Supporting Information

Controlled synthesis of cyclic helical polyisocyanides and bottlebrush polymers using a cyclic alkyne-Pd(II) catalyst

Bing-Hui Duan,^a Jia-Xin Yu,^a Run-Tan Gao,^a Shi-Yi Li,^a Na Liu,^{*,b} Zong-Quan Wu^{*,a}

^aState Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China. ^bThe School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin Province 130021, China.

*To whom should be addressed: Email: liuna606@jlu.edu.cn (N. L.); Email: zqwu@jlu.edu.cn (Z. W.)

Table of Contents

1. Measurements	1
2. Materials	1
3. Experimental procedures	2
Synthesis of cyclic polymers:	2
Scheme S1 Synthesis of cyclic catalysts (<i>c</i> -Pd(II))	2
Synthesis of c -poly- l_n s	4
Kinetic studies	4
Synthesis of l -poly- 1_n s:	5
Intrinsic viscosity	5
Synthesis of cyclic bottlebrush polymers <i>c</i> -(PI-PLLA _m) _n	6
Table S1. Characterization Data for $(PI-PLLA_m)_n$ and $c-(PI-PLLA_m)_ns$	8
Fig. S1 ¹ H NMR spectrum of the compound 2	8
Fig. S2-S5 ¹ H, ¹³ C NMR, MS, and FT-IR of 3	9-10
Fig. S6-S9 ¹ H, ¹³ C NMR, MS, and FT-IR of 4	11-12
Fig. S10-S13 ¹ H, ¹³ C NMR, MS, and FT-IR of 5	13-14
Fig. S14-S18 ¹ H, ¹³ C, ³¹ P NMR, MS, and FT-IR of <i>c</i> -Pd(II)	15-17
Fig. S19 ¹ H NMR of 1	17
Fig. S20 Time-dependent SEC for the polymerization of 1	18
Fig. S21-S22 ¹ H NMR and FT-IR spectra of l -poly- 1_{60} and c -poly- 1_{60}	18-19
Fig. S23-S24 TGA and DSC of <i>c</i> -poly-1 ₈₀ and <i>l</i> -poly-1 ₈₀	19
Fig. S25 ¹ H NMR spectrum of the pentafluorophenol isocyanide	20
Fig. S26-S29 ¹ H, 13C NMR, MS, and FT-IR of the ROP-initiator	
Fig. S30 SEC for <i>c</i> -(PI-PLLA ₆₀) _n	22
Fig. S31 FT-IR spectrum of the PI-PLLA ₆₀ and <i>c</i> -(PI-PLLA ₆₀) ₅₀	22
Fig. S32 TEM images of <i>c</i> -(PI-PLLA ₁₀₀) ₁₀₀ and (b) <i>c</i> -(PI-PLLA ₁₀₀) ₁₅₀	23
References	23

1. Measurements

Nuclear magnetic resonance (NMR) spectra were recorded using a Bruker 400 MHz spectrometer. Chemical shifts are expressed in delta (δ) in parts per million (ppm) from tetramethylsilane (TMS) downwards using residual proton solvent as an internal standard. Fourier transform infrared (FT-IR) spectra were recorded at 25 °C on a FT-IR instrument (VERTEX 80V) using KBr pressure plates. Mass spectra were determined using a matrix-assisted laser-resolved time-of-flight mass spectrometer (Autoflex Speed). Size exclusion chromatography (SEC) was performed on a Waters 1515 pump and a Waters 2414 differential refractive index (RI) detector using two linear TSK gel GMHHR-H column series. SEC experiments were performed at 40 °C using a tetrahydrofuran (THF) eluent at a flow rate of 0.8 mL/min; molecular weight (M_n) and polydispersity (M_w/M_n) data are reported relative to polystyrene standards. Relevant images were taken using a transmission electron microscope 2100 (TEM). Thermogravimetric analysis (TGA) tests were carried out using a TGA 550 (Waters Corporation) in a nitrogen atmosphere, with a heating rate of 10 °C/min, at temperatures ranging from 25 °C to 800 °C. The TGA tests were carried out using the TGA 550. Differential Scanning Calorimetry (DSC) measurements were performed on a Differential Scanning Calorimeter (Q20). The intrinsic viscosity was determined in DMF at 25 °C using an Ubbelohde viscometer.

2. Materials

All solvents are from Sinopharm. Co. Ltd. and were purified according to standard procedures before use. All chemicals were purchased from Aladdin, Energy Chemical and Titan Technology Exploration Platform Chemicals Ltd. and were used as received without further purification. No further purification is required unless otherwise stated. Monomer **1** and pentafluorophenol isocyanide monomer were prepared in the same way as reported in the literature with slight modifications.^{1,2}

3. Experimental procedures

Scheme S1 Synthesis of cyclic catalysts (*c*-Pd(II)).

The *c*-Pd(II) catalyst was first prepared according to Scheme S1.

Synthesis of 2:³ To a solution of 2-bromobenzoic acid (20.00 g, 99.5 mmol) in dichloromethane (250 mL) were added pentafluorophenol (21.98 g, 119.4 mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI, 22.81 g, 119.4 mmol) and 1-hydroxybenzotriazole monohydrate (HOBt, 3.17 g, 14.9 mmol). The mixture was stirred for 12 h at room temperature, then diluted with an appropriate amount of methylene chloride and washed with water saturated with NaHCO₃ and brine sequentially. The organic layer was dried over anhydrous Na₂SO₄ and evaporated to dryness under reduced pressure. The resulting residue was purified by chromatography (petrol ether/ethyl acetate (6:1, v/v)) to give **2** (31.0 g, 85% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.14–8.08 (m, 1H, ArH), 7.83–7.75 (m, 1H, ArH), 7.52–7.44 (m, 2H, ArH).

Synthesis of 3: Compound 2 (5.00 g, 13.6 mmol), $Pd(PPh_3)_2Cl_2$ (0.48 g, 0.68 mmol) and CuI (0.13 g, 0.68 mmol) were weighed in a 100 mL double-necked flask. Triethylamine (30 mL) and tetrahydrofuran (30 mL) were added under N₂ atmosphere. After the mixture was stirred for 10 min at room temperature, trimethylsilylacetylene (TMSA, 3.85 mL, 2.68 g, 27.2 mmol) was added and the solution was refluxed at 80

°C for 6 h. The solution was then cooled to room temperature and diluted by ethyl acetate (40 mL), and washed sequentially with water, saturated aqueous NaHCO₃ and brine, sequentially. The organic phase was dried over anhydrous Na₂SO₄ and evaporated to dryness. The obtained crude product was subjected to column chromatography (petrol ether/ethyl acetate (10:1, v/v)) to give compound **3** as a brown oil (2.72 g, 52% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.14–8.08 (d, 1H, ArH), 7.74–7.40 (m, 3H, ArH), 0.23–0.20 (s, 9H, Si-CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 162.8, 135.1, 133.3, 131.4, 128.9, 128.4, 124.9, 102.0, 0.3. FT-IR (KBr, 25 °C, cm⁻¹): 2947 (v_{C-H}), 2151 ($v_{C=C}$), 2096 (v_{Si-H}). MS m/z calcd for C₁₈H₁₃F₅O₂Si [M+Na]⁺: 407.05; Found: 407.96.

Synthesis of 4: Compound 3 (1.0 g, 2.60 mmol) was weighed in a 100 mL doublenecked flask. To this flask, THF (20 mL) and tetrabutylammonium fluoride (TBAF, 0.34 g, 1.30 mmol) were added under the atmosphere of N₂ and the resulting solution was stirred at room temperature for 12 h, then diluted with an appropriate amount of CH₂Cl₂ and washed with water saturated with NaHCO₃ and brine sequentially. The organic layer was dried over anhydrous Na₂SO₄ and evaporated to dryness under reduced pressure. The obtained crude product was subjected to column chromatography (petrol ether/ethyl acetate (2:1, v/v)) to give compound 4 as a yellow solid (0.32 g, 40% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.21–8.16 (d, 1H, ArH), 7.76–7.69 (d, 1H, ArH), 7.66–7.59 (t, 1H, ArH), 7.56–7.49 (t, 1H, ArH), 3.47–3.44 (s, 1H, CH). ¹³C NMR (100 MHz, CDCl₃): δ 161.6, 135.4, 133.5, 131.4, 128.7, 124.1, 83.9, 81.1. FT-IR (KBr, 25 °C, cm⁻¹): 3279 ($\nu_{=C-H}$), 2112 ($\nu_{C=C}$). MS m/z calcd for C₁₅H₃F₅O₂ [M+Na]⁺: 335.01; Found: 335.25.

Synthesis of 5:⁴ Compound 4 (453 mg, 1.45 mmol), $Pd(PEt_3)_2Cl_2$ (300 mg, 0.73 mmol), and CuI (28 mg, 0.29 mmol) were weighed in a 100 mL double-necked flask. To this flask, triethylamine (Et₃N, 10 mL) and CH₂Cl₂ (10 mL) were added under N₂ atmosphere. The resulting mixture was heated to 30 °C and stirred for 16 h. Then diluted with an appropriate amount of CH₂Cl₂ and washed with water saturated with NaHCO₃ and brine sequentially. The organic layer was dried over anhydrous Na₂SO₄ and evaporated to dryness under reduced pressure. The organic phase was subjected to

column chromatography (petrol ether/ethyl acetate (4:1, v/v)) to afford compound **5** as a brown liquid (580 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.23–7.44 (m, 8H, ArH), 1.99–1.87 (m, 12H, P-CH₂), 1.20–1.10 (m, 18H, CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 134.3, 133.0, 131.0, 129.8, 126.7, 125.1, 15.3, 8.2. FT-IR (KBr, 25 °C, cm⁻¹): 2964 (v_{C-H}), 2861 (v_{C-H}) 2090 ($v_{C=C}$). MS m/z calcd for C₄₂H₃₈F₁₀O₄P₂Pd [M-Cl⁻]: 928.61; Found: 928.68.

Synthesis of c-Pd(II): Compound **5** (128 mg, 0.13 mmol) and 1,6-hexanediamine (15 mg, 0.13 mmol) were weighed into a 50 mL double-necked flask. The Et₃N (8 mL) and THF (8 mL) were added to this flask under N₂ atmosphere. The solution was heated to 55 °C and stirred at this temperature for 20 h, then diluted with an appropriate amount of ethyl acetate and washed with water saturated with NaHCO₃ and brine sequentially. The organic phase was dried over anhydrous Na₂SO₄ and evaporated to dryness to obtain the crude product, which was subjected to column chromatography (petrol ether/ethyl acetate (2:1, v/v)) to give *c*-Pd(II) as a brown solid (55 mg, 55% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.54–7.08 (m, 8H, ArH), 3.22–3.11 (m, 4H, CH₂), 1.99–1.87 (m, 12H, P-CH₂), 1.29–1.21 (m, 4H, CH₂), 1.20–1.10 (m, 18H, CH₃), 1.08–1.02 (m, 4H, CH₂). ³¹P NMR (162 MHz, CDCl₃): δ 18.47. ¹³C NMR (100 MHz, CDCl₃): δ 170.8, 138.2, 132.1, 127.9, 125.9, 124.9, 116.8, 108.0, 42.9, 38.6, 14.3, 13.2, 8.6. FT-IR (KBr, 25 °C, cm⁻¹): 2924 (v_{C-H}), 2856 (v_{C-H}), 2125 ($v_{C=C}$). MS m/z calcd (%) for C₃₆H₅₁LiN₂O₂P₂Pd: [M + Li]⁺: 719.13; Found: 720.59.

Synthesis of *c*-poly-**1**_ns: These polymers were prepared accordign to Scheme 1 in the main text. Taking *c*-poly-**1**₆₀ as an example, monomer **1** (100 mg, 0.34 mmol) and *c*-Pd(II) (4.0 mg, 0.005 mmol) were dissolved in redistilled THF (1 mL) under an N₂ atmosphere. The reaction solution was stirred at 55 °C for 12 h, then cooled to room temperature and precipitated into a large volume of cooled methanol. After centrifugation and drying, a yellow solid was obtained (70 mg, 70% yield). SEC: $M_n = 10.1 \text{ kg/mol}, M_w/M_n = 1.18$. ¹H NMR (400 MHz, CDCl₃): δ 7.71–7.28 (br, 4H, ArH), 4.41–3.52 (br, 2H, OCH₂), 1.41–1.12 (br, 14H, CH₂), 0.97–0.71 (br, 3H, CH₃). FT-IR (KBr, 25 °C, cm⁻¹): 2924 (v_{C-H}), 2125 ($v_{C=C}$), 1706 ($v_{C=O}$), 1692 ($v_{C=N}$).

Kinetic studies. Monomer 1 (100 mg, 0.34 mmol), catalyst c-Pd(II) (6.06 mg, 0.008

mmol) and polystyrene (50 mg) were dissolved in THF (1 mL) under N₂ atmosphere ($[1]_0 = 0.35$ M, $[1]_0/[Pd]_0 = 40$). The reaction was heated at 55 °C. Aliquots removed from the reaction solution at appropriate time intervals were subjected to SEC determination. The conversion of monomer 1 was calculated from the peak area of unreacted monomer. The conversion of monomer 1 was calculated from the peak area of unreacted monomer 1 relative to the peak area of the internal standard polystyrene based on a linear calibration curve. M_n and M_w/M_n were estimated by SEC and reported as equivalents to the polystyrene standard.

Synthesis of *l*-poly- I_ns : These polymers were prepared according to Scheme 1 in the main text, followed the reported literatures.⁵ Taking *l*-poly- I_{80} as an example. Monomer 1 (100 mg, 0.34 mmol) and alkyne-Pd(II) (2.1 mg, 0.004 mmol) were dissolved in redistilled THF (1 mL) under an N₂ atmosphere. The mixture was stirred at 55 °C for 12 h. The polymerization solution was cooled to room temperature and precipitated into a large volume of cooled methanol. After centrifugation and drying, a yellow solid was obtained (70 mg, 70% yield). SEC: $M_n = 10.1$ kg/mol, $M_w/M_n = 1.18$. ¹H NMR (400 MHz, CDCl3, 25 °C): δ 7.48–7.24 (br, 4H, ArH), 4.58–3.42 (br, 2H, OCH2), 1.75–0.73 (br, 19H, CH₂ and CH₃). FT-IR (KBr, 25 °C, cm⁻¹): 2956 (v_{C-H}), 2921 (v_{C-H}), 2847 (v_{C-H}), 1716 ($v_{C=0}$), 1600 ($v_{C=N}$).

Intrinsic viscosity: The Ubbelohde viscometer was placed in a water bath at a constant temperature of 25 °C, the solvent THF was added and the mean efflux time was recorded t₀. A solution of cyclic polymer *c*-poly-1₈₀ with an initial mass concentration of 0.002 g/mL was added and then the mass concentration (ρ) of the solution was varied and the respective efflux time (t) was recorded. Relative viscosity ($\eta_r = t/t_0$); make Ln(η_r)/ ρ - ρ plot and extrapolate to $\rho = 0$ to find intrinsic viscosity (η). The intrinsic viscosity of linear polymers *l*-poly-1₈₀ was determined in the same way.⁶ The intrinsic viscosity of *c*-poly-1₈₀ and *l*-poly-1₈₀ was determined to be 0.78 and 1.08 mL/g, respectively.

Synthesis of cyclic bottlebrush polymers c-(PI-PLLA_m)_n

Scheme S2 Synthesis of initiator and macromonomer PI-PLLA_m.

Synthesis of initiator:⁷ Pentafluorophenol isocyanide (**6**, 500 mg, 1.59 mmol) was prepared followed the reported literature, and was added to the solution of *S*-(+)-2-amino-1-propanol (120 mg, 1.59 mmol) in THF (10 mL) and Et₃N (0.08 mL). The mixture was stirred at room temperature for 6 h. Then diluted with an appropriate amount of CH₂Cl₂ and washed with water saturated with NaHCO₃ and brine sequentially. The organic layer was dried over anhydrous Na₂SO₄ and evaporated to dryness under reduced pressure. The crude product obtained was subjected to column chromatography (petroleum ether/ethyl acetate (2:1, v/v)) to give initiator as a yellow solid (305 mg, 94% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.86–7.79 (d, 2H, ArH), 7.47–7.41 (d, 2H, ArH), 6.38–6.27 (s, 1H, OH), 4.33–4.24 (m, 1H, CH), 3.85–3.62 (d, 2H, CH₂), 1.33–1.29 (d, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 166.5, 166.2, 134.8, 128.4, 126.7, 66.5, 48.2, 17.1. FT-IR (KBr, 25 °C, cm⁻¹): 3332 (v_{N-H}), 3063 (v_{C-H}), 2961 (v_{C-H}), 2134 ($v_{C=N}$), 1631 ($v_{C=O}$). MS m/z calcd for C₁₁H₁₂N₂O₂ [M+H]⁺: 205.10; Found: 205.15.

Synthesis of macromonomer PI-PLLA_m: Taking PI-PLLA₆₀ as an example, initiator (50 mg, 0.25 mmol) and L-lactide (1.08 g, 7.50 mmol) were dissolved in anhydrous CH_2Cl_2 (10 mL). After the solid completely dissolved, was 1.8-Diazabicyclo[5.4.0]undec-7-ene (DBU, 37 mg, 0.25 mmol) was added. The resulting mixture was stirred at room temperature for 12 h. The solution was then precipitated into methanol. The precipitated solid was collected by centrifugation and dried in vacuum at room temperature overnight to give PI-PLLA₆₀ as a white solid (0.96 g, 85%) yield). SEC: $M_n = 5.5 \text{ kg/mol}, M_w/M_n = 1.21.$ ¹H NMR (400 MHz, CDCl₃): δ 7.83–7.75 (d, 2H, ArH), 7.47–7.41 (d, 2H, ArH), 5.25–5.02 (br, 70H, CH and CH₂ of the PLLA chain), 1.59–1.55 (br, 210H, CH₃ of PLLA main chain). FT-IR (KBr, 25 °C, cm⁻¹): 2993 ($v_{\text{C-H}}$), 2955 ($v_{\text{C-H}}$), 2125 ($v_{\text{C=N}}$), 1750 ($v_{\text{C=O}}$).

Synthesis of cyclic bottlebrush polymers c-(PI-PLLA_m)_ns: Taking (PI-PLLA₆₀)₅₀ as an example, PI-PLLA₆₀ (100 mg, 0.018 mmol) and c-Pd(II) (0.22 mg, 0.0003 mmol) were dissolved in redistilled toluene (1 mL) under an N₂ atmosphere. The reaction solution was stirred at 100 °C for 12 h. The polymerized solution was concentrated and precipitated into a large volume of cooled methanol. After centrifugation and drying, a yellow solid was obtained (62 mg, 62%). SEC: $M_n = 404.9$ kg/mol, $M_w/M_n = 1.31$. ¹H NMR (400 MHz, CDCl₃): δ 7.83–7.21 (br, 4H, ArH of the terminal phenyl isocyanide), 5.25–5.02 (br, 70H, CH and CH₂ of the PLLA chain), 1.59–1.55 (br, 210H, CH₃ of PLLA main chain). FT-IR (KBr, 25 °C, cm⁻¹): 2993 (v_{C-H}), 2947 (v_{C-H}), 1656 ($v_{C=0}$), 1479 ($v_{C=N}$).

run ^a	Polymer	$M_n^{\rm b}(\rm kg/mol)$	M_w/M_n^{b}	Yield
				c
1	<i>l</i> -poly-1 ₈₀	16.8	1.08	80%
2	(PI-PLLA ₂₀₎	3.0	1.31	83%
3	(PI-PLLA ₄₀)	4.0	1.34	85%
4	(PI-PLLA ₆₀)	5.5	1.21	85%
5	(PI-PLLA ₈₀)	6.1	1.14	81%
6	$(PI-PLLA_{100})$	8.0	1.24	84%
7	(PI-PLLA ₆₀) ₅₀	404.9	1.31	62%
8	(PI-PLLA ₆₀) ₁₀₀	468.8	1.34	63%
9	(PI-PLLA ₆₀) ₁₅₀	688.8	1.24	62%
10	(PI-PLLA ₁₀₀) ₁₀₀	904.3	1.28	67%
11	(PI-PLLA ₁₀₀) ₁₅₀	1248.2	1.25	65%

Table S1. Characterization Data for linear polymer, (PI-PLLA_m)_n and *c*-(PI-PLLA_m)_ns

^aThe polymers were prepared according to Scheme 1 and Scheme 2. ^bThe M_n and M_w/M_n values were calculated via SEC using polystyrene standards. ^cIsolated yields.

Fig. S1 1 H NMR spectrum of the compound 2 measured in CDCl₃ at room temperature.

Fig. S2 ¹H NMR spectrum of the compound 3 measured in $CDCl_3$ at room temperature.

Fig. S3 ¹³C NMR spectrum of the compound 3 measured in CDCl₃ at room temperature.

Fig. S4 Mass spectrometry of the compound 3.

Fig. S5 FT-IR spectrum of the compound 3 measured at room temperature using KBr pellets.

Fig. S6 ¹H NMR spectrum of the compound 4 measured in CDCl₃ at room temperature.

Fig. S7¹³C NMR spectrum of the compound 4 measured in CDCl₃ at room temperature.

Fig. S8 Mass spectrometry of the compound 4.

Fig. S9 FT-IR spectrum of the compound 4 measured at room temperature using KBr pellets.

Fig. S10 ¹H NMR spectrum of the compound 5 measured in $CDCl_3$ at room temperature.

Fig. S11 13 C NMR spectrum of the compound 5 measured in CDCl₃ at room temperature.

Fig. S12 Mass spectrometry of the compound 5.

Fig. S13 FT-IR spectrum of the compound **5** measured at room temperature using KBr pellets.

Fig. S14 ¹H NMR spectrum of the *c*-Pd(II) measured in CDCl₃ at room temperature.

Fig. S15¹³C NMR spectrum of the *c*-Pd(II) measured in CDCl₃ at room temperature.

Fig. S16 ³¹P NMR spectrum of the *c*-Pd(II) measured in CDCl₃ at room temperature.

Fig. S17 Mass spectrometry of the *c*-Pd(II).

Fig. S18 FT-IR spectrum of *c*-Pd(II) measured at room temperature using KBr pellets.

Fig. S19 1 H NMR spectrum of the monomer 1 measured in CDCl₃ at room temperature.

Fig. S20 Time-dependent SEC for the polymerization of monomer 1 initiated by *c*-Pd(II) using polystyrene ($M_n = 190$ kg/mol, $M_w/M_n = 1.13$) as the internal standard in THF at 55 °C.

Fig. S21 ¹H NMR spectrum of the *l*-poly-1₆₀ measured in CDCl₃ at room temperature.

Fig. S22 FT-IR spectrum of the monomer 1 and c-poly-1₆₀.

Fig. S23 TGA of *c*-poly-1₈₀ and *l*-poly-1₈₀.

Fig. S24 DSC of *c*-poly-1₈₀ and *l*-poly-1₈₀.

Fig. S25 1 H NMR spectrum of the pentafluorophenol isocyanide measured in CDCl₃ at room temperature.

Fig. S26 ¹H NMR spectrum of the initiator measured in CDCl₃ at room temperature.

Fig. S27 13 C NMR spectrum of the initiator measured in CDCl₃ at room temperature.

Fig. S28 Mass spectrometry of the initiator for ring-opening polymerization.

Fig. S29 FT-IR spectrum of the initiator measured at room temperature using KBr pellets.

Fig. S30 SEC for c-(PI-PLLA₆₀)_n prepared in different ratios of PI-PLLA₆₀ to catalyst. SEC condition: eluent = THF, temperature = 40 °C.

Fig. S31 FT-IR spectrum of the PI-PLLA₆₀ and c-(PI-PLLA₆₀)₅₀ measured at room temperature using KBr pellets.

Fig. S32 (a) TEM images of *c*-(PI-PLLA₁₀₀)₁₀₀ and (b) *c*-(PI-PLLA₁₀₀)₁₅₀.

References

- Z.-Q. Wu, R. J. Ono, Z. Chen and C. W. Bielawski, J. Am. Chem. Soc., 2010, 132, 14000-14001.
- M. Su, N. Liu, Q. Wang, H. Wang, J. Yin and Z.-Q. Wu, *Macromolecules*, 2016, 49, 110-119.
- H. Lenormand, V. Corcé, G. Sorin, C. Chhun, L.-M. Chamoreau, L. Krim, E.-L. Zins, J.-P. Goddard and L. Fensterbank, *J. Org. Chem.*, 2015, 80, 3280-3288.
- L. Xu, B.-R. Gao, X.-H. Xu, L. Zhou, N. Liu and Z.-Q. Wu, *Angew. Chem. Int. Ed.*, 2022, 61, e202204966.
- Y.-X. Xue, Y.-Y. Zhu, L.-M. Gao, X.-Y. He, N. Liu, W.-Y. Zhang, J. Yin, Y. Ding, H. Zhou and Z.-Q. Wu, *J. Am. Chem. Soc.*, 2014, **136**, 4706-4713.
- 6. W. Zhao, D. Cui, X. Liu, and X. Chen, *Macromolecules*, 2010, 43, 6678-6684.
- W.-B. Liu, X.-H. Xu, S.-M. Kang, X. Song, L. Zhou, N. Liu and Z.-Q. Wu, Macromolecules, 2021, 54, 3158-3168.