SUPPORTING INFORMATION FOR

Highly phosphorescent Carbene-Metal-Carboranyl complexes of Copper(I) and Gold(I)

Samuel L. Powley, Charlotte Riley, Hwan-Hee Cho, Nguyen Le Phuoc, Mikko Linnolahti,

Neil Greenham, and Alexander S. Romanov

Supporting Information Table of Contents

Table of Contents

General considerations	p. S3
Experimental and NMR spectroscopy	p. S4
TGA curves for the complexes	p. S18
X-ray Crystallography	p. S19
Electrochemistry	p. S23
Photophysical characterisation	p. S25
OLED device fabrication	p. S29
Computational details	p. S31

GENERAL CONSIDERATIONS

All reactions were performed under a N2 atmosphere. Solvents were dried as required. 1-Ph-1,2-C₂B₁₀H₁₁,¹ (MesDAC)AuCl² (DippDAC)AuCl² and [(MesDACCuCl]₂³ were prepared by literature methods or slight variations thereof. ¹H, ¹¹B{¹H} and ¹³C NMR spectra were recorded on a Bruker AVIII HD 400 MHz or AV II 700 MHz spectrometer. ¹H and ¹³C NMR spectra were referenced to CD_2Cl_2 at δ 5.32 (¹³C δ 53.84). Elemental analyses were performed by the Microanalysis Laboratory at the University of Manchester. Mass spectrometry data was obtained on a Thermo Orbitrap Exactive Plus Extended Mass Range Spectrometer using an APCI(ASAP) probe by the Mass Spectrometry Laboratory at the University of Manchester. All electrochemical experiments were performed using an Autolab PGSTAT 302N computercontrolled potentiostat. Cyclic voltammetry (CV) was performed using a three-electrode configuration consisting of a glassy carbon macrodisk working electrode (GCE) (diameter of 3 mm; BASi, Indiana, U.S.A.) combined with a Pt wire counter electrode (99.99%; GoodFellow, Cambridge, U.K.) and an Ag wire pseudoreference electrode (99.99%; GoodFellow, Cambridge, U.K.). The GCE was polished between experiments using alumina slurry (0.3 µm), rinsed in distilled water and subjected to brief sonication to remove any adhering alumina microparticles. The metal electrodes were then dried in an oven at 100 °C to remove residual traces of water, the GCE was left to air dry and residual traces of water were removed under vacuum. The Ag wire pseudoreference electrodes were calibrated to the ferrocene/ferrocenium couple in 1,2-difluorobenzene (DFB) at the end of each run to allow for any drift in potential, following IUPAC recommendations.⁴ All electrochemical measurements were performed at ambient temperatures under an inert N₂ atmosphere in 1,2-difluorobenzene (DFB) containing the complex under study (0.14 mM) and the supporting electrolyte [n- Bu_4N [PF₆] (0.13 mM). Data were recorded with Autolab NOVA software (v. 1.11). Thermogravimetric analysis was performed with a TA Instruments SDT650 simultaneous thermal analyser under a stream of nitrogen.

Experimental.

Synthesis of 1-iPr-1,2-C₂B₉H₁₁

1-iPr-1,2-C₂B₉H₁₁ was prepared based on the methodology of Valliant et al.¹ 6,9bis(acetonitrile)decaborane (2.0 g, 9.89 mmol), AgNO₃ (140 mg, 0.82 mmol), 3-methyl-1butyne (2 mL, 19.6 mmol) and toluene (10 mL) were sealed in a nitrogen-flushed bomb flask and heated to 130 °C for 60 hours. After cooling, the volatiles were removed under vacuum and the residue purified by flash chromatography (silica, hexane) to give 1-iPr-1,2-C₂B₉H₁₁ as an analytically pure colourless oil (0.97 g, 5.21 mmol, 52%).

Synthesis of (MesDAC)Au(iPr-carboranyl) Au1

1-iPr-1,2-C₂B₁₀H₁₁ (75mg, 0.40 mmol) in 10 mL THF was cooled to 0°C, treated with nBuLi (0.18 mL of 2.5M solution, 0.44 mmol) and stirred at room temperature for 30 minutes. This solution was cooled to -78°C and (MesDAC)AuCl (245mg, 0.40 mmol) in 10 mL THF was slowly added. The reaction vessel was protected from light and stirred for 1 hour at -78°C and 1 hour at room temperature. The volatiles were removed *in vacuo*, the residue taken up in CH₂Cl₂ and passed through a short plug of celite and silica. The eluent was reduced in volume to ca. 5 mL whereupon addition of hexane gave a white precipitate which was collected and washed with pentane. Trace impurities were removed by column chromatography (silica, 2:3 CH₂Cl₂/hexane) to give the product as a white solid (204 mg, 0.27 mmol, 67%). Diffraction-quality crystals were grown by slow diffusion of hexane into a concentrated CH₂Cl₂ solution.

¹H NMR (CD₂Cl₂, 400 MHz): δ 7.05 (s, 4H, Mes CH), 2.5-0.8 (br m, 10H, BH envelope), 2.35 (s, 6H, Mes p-CH₃), 2.13 (s, 12H, Mes o-CH₃), 1.78 (s, 6H, backbone C(CH₃)₂), 1.34 (apparent quintet, J = 6.9 Hz, 1H, ⁱPr CH), 0.80 (d, J = 6.9 Hz, 6H, ⁱPr CH₃).

¹¹B{1H} NMR (CD₂Cl₂, 128.4 MHz): δ -3.5, -5.6, -8.4, -10.1, -12.2.

¹³C{1H} NMR (CD₂Cl₂, 100.6 MHz): δ 219.11 (carbene C), 171.61 (C=O), 140.89 (Mes p-C), 135.05 (Mes o-C), 134.70 (Mes i-C), 130.18 (Mes m-CH), 95.88 (carborane <u>C</u>Au), 86.45 (carborane <u>C</u> ⁱPr), 52.03 (backbone <u>C</u>(CH₃)₂), 37.97 (carborane ⁱPr CH), 24.93 (backbone C(<u>C</u>H₃)₂), 24.53 (carborane ⁱPr CH₃), 21.26 (Mes p-CH₃), 18.18 (Mes o-CH₃).

HRMS: $C_{29}H_{45}B_{10}N_2O_2Au$ theoretical [M+H]⁺: 759.4239; found (APCI(ASAP)): 759.4239.

Anal. Calcd. For C₂₉H₄₆B₁₀N₂O₂Au: C 45.85, H 6.10, N 3.69. Found: C 45.72, H 5.80, N 3.53. Au1 ¹H NMR (400 MHz, CD₂Cl₂)

Au1 ¹³C{1H} NMR (100.6 MHz, CD₂Cl₂)

Synthesis of (MesDAC)Au(Ph-carboranyl) Au2

A solution of 1-Ph-1,2-C₂B₁₀H₁₁ (50 mg, 0.23 mmol) in THF (5 mL) was cooled to 0°C and treated with 2.5M nBuLi solution (0.10 mL, 0.25 mmol). After stirring for 30 minutes, the solution was cooled to -78° C and a solution of (MesDAC)AuCl (118 mg, 0.19 mmol) in THF (10 mL) was added slowly. The mixture was stirred for 10 minutes at -78° C then warmed to RT and evaporated to dryness under vacuum. The residue was passed through a short plug of celite and silica using CH₂Cl₂ eluent, concentrated, and purified by column chromatography

(silica, 2:3 CH_2Cl_2 /hexane) to give (MesDAC)Au(Ph-carboranyl) as a white solid (76 mg, 0.10 mmol, 51%). Diffraction-quality crystals were grown by slow diffusion of hexane into a concentrated CH_2Cl_2 solution.

¹H NMR (CD₂Cl₂, 400 MHz): δ 7.34 (m, 3H, Ph CH), 7.20 (app t, *J* = 7.7 Hz, 2H, Ph CH), 2.9-0.9 (br m, 10H, BH envelope), 2.41 (s, 6H, Mes p-CH₃), 1.90 (s, 12H, Mes o-CH₃), 1.71 (s, 6H, backbone C(CH₃)₂).

¹¹B{1H} NMR (CD₂Cl₂, 128.4 MHz): δ -2.1, -4.8, -8.3, -9.5.

¹³C{1H} NMR (CD₂Cl₂, 100.6 MHz): δ 219.26 (carbene C), 171.52 (C=O), 140.80 (Mes p-C), 138.08 (Ph i-C), 135.07 (Mes o-C), 134.57 (Mes i-C), 130.10 (Mes m-CH), 130.00 (Ph m/p-CH), 129.07 (Ph m/p-CH), 128.15 (Ph o-CH), 96.62 (carborane <u>C</u>Au), 82.40 (carborane <u>C</u>ⁱPr), 51.95 (backbone <u>C</u>(CH₃)₂), 24.92 (backbone C(<u>C</u>H₃)₂), 21.27 (Mes p-CH₃), 18.10 (Mes o-CH₃).

HRMS: C₃₂H₄₃B₁₀N₂O₂Au theoretical [M+H]⁺: 793.4081; found (APCI(ASAP)): 793.4063. Anal. Calcd. For C₃₂H₄₃B₁₀N₂O₂Au: C 48.48, H 5.47, N 3.53. Found: C 48.34, H 5.53, N 3.79.

Au2 ¹H NMR (400 MHz, CD₂Cl₂)

Au2 ¹¹B{1H} NMR (128.4 MHz, CD₂Cl₂)

Au2 ¹³C{1H} NMR (100.6 MHz, CD₂Cl₂)

Synthesis of (DippDAC)Au(iPr-carboranyl) Au3

A solution of 1-Li-2-iPr-1,2-C₂B₁₀H₁₀ (0.26 mmol) in 5 mL THF, prepared from 1-iPr-1,2-C₂B₁₀H₁₁ (48 mg, 0.26 mmol) and 2.5M nBuLi (0.12 mL, 0.30 mmol), was cooled to -78°C and a solution of (DippDAC)AuCl (149 mg, 0.22 mmol) in THF (10 mL) was slowly added. The mixture was stirred at -78°C for 30 minutes and RT for 1 hour. All volatiles were removed *in vacuo* and the residue was taken up in CH₂Cl₂ and filtered through a short layer of celite and

silica. The eluent was evaporated and the residue purified by column chromatography (silica, 2:3 CH_2Cl_2 /hexane) to give (DippDAC)Au(iPr-carboranyl) as a white solid (84 mg, 0.10 mmol, 45%). Diffraction-quality crystals were grown by slow diffusion of hexane into a concentrated CH_2Cl_2 solution.

¹H NMR (CD₂Cl₂, 400 MHz): δ 7.52 (t, *J* = 7.8 Hz, 2H, Dipp p-CH), 7.32 (d, *J* = 7.7 Hz, 4H, Dipp m-CH), 2.7-0.9 (br m, 10H, BH envelope), 2.66 (sept, *J* = 6.9 Hz, 4H, Dipp ⁱPr CH), 1.80 (s, 6H, backbone C(CH₃)₂), 1.36 (d, *J* = 6.8 Hz, 12H, Dipp ⁱPr CH₃), 1.27 (m, 1H, carborane ⁱPr CH), 1.17 (d, *J* = 6.8 Hz, 12H, Dipp ⁱPr CH₃), 0.71 (d, *J* = 6.9 Hz, 6H, carborane ⁱPr CH₃). ¹¹B{1H} NMR (CD₂Cl₂, 128.4 MHz): δ -4.2, -5.7, -7.6, -10.0, -10.8, -12.2.

¹³C{1H} NMR (CD₂Cl₂, 100.6 MHz): δ 218.86 (carbene C), 172.43 (C=O), 145.35 (Dipp o-C), 134.53 (Dipp i-C), 131.41 (Dipp p-CH), 125.26 (Dipp m-CH), 99.96 (carborane <u>C</u>Au), 87.03 (carborane <u>C</u>Ph), 51.73 (backbone <u>C</u>(CH₃)₂), 37.96 (carborane ⁱPr CH), 29.77 (Dipp ⁱPr CH), 25.30 (backbone C(<u>C</u>H₃)₂), 24.64 (carborane ⁱPr CH₃), 24.40 (Dipp ⁱPr CH₃), 23.68 (Dipp ⁱPr CH₃). HRMS: C₃₅H₅₇B₁₀N₂O₂Cu theoretical [M+H]⁺: 845.5135; found (APCI(ASAP)): 845.5137.

Au3 ¹H NMR (400 MHz, CD₂Cl₂)

Au3 ¹¹B{1H} NMR (128.4 MHz, CD₂Cl₂)

Au3 ¹³C{1H} NMR (100.6 MHz, CD₂Cl₂)

12

Synthesis of (MesDAC)Cu(iPr-carboranyl) Cu1

A solution of 1-Li-2-iPr-1,2-C₂B₁₀H₁₀ (0.33 mmol) in 10 mL THF, prepared from 1-iPr-1,2-C₂B₁₀H₁₁ (62 mg, 0.33 mmol) and 2.5M nBuLi (0.15 mL, 0.38 mmol), was cooled to -78°C and a solution of [(MesDAC)CuCl]₂ (147 mg, 0.15 mmol) in THF (5 mL) was slowly added. The resulting red solution was allowed to slowly warm to RT and stir overnight. All volatiles were removed *in vacuo* and the residue was taken up in CH₂Cl₂ and filtered through a short layer of celite and silica. The yellow eluent was concentrated and purified by column chromatography (silica, 1:4 ethyl acetate/hexane) to give (MesDAC)Cu(iPr-carboranyl) as a yellow powder (79 mg, 0.13 mmol, 40.8%). Diffraction-quality crystals were grown from evaporation of a concentrated ethyl acetate/hexane solution.

¹H NMR (CD₂Cl₂, 400 MHz): δ 7.08 (s, 4H, Mes CH), 2.5-0.9 (br m, 10H, BH envelope), 2.37 (s, 6H, Mes p-CH₃), 2.16 (s, 12H, Mes o-CH₃), 1.78 (s, 6H, backbone C(CH₃)₂), 1.16 (app. quintet, J = 6.9 Hz, 1H, ⁱPr CH), 0.75 (d, J = 6.9 Hz, 6H, ⁱPr CH₃).

¹¹B{1H} NMR (CD₂Cl₂, 128.4 MHz): δ -2.6 (1B), -5.6 (1B), -7.9 (2B), -10.8 (4B), -11.7 (2B).

¹³C{1H} NMR (CD₂Cl₂, 100.6 MHz): δ 216.15 (carbene C), 171.56 (C=O), 141.13 (Mes p-C),

135.10 (Mes o-C), 134.54 (Mes i-C), 130.65 (Mes m-CH), 85.53 (carborane CiPr), 83.98

(carborane $\underline{C}Cu$), 52.31 (backbone $\underline{C}(CH_3)_2$), 38.06 (carborane ⁱPr CH), 24.96 (backbone

C(CH₃)₂), 24.75 (carborane ⁱPr CH₃), 21.26 (Mes p-CH₃), 18.31 (Mes o-CH₃).

HRMS: C₂₉H₄₅B₁₀N₂O₂Cu theoretical [M+H]⁺: 626.3843; found (APCI(ASAP)): 626.3839.

Anal. Calcd. For $C_{29}H_{46}B_{10}N_2O_2Cu$: C 55.61, H 7.40, N 4.47. Found: C 55.78, H 7.19, N 4.63.

Cu1 ¹H NMR (400 MHz, CD₂Cl₂)

Me

Cu1 ¹¹B{1H} NMR (128.4 MHz, CD₂Cl₂)

Cu1

9 7 5 3 1 -1 -3 -5 -7 -9 -11 -13 -15 -17 -19 -21 -23 -2 δ (ppm)

Cu1 ¹³C{1H} NMR (100.6 MHz, CD₂Cl₂)

Synthesis of (MesDAC)Cu(Ph-carboranyl) Cu2

A solution of 1-Li-2-Ph-1,2-C₂B₁₀H₁₀ (0.36 mmol) in THF (5 mL), prepared from 1-Ph-1,2-C₂B₁₀H₁₁ (80 mg, 0.36 mmol) and nBuLi (0.16 mL, 0.40 mmol), was cooled to -78°C and a solution of [(MesDAC)CuCl]₂ (160 mg, 0.17 mmol) in THF (10 mL) was slowly added. The mixture was slowly warmed to room temperature and stirred overnight. The red mixture was evaporated to dryness, taken up in CH₂Cl₂ and filtered through a short pad of celite and silica. The eluent was concentrated and purified by column chromatography (silica, 1:1

CH₂Cl₂/hexane) to give (MesDAC)Cu(Ph-carboranyl) as a yellow solid (42 mg, 0.06 mmol, 19%). Diffraction-quality crystals were grown by slow evaporation of a concentrated CH₂Cl₂/hexane solution.

¹H NMR (CD₂Cl₂, 400 MHz): δ 7.28 (t, *J* = 7.1 Hz, 1H, Ph p-CH), 7.17 (m, 4H, Ph o/m-CH), 7.04 (s, 4H, Mes CH), 2.8-0.8 (br m, 10H, BH envelope), 2.41 (s, 6H, Mes p-CH₃), 1.96 (s,

12H, Mes o-CH₃), 1.71 (s, 6H, backbone C(CH₃)₂).

¹¹B{1H} NMR (CD₂Cl₂, 128.4 MHz): δ -1.5, -4.8, -7.5, -9.6, -10.8 (shoulder).

¹³C{1H} NMR (CD₂Cl₂, 100.6 MHz): δ 215.73* (carbene C), 171.46 (C=O), 140.97 (Mes p-C), 138.86 (Ph i-C), 135.12 (Mes o-C), 134.34 (Mes i-C), 130.54 (Mes m-CH), 128.97 (Ph CH), 128.89 (Ph CH), 128.21 (Ph CH), 52.20 (backbone C(CH₃)₂), 24.92 (backbone C(CH₃)₂),

21.25 (Mes p-CH₃), 18.23 (Mes o-CH₃).

HRMS: C₃₂H₄₃B₁₀N₂O₂Cu theoretical [M+H]⁺: 660.3694; found (APCI(ASAP)): 660.3684.

Cu2 ¹H NMR (400 MHz, CD₂Cl₂)

Cu2 ¹¹B{1H} NMR (128.4 MHz, CD₂Cl₂)

Cu2 ¹³C{1H} NMR (100.6 MHz, CD₂Cl₂; right insert 175 MHz, CD₂Cl₂)

Thermogravimetric Analysis.

Figure S1. TGA curves for copper and gold complexes Au1-Au3 and Cu1. Decomposition temperature (T_d) indicates the temperature at 5% weight loss.

Single Crystal X-ray Crystallography.

All crystals were mounted in oil on a MiTeGen loop and fixed on the diffractometer in a cold nitrogen stream. Data were collected using dual wavelength Rigaku FR-X rotating anode diffractometer using CuK α (λ = 1.54146 Å) radiation, equipped with an AFC-11 4-circle kappa goniometer, VariMAXTM microfocus optics, a Hypix-6000HE detector and an Oxford Cryosystems 800 plus nitrogen flow gas system, at a temperature of 100K. Data were collected and reduced using CrysAlisPro v42.^{5,6} The structure was solved by intrinsic phasing or direct method and refined by the full-matrix least-squares against F2 in an anisotropic (for nonhydrogen atoms) approximation. Absorption correction was performed using empirical methods (SCALE3 ABSPACK) based upon symmetry-equivalent reflections combined with measurements at different azimuthal angles. All hydrogen atom positions were refined in isotropic approximation in a "riding" model with the U_{iso}(H) parameters equal to 1.2 U_{eq}(C_i), for methyl groups equal to 1.5 U_{eq}(C_{ii}), where U(Ci) and U(Cii) are respectively the equivalent thermal parameters of the carbon atoms to which the corresponding H atoms are bonded. All calculations were performed using the SHELXTL software.⁷ OLEX2 software was used as graphical user interface.⁸

The principal crystallographic data and refinement parameters are listed below:

Complex Au1, CCDC number 2280891, $C_{29}H_{45}AuB_{10}N_2O_2$ (M = 758.73 g/mol): monoclinic, space group P2₁/n (no. 14), a = 11.1127(4) Å, b = 26.6626(9) Å, c = 11.4450(4) Å, $\beta = 98.835(3)^\circ$, V = 3350.8(2) Å³, Z = 4, T = 100.00(11) K, μ (Mo K α) = 4.421 mm⁻¹, *Dcalc* = 1.504 g/cm³, 44387 reflections measured ($3.054^\circ \le 2\Theta \le 61.764^\circ$), 8795 unique ($R_{int} = 0.0398$, $R_{sigma} = 0.0360$) which were used in all calculations. The final R_1 was 0.0249 (I > 2 σ (I)) and wR_2 was 0.0487 (all data).

Complex Au2, CCDC number 2280892, colorless block, $C_{32}H_{43}AuB_{10}N_2O_2$ (*M*=792.75 g/mol): monoclinic, space group P2₁/c (no. 14), *a* = 10.53700(10) Å, *b* = 18.0731(2) Å, *c* = 20.1419(2) Å, β = 95.8610(10)°, *V* = 3815.70(7) Å³, *Z* = 4, *T* = 100.00(10) K, μ (Cu K α) = 7.461 mm⁻¹, *Dcalc* = 1.380 g/cm³, 49649 reflections measured (8.436° ≤ 2 Θ ≤ 151.704°), 7884 unique (R_{int} = 0.0364, R_{sigma} = 0.0246) which were used in all calculations. The final R_1 was 0.0266 (I > 2 σ (I)) and *w* R_2 was 0.0675 (all data).

Complex Au3, CCDC number 2280893, colorless block, $C_{35}H_{57}AuB_{10}N_2O_2$ (*M*=842.89 g/mol): monoclinic, space group P2₁/n (no. 14), *a* = 11.48602(12) Å, *b* = 19.7064(2) Å, *c* = 17.35568(19) Å, β = 93.0324(10)°, *V* = 3922.93(7) Å³, *Z* = 4, *T* = 100.00(13) K, µ(Cu K\alpha) = 7.286 mm⁻¹, *Dcalc* = 1.427 g/cm³, 23741 reflections measured (6.792° ≤ 2 Θ ≤ 151.916°), 7971

unique ($R_{int} = 0.0214$, $R_{sigma} = 0.0226$) which were used in all calculations. The final R_1 was 0.0230 (I > 2 σ (I)) and wR_2 was 0.0635 (all data).

Complex **Cu1**, CCDC number 2280894, yellow block, $C_{29}H_{45}B_{10}CuN_2O_2$ (*M* =625.31 g/mol): monoclinic, space group P2₁/n (no. 14), *a* = 10.9247(2) Å, *b* = 26.7491(4) Å, *c* = 11.4847(2) Å, β = 97.260(2)°, *V* = 3329.22(10) Å³, *Z* = 4, *T* = 100.00(10) K, μ (Mo K α) = 0.686 mm⁻¹, *Dcalc* = 1.248 g/cm³, 27413 reflections measured (7.066° ≤ 2 Θ ≤ 58.182°), 7806 unique (R_{int} = 0.0379, R_{sigma} = 0.0424) which were used in all calculations. The final R_1 was 0.0390 (I > 2 σ (I)) and *w* R_2 was 0.0982 (all data).

Complex **Cu2**, CCDC number 2280895, yellow block, $C_{35}H_{50}B_{10}CuN_2O_2$ (*M* =702.41 g/mol): monoclinic, space group P2₁/c (no. 14), *a* = 10.63269(10) Å, *b* = 18.25848(15) Å, *c* = 19.63777(18) Å, β = 96.5490(8)°, *V* = 3787.53(6) Å³, *Z* = 4, *T* = 99.99(17) K, μ (Cu K α) = 1.058 mm⁻¹, *Dcalc* = 1.232 g/cm³, 47417 reflections measured (6.63° ≤ 2 Θ ≤ 152.178°), 7822 unique (R_{int} = 0.0398, R_{sigma} = 0.0289) which were used in all calculations. The final R_1 was 0.0390 (I > 2 σ (I)) and *w* R_2 was 0.1063 (all data).

Figure S2. Crystal structures of carbene-metal-carborane (CMC) complexes (top left) **Au1**, (top right) **Au2** (middle left) **Au3**, (middle right) **Cu1** and (bottom left) **Cu2** at 100 K, showing the conformations adopted by the substituted carborane ligands. Ellipsoids are shown at the 50% level. Hydrogen atoms are omitted for clarity. For structural parameters, see Table S1.

	M–C _{carborane} , Å	M–C _{DAC} , Å	C1…C6,	angle, °	torsion angle, °
			Å	С1-М-С6	N2-C6-C1-C2
Au1	2.044(2)	2.016(2)	4.059(2)	176.25(9)	45.0(2)
Au2	2.042(3)	2.015(3)	4.055(3)	175.89(11)	78.7(2)
Au3	2.050(2)	2.019(2)	4.067(2)	176.81(9)	39.0(1)
Cu1	1.919(2)	1.895(2)	3.813(2)	176.51(8)	42.9(2)
Cu2	1.912(2)	1.887(2)	3.791(3)	171.75(7)	76.8(2)

 Table S1. Selected bond lengths [Å] and angles [°] of copper and gold carborane complexes.

Complex Au1

Complex Cu2

Figure S3. Head-to-tail orientation of the molecules of complex Au1 (top) and zig-zag chains for copper complex Cu2 (bottom) in the unit cell.

Cyclic Voltammetry.

E vs FeCp2 (V)

Figure S4. Full range cyclic voltammogram for (top left) Au1, (top right) Au2, (middle left) Au3, (middle right) Cu1 and (bottom left) Cu2. Recorded using a glassy carbon electrode in THF solution (1.4 mM) with $[n-Bu_4N]PF_6$ as supporting electrolyte (0.13 M), scan rate 0.1 V s⁻¹.

Table S2. Formal electrode potentials (peak position E_p for irreversible and $E_{1/2}$ for quasi-reversible processes (*), *V*, *vs*. FeCp₂), onset potentials (*E*, *V*, *vs*. FeCp₂), peak-to-peak separation in parentheses for quasi-reversible processes (ΔE_p in mV), E_{HOMO}/E_{LUMO} (*e*V) and band gap values ($\Delta E, eV$) for the redox changes exhibited by copper and gold complexes.^{*a*}

Comular	Reduct	ion	ELUMO	Oxidation		E_{LUMO} Oxidation E_{HOMO}		E _{HOMO}	ΔE
Complex -	$E_{1/2}$	Eonset red	eV	E _P	Eonset ox	eV	ev		
Au1	-1.76 (109)	-1.62	-3.77	+1.24	+1.03	-6.42	2.65		
Au2	-1.74 (95)	-1.61	-3.78	+1.49	+1.21	-6.60	2.82		
Au3	-1.81 (112)	-1.68	-3.71	+1.46	+1.14	-6.53	2.82		
Cu1	-1.79 (105)	-1.66	-3.73	+1.33	+1.09	-6.48	2.75		
Cu2	-1.65 (92)	-1.53	-3.86	+1.51	+1.32	-6.71	2.85		

^{*a*} In 1,2-difluorobenzene solution, recorded using a glassy carbon electrode, concentration 1.4 m*M*, supporting electrolyte [*n*-Bu₄N][PF₆] (0.13 *M*), measured at 0.1 V s⁻¹. $E_{HOMO} = -(E_{onset ox Fc/Fc+} + 5.39) eV; E_{LUMO} = -(E_{onset red Fc/Fc+} + 5.39) eV (Adv. Mater.$ **2011**, 23, 2367–2371).

Photophysical Characterisation.

Experimental Methods for Spectroscopy

Sample Preparation

Samples for photophysics were made from powders stored in a glovebox.

Photoluminescence Quantum Yield

. Photoluminescence quantum yields were recorded in air for solid samples using a Hamamatsu Quantaurus-QY C11347-11.

Steady-state Photoluminescence

Steady-state PL spectra were recorded using an Edinburgh Instruments FLS980 spectrofluorimeter. The light source was a monochromated Xenon arc lamp; excitation wavelength varied. Samples were measured in air or under flowing nitrogen, at room temperature.

UV-Vis Absorption

UV-Vis spectra were measured using a Varian Cary 5000 UV-Vis-NIR spectrometer and Shimadzu UV-3600 Plus UV-VIS-NIR spectrophotometer. The spectrometer has a PMT detector for wavelength ranges from UV to visible, as well as InGaAs and PbS detectors for NIR. The light source used was a deuterium lamp for wavelengths less than 280nm and a tungsten halogen lamp for higher wavelengths.

UV-Vis and Photoluminescence Spectra:

Figure S5a. UV-Vis spectra for (top left) Au1, (top right) Au2, (middle left) Au3, (middle right) Cu1 and (bottom left) Cu2 at 295 K in various solvents where MCH = methylcyclohexane, THF = tetrahydrofuran (high energy part of the UV-vis profile from 275 to 290 nm was truncated for Au2 and Au3 due to strong solvent absorption), DCM = dichloromethane.

Figure S5b. UV-Vis spectra for starting material (MesDAC)AuCl and Au1 in DCM at 295K.

Figure S6. Photoluminescence spectra for (top left) Au1, (top right) Au2, (middle left) Au3, (middle right) Cu1 and (bottom left) Cu2 at 295 and 77K in crystalline state. Photostability for complexes Au1 and Cu1 under N₂ atmosphere and constant exposure to the UV-light at 360 nm (top, right).

Figure S7. Superposition of the ground state S_0 (single crystal X-ray) and excited triplet state T_1 geometries for complex **Au1** (overlay via C1, C2 and Au1 atoms) determined by theoretical calculations where angle is Au1(S_0 geometry)–C1–Au1 (T_1 geometry).

Device fabrication and characterization

For the fabrication of OLED devices, ITO coated substrates (~15 Ω /cm²) were cleaned with acetone and isopropyl alcohol, and then O₂ plasma treatment was applied to align the energy level with a hole transporting layer. All layers, including organic layers and a LiF/aluminium cathode, were thermally deposited in high vacuum (~10⁻⁷ torr).

The performance of the OLED devices was measured by a Keithley 2635 source-meter and a calibrated Si photodiode. The EL spectra were recorded by an Ocean Optics Flame spectrometer.

Figure S8. (a) Electroluminescence spectra of Au1 in neat OLED and doped in DPEPO host with 20% weight concentration; (b) current density-voltage plot; (c) luminance-voltage plot;(d) EQE versus luminance. The OLED device stack and the molecular structure of the components are shown at the bottom.

Dopant	V _{ON}	EQE (%)		EL (nm)	Luminance	CIE $(x,y)^b$
	$[V]^a$	max	100 cd m ⁻²	_	cd m ⁻²	
Neat Au1	5.5	2.6	1.8	540	5770	0.378, 0.503
DPEPO:Au1	5.8	3.6	1.8	471	726	0.225, 0.306

Table S3. Performance data of vapor-deposited OLEDs.

^{*a*} At brightness 0.1 cd m⁻²; ^{*b*} Commission Internationale de l'Éclairage (CIE) color coordinates

Computational details

The ground states of the complexes were studied by density functional theory (DFT) and the excited states by time-dependent DFT (TD-DFT) using the Tamm-Dancoff approximation, as implemented in Gaussian 16.^{9,10,11} Calculations were carried out by the global hybrid MN15 functional of the Minnesota series in combination with the def2-TZVP basis set,^{12,13} employing relativistic effective core potential of 60 electrons for description of the core electrons of Au.¹⁴ This methodology has been employed in several papers dealing with closely related complexes, in good agreement with experiments.¹⁵ Orbital compositions were evaluated by Mulliken population analysis as implemented in Gaussian. Orbital overlaps were calculated using Multiwfn program.¹⁶

Table S4. HOMO and LUMO isosurface plots, HOMO-LUMO overlap integrals, and metal atom contributions to the orbitals in the optimized S_0 geometry, including crystal structure geometry for Au1.

Table S5. M-C(Carborane) and M-C(DAC) bonds dissociation energies in the optimized S_0 geometry.

	M-C(Carboran	e)	M-C(DAC)		
	kJ/mol	eV	kJ/mol	eV	
Au1	452.7	4.69	333.8	3.46	
Au2	457.7	4.74	335.5	3.48	
Au3	462.4	4.79	339.8	3.52	
Cu1	454.5	4.71	304.1	3.15	
Cu2	455.9	4.73	298.0	3.09	

Table S6. Dipole moments for S_0 and lowest singlet vertical excitations in the optimized S_0 geometry, including crystal structure geometry for Au1.

	S ₀	$S_1 @ S_0$
Au1 (crystal)	10.9D	4.5D
Au1 (opt-S ₀)	10.1D	3.2D

Table S7. Vertical excitations, their character, and S_0 - S_1 oscillator strength coefficients.

	Excitation energy	Character	Oscillator
			strength
Au1 (crystal)	$S_1 (^1LE(M+DAC)): 3.32eV = 374nm$	HOMO – LUMO	0.0033

		(88%)	
	T_1 (³ LE(M+DAC)): 3.11eV = 398nm	HOMO – LUMO	
		(74%)	
	T_2 (mixed ³ CT and ³ LE(DAC)):	HOMO-1 – LUMO	
	3.70 eV = 335 nm	(39%)	
	$T_2 (^3LE(M+DAC)): 3.85eV = 322nm$	HOMO-1 – LUMO	
		(45%)	
		HOMO-4 – LUMO	
		(35)	
Au2	S_1 (mixed ¹ CT(M \rightarrow DAC) and	HOMO – LUMO	0.0045
	$^{1}LE(DAC)$): 3.26eV = 381nm	(89%)	
	T_1 (mixed ³ CT(M \rightarrow DAC) and	HOMO – LUMO	
	$^{3}LE(DAC)$): 3.04eV = 408nm	(78%)	
	T_2 (mixed ³ CT(Carb \rightarrow DAC) and	HOMO-1 – LUMO	
	$^{3}LE(DAC)$): 3.76eV = 330nm	(36%)	
	T_3 (mixed ³ CT(Carb \rightarrow DAC) and	HOMO-1 – LUMO	
	$^{3}LE(DAC)$): 3.79eV = 327nm	(44%)	
		HOMO-3 – LUMO	
	$1_4 (^{3}LE(DAC)): 3.96eV = 313nm$	(17%)	
Au3	S_1 (mixed ¹ CT(M \rightarrow DAC) and	HOMO – LUMO	0.0052
	$^{1}LE(DAC)$): 3.25eV = 381nm	(88%)	
	T_1 (mixed ³ CT(M \rightarrow DAC) and	HOMO – LUMO	
	$^{3}LE(DAC)$): 3.03eV = 409nm	(74%)	
		HOMO-3 – LUMO	
	T_2 (mixed ³ CT(Carb \rightarrow DAC) and	(41%)	
	$^{3}LE(DAC)$): 3.68eV = 337nm	HOMO – LUMO	
		(15%)	
	$T_{a} (^{3}I F(DAC)): 3.85 eV = 322 nm$	HOMO-1 – LUMO	
	13(LL(DAC)). 5.05CV = 5221111	(71%)	
Cu1	S_1 (mixed ¹ CT and ¹ LE(DAC)):	HOMO – LUMO	0.0050
	2.96 eV = 419 nm	(82%)	
	T_1 (³ LE(M+DAC)): 2.64eV = 470nm	HOMO – LUMO	
		(65%)	
	T_2 (mixed ³ CT and ³ LE(DAC)):	HOMO-1 – LUMO	
	3.49 eV = 356 nm	(32%)	
		HOMO – LUMO	
		(19%)	
	T_3 (³ LE(M+DAC)): 3.82eV = 324nm	HOMO-1 – LUMO	
		(34%)	
		HOMO-3 - LUMO	
		(28%)	0.0105
Cu2	S_1 (mixed ¹ C1(M \rightarrow DAC) and	HOMO - LUMO	0.0105
	$\frac{1}{1} LE(DAC) : 2.92eV = 425nm}{T_{1}(1 + 1)^{2} CT(A(DAC)) = 1}$	(85%)	
	I_1 (mixed ³ CI(M \rightarrow DAC) and 3LE(DAC)) 2.58 eV (490 mm)	HOMO - LUMO	
	(DAC): 2.58eV = 480nm		
	$T_{1} = \frac{1}{2} OT(O_{1} + D_{1} + O_{1}) = 1$	HUMU - LUMU	
	$1_2 \text{ (mixed °C1 (Carb \rightarrow DAC) and}$ 3LE(DAC)): 2.52 - V = 251 - v	(14%)	
	$^{-LE(DAC)}: 3.53eV = 351nm$	$\frac{10000-3-10000}{1000}$	
		(1370)	1

	HOMO-2 – LUMO (12%)	
T_3 (mixed ³ CT(Carb \rightarrow DAC) and	HOMO-3 – LUMO	
$^{3}LE(DAC)$): 3.82eV = 325nm	(40%)	

	Fluorescence $(S_1-S_0@S_1)$	e Phosphe (T_1-S)	brescence $S_0@T_1$)	Oscillator strength for fluorescence	
Au1	2.51eV = 494nm	2.32eV	= 535nm	0.0022	
Au2	2.48eV = 501nm	2.30eV	= 539nm	0.0028	
Au3	2.62eV = 473nm	3.42eV	= 513nm	0.0025	
Cu1	2.11eV = 587nm	1.99eV	= 624nm	0.0027	
Cu2	2.20eV = 564nm	1.96eV	= 634nm	0.0068	
	Ene	rgies relativ	ve to optim	ized S ₀	
	Optimiz	ed S ₁	Opt	timized T ₁	ΔE_{ST}
	kJ/mol	eV	kJ/mol	eV	(eV)
Au1	287.3	2.98	269.8	2.80	0.18
Au2	285.0	2.95	265.7	2.75	0.20
Au3	289.0	3.00	268.3	2.78	0.22
Cul	256.5	2.66	229.4	2.38	0.28
Cu2	248.1	2.57	219.9	2.28	0.29

Table S8. Optimized excited states energetics.

Table S9. Natural transition orbitals NTO for vertical excited S_1 , T_1 , T_2 and T_3 states.

		HONTO	LUNTO
Au1 (crystal)	S ₁		

	T ₂	
	T ₃	
Au1 (opt-S0)	S ₁	
	T	
	T ₂	
	T ₃	

	T ₄	
Au3	S ₁	
	T1	
	T ₂	

	T ₃	
Cu1	S ₁	
	T ₁	
	T ₂	
	T ₃	

References

[1] A. Toppino, A. F. Genady, M. E. El-Zaria, J. Reeve, F. Mostofian, J. Kent, J. F. Valliant, *Inorg. Chem.*, **2013**, 52, 15, 8743-8749.

[2] K. Arumugam, B. Varghese, J. N. Brantley, S. S. M. Konda, V. M. Lynch, C. W. Bielawski, *Eur. J. Org. Chem.*, 2014, 493-497.

[3] L. R. Collins, J. P. Lowe, M. F. Mahon, R. C. Poulten, M. K. Whittlesey, *Inorg. Chem.*, 2014, 53, 5, 2699-2707.

[4] G. Gritzner, J. Kůta, Recommendations on reporting electrodepotentials in nonaqueous solvents: IUPC commission on electro-chemistry. *Electrochim. Acta*, 1984, 29, 869–873.

[5] Programs CrysAlisPro, Oxford Diffraction Ltd. Abingdon, UK, 2010.

[6] G. Sheldrick, Crystal structure refinement with SHELXL. *Acta Cryst. C*, 2015, 71 (1), 3-8.
[7] G. Sheldrick, SHELXT - Integrated space-group and crystal-structure determination. *Acta Cryst. A*, 2015, 71 (1), 3-8.

[8] O.V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Cryst.*, **2009**, *42* (2), 339-341.

[9] F. Furche, D. Rappoport, Density functional methods for excited states: equilibrium structure and electronic spectra. In Computational Photochemistry; M. Olivuccim, Ed.; Elsevier: Amsterdam, 2005; pp. 93–128.

[10] M. J. G. Peach, D. J. Tozer, J. Phys. Chem. A, 2012, 116, 9783-9789.

[11] Gaussian 16, Revision A.03, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox, Gaussian, Inc., Wallingford CT, **2016**.

[12] F. Weigend, M. Häser, H. Patzelt, R. Ahlrichs, *Chem. Phys. Lett.*, **1998**, *294*, 143–152.
[13] F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.*, **2005**, *7*, 3297–3305.

[14] D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, *Theor. Chim. Acta*, **1990**, 77, 123–141.

[15] See e.g. N. Le Phuoc, A.C. Brannan, A.S. Romanov, M. Linnolahti, *Molecules*, 2023, 28, 4398. and references therein.

[16] T. Lu, F. Chen, J. Comput. Chem., 2012, 33, 580–592.