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1. Materials and instruments

Unless otherwise stated, all reagents were purchased from commercial suppliers
(Aladdin, Sigma-Aldrich, and TCI) and used without further purification. The silica
gels (100-200 and 300-400 mesh) and neutral aluminum oxide (200-300 mesh) were
purchased from Qingdao Ocean Chemical Co. Ltd. High fat food (methionine-choline
deficient diet) comes from Jiangsu Xietong pharmaceutical bio-engineering Co., Ltd.
Fluorescence spectrum were recorded using a Hitachi F-4700 FL spectrophotometer.
Absorption spectra were recorded using a Shimadzu UV-2600 spectrophotometer. 'H

NMR and BC NMR spectra were measured on 400, 500 or 600 MHz Bruker
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spectrometer. Mass spectrometric data were acquired on a microTOF-QII HRMS/MS
instrument (BRUKER). Viscosity values of methanol-glycerol systems in different
proportions were measured with a NDJ-8S rotational viscometer. All media pH
measurements were determined by a Model PHS-3E meter. The fluorescence images
of cells were determined using a Nikon Ti2 confocal fluorescence microscope (Japan)
with 60x oil immersion objective. The fluorescence images of mice were collected on

a Perkin Elmer IVIS Lumina XRMS Series III (U.S.)

2. Synthesis and characterization of probes
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Scheme S1. Synthesis of Cy-Visl and Cy-Vis2. Reagents and conditions:(i) POCl;, DCM:DMF =
1:1(v/v), 80 °C, reflux, 24 hours; (ii) Toluene, reflux, 24 hours; (iii) Toluene/acetic acid = 3:1 (v/v),
110 °C, 2 hours. (iv) Piperidine, EtOH, reflux. (v) KsPO,4, Pd(PPh;),, DMF: H,O = 5:1(v/v), 120
°C, 24 hours. (vi) Piperidine, EtOH, reflux.

Synthesis of Compound 2. To a solution of DMF (18 mL) in DCM (18 mL), POCl; (15

mL, 161 mmol) was added dropwise at -10 °C. After 1 hour, cyclohexanone (4.5 mL,
43 mmol) was added, and the mixture was heated to 80 °C for 12 hours. The mixture
solution was poured into ice water, and kept it overnight. The precipitate was filtered
to obtain 2 as a yellow solid (4.9 g, 66.1%).

Synthesis_of Compound 4. 2, 3, 3-trimethyl-indolenine (7.2 mL, 45 mmol) and

iodoethane (6 mL, 75 mmol) were dissolved in toluene (60 mL). The mixture solution

S2



was refluxed for 24 hours. After being cooled to room temperature, the solid was
filtered and washed with ethyl acetate to obtain 4 as a red solid (8.7 g, 61.5%).

Synthesis of Compound 5. Compounds 2 (344 mg, 2 mmol) and 4 (630 mg, 2 mmol)

were dissolved in a mixture of toluene and acetic acid (20 mL, v/v = 3:1). The mixture
solution was stirred at 110 °C for 2 hours. After cooling to room temperature, the
mixture was poured into water and extracted with ethyl acetate (50 mLx 3). The organic
layer was dried over anhydrous Na,SO,. Aluminum oxide column purification was
performed by using PE/EA = 20:1 to obtain compound 5 as a red solid (282.5 mg,
41.3%)."H NMR (400 MHz, CDCls, 8): 10.25 (s, 1H), 7.84 (d, J = 12.0 Hz, 1H), 7.21
(d, /J=4.0 Hz, 2H), 6.95 (t, J = 8.0 Hz, 1H), 6.72 (d, J = 4.0 Hz, 1H), 5.52 (d, J=12.0
Hz, 1H), 3.75 (d, J = 8.0 Hz, 2H), 2.60 (t, J = 4.0 Hz, 2H), 2.49 (t, J = 4.0 Hz, 2H),
1.74-1.81 (m, 2H) , 1.66 (s, 6H), 1.28 (t, J= 8.0 Hz, 3H). 3C NMR (100 MHz, CDCl;,
0): 190.8, 161.6, 148.7, 143.5, 139.4, 131.4, 128.4, 127.9, 122.9, 121.8, 120.8, 106.7,
92.4,46.5,37.1,28.3, 26.7,24.5,20.9, 11.1. HRMS (ESI, m/z) calcd. 342.1619, found
342.1629 for [M+H]".

Synthesis of Compound 5B. Compound 5 (136.7 mg, 0.4 mmol), Phenylboronic acid

(195.1 mg, 1.6 mmol), and K5PO,4 (987.2 mg, 4.7 mmol) Pd(PPh;), (190 mg, 0.16
mmol) DMF and H,O (25 mL, v/v = 5:1). The mixture solution was stirred at 120 °C
for 24 hours. After cooling to room temperature, the mixture was dissolved in ethyl
acetate (50 mL) and washed with brine (3%x100 mL). The organic layer was dried over
Na,SO,4, and concentrated under reduced pressure. Aluminum oxide column
purification was performed by using PE/EA = 20:1 to obtain compound 5B as a orange
solid (121.5 mg, 79.2%)."TH NMR (400 MHz, CDCls, d): 9.26 (s, 1H), 7.41 (t, J= 8.0
Hz, 3H,), 7.22 (d, J = 4.0 Hz, 2H), 7.15 (t, J = 8.0 Hz, 1H), 7.03 (d, J = 8.0 Hz, 1H),
6.85 (t,J=8.0 Hz, 1H), 6.63 (d, /= 8.0 Hz, 1H), 6.46 (d, /= 12.0 Hz, 1H), 5.50 (d, J
=12.0 Hz, 1H), 3.68 (q, J = 8.0 Hz, 2H), 2.61 (t, J = 8.0 Hz, 2H), 2.57 (t, J = 4.0 Hz,
2H), 1.90-1.84 (m, 2H), 1.24 (t, J = 4.0 Hz, 3H), 1.10 (s, 6H). 3C NMR (100 MHz,
CDCl;, 9) 193.0, 160.1, 158.4, 143.6, 139.3, 137.5, 133.8, 131.5, 130.2, 128.8, 127.8,
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127.7,127.4,121.6, 120.3, 106.4, 92.4, 45.8, 37.0, 27.8, 25.4,22.4,21.4, 11.1. HRMS
(ESI, m/z) calcd. 384.2322, found 384.2358 for [M+H]".

Synthesis _and_characterization _of Cy-Visl. Compound 5 (341.8 mg, 1 mmol),

Benzothiazole-2-acetonitrile (261.4 mg, 1.5 mmol), and piperidine (0.1 mL) were
dissolved in EtOH (10 mL). the mixture solution was heated at reflux for 12 hours.
After cooling to room temperature, the solution was concentrated under reduced
pressure. The mixture was dissolved in CH,Cl, (50 mL) and washed with brine (3x50
mL). The organic layer was dried over Na,SO,4, and concentrated under reduced
pressure. Silica gel column purification was performed by using PE/DCM = 1:3 as the
eluent to obtain compound Cy-Vis1 as a green solid (368.0 mg, 73.9%). 'H NMR (400
MHz, CDCls, 9): 8.62 (s, 1H), 8.04 (d, J= 8.0 Hz, 1H), 7.83 (t, J = 8.0 Hz, 2H), 7.47
(t,J=8.0 Hz, 1H), 7.36 (t,J= 8.0 Hz, 1H), 7.22 (d, /= 8.0 Hz, 2H), 6.97 (t, /= 8.0 Hz
1H), 6.74 (d, J = 8.0 Hz, 1H), 5.58 (d, /= 12.0 Hz 1H), 3.78 (d, J = 8.0 Hz 2H), 3.09
(t,J=8.0 Hz 2H), 2.60 (t, J = 8.0 Hz 2H), 1.92 (t, J = 8.0 Hz, 2H), 1.67 (s, 6H), 1.30
(t, J=4.0 Hz, 3H). 3*C NMR (150 MHz, CDCl;, 3) 165.5, 162.1, 154.0, 144.9, 144.2,
143.2, 139.5, 134.7, 133.2, 127.9, 126.4, 125.8, 125.1, 124.2, 123.1, 121.8, 121.3,
121.2, 118.2, 107.0, 99.9, 93.7, 46.7, 37.2, 28.4, 28.2, 26.0, 21.3, 11.2. HRMS (ESI,
m/z) calcd. 498.1765, found 498.1764 for [M+H]".

Synthesis_and_characterization of Cy-Vis2. Compound 5B (95.9 mg, 0.25 mmol),

Benzothiazole-2-acetonitrile (65.4 mg, 0.375 mmol), and piperidine (25 pL) were
dissolved in EtOH (2.5 mL) the mixture solution was heated at reflux for 12 hours.
After cooling to room temperature, the solution was concentrated under reduced
pressure. The mixture was dissolved in CH,Cl, (30 mL) and washed with brine (3%30
mL). The organic layer was dried over Na,SO,4, and concentrated under reduced
pressure. Silica gel column purification was performed by using PE/EA = 20:1 as the
eluent to obtain compound Cy-Vis2 as a blue solid (79.8 mg, 59.1%). '"H NMR (400
MHz, CDCl;, 6): 7.90 (d, J= 8.0 Hz, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.51-7.46 (m, 4H),
7.38 (t, J = 8.0 Hz, 1H), 7.28-7.24 (m, 1H), 7.20 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 8.0
Hz, 1H), 7.04 (d, J = 8.0 Hz, 1H), 6.88 (t, J = 8.0 Hz, 1H), 6.66 (d, J = 8.0 Hz, 1H),
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6.45 (d,J = 12.0 Hz, 1H), 5.55 (d, J = 12.0 Hz, 1H), 3.71 (q, J = 8.0 Hz, 2H), 3.10 (t, J
= 8.0 Hz, 2H), 2.60 (t, J = 8.0 Hz, 2H), 2.00 (t, J = 8.0 Hz, 2H), 1.25 (t, J = 8.0 Hz, 3H),
1.10 (s, 6H). 3C NMR (125 MHz, CDCls, §) 166.1, 160.7, 155.9, 153.9, 147.9, 143.3,
139.3, 138.9, 135.9, 134.1, 130.1, 129.6, 128.5, 128.0, 127.7, 127.6, 126.0, 124.7,
122.8, 121.5, 120.9, 120.7, 118.2, 106.6, 97.5, 93.4, 46.0, 37.0, 27.7, 26.8, 24.6, 21.7,
11.1. HRMS (ESL m/z) calcd. 540.2468, found 540.2488 for [M+H]".
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Fig. S1. '"H NMR spectrum of 5 in CDCls.
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Fig. S2. 3C NMR spectrum of 5 in CDCl;.
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Fig. S8. 3C NMR spectrum of Cy-Vis2 in CDCl;.
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3. Quantum chemical calculations

All calculations are performed using Gaussianl6 package.['l The ground-state
geometries were fully optimized using the density functional theory (DFT) with
B3LYP-D3(BJ) functional at the basis set level of 6-311G (d,p). To consider the solvent
effect, methanol was used as the solvent. All calculations were based on the polarizable
continuum model (PCM). Analyze wavefunction with Multiwfn and visualize it with
VMD.[2!
4. Fluorescence quantum yield measurement

The fluorescence quantum yield (QY) was determined according to following

equationl3l:
2
CD _ nx AS ) FX (I)
x5 T
ng Ax ) Fs
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where @ was the QY of reference, F was the Integrated area of emission spectrum, A
was the absorbance at the excitation wavelength, and n was the refractive index of the

(Y1)

used solvent. “x” and

(X2l
S

stand for compounds and reference, respectively. The
fluorescence quantum yield was determined by measuring emission spectrum with

Sulforhodamine 101 in MeOH (®, = 0.91) as a referencel*l.

Table S1 Properties of representative NIR fluorescent probes for viscosity imaging

Stokes | Response
No Structure and Ref Aex/Aem Imaging scale Disease model
shifts signal
Inflammatory;
This Cell line Non-alcoholic
611/737 | 126 nm 20-fold
work Mice steatohepatitis
Cy-Vis2
638/\/]
gFrod
%
1 Q i 670/710 | 40 nm 36-fold Cell line None
635\/\) MYN-BS
Chem. Commun., 2022, 58, 12815
> a Hepatic
NNF / Cell line
2 KL ) ) 820/864 | 44 nm 13-fold ischemia—reperfus
o . O Mice
ion injury
J. Am. Chem. Soc., 2022, 144, 13586
3 610/657 | 47 nm - Cell line None
4 640/700 | 60 nm 9-fold Cell line None
MC-TB-Mito
Mater. Chem. Front., 2021, 5, 2459
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Chem. Commun., 2023, 59, 5607

<) o Cell line
;\‘ N ‘ N CN
5 o 650/719 | 69 14-fold | Zebrafishes | Inflammatory
Sens. Actuators. B Chem., 2018, 271, 321 Mice
Cell line Tumor;
6 710/786 76 nm 43-fold
Mice Fatty-liver
Anal. Chim. Acta, 2023, 1242, 340813
MW
N
&
NG Cell line
7 ‘ ° O O~ 590/675 85 nm 449-fold Inflammatory
~ Mice tissue
DHX-V-C,,
Anal. Chem., 2023, 95, 7254
Cell line
8 649/740 91 nm 200-fold Fatty-liver
Mice
Chem. Eng. J., 2022, 445, 136448
e L A~ Cell line
9 S0 505/650 | 145nm | 3-fold Tumor
Mice
Chem. Commun., 2020,56, 6684
NC. CN
\
‘ NS O Cell line
10 N 530/700 | 170 nm | 180-fold Tumor
Ic-v Mice

5. Photophysical properties of Cy-Visl and Cy-Vis2

The stock solution of Cy-Vis1 and Cy-Vis2 were prepared in DMSO (1 mM) and

stored at 4 °C. The absorption and fluorescence spectra of 10 uM probes were
performed in solvents with different polarities. For viscosity response experiments, the
emission spectra were performed in different percentage of glycerin (Gly) and methanol
solution (v/v). For selective response, the emission spectra were recorded in 20 mM

HEPES buffer solution (10% DMSO, v/v, pH 7.4) and methanol/glycerol (1/1, v/v) upon
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addition of different analytes. For pH response experiments, the emission spectra were
measured in HEPES buffer - glycerin mixture solution (1:1, v/v) at different pH value
(pH 4.42 — 12.01). The solution pH was adjusted by 1 M NaOH or 1 M HNOs. For the
emission spectra measurements, the excitation wavelength was 600 nm, the excitation

slit widths and emission slit widths were 5 nm.

a2 b 1.2
——abs 131 nm ——abs 126 nm
§'1.D- ——em S, 'E' 1.0{ —em
(1] (U]
c (=
3 0.8 1 E 0.8 4
£ £
8 0.6 1 g 0.6
N, N o)
o [}
E 0.2 E 0.2
[<] [*]
Z g0 Z 0o

500 600 700 800 900 500 600 700 800 200

Wavelength (nm) Wavelength (nm)

Fig. S13. Normalized absorption and emission spectra of Cy-Visl (a) and Cy-Vis2 (b) in
methanol.
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0.6+

Absorption
Absorption

o
)
N

0.0 4

0.0 4

500 600 700 800 500 600 70 800

0
Wavelength (nm) Wavelength (nm)
Fig. S14. UV—Vis absorption of Cy-Visl (a) and Cy-Vis2 (b) in methanol—glycerol systems with

different viscosities.

Table S2 Spectroscopic and viscosity data

Stokes shifts

Probe Aaps (M) Aepy (nm)? DO (%) Dp(%)®  Folde
(nm)*
Cy-Visl 622 753 131 0.06 0.37 7.6
Cy-Vis2 611 737 126 0.11 1.28 19.9

a Spectroscopic data measured in methanol; ® Spectroscopic data measured in 90% glycerol; ¢ Fold
increase in fluorescence intensity from 0.8 cp (methanol) to 359.9 cp (90% glycerol).

S14



az, 140 o (voI%)
i — 1204 1. 0% THF; 2. 10% THF; 3.20% THF:
c 1204 - 4.30% THF: 5.40% THF: 6.50% THF: o
g — 0%, 100 7. 60% THF: 8. 70% THF: 9.80% THF:
= 1004 — 10.90% THF; 11.100% THF; 12. Glycerol
] — 0% 80
3 8o —70% E
—80%
& 60 — o, & e0
%] —100%
3 40 4 ——Glycerol 40
S 20
g ) 20 r
= o PN I R STTEPE
650 700 750 800 850 1 2 3 4 5 6 7 8 9 10 11 12

Wavelength (nm)

1.00 4

/Gly cerol
DMSO
H,0,Dioxane

EA,DCM,CCI,
CH,CNEtOH

o

i

133
1

Normalized intensity &%

650 700 750 800 850 900
Wavelength (nm)

Fig. S15.(a) Fluorescence spectra of 10 pM Cy-Vis2 in THF-H,0 systems. (b) Intensity of Cy-
Vis2 at 750 nm in THF-H,O systems. (c) Fluorescence spectra of 10 uM Cy-Vis2 in different

solvents.

Table S3 Dielectric constants of binary mixed solvents and normalized fluorescence

intensity
H,O/THF (v/v) Polarity (¢) Normalized fluorescence intensity
10:0 78.4 0.045
9:1 71.3 0.212
8:2 64.2 0.292
7:3 57.1 0.936
6:4 50 1.000
5:5 429 0.831
4:6 35.8 0.588
3:7 28.7 0.616
2:8 21.6 0.591
1:9 14.5 0.373
0:10 7.4 0.314
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Table S4 Dielectric constants and viscosity coefficients n of different solutions and

normalized fluorescence intensity

Solution Polarity (¢) Viscosity (cp) Normalized fluorescence intensity
Glycerol 42.5 923.9 1.000
DMSO 46.8 2.0 0.386
H,O 78.4 0.9 0.053
Dioxane 2.2 1.1 0.046
EA 6.0 0.8 0.041
DCM 8.9 0.8 0.085
CCl, 2.2 1.3 0.040
CH;CN 35.7 0.6 0.103
EtOH 24.9 1.0 0.085
MeOH 32.6 0.8 0.102
THF 7.4 0.7 0.060
a . b 20 =a+b"
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Fig. S16. (a) Absorption spectra of Cy-Vis2 in MeOH with different concentrations. (b) Standard
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Fig. S17. (a) The emission spectra of Cy-Vis2 (10 uM) in HEPES buffer-glycerin mixture solution
(1:1, v/v) with different pH value. (b) Intensity of Cy-Vis2 at 750 nm with different pH value.
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Fig. S18. Intensity of 10 uM Cy-Vis2 at 750 nm upon illumination of 635 nm laser (100 mW/cm?)

in glycerol or methanol, respectively.
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Fig. S19 Two-dimensional '"H NOESY spectrum of Cy-Vis2 in CDCl;. Intramolecular correlation

signals of H? to H! and H? are circled in red.

6. Fluorescence microscopy of HepG2 cells

HepG?2 cells were pretreated with 5 pM LPS or 150 uM oleic acid (OA) for 4 h at 37
°C and washed with PBS for 3 times. Then the cells were incubated with Cy-Vis2 (5
uM in PBS containing 2% DMSO) for 1 h at 25 °C. Then the cells were washed with

PBS for 3 times before imaging under confocal fluorescence microscope with 60% oil
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immersion objective. Fluorescent images were collected from 650 to 1000 nm with

excitation wavelength at 560 nm.

7. In vivo imaging of mice

All animal experiments in vivo are performed in strict accordance with the ARRIVE
guidelines 2.0 and the "Guidelines for the Care and Use of Laboratory Animals", and
approved by the Animal Ethics Committee of Wenzhou University (Issue No.WZU-
2022-005). Female C57BL/6J mice (6-8 weeks old, 20-25 g) were purchased from the
Wenzhou University Laboratory Animal Center (Wenzhou, Zhejiang, China). Mice
were maintained with SPF food and water for 1-2 week. The animal room temperature
is 20—26 °C, warm humidity 40—70%, 12 hours of light and darkness alternate and
normal feeding before animal experiments, and mice should be fasted for 12 h to avoid
fluorescence interference from foodstuff.

To explore the viscosity abnormalities in diseased mice, mice were randomly divided
into three groups: normal group, inflammation group, and NASH group. The
inflammation group mice were given an intraperitoneal injection of LPS (100 uL, 1
mg/mL) for 12 h. The NASH group were fed with a high-fat diet (methionine-choline
deficient diet) plus injecting dexamethasone sodium phosphate (DEX, 15 mg/kg)
intraperitoneally every other day for 18 days. In addition, mice in the NASH group
were intraperitoneal injected with CCly (0.5 mg/kg in olive oil) every other day from
day 11 to end of day 18. The control mice were administered with normal diet and
injected with 0.9% saline.

To evaluate biodistribution of Cy-Vis2, the normal mice were intravenously injected
with Cy-Vis2 (50 uM, 100 pL) solution in HEPES buffer-glycerin mixture solution
(1:1, v/v). After 1.5 hour, the mice were sacrificed by cervical dislocation. The heart,
liver, spleen, lung, and kidney were harvested and washed thoroughly with saline. The
organs were subjected for imaging by using an optical imaging system (Perkin Elmer

IVIS Lumina XRMS Series III).
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Control and inflammation mice were administrated with Cy-Vis2 (50 uM, 100 pL)
in saline-glycerol mixture solution (1:1, v/v) by intraperitoneal injection and imaged.
For NASH mice imaging, Cy-Vis2 (50 uM, 100 pL) in saline-glycerol mixture solution
(1:1, v/v) was injected intravenously into control and NASH mice via the tail vein.
After an additional 1.5 h, the fluorescence imaging was performed in a Perkin Elmer

IVIS Lumina XRMS Series III with Aey/Aem = 620 nm/790 nm.
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Fig. S20 In vivo fluorescence imaging of Cy-Vis2 (100 pL, 50 uM) in mice. (a) Healthy and inflammation mice
were imaged after injected with Cy-Vis2, scale bar is 1 cm, A¢, = 620 nm, Ae,, = 790 nm. (b) Relative fluorescence

intensity obtained from (a), error bars represent the standard deviation (+SD, n = 3).
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Fig. S21 (a) Ex vivo imaging of the organs isolated from the mice after intravenous injection of Cy-Vis2. (b) H&E

and Sirius Red staining of liver tissues between normal and NASH mice, scale bar is 100 ym.
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