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Experimental Section

Preparation of Samples. 

The in situ synthesis of Co@NCNR and Co@NCNT arrays: 2 g CoCl2·6H2O 

and 5 g melamine or 3 g triazole were added to 5 ml aqueous solution under 

tempestuously stirring to form a brown or purple colored slurry. Then, the colloidal 

compounds were milled continually to form a paste, following the evaporation of 

water. The obtained paste was dried at 80 °C for 24 h and manually ground into 

powder. The powder was transferred to a semiclosed quartz boat and heated at 350 °C 

for 1 h at a heating rate of 2 °C min-1 in a tubular furnace under N2 flow, and the 
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temperature was increased to 700 °C at 2 °C min-1 and kept at 700 °C for 3 h, followed 

by cooling to room temperature naturally.

The in situ synthesis of Co3O4@NCNR and Co3O4@NCNT arrays: The 

obtained Co@NCNR and Co@NCNT powder was calcined in a muffle furnace in air 

at 410 °C for 1 h with a heating rate of 5 °C min-1, and the final product was obtained.

The synthesis of Co3O4@CB: 6 g CoCl2·6H2O and 5 g carbon black was 

dispersed in 5 ml deionized water and ground by mortar and pestle to form a slurry. 

Then the slurry was dried at 80 °C in oven overnight. The obtained powder was 

transferred to a quartz boat and covered by a quartz cap. Then heat treated at 410 °C 

for 1 h in air to form Co3O4@CB.

Material Characterization

The crystalline structure of the products was characterized by X-ray diffraction 

(XRD) on a Rigaku SmartLab9 powder diffractometer equipped with Cu Kα radiation 

(λ = 1.541 Å). Thermogravimetric analysis (TGA) was performed on a TA SDT Q600 

analyser in air with a heating rate of 10 K min-1. The morphology of the products was 

observed by field emission scanning electron microscopy (FE-SEM) on a ZEISS 

SUPRA 55 microscope and transmission electron microscopy (TEM) on a Tecnai G2 

F20 microscope. X-ray photoelectron spectroscopy (XPS) was conducted using a 

Kratos Axis Ultra DLD (delay line detector) spectrometer equipped with a 

monochromatic Al Kα X-ray source (1486.6 eV). Raman spectra were collected on a 

Renishaw-1000 spectrometer by exciting a 514.5 nm Ar ion laser. N2 adsorption-

desorption isotherms were recorded at 77 K on a Quantachrome NOVA 2000e sorption 

analyzer. 

Electrochemical Characterization 

Co3O4@NCNR, Co3O4@NCNT or Co3O4@CB and polyvinylidene fluoride 

(PVDF) binder in a weight ratio of 9 : 1 were mixed in N-methylpyrrolidone (NMP) 
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and stirred for 24 h to make a slurry. The slurry was then spread on a Cu foil (13 mm 

in diameter, 0.3 mm in thickness) with a surface density of 1.0 mg cm-2 and dried at 

120 °C for 24 h to fabricate the working electrodes in vacuum. Lithium foil was used 

as both the reference electrode and the counter electrode (13 mm in diameter, 0.5 mm 

in thickness). 1.0 M LiPF6 in a 1:1 (v/v) mixture of ethylene carbonate (EC) and diethyl 

carbonate (DEC) was employed as the electrolyte. Celgard 2300 membrane (25 μm-

thick polyethylene) was adopted as a separator. The assembly of CR2032-type coin 

cells was conducted in a high-purity Ar filled glovebox. Galvanostatic cycling was 

performed between 0.01 and 3 V vs Li+/Li at various C rates on a Land Battery Tester 

(Wuhan, China), where 1 C corresponds to 1000 mA g-1. Cyclic voltammetry (CV) was 

conducted between 0.01 and 3 V at 0.1 mV s-1 using a CHI660E electrochemical 

workstation. Electrochemical impedance spectroscopy (EIS) was performed on the 

same electrochemical system over the frequency range from 100 kHz to 100 mHz with 

a perturbation voltage of 5 mV. All of the electrochemical measurements were 

performed at 25 °C in an ambient atmosphere.

Fig. S1 EDS analysis for (a) Co3O4@NCNR and (b) Co3O4@NCNT, 

respectively.

Element C N O Co
wt% 60.74 3.04 10.76 25.46

Element C N O Co
wt% 65 3.5 8.44 23.06

a

b



S4

 

500 nm 

(d) 

(b) 

10 nm 50 nm 

d =0.344 nm 
(002) 

d =0.207nm 
(220) 

2 nm 

(f) 

(e) 

2 nm 

(311) 
d =0.174 nm 

(c) 

d =0.345 nm 
(002) 

100 nm 

(a) 

Fig. S2 TEM images of (a-c) Co3O4@NCNR and (d-f) Co3O4@NCNT, 

respectively.
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Fig. S3 SEM images of Co3O4@NCNR precursor of one-dimensional 

Co(II)-triazole framework composed nanobelts.
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Fig. S4 (a) XPS survey spectra of Co3O4@NCNR and Co3O4@NCNT 

hybrids, High-resolution XPS of Co2p (b) and N 1s (c) for Co3O4@NCNT.
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Fig. S5 The pore size distribution of (a) Co3O4@NCNR and (b) 

Co3O4@CB hybrid.
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Fig. S6 Co3O4@NCNR, Co3O4@NCNT|| Li half-cells: (a) CV at 0.1 mV 

s-1, (b) EIS and equivalent circuit model (inset), (c) voltage window of 

0.01-3 V, (d) rate capability from 100 mA g-1 to 5 A g-1, and (e) long-term 

cycling performance at 1 A g-1, the capacity based on the mass of Co3O4.
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Fig. S7 CV curves of (a) Co3O4@NCNR and (b) Co3O4@CB hybrid 

electrodes at the 1st, 2nd, 3rd and 5th cycle.
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Fig. S8 Discharge/charge voltage window of (a) Co3O4@NCNR and (b) 

Co3O4@NCNT hybrid electrodes at the 1st, 2nd, 3rd and 5th cycle between 

0.01-3 V.
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Fig. S9 The cross-sectional SEM images of (a) Co3O4@NCNR and (b) 

Co3O4@NCNT electrode after 600 cycles.
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Fig. S10 Top-view SEM images of (a, b) Co3O4@NCNR and (c, d) 

Co3O4@NCNT electrode after 600 cycles.
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Table S1. Comparison of the electrochemical performances of various Co3O4-based anode materials 
for LIBs.

Electrode materials

Current 

density 

[A g-1]

Initial 

discharge/charge 

capacities 

[mA h g-1]

Discharge capacity 

[mA h g-1] and 

(cycle number)

Rate 

capability

[mA h g-1]

Ref.

Co3O4@C 

polyhedrons
1.0

1463/1118

(0.1 A g-1)
840 (150)

596

(5.0 A g-1)
[S1]

Co3O4/carbon 

(Co3O4/C)
0.089

1458/945

(0.089A g-1)
877 (200)

669

(2.0 A g-1)
[S2]

Double 

carbon coated cross-

linked Co3O4

(Co3O4 

NP@NC@CNTs)

1.0 1570/1020 1017(500)
537

(8.0 A g-1)
[S3]

Co@Co3O4/CNTs 

nanocomposite 
2.0 1115/750 529 (600)

529

(2.0 A g-1)
[S4]

Co3O4 nanoparticles 

embedded 

carbonaceous fibre

(Co3O4/CF)

0.089
1246/733

(0.089 A g-1)
730 (100)

240

(4.45A g-1)
[S5]

three-dimensional 

Co3O4/C 

nanocomposites

2.0
1143/862

(0.1 A g-1)
561 (500)

593

(2.0 A g-1)
[S6]

Co3O4 nanoparticles 

into nitrogen-doped 

graphitic carbon 

nanofibers 

(Co3O4@NGFs)

2.0
1060.2/500.8

(2.0 A g-1)
408.4 (600)

484.4

(2.0 A g-1)
[S7]

the in-situ 

fabricated 3D flower-

like hybrid with 

Co3O4 nanoparticles 

(Co3O4/NC)

0.5
1265.4/989.1

(0.1 A g-1)
671.1 (500)

498.8

(4.0 A g-1)
[S8]

N-doped carbon 1.0 1567/768 905 (350) 271 [S9]
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coated hollow Co3O4 

nanocrystals

H-N-C@Co3O4/CNT

(12.5 A g-1)

Co3O4/Co@N-doped 

carbon nanotubes (T-

Co3O4/Co@NC)

0.5 693/563.5 689.2 (400)
655.4

(0.2 A g-1)
[S10]

Nitrogen-doped 

carbon nanobelts 

decorated with Co3O4 

nanoparticles

(Co3O4@NCNR)

1.0
1389.2/1050.7

(0.1 A g-1)
944.7(600)

768

(5.0 A g-1)

This 

work
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