (m, 1H), 7.57 – 7.53 (m, 1H), 7.48 (d, *J* = 9.5 Hz, 1H), 7.43 (d, *J* = 8.0, 2.8 Hz, 1H), 2.73 (d, *J* = 7.3 Hz, 2H), 2.07 – 2.01 (m, 1H), 1.01 (d, *J* = 6.6 Hz, 6H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 161.5, 150.6, 149.1, 135.5, 131.8, 131.5, 130.7, 129.8, 129.54, 129.48, 127.8, 127.0, 125.4, 125.1, 120.4, 117.8, 112.9, 46.2, 30.4, 22.5 ppm; HRMS (ESI) m/z: [M+H]+ Calcd. For C₂₁H₁₉O₂+ 303.1380 Found 303.1383.

2-Methoxy-5H-dibenzo[c,f]chromen-5-one (**3e**): White solid; Eluent: 5–10% EtOAc in Hexane; yield = 88% (49 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.76 (d, *J* = 9.4 Hz, 1H), 8.43 (d, *J* = 8.8 Hz, 1H), 8.07 (d, 1H), 7.94 – 7.89 (m, 2H), 7.67 – 7.64 (m, 1H), 7.56 – 7.52 (m, 1H), 7.45 (d, *J* = 8.9 Hz, 1H), 7.15 (dd, *J* = 8.8, 2.4 Hz, 1H), 4.01 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 164.6, 161.2, 150.9, 137.5, 133.2, 131.8, 131.7, 129.8, 129.5, 127.9, 125.4, 124.8, 117.9, 115.6, 114.8, 112.6, 111.2, 55.9 ppm; HRMS (ESI) m/z: [M+H]+ Calcd. For C₁₈H₁₃O₃⁺ 277.0859 Found 277.0855.

5-Oxo-5H-dibenzo[c,f]chromen-2-yl 4-methylbenzenesulfonate (**3f**): White solid; Eluent: 5–10% EtOAc in Hexane; yield = 87% (72 mg); Melting point: 180–182 °C; ¹**H** NMR (400 MHz, CDCl₃) δ 8.42 (d, *J* = 8.6 Hz, 1H), 8.31 – 8.26 (m, 2H), 7.93 (d, *J* = 8.3 Hz, 2H), 7.81 (d, *J* = 7.8 Hz, 2H), 7.61 – 7.54 (m, 2H), 7.45 (d, *J* = 8.9 Hz, 1H), 7.38 (d, *J* = 7.8 Hz, 2H), 7.22 – 7.19 (m, 1H), 2.46 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.5, 154.1, 150.9, 146.2, 137.2, 133.0, 132.6, 132.0, 131.7, 130.3, 129.6, 129.4, 128.8, 128.4, 125.8, 124.3, 122.4, 120.9, 120.4, 117.6, 111.7, 22.0 ppm; **HRMS** (ESI) m/z: [M+H]+ Calcd. For C₂₄H₁₇O₅S⁺ 417.0791 Found 417.0794.

2-(Benzyloxy)-5H-dibenzo[c,f]chromen-5-one (3g): White solid; Eluent: 5–10% EtOAc in Hexane; yield = 85% (60 mg); Melting point: 168–170 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.42 (dd, *J* = 11.3, 8.6 Hz, 2H), 8.04 (s, 1H), 7.88 (dd, *J* = 16.5, 8.3 Hz, 2H), 7.55 – 7.45 (m, 4H), 7.48 – 7.44 (m, 2H), 7.43 – 7.38 (m, 2H), 7.23 (dd, *J* = 8.9, 2.3 Hz, 1H), 5.28 (s, 2H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 163.5, 161.1, 150.9, 137.5, 136.0, 133.1, 131.8, 131.7, 129.7, 129.4, 129.0, 128.6, 127.9, 127.5, 125.3, 124.7, 117.8, 116.1, 115.7, 112.5, 111.7, 70.6 ppm; HRMS (ESI) m/z: [M+H]+ Calcd. For C₂₄H₁₇O₃⁺ 353.1172 Found 353.1167.

2-Fluoro-5H-dibenzo[c,f]chromen-5-one (**3h**): White solid; Eluent: 5–10% EtOAc in Hexane; yield = 78% (41 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.67 (d, J = 8.7 Hz, 1H), 8.54 – 8.50 (m, 1H), 8.30 (dd, J = 11.0, 4.6 Hz, 1H), 7.95 – 7.93 (m, 2H), 7.72 – 7.68 (m, 1H), 7.59 – 7.55 (m, 1H), 7.48 – 7.45 (m, 1H), 7.35 – 7.30 (m, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 166.7 (d, J = 255.1 Hz), 160.6, 151.0, 138.1 (d, J = 10.4 Hz), 134.0 (d, J = 10.4 Hz), 132.5, 131.7, 129.6, 129.5, 128.4, 125.7, 124.5, 118.8 (d, J = 2.1 Hz), 117.7, 116.3 (d, J = 22.9 Hz), 113.0 (d, J = 25.0 Hz), 111.9 (d, J = 2.5 Hz) ppm; ¹⁹F NMR (471 MHz, CDCl₃) δ -101.3 ppm; HRMS (ESI) m/z: [M+H]+ Calcd. For C₁₇H₁₀O₂F⁺ 265.0659 Found 265.0649.

3h

2-Chloro-5H-dibenzo[c,f]chromen-5-one (3i): White solid; Eluent: 5–10% EtOAc in Hexane; yield = 82 % (46 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.64 (d, *J* = 8.7 Hz, 1H), 8.58 (s, 1H), 8.40 (d, *J* = 8.5 Hz, 1H), 7.92 (dd, *J* = 8.6, 4.8 Hz, 2H), 7.71 – 7.68 (m, 1H), 7.57 – 7.55 (m, 2H), 7.44 (d, *J* = 8.9 Hz, 1H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 160.6, 151.0, 141.5, 136.9, 132.5, 132.4, 131.7, 129.6, 129.5, 128.7, 128.4, 126.3, 125.8, 124.6, 120.8, 117.7, 111.6 ppm; HRMS (ESI) m/z: [M+H]+ Calcd. For C₁₇H₁₀O₂Cl⁺ 281.0364 Found 281.0367.

2-Bromo-5H-dibenzo[c,f]chromen-5-one (3j): White solid; Eluent: 5-10% EtOAc in Hexane; yield = 84% (54 mg); Melting point: 200–202 °C; ¹H **NMR** (400 MHz, CDCl₃) δ 8.67 (s, 1H), 8.56 (d, *J* = 8.7 Hz, 1H), 8.27 (d, *J* = 8.4 Hz, 1H), 7.90 – 7.87 (m, 2H), 7.70 – 7.64 (m, 2H), 7.55 – 7.51 (m, 1H), 7.40 (d, *J* = 9.0 Hz, 1H) ppm; ¹³C **NMR** (101 MHz, CDCl₃) δ 160.7, 150.8, 136.8, 132.4, 132.2, 131.6, 131.5, 130.1, 129.5, 129.2, 129.1, 128.4, 125.7, 124.5, 120.9, 117.5, 111.3 ppm; **HRMS** (ESI) m/z: [M+H]+ Calcd. For C₁₇H₁₀O₂Br⁺ 324.9859 Found 324.9866.

2-Iodo-5H-dibenzo[c,f]chromen-5-one (3k): White solid; Eluent: 5-10% EtOAc in Hexane; yield = 80% (59 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.97 (s, 1H), 8.62 (d, *J* = 8.6 Hz, 1H), 8.14 (d, *J* = 8.3 Hz, 1H), 7.96 – 7.90 (m, 3H), 7.74 – 7.68 (m, 1H), 7.58 – 7.54 (m, 1H), 7.44 (d, *J* = 8.9 Hz, 1H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 161.0, 150.8, 137.3, 136.7, 135.3, 132.4, 131.9, 131.7, 129.6, 129.3, 128.4, 125.7, 124.5, 121.5, 117.6, 111.2, 103.0 ppm; .**HRMS** (ESI) m/z: [M+H]+ Calcd. For C₁₇H₁₀O₂I⁺ 372.9720 Found 372.9732.

Ph 3I

(E)-2-Styryl-5H-dibenzo[c,f]chromen-5-one (3l): White solid; Eluent: 5-10% EtOAc in Hexane; yield = 77% (54 mg); Melting point: 213–214 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.77 (d, *J* = 8.6 Hz, 1H), 8.61 (s, 1H), 8.43 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.94 (d, *J* = 8.1 Hz, 1H), 7.90 (d, *J* = 8.8 Hz, 1H), 7.77 (d, *J* = 8.3 Hz, 1H), 7.71 – 7.68 (m, 1H), 7.60 – 7.55 (m, 3H), 7.47 – 7.40 (m, 3H), 7.33 (dd, *J* = 15.4, 7.6 Hz, 2H), 7.23 (s, 1H) ppm; ¹³C NMR(126 MHz, CDCl₃) δ 161.2, 150.7, 143.5, 136.5, 136.1, 133.0, 131.8, 131.7, 131.2, 129.7, 129.5, 129.0, 128.9, 128.0, 127.5, 127.2, 125.6, 125.5, 125.1, 124.9, 121.1, 117.8, 112.7 ppm; HRMS (ESI) m/z: [M+H]+ Calcd. For C₂₅H₁₇O₂⁺ 349.1223 Found 349.1228.

Methyl (E)-3-(5-oxo-5H-dibenzo[c,f]chromen-2-yl)acrylate (3m): White solid; Eluent: 5-10% EtOAc in Hexane; yield = 79 % (52 mg); Melting point: 210–212 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.69 – 8.66 (m, 2H), 8.47 (d, *J* = 8.2 Hz, 1H), 7.95 – 7.91 (m, 2H), 7.84 (d, *J* = 16.0 Hz, 1H), 7.76 (dd, *J* =

8.2, 1.4 Hz, 1H), 7.70 (dd, J = 10.2, 6.9 Hz, 1H), 7.59 – 7.55 (m, 1H), 7.45 (d, J = 8.9 Hz, 1H), 6.65 (d, J = 16.0 Hz, 1H), 3.87 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 166.9, 160.8, 150.7, 143.3, 140.1, 136.1, 132.2, 131.8, 131.4, 129.6, 129.5, 128.3, 126.8, 126.4, 125.7, 124.8, 123.1, 121.7, 117.6, 112.2, 52.2 ppm; **HRMS** (ESI) m/z: [M+H]+ Calcd. For C₂₁H₁₅O₄+ 331.0965 Found 331.0971.

2-(Trifluoromethyl)-5H-dibenzo[c,f]chromen-5-one (3n): White solid; Eluent: 5-10% EtOAc in Hexane; yield = 76% (48 mg); Melting point: 170– 174 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.87 (s, 1H), 8.64 – 8.58 (m, 2H), 7.96 – 7.94 (m, 2H), 7.85 – 7.83 (m, 1H), 7.72 (dd, *J* = 10.6, 4.1 Hz, 1H), 7.60 – 7.57 (m, 1H), 7.47 (dd, *J* = 9.1, 3.8 Hz, 1H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 160.2, 150.9, 136.0, 135.9 (q, *J* = 32.7 Hz), 132.8, 131.8, 131.7, 129.7, 129.4, 128.7, 125.9, 124.9, 124.5 (q, *J* = 3.5 Hz), 124.4, 123.6 (q, *J* = 273.4 Hz), 123.5 (q, *J* = 4.0 Hz), 117.5, 111.7 ppm; ¹⁹F NMR (471 MHz, CDCl₃) δ -63.2 ppm; **HRMS** (ESI) m/z: [M+H]+ Calcd. For C₁₈H₁₀O₂F₃⁺ 315.0627 Found 315.0628.

3n

Methyl 5-oxo-5H-dibenzo[c,f]chromene-2-carboxylate (3o): White solid; Eluent: 5-10% EtOAc in Hexane; yield = 81% (49 mg); Melting point: 200– 202 °C; ¹H NMR (500 MHz, CDCl₃) δ 9.31 (s, 1H), 8.75 (d, *J* = 8.6 Hz, 1H), 8.54 (d, *J* = 8.2 Hz, 1H), 8.21 (d, *J* = 9.6 Hz, 1H), 7.94 (dd, *J* = 8.6, 4.2 Hz, 2H), 7.74 – 7.70 (m, 1H), 7.57 (dd, *J* = 9.2, 6.9 Hz, 1H), 7.47 (d, *J* = 8.8 Hz, 1H), 4.04 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 166.2, 160.7, 150.7, 135.6, 135.4, 132.4 (2×C), 131.8, 131.1, 129.6, 128.5 (2×C), 128.0, 125.8, 125.4, 124.9, 117.6, 112.2, 53.0 ppm; **HRMS** (ESI) m/z: [M+H]+ Calcd. For C₁₉H₁₃O₄⁺ 305.0808 Found 305.0812.

8H-Benzo[f]naphtho[2,3-c]chromen-8-one (3p): White solid; Eluent: 5-10% EtOAc in Hexane; yield = 85% (50 mg); ¹H NMR (500 MHz, CDCl₃) δ 9.03 (s, 1H), 8.97 (s, 1H), 8.88 (d, *J* = 8.7 Hz, 1H), 8.05 - 8.01 (m, 2H), 7.94 - 7.92 (m, 1H), 7.88 (d, *J* = 8.9 Hz, 1H), 7.71 - 7.67 (m, 2H), 7.63 - 7.59 (m, 1H), 7.57 - 7.54 (m, 1H), 7.45 (d, *J* = 8.9 Hz, 1H) ppm; ¹³C NMR

(126 MHz, CDCl₃) δ 161.7, 149.8, 136.1, 132.7, 131.9, 131.3, 130.1, 129.9, 129.6, 129.5, 129.4, 128.5, 128.0, 127.4, 125.9, 125.4 (2×C), 125.1, 120.6, 117.8, 112.8 ppm; **HRMS** (ESI) m/z: [M+H]+ Calcd. For C₂₁H₁₃O₂⁺ 297.0910 Found 297.0921.

6H-[1,3]Dioxolo[4',5':3,4]benzo[1,2-c]benzo[f]chromen-6-one (3q): White solid; Eluent: 5-10% EtOAc in Hexane; yield = 91 % (53 mg); Melting point: 170–172 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.4 Hz, 1H), 8.16 (d, *J* = 8.3 Hz, 1H), 7.94 (d, *J* = 8.8 Hz, 1H), 7.88 (d, *J* = 7.9 Hz, 1H), 7.59 – 7.50 (m, 2H), 7.43 (d, *J* = 8.8 Hz, 1H), 7.13 (d, *J* = 8.3 Hz, 1H), 6.20 (s, 2H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 161.1, 153.3, 150.4, 142.4, 132.2, 131.4, 128.9, 128.3, 127.63, 127.56, 126.0, 125.5, 118.3, 117.30, 117.27, 110.5, 109.5, 101.8 ppm; **HRMS** (ESI) m/z: [M+H]+ Calcd. For C₁₈H₁₁O₄⁺ 291.0652 Found 291.0642.

2,3-Dichloro-5H-dibenzo[c,f]chromen-5-one (3r): White solid; Eluent: 5-10% EtOAc in Hexane; yield = 78 % (49 mg); Melting point: 210–214 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.76 (s, 1H), 8.64 (d, *J* = 8.6 Hz, 1H), 8.55 (s, 1H), 7.97 (d, *J* = 10.7 Hz, 2H), 7.76 – 7.72 (m, 1H), 7.62 – 7.58 (m, 1H), 7.48 (dd, *J* = 8.9, 2.0 Hz, 1H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 159.7, 151.1, 139.8, 134.9, 132.84, 132.79, 132.3, 131.9, 129.8, 129.4, 128.7, 128.3, 126.0, 124.4, 122.0, 117.7, 111.1 ppm; HRMS (ESI) m/z: [M+H]+ Calcd. For C₁₇H₉Cl₂O₂⁺ 314.9974 Found 331.9968.

2,3-Dimethoxy-5H-dibenzo[c,f]chromen-5-one (3s): White solid; Eluent: 5-10% EtOAc in Hexane; yield = 80 % (53 mg); Melting point: 220–222 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.73 (d, *J* = 8.6 Hz, 1H), 8.04 (s, 1H), 7.94 (d, *J* = 7.9 Hz, 1H), 7.86 (d, *J* = 10.5 Hz, 2H), 7.67 – 7.64 (m, 1H), 7.56 – 7.52 (m, 1H), 7.46 (d, *J* = 8.8 Hz, 1H), 4.09 (s, 3H), 4.03 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 161.3, 154.5, 150.0, 149.5, 131.8, 130.8, 130.7, 129.6, 129.4, 127.7, 125.3, 124.6, 117.8, 115.9, 112.7, 110.9, 108.1, 56.5, 56.4 ppm; HRMS (ESI) m/z: [M+Na]+ Calcd. For C₁₉H₁₄O₄Na⁺ 329.0784 Found 329.0790.

4H-benzo[f]thieno[2,3-c]chromen-4-one (3t): White solid; Eluent: 5-10% EtOAc in Hexane; yield = 79 % (40 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.61 (d, *J* = 8.6 Hz, 1H), 8.22 (d, *J* = 6.4 Hz, 1H), 8.01 (d, *J* = 6.4 Hz, 1H), 7.90 – 7.86 (m, 2H), 7.68 – 7.65 (m, 1H), 7.56 – 7.53 (m, 1H), 7.49 (d, *J* = 9.2 Hz, 1H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 157.3, 152.2, 144.0, 136.7, 131.4, 131.2, 129.5, 129.2, 128.1, 126.1, 125.9, 125.7, 124.1, 117.9, 112.1 ppm; HRMS (ESI) m/z: [M+H]+ Calcd. For C₁₅H₉SO₂⁺ 253.0318 Found 253.0319.

2-Methyl-4H-benzo[f]thieno[2,3-c]chromen-4-one (**3u**): White solid; Eluent: 5-10% EtOAc in Hexane; yield = 71 % (38 mg); Melting point: 184– 188 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.64 (d, *J* = 8.6 Hz, 1H), 7.93 – 7.88 (m, 3H), 7.69 (t, *J* = 7.3 Hz, 1H), 7.56 (t, *J* = 7.5 Hz, 1H), 7.52 (d, *J* = 8.9 Hz, 1H), 2.75 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 152.7, 152.4, 144.7, 131.3 (2×C), 131.2, 129.5, 129.3, 128.0, 125.6, 124.7, 124.3 (2×C), 118.1, 112.1, 16.9 ppm; HRMS (ESI) m/z: [M+H]+ Calcd. For C₁₆H₁₁SO₂⁺ 267.0474 Found 267.0474.

10-Bromo-2-methyl-5H-dibenzo[c,f]chromen-5-one (**3v**): White solid; Eluent: 5-10% EtOAc in Hexane; yield = 92 % (62 mg); ¹**H** NMR (400 MHz, CDCl₃) δ 8.48 (d, *J* = 9.1 Hz, 1H), 8.30 (d, *J* = 8.0 Hz, 1H), 8.18 (s, 1H), 7.99 (s, 1H), 7.71 (d, *J* = 8.9 Hz, 1H), 7.64 (d, *J* = 11.3 Hz, 1H), 7.42 – 7.37 (m, 2H), 2.57 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 161.0, 150.4, 145.6, 134.8, 132.8, 131.2, 130.9, 130.8, 130.2, 129.8, 128.1, 126.7, 126.4, 119.9, 119.1, 118.8, 112.8, 22.6 ppm; **HRMS** (ESI) m/z: [M+H]+ Calcd. For C₁₈H₁₂O₂Br⁺ 339.0015 Found 339.0016.

9-Methyl-6H-dibenzo[c,h]chromen-6-one (3w): White solid; Eluent: 5-10% EtOAc in Hexane; yield = 70 % (36 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.56 (d, *J* = 8.1 Hz, 1H), 8.32 (d, *J* = 8.1 Hz, 1H), 8.02 (d, *J* = 8.8 Hz, 1H),

7.94 (s, 1H), 7.85 (d, J = 7.7 Hz, 1H), 7.73 (d, J = 8.7 Hz, 1H), 7.64 – 7.57 (m, 2H), 7.38 (d, J = 8.2 Hz, 1H), 2.57 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 161.5, 147.5, 146.2, 135.5, 134.3, 130.7, 130.0, 127.9, 127.7, 127.1, 124.5, 124.0, 122.5, 122.3, 119.3, 118.8, 113.2, 22.5 ppm; HRMS (ESI) m/z: [M+H]+ Calcd. For C₁₈H₁₃O₂+ 261.0910 Found 261.0914.

9-(Benzyloxy)-6H-dibenzo[c,h]chromen-6-one (3x): White solid; Eluent: 5-10% EtOAc in Hexane; yield = 75 % (53 mg); Melting point: 176–180 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.52 (d, *J* = 9.2 Hz, 1H), 8.33 (d, *J* = 8.8 Hz, 1H), 7.87 (d, *J* = 8.8 Hz, 1H), 7.81 (d, *J* = 8.4 Hz, 1H), 7.68 (d, *J* = 8.8 Hz, 1H), 7.59 – 7.54 (m, 3H), 7.50 (d, *J* = 7.5 Hz, 2H), 7.47 – 7.43 (m, 2H), 7.40 (d, *J* = 7.1 Hz, 1H), 7.13 (dd, *J* = 8.7, 2.3 Hz, 1H), 5.23 (s, 2H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 164.1, 161.0, 147.7, 137.6, 135.9, 134.4, 133.0, 129.0, 128.6, 128.0, 127.72, 127.69, 127.1, 124.4, 123.9, 122.5, 119.2, 116.6, 114.5, 113.0, 106.5, 70.6 ppm; HRMS (ESI) m/z: [M+H]+ Calcd. For C₂₄H₁₇O₃⁺ 353.1172 Found 353.1178.

↔ 3y

3x

BnO

White solid; Eluent: 5-10% EtOAc in Hexane; yield = 73 % (42 mg); Melting point: 180–184 °C; **¹H NMR** (400 MHz, CDCl₃) δ 8.54 (d, *J* = 7.1 Hz, 1H), 8.33 (dd, *J* = 9.0, 5.0 Hz, 1H), 8.08 (dd, *J* = 9.2, 2.7 Hz, 1H), 7.85 – 7.83 (m, 1H), 7.66 (dd, *J* = 8.8, 3.6 Hz, 1H), 7.61 – 7.58 (m, 2H), 7.03 (dd, *J* = 8.3, 3.6 Hz, 1H), 6.26 (s, 2H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 160.7, 153.1, 147.0, 143.1, 134.1, 127.9, 127.7, 127.0, 126.9, 124.2, 123.5, 122.9, 122.4, 119.4, 115.5, 111.5, 109.6, 102.8 ppm; **HRMS** (ESI) m/z: [M+H]+ Calcd. For C₁₈H₁₁O₄⁺ 291.0652 Found 291.0639.

(**3y**):

13H-[1,3]dioxolo[4',5':3,4]benzo[1,2-c]benzo[h]chromen-13-one

6H-Benzo[h]naphtho[2,3-c]chromen-6-one (3z): White solid; Eluent: 5-10% EtOAc in Hexane; yield = 78 % (46 mg); Melting point: 160–164 °C; **¹H NMR** (400 MHz, CDCl₃) δ 8.90 (s, 1H), 8.45 – 8.40 (m, 2H), 8.06 (d, J = 8.8 Hz, 1H), 7.92 (d, J = 8.4 Hz, 2H), 7.78 (d, J = 7.7 Hz, 1H), 7.68 (d, J = 8.8 Hz, 1H), 7.63 – 7.59 (m, 1H), 7.56 – 7.48 (m, 3H) ppm; ¹³C NMR (101) MHz, CDCl₃) δ 161.5, 146.4, 136.3, 134.2, 132.8, 132.3, 130.2, 129.63, 129.58, 128.2, 127.68, 127.66, 127.13, 127.06, 124.6, 124.0, 122.2, 121.0, 119.4, 119.2, 113.2 ppm; **HRMS** (ESI) m/z: [M+H]+ Calcd. For C₂₁H₁₃O₂+ 297.0910 Found 297.0909.

2-(4-Isobutylphenyl)-N-(5-oxo-5H-dibenzo[c,f]chromen-2-

yl)propanamide (4a): Yellow liquid; Eluent: 10-20% EtOAc in Hexane; yield = 78 % (70 mg); ¹H NMR (400 MHz, CDCl₃) δ 9.04 (d, *J* = 2.0 Hz, 1H), 8.70 (d, *J* = 8.6 Hz, 1H), 8.23 (d, *J* = 8.6 Hz, 1H), 8.18 (s, 1H), 7.78 (d, *J* = 8.6 Hz, 2H), 7.48 – 7.44 (m, 1H), 7.41 – 7.37 (m, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 7.31 (d, *J* = 8.8 Hz, 1H), 7.15 (d, *J* = 8.1 Hz, 2H), 3.91 – 3.86 (m, 1H), 2.43 (d, *J* = 7.2 Hz, 2H), 1.87 – 1.77 (m, 1H), 1.66 (d, *J* = 7.1 Hz, 3H), 0.87 (d, *J* = 6.7 Hz, 6H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 173.7, 161.2, 150.5, 143.8, 141.4, 137.8, 136.5, 131.8, 131.7, 131.5, 130.0, 129.4, 129.2, 128.0, 127.5, 125.4, 124.8, 119.1, 117.4, 117.3, 116.0, 112.3, 48.1, 45.1, 30.2, 22.5, 18.8 ppm; HRMS (ESI) m/z: [M+H]+ Calcd. For C₃₀H₂₈NO₃⁺ 450.2064 Found 450.2067.

5-(2,5-Dimethylphenoxy)-2,2-dimethyl-N-(5-oxo-5H-

dibenzo[c,f]chromen-2-yl)pentanamide (4b): Colourless liquid; Eluent: 10-20% EtOAc in Hexane; yield = 81 % (80 mg); ¹H NMR (400 MHz, CDCl₃) δ 9.16 (s, 1H), 8.86 (d, *J* = 8.6 Hz, 1H), 8.35 (d, *J* = 8.3 Hz, 1H), 7.98 (s, 1H), 7.88 – 7.84 (m, 2H), 7.71 – 7.67 (m, 1H), 7.52 – 7.48 (m, 2H), 7.39 (d, *J* = 8.6 Hz, 1H), 6.93 (d, *J* = 6.9 Hz, 1H), 6.61 – 6.57 (m, 2H), 3.95 (s, 2H), 2.23 (s, 3H), 2.14 (s, 3H), 1.90 – 1.86 (m, 4H), 1.43 (s, 6H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 176.6, 161.2, 156.8, 150.6, 143.7, 136.7, 136.6, 131.9, 131.8, 131.6, 130.4, 129.6, 129.3, 128.2, 125.5, 125.0, 123.5, 121.0, 119.5, 117.6, 117.5, 116.6, 112.5, 112.2, 67.8, 43.4, 37.6, 25.7, 25.2, 21.4, 15.9 ppm; **HRMS** (ESI) m/z: [M+H]+ Calcd. For C₃₂H₃₂NO₄₊ 494.2326 Found 494.2322.

(R)-2-(6-Methoxynaphthalen-2-yl)-N-(5-oxo-5H-dibenzo[c,f]chromen-

HN O HN O 4c **2-yl)propenamide (4c):** White solid; Eluent: 10-20% EtOAc in Hexane; yield = 85 % (80 mg); Melting point: 184–190 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.11 (s, 1H), 8.73 (d, *J* = 8.6 Hz, 1H), 8.63 (s, 1H), 8.23 (d, *J* = 8.6 Hz, 1H), 7.79 – 7.74 (m, 3H), 7.64 (d, *J* = 8.5 Hz, 1H), 7.59 (d, *J* = 9.0 Hz, 1H), 7.49 – 7.44 (m, 3H), 7.40 – 7.36 (m, 1H), 7.29 (d, *J* = 4.1 Hz, 1H), 7.05 (d, *J* = 8.9 Hz, 1H), 6.99 (s, 1H), 4.05 – 4.01 (m, 1H), 3.83 (s, 3H), 1.74 – 1.71 (m, 3H)ppm; ¹³C NMR (101 MHz, CDCl₃) δ 173.7, 161.3, 157.8, 150.4, 143.9, 136.5, 135.6, 133.9, 131.8, 131.6, 131.5, 129.4, 129.2 (2×C), 129.0, 127.9, 127.8, 126.3, 126.0, 125.4, 124.8, 119.3, 119.2, 117.2, 117.1, 116.1, 112.3, 105.6, 55.3, 48.2, 18.9 ppm. HRMS (ESI) m/z: [M+H]+ Calcd. For C₃₁H₂₄NO₄⁺ 474.1700 Found 474.1705.

2-(4-Chlorophenoxy)-2-methyl-N-(5-oxo-5H-dibenzo[c,f]chromen-2-

yl)propanamide (4d): Sticky liquid; Eluent: 10-20% EtOAc in Hexane; yield = 83 % (76 mg); ¹H NMR (400 MHz, CDCl₃) δ 9.22 (s, 1H), 9.09 (s, 1H), 8.86 (d, *J* = 8.7 Hz, 1H), 8.37 (d, *J* = 8.6 Hz, 1H), 7.88 – 7.83 (m, 2H), 7.72 – 7.68 (m, 1H), 7.58 (d, *J* = 8.6 Hz, 1H), 7.52 – 7.48 (m, 1H), 7.37 (d, *J* = 8.8 Hz, 1H), 7.24 (d, *J* = 8.4 Hz, 2H), 6.94 (d, *J* = 8.3 Hz, 2H), 1.62 (s, 6H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 161.0, 152.2, 150.7, 143.0, 136.7, 131.94, 131.92, 131.6, 129.60, 129.58, 129.56, 129.3, 128.2, 125.5, 125.0, 123.5, 119.4, 117.9, 117.5, 116.4, 112.4, 82.6, 25.0 ppm; HRMS (ESI) m/z: [M+H]+ Calcd. For C₂₇H₂₁NO₄Cl⁺ 458.1154 Found 458.1153.

(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 5-oxo-5H- dibenzo [c,f] chromene-2-carboxylate (4e): Sticky liquid; Eluent: 10-20% EtOAc in Hexane; yield = 77 % (66 mg); ¹H NMR (400 MHz, CDCl₃) δ 9.31 (s, 1H), 8.74 (d, *J* = 8.7 Hz, 1H), 8.53 (d, *J* = 8.2 Hz, 1H), 8.21 (d, *J* = 8.2 Hz, 1H), 7.92 (dd, *J* = 8.6, 4.8 Hz, 2H), 7.70 – 7.66 (m, 1H), 7.58 – 7.54 (m, 1H), 7.45 (d, *J* = 8.9 Hz, 1H), 5.05 – 4.98 (m, 1H), 2.22 (d, *J* = 16.2 Hz, 1H), 2.09 – 2.02 (m, 1H), 1.77 (d, *J* = 5.3 Hz, 2H), 1.67 – 1.58 (m, 2H), 1.23 – 1.12 (m, 2H), 0.99 (d, *J* = 7.1 Hz, 3H), 0.96 (d, *J* = 6.5 Hz, 3H), 0.87 (d, *J* = 6.9 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 165.1, 160.7, 150.6, 136.0, 135.4,

132.2, 131.7, 131.0, 129.51, 129.47, 128.4, 128.3, 127.9, 125.7, 125.1, 124.8, 117.5, 112.2, 76.3, 47.4, 41.0, 34.3, 31.6, 26.9, 23.8, 22.1, 20.9, 16.8 ppm; **HRMS** (ESI) m/z: [M+Na]+ Calcd. For C₂₈H₂₈O₄Na⁺ 451.1880 Found 451.1921.

(3S,8S,9S,10R,13R,14S,17R)-10,13-Dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-

cyclopenta[a]phenanthren-3-yl 5-oxo-5H-dibenzo[c,f]chromene-2carboxylate (4f): White solid; Eluent: 5-10% EtOAc in Hexane; yield = 80 % (105 mg); Melting point: 200–222 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.32 (s, 1H), 8.76 (d, J = 8.7 Hz, 1H), 8.52 (d, J = 8.1 Hz, 1H), 8.20 (d, J = 8.3 Hz, 1H), 7.94 (d, J = 8.1 Hz, 2H), 7.73 – 7.69 (m, 1H), 7.59 – 7.55 (m, 1H), 7.47 (d, J = 8.8 Hz, 1H), 5.46 (s, 1H), 4.95 – 4.93 (m, 1H), 2.54 (d, J =7.6 Hz, 2H), 2.09 - 1.94 (m, 4H), 1.85 - 1.79 (m, 2H), 1.65 - 1.49 (m, 7H), 1.39 - 1.25 (m, 6H), 1.11 (d, J = 18.6 Hz, 7H), 1.02 (d, J = 10.5 Hz, 3H), 0.92 (d, J = 6.4 Hz, 3H), 0.87 (d, J = 6.6 Hz, 6H), 0.69 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 165.0, 160.8, 150.6, 139.5, 136.0, 135.5, 132.3, 131.8, 130.9, 129.5 (2×C), 128.4, 128.0, 125.8 (2×C), 125.2, 124.9, 123.3, 117.5, 112.2, 75.9, 56.8, 56.3, 50.2, 42.4, 39.8, 39.6, 38.3, 37.1, 36.8, 36.3, 35.9, 32.1, 32.0, 28.4, 28.2, 28.0, 24.4, 24.0, 23.0, 22.7, 21.2, 19.5, 18.9, 12.0 ppm; ; **HRMS** (ESI) m/z: [M+H]+ Calcd. For C₄₅H₅₅O₄⁺ 659.4095 Found 659.4062.

3,7-Dimethyloct-6-en-1-yl 5-oxo-5H-dibenzo[c,f]chromene-2

carboxylate (**4g**): Orange liquid; Eluent: 5-10% EtOAc in Hexane; yield = 68 % (76 mg); ¹H NMR (400 MHz, CDCl₃) δ 9.30 (s, 1H), 8.73 (d, *J* = 8.6 Hz, 1H), 8.52 (d, *J* = 8.1 Hz, 1H), 8.19 (d, *J* = 8.2 Hz, 1H), 7.93 (dd, *J* = 10.8, 3.1 Hz, 2H), 7.71 – 7.66 (m, 1H), 7.58 – 7.54 (m, 1H), 7.47 (d, 1H), 5.10 (t, *J* = 7.2 Hz, 1H), 4.50 – 4.45 (m, 2H), 2.04 (t, *J* = 13.3 Hz, 2H), 1.93 – 1.85 (m, 1H), 1.75 – 1.68 (m, 2H), 1.65 (s, 3H), 1.60 (s, 3H), 1.49 – 1.40 (m, 1H), 1.33 – 1.25 (m, 1H), 1.03 (d, *J* = 6.4 Hz, 3H) ppm ¹³C NMR (101 MHz, CDCl₃) δ 165.6, 160.7, 150.6, 135.6, 135.5, 132.3, 131.7, 131.6, 131.0, 129.53, 129.47, 128.39, 128.35, 127.9, 125.7, 125.2, 124.8, 124.5, 117.5,

112.2, 64.6, 37.1, 35.5, 29.8, 25.8, 25.5, 19.7, 17.8 ppm; **HRMS** (ESI) m/z: [M+H]+ Calcd. For C₂₈H₂₉O₄⁺ 429.2060 Found 429.2066.

2-(1,3-dioxoisoindolin-2-yl)-3-methyl-N-(5-oxo-5H- dibenzo[c,f] chromen-2-yl)butanamide (4h): White solid; Eluent: 10-20% EtOAc in Hexane; yield = 79 % (77 mg); Melting point: 270–274 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 9.81 (s, 1H), 9.27 (s, 1H), 8.86 (d, *J* = 8.7 Hz, 1H), 8.38 (d, *J* = 8.2 Hz, 1H), 7.90 – 7.86 (m, 4H), 7.76 – 7.74 (m, 2H), 7.71 – 7.67 (m, 1H), 7.49 (d, *J* = 7.9 Hz, 2H), 7.41 (d, *J* = 8.7 Hz, 1H), 4.65 (d, *J* = 11.3 Hz, 1H), 3.02 – 2.94 (m, 1H), 1.20 (d, *J* = 6.4 Hz, 3H), 0.94 (d, *J* = 6.4 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 169.0, 167.8, 161.1, 150.7, 143.4, 136.8, 134.9, 132.0, 131.9, 131.6, 131.2, 129.6, 129.3, 128.3, 125.5, 125.0, 124.1, 119.5, 117.9, 117.5, 116.5, 112.5, 64.8, 28.1, 19.8, 19.6 ppm; **HRMS** (ESI) m/z: [M+H]+ Calcd. For C₃₀H₂₃N₂O₅⁺ 491.1601 Found 491.1603.

2-(4-isobutylphenyl)-N-(6-oxo-6H-dibenzo[c,h]chromen-9-

yl)propanamide (4i): Sticky liquid; Eluent: 10-20% EtOAc in Hexane; yield = 75 % (67 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.75 (d, *J* = 1.9 Hz, 1H), 8.52 – 8.50 (m, 1H), 8.29 (d, *J* = 8.6 Hz, 1H), 8.00 (d, *J* = 8.8 Hz, 1H), 7.84 – 7.82 (m, 1H), 7.69 (d, *J* = 8.8 Hz, 1H), 7.64 (s, 1H), 7.58 – 7.56 (m, 2H), 7.31 (d, *J* = 7.9 Hz, 2H), 7.26 (s, 1H), 7.18 (d, *J* = 7.8 Hz, 2H), 3.81 (q, *J* = 7.0 Hz, 1H), 2.48 (d, *J* = 7.1 Hz, 2H), 1.90 – 1.83 (m, 1H), 1.65 (d, *J* = 7.1 Hz, 3H), 0.91 (d, *J* = 6.6 Hz, 6H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 161.1, 147.7, 144.2, 141.6, 137.6, 137.1, 134.5, 131.8, 130.2, 128.0, 127.8, 127.6, 127.1, 124.5, 123.9, 122.4, 119.6, 119.5, 116.6, 113.1, 111.4, 48.2, 45.1, 30.3, 22.5, 18.6 ppm; HRMS (ESI) m/z: [M+H]+ Calcd. For C₃₀H₂₈NO₃ 450.2064 Found 450.2052.

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1Hcyclopenta[a]phenanthren-3-yl 6-oxo-6H-dibenzo[c,h]chromene-9carboxylate (4j): White solid; Eluent: 10-20% EtOAc in Hexane; yield = 66

S20

% (87 mg); Melting point: 244–246 °C; ¹**H** NMR (400 MHz, CDCl₃) δ 8.86 (s, 1H), 8.59 (d, J = 9.1 Hz, 1H), 8.53 (d, J = 8.2 Hz, 1H), 8.20 (d, J = 8.3 Hz, 1H), 8.16 (d, J = 8.8 Hz, 1H), 7.90 (d, J = 8.4 Hz, 1H), 7.82 (d, J = 8.7 Hz, 1H), 7.68 – 7.61 (m, 2H), 5.46 (d, J = 5.1 Hz, 1H), 5.01 – 4.94 (m, 1H), 2.57 – 2.54 (m, 2H), 2.09 – 1.94 (m, 4H), 1.85 (d, J = 24.4 Hz, 2H), 1.58 (s, 5H), 1.55 – 1.46 (m, 4H), 1.36 (d, J = 14.5 Hz, 3H), 1.26 (t, J = 13.4 Hz, 3H), 1.12 (d, J = 5.2 Hz, 4H), 1.03 (d, J = 16.2 Hz, 4H), 0.93 (d, J = 6.5 Hz, 3H), 0.87 (d, J = 8.3 Hz, 6H), 0.70 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 165.0, 160.8, 147.7, 139.5, 136.7, 135.6, 134.6, 131.0, 128.9, 128.3, 127.9, 127.4, 125.0, 124.1, 123.9, 123.8, 123.3, 122.5, 119.4, 112.8, 76.0, 56.8, 56.3, 50.2, 42.5, 39.9, 39.7, 38.3, 37.2, 36.8, 36.3, 36.0, 32.1, 32.0, 28.4, 28.2, 28.0, 24.5, 24.0, 23.0, 22.7, 21.2, 19.6, 18.9, 12.0 ppm; **HRMS** (ESI) m/z: [M+H]+ Calcd. For C₄₅H₅₅O₄⁺ 659.4095 Found 659.4064.

2-Methyl-5H-dibenzo[c,f]chromene-5-thione (5a): Sticky yellow solid; Eluent: 2–5% EtOAc in Hexane; yield = 90 % (50 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.79 (d, *J* = 8.5 Hz, 1H), 8.68 (d, *J* = 8.5 Hz, 1H), 8.31 (s, 1H), 7.92 – 7.86 (m, 2H), 7.64 (d, *J* = 7.5 Hz, 1H), 7.54 (d, *J* = 7.5 Hz, 2H), 7.37 (d, *J* = 8.3 Hz, 1H), 2.55 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 198.4, 151.2, 145.0, 133.3, 131.0, 130.6, 129.1, 128.8, 128.4, 128.34, 128.31, 126.9, 125.2, 124.8, 124.5, 116.2, 112.9, 21.6 ppm; HRMS (ESI) m/z: [M+H]+ Calcd. For C₁₈H₁₃OS⁺ 277.0682 Found 277.0595.

5H-Dibenzo[c,f]chromene-5-thione (5b): Sticky yellow solid; Eluent: 2– 5% EtOAc in Hexane; yield = 88 % (46 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.94 (d, *J* = 9.6 Hz, 1H), 8.73 (d, *J* = 8.6 Hz, 1H), 8.59 (d, *J* = 8.2 Hz, 1H), 7.96 – 7.92 (m, 2H), 7.90 – 7.86 (m, 1H), 7.69 – 7.65 (m, 1H), 7.62 – 7.56 (m, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 199.7, 152.2, 134.6, 134.2, 132.1, 131.9, 131.4, 129.9, 129.5, 129.3, 128.8, 128.1, 126.4, 126.0, 125.5, 117.2, 114.0 ppm; **HRMS** (ESI) m/z: [M+H]+ Calcd. For C₁₇H₁₁OS⁺ 263.0525 Found 263.0530.

2-Methyl-5H-dibenzo[c,f]chromene (6): Sticky liquid; Eluent: 20–25% EtOAc in Hexane; yield = 95 % (47 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.97 (t, *J* = 8.8 Hz, 2H), 7.68 (d, *J* = 7.8 Hz, 1H), 7.50 – 7.45 (m, 3H), 7.42 – 7.38 (m, 1H), 7.34 – 7.32 (m, 1H), 7.26 (s, 1H), 4.48 – 4.40 (m, 2H), 2.56 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 150.7, 138.7, 137.7, 133.7, 133.4, 132.6, 129.9, 129.7, 129.6, 129.1, 128.2, 126.7, 124.6, 123.6, 120.1, 118.2, 63.5, 21.2 ppm; **HRMS** (ESI) m/z: [M+H]+ Calcd. For C₁₈H₁₄OK⁺ 285.0676 Found 285.0792.

NMR Spectra of Synthesized Compounds

160.2 156.9 136.1 136.1 136.1 136.1 136.1 136.1 136.1 136.1 136.1 136.1 136.1 136.1 136.1 136.1 136.1 136.1 136.1 136.1 128.7 128.7 128.5 128.7 128.5

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

-9.03 -9.03 -8.89 -8.89 -8.80 -8.80 -8.80 -8.80 -8.80 -8.80 -8.80 -8.80 -8.80 -7.79 -7.79 -7.79 -7.79 -7.79 -7.79 -7.79 -7.79 -7.79 -7.79 -8.00 -7.79 -7.70 -7.79 -7.70 -7.70 -7.70 -7.70 -7.70 -7.70 -7.70 -7.70 -7.70 -7.70 -7.70 -7.70 -7.75 -7.70 -7.755 -7.75

9.05 9.04 9.04 9.04 9.04 9.05 9.05 9.04 9.05 9.04 9.05 9.04 9.05 9.04 9.05 9.04 9.05 9.04 9.04 9.04 9.04 9.04 9.05 9.04 9.04 9.05 9.04 9.05 9.04 9.05 9.04 9.05 9.04 9.05 9.04 9.05 9.04 9.05 9.04 9.05 9.04 9.05 9.04 9.05 9.04 9.05

S52

0.255 <td

9.81 9.82 9.82 9.82 9.82 9.83 9.83 9.83 9.83 9.83 9.83 9.83 7.90 7.73 7.88 7.73 7.88 7.73 7.88 7.73 7.88 7.73 7.88 7.73 7.88 7.73 7.87 7.73 7.75

- 8.72 - 8.60 - 7.96 - 7.92 - 7.92 - 7.92 - 7.92 - 7.92 - 7.92 - 7.96 - 7.65 - 7.55 - 3.95

110 100 f1 (ppm) 210 200 190 170 160 140 130 120

