Supplementary Information

Iridium-catalysed asymmetric addition of imides to alkenes

Kentaro Yamakawa, Kana Sakamoto and Takahiro Nishimura*
Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sumiyoshi, Osaka 558-8585, Japan.
E-mail: tnishi@omu.ac.jp

Contents of Supplementary Information:

1. General S-2
2. Materials S-2
3. Procedure for Table S1 S-2
4. Procedure for Table 1 S-4
5. Procedure for Schemes 2 and $3 \quad$ S-4
6. NMR experiments for the reaction of a cationic iridium complex with $\mathrm{S}-5$ phthalimide
7. Reaction of phthalimide with styrene- $d_{3} \quad$ S-5
8. Characterization of the products S-6
9. References S-17
10. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra and chiral HPLC charts $\quad \mathrm{S}-18$

1. General

All anaerobic and moisture-sensitive manipulations were carried out with standard Schlenk techniques under pre-dried nitrogen. NMR spectra were recorded on either a JEOL JNM ECZ-400 spectrometer (400 MHz for ${ }^{1} \mathrm{H}, 100 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$) or a Bruker Avance III HD 400 spectrometer (400 MHz for ${ }^{1} \mathrm{H}, 100 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}, 162 \mathrm{MHz}$ for $\left.{ }^{31} \mathrm{P}\right)$. Chemical shifts are reported in $\delta(\mathrm{ppm})$ referenced to the residual peaks of $\mathrm{CDCl}_{3}(\delta 7.26)$ and $\mathrm{CD}_{3} \mathrm{CN}(\delta 1.93)$ for ${ }^{1} \mathrm{H} \operatorname{NMR}$, and $\mathrm{CDCl}_{3}(\delta 77.00)$ for ${ }^{13} \mathrm{C}$ NMR. The following abbreviations are used; s: singlet, d: doublet, t : triplet, q : quartet, quint: quintet, sext: sextet, sept: septet, m: multiplet, br: broad. Optical rotations were measured on a JASCO P-2200 polarimeter. High-resolution mass spectra were obtained with JEOL AccuTOF LCplus 4G spectrometer. Flash column chromatography was performed with Silica Gel 60 N (Wako). Preparative thin-layer chromatography was performed with Wakogel® B-5F (Wako). Preparative recycling gel permeation chromatography (GPC) was performed using Shodex GPC FP-2002 (x 2) using chloroform as eluent.

2. Materials

Dehydrated solvents were purchased and used after being deoxygenated by bubbling N_{2}. $[\operatorname{IrCl}(\operatorname{cod})]_{2},{ }^{1}\left[\operatorname{IrCl}(\mathrm{coee})_{2}\right]_{2},{ }^{2}$ and $\mathrm{NaBAr}_{4}\left[\mathrm{Ar}^{\mathrm{F}}=3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right]^{3}$ were prepared according to the reported procedures. Ligands (R)-DTBM-segphos, (S)-DTBM-segphos, (S)-segphos, (R)-DTBMbinap, (R)-binap, and (S)-DTBM-MeO-biphep were purchased from commercial suppliers and used as received. Imides $\mathbf{1 b},{ }^{4} \mathbf{1 c},{ }^{5}$ and $\mathbf{1 d}{ }^{6}$ were prepared according to the reported procedures. Alkenes $\mathbf{2 a}, \mathbf{2 b}, \mathbf{2 e}, \mathbf{2 g}, \mathbf{2 h}, \mathbf{2 i}, \mathbf{2 j}, \mathbf{2 1}, \mathbf{2 q}$, and $\mathbf{2 t}$ were purchased from commercial suppliers and used after vacuum distillation. Known alkenes $\mathbf{2 c}, \mathbf{2 d}, \mathbf{2 f}, \mathbf{2 k}, \mathbf{2 m}, \mathbf{2 n}, \mathbf{2 0}$, and $\mathbf{2 p}$ were prepared from the corresponding aldehydes with methyltriphenylphosphonium bromide and potassium t-butoxide in $\mathrm{Et}_{2} \mathrm{O}$. Allylsilanes $2 \mathbf{r}$ and $2 \mathbf{s}$ were prepared according to the reported procedures. ${ }^{7}$ Other chemicals were purchased from commercial suppliers and used as received. Racemic compounds of $\mathbf{3}$ were synthesized by using pseudo racemic DTBM-segphos, which was prepared from an equivalent amount of (R) - and (S)-DTBM-segphos.

3. Procedure for Table S1

A mixture of $[\operatorname{IrCl}(\operatorname{cod})]_{2}(1.7 \mathrm{mg}, 0.0025 \mathrm{mmol}, 5 \mathrm{~mol} \% \mathrm{Ir}),(R)$-DTBM-segphos $(7.1 \mathrm{mg}$, $0.0060 \mathrm{mmol}, 6 \mathrm{~mol} \%$), and $\mathrm{NaBAr}^{\mathrm{F}} 4(9.2 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ in a Schlenk with a Teflon valve was stirred at room temperature for 10 min under N_{2}. Then, the green suspension was concentrated under vacuum and the resulting solid was dried under vacuum at room temperature for 10 min . The Schlenk tube was refilled with N_{2}, and phthalimide ($\mathbf{1 a}, 14.7 \mathrm{mg}, 0.10$ $\mathrm{mmol})$, solvent $(0.2 \mathrm{~mL})$, and styrene ($\mathbf{2 a}, 31.2 \mathrm{mg}, 0.30 \mathrm{mmol}$) were added to the tube. Then, the

Teflon valve was closed, and the mixture was stirred at $120^{\circ} \mathrm{C}$ in an oil bath for 48 h . After the reaction mixture was concentrated under vacuum, the residue was subjected to preparative TLC on silica gel eluted with hexane/EtOAc (5:1) to give the addition product 3aa. The ee was measured by HPLC with a chiral stationary column (Daicel Chiralpak ID).

Table S1 Reaction optimization

${ }^{a}$ Reaction conditions: 1a $(0.10 \mathrm{mmol})$, 2a $(0.30 \mathrm{mmol})$, Ir catalyst ($5 \mathrm{~mol} \%$ of Ir$),(R)$-DTBM-segphos $(0.0060$ mmol, $6 \mathrm{~mol} \%$), and $\mathrm{NaBAr}^{\mathrm{F}} 4$ ($0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%$) in solvent $(0.2 \mathrm{~mL})$. N.D.: Not determined. ${ }^{b}$ Isolated yields. ${ }^{c}$ Dertermined by HPLC with a chiral stationary phase column: Chiralpak ID. ${ }^{d}$ Distilled 1a was used. ${ }^{e}$ Performed in methylcyclohexane $(0.4 \mathrm{~mL})$. ${ }^{f}$ Performed with $5 \mathrm{~mol} \%$ of (R)-DTBM-segphos. ${ }^{g}$ Without NaBAr_{4}.

4. Procedure for Table 1

For Entries 1-5

A mixture of $[\mathrm{IrCl}(\mathrm{cod})]_{2}(1.7 \mathrm{mg}, 0.0025 \mathrm{mmol}, 5 \mathrm{~mol} \% \mathrm{Ir})$, ligand ($\left.0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%\right)$, and $\mathrm{NaBAr}^{\mathrm{F}} 4(9.2 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ in a Schlenk tube with a Teflon valve was stirred at room temperature for 5 min under N_{2}. Then, the green suspension was concentrated under vacuum and the resulting solid was dried under vacuum at room temperature for 5 min . The Schlenk tube was refilled with N_{2}, and phthalimide ($\mathbf{1 a}, 14.7 \mathrm{mg}, 0.10 \mathrm{mmol}$), methylcyclohexane $(0.4 \mathrm{~mL})$, and styrene ($\mathbf{2 a}, 31.2 \mathrm{mg}, 0.30 \mathrm{mmol})$ were added to the tube. Then, the Teflon valve was closed, and the mixture was stirred at $140^{\circ} \mathrm{C}$ in an oil bath or in a heating block for 48 h . After the reaction mixture was concentrated under vacuum, the residue was subjected to preparative TLC on silica gel eluted with hexane/EtOAc (5:1) to give the addition product 3aa. The ee was measured by HPLC with a chiral stationary column (Daicel Chiralpak ID).

For Entry 6

A mixture of $\left[\operatorname{Ir}(\operatorname{cod})_{2}\right] \mathrm{BAr}^{\mathrm{F}} 4(6.4 \mathrm{mg}, 0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%),(S)$-DTBM-segphos $(5.9 \mathrm{mg}$, $0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ in a Schlenk tube was stirred at room temperature for 5 min under N_{2}. Then, the suspension was concentrated under vacuum and the resulting solid was dried under vacuum at room temperature for 5 min . The Schlenk tube was refilled with N_{2}, and phthalimide ($\mathbf{1 a}, 14.7 \mathrm{mg}, 0.10 \mathrm{mmol}$), methylcyclohexane (0.4 mL), and styrene ($\mathbf{2 a}, 31.2 \mathrm{mg}, 0.30$ mmol) were added to the tube. Then, the Teflon valve was closed, and the mixture was stirred at $140^{\circ} \mathrm{C}$ in a heating block for 48 h . After the reaction mixture was concentrated under vacuum, the residue was subjected to preparative TLC on silica gel eluted with hexane/EtOAc (5:1) to give the addition product 3aa.

5. Procedure for Schemes 2 and 3

A mixture of $[\mathrm{IrCl}(\operatorname{cod})]_{2}(1.7 \mathrm{mg}, 0.0025 \mathrm{mmol}, 5 \mathrm{~mol} \% \mathrm{Ir}),(S)$-DTBM-segphos $(5.9 \mathrm{mg}$, $0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%$), and $\mathrm{NaBAr}_{4}(9.2 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ in a Schlenk tube with a Teflon valve was stirred at room temperature for 5 min under N_{2}. Then, the green suspension was concentrated under vacuum and the resulting solid was dried under vacuum at room temperature for 5 min . The Schlenk tube was refilled with N_{2}, and phthalimide $\mathbf{1}(0.10 \mathrm{mmol})$, methylcyclohexane $(0.4 \mathrm{~mL})$, and alkene $2(0.30 \mathrm{mmol})$ were added to the tube. Then, the Teflon valve was closed, and the mixture was stirred at $140^{\circ} \mathrm{C}$ in an oil bath or in a heating block for 48 h . After the reaction mixture was concentrated under vacuum, the residue was subjected to preparative TLC on silica gel eluted with hexane/EtOAc to give the addition product $\mathbf{3}$. The ee was measured by HPLC with chiral stationary columns.

6. NMR experiments for the reaction of a cationic iridium complex with phthalimide

A mixture of $\left[\operatorname{IrCl}(\mathrm{coe})_{2}\right]_{2}(4.4 \mathrm{mg}, 0.0050 \mathrm{mmol}),(S)$-DTBM-segphos $(11.8 \mathrm{mg}, 0.010 \mathrm{mmol}$, $5 \mathrm{~mol} \%), \mathrm{NaBAr}^{\mathrm{F}} 4$ ($9.2 \mathrm{mg}, 0.010 \mathrm{mmol}$), and phthalimide ($2.9 \mathrm{mg}, 0.020 \mathrm{mmol}, 2$ equiv) in $\mathrm{CD}_{3} \mathrm{CN}$ $(0.6 \mathrm{~mL})$ in an NMR tube was heated at $80^{\circ} \mathrm{C}$ in an oil bath for 15 min under N_{2}. After cooling to room temperature, nitromethane (4.7 mg) was added as an internal standard, and the sample was measured by ${ }^{1} \mathrm{H}$ NMR at room temperature. Major two peaks of the hydrides are as follows; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta-18.0\left(\mathrm{t}, J_{\mathrm{P}-\mathrm{H}}=15 \mathrm{~Hz}, 1 \mathrm{H}\right),-20.0\left(\mathrm{dd}, J_{\mathrm{P}-\mathrm{H}}=23,14 \mathrm{~Hz}, 0.17 \mathrm{H}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta-0.90\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=21 \mathrm{~Hz}\right),-2.96\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=21 \mathrm{~Hz}\right)$.

7. Reaction of phthalimide with styrene- d_{3}

A mixture of $[\mathrm{IrCl}(\operatorname{cod})]_{2}(1.7 \mathrm{mg}, 0.0025 \mathrm{mmol}, 5 \mathrm{~mol} \% \mathrm{Ir}),(S)$-DTBM-segphos $(5.9 \mathrm{mg}$, $0.0050 \mathrm{mmol}, 5 \mathrm{~mol} \%$), and $\mathrm{NaBAr}_{4}(9.2 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ in a Schlenk tube with a Teflon valve was stirred at room temperature for 5 min under N_{2}. Then, the green suspension was concentrated under vacuum and the resulting solid was dried under vacuum at room temperature for 5 min . The Schlenk tube was refilled with N_{2}, and phthalimide $\mathbf{1}(14.7 \mathrm{mg}$, 0.10 mmol), methylcyclohexane (0.4 mL), and styrene $-d_{3}{ }^{8}$ ($\mathbf{2 a}-\boldsymbol{d}_{\mathbf{3}}, 32.2 \mathrm{mg}, 0.30 \mathrm{mmol}$) were added to the tube. Then, the Teflon valve was closed, and the mixture was stirred at $140^{\circ} \mathrm{C}$ in an oil bath or in a heating block for 48 h . After the reaction mixture was concentrated under vacuum, the residue was subjected to preparative TLC on silica gel eluted with hexane/EtOAc (5:1) to give the addition product 3aa-D (colorless oil, $9.7 \mathrm{mg}, 40 \%$ yield). colorless oil, $9.7 \mathrm{mg}, 40 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83-7.77(\mathrm{~m}, 1.72 \mathrm{H}), 7.73-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-$ 7.30 (m, 2H), $7.29-7.23$ (m, 1H), 5.60-5.53 (m, 0.10H), 1.93-1.87 (m, 0.61H); ${ }^{2}$ H NMR (61 MHz , $\left.\mathrm{CHCl}_{3}\right) \delta 7.85$ (s, 0.28D), 5.55 (s, 0.90D), 1.90 (s, 2.4D).

8. Characterization of the products

Compound 3aa (CAS: 3976-26-9 for (S)-3aa, Table 1, entry 1, colorless oil, $21.4 \mathrm{mg}, 85 \%$ yield, 93% ee (S)). A solution of EtOAc/hexane (1:5) was used as an eluent for preparative TLC. The ee was measured by HPLC [Chiralpak ID, hexane $/ 2$-propanol $=9: 1$, flow $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, $\mathrm{t}_{1}=14.3 \mathrm{~min}$ (minor), $\mathrm{t}_{2}=15.1 \mathrm{~min}$ (major)]. $\quad[\alpha]^{25}{ }_{\mathrm{D}}-60\left(c 0.96, \mathrm{CHCl}_{3}\right)$ for 93% ee $(S) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$. The absolute configuration of 3aa was determined to be S by comparison of the specific rotation with the reported values $\left([\alpha]^{23}{ }_{\mathrm{D}}-31.4\left(c\right.\right.$ 0.5, $\left.\mathrm{CHCl}_{3}\right)$ for $(S) \mathbf{- 3 a a},{ }^{9}[\alpha]^{25} \mathrm{D}+86.3\left(c 0.31, \mathrm{CHCl}_{3}\right)$ for (R) - $\left.\mathbf{3 a a}{ }^{10}\right)$. For other compounds except for 3at, the absolute configurations were assigned by analogy with 3aa.

Compound 3ba (Scheme 2, colorless solid, $23.2 \mathrm{mg}, 83 \%$ yield, 82% ee (S)). A solution of EtOAc/hexane (1:5) was used as an eluent for preparative TLC. The ee was measured by HPLC [Chiralpak ID, hexane $/ 2$-propanol $=9: 1$, flow $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}_{1}=10.9 \mathrm{~min}$ (minor), $\mathrm{t}_{2}=11.8$ \min (major)]. $\quad[\alpha]^{25}{ }_{\mathrm{D}}-64\left(c \quad 0.95, \mathrm{CHCl}_{3}\right)$ for 82% ee $(S) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49(\mathrm{~d}, J$ $=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.19(\mathrm{~m}, 5 \mathrm{H}), 5.53(\mathrm{q}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 6 \mathrm{H}), 1.89(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 168.9, 140.5, 135.9, 135.2, 128.7, 128.4, 127.5, 127.4, 48.9, 17.4, 17.3; HRMS (DART-TOF) m/z: [M + H] Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{2}$ 280.1332; Found 280.1329.

Compound 3ca (Scheme 2, colorless solid, 6.4 mg , which was obtained after purification by GPC to remove a small amount of impurities, 20% yield, 92% ee (S)). A solution of EtOAc/hexane (1:5) was used as an eluent for preparative TLC. The ee was measured by HPLC [Chiralpak ID, hexane $/ 2$-propanol $=19: 1$, flow $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}_{1}=13.8 \mathrm{~min}$ (major), $\mathrm{t}_{2}=15.8 \mathrm{~min}$ (minor)]. $[\alpha]^{25}{ }_{\mathrm{D}}-41\left(c 0.56, \mathrm{CHCl}_{3}\right)$ for 92% ee $(S) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{~s}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.24(\mathrm{~m}, 3 \mathrm{H}), 5.54(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.1,139.7,138.8,131.1,128.6,127.9,127.4,125.3,50.2,17.4$; HRMS (DART-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{12}{ }^{35} \mathrm{ClNO}_{2}$ 320.0230; Found 320.0240.

Compound 3da (Scheme 2, yellow solid, 23.4 mg , which was obtained after purification by GPC to remove a small amount of impurities, 66% yield, 92% ee (S)). A solution of EtOAc/hexane (1:5) was used as an eluent for preparative TLC. The ee was measured by HPLC [Chiralpak ADH , hexane $/ 2$-propanol $=30: 1$, flow $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}_{1}=15.4 \mathrm{~min}$ (minor), $\mathrm{t}_{2}=22.5 \mathrm{~min}$ (major)]. $[\alpha]^{25}{ }_{\mathrm{D}}-44\left(c 1.10, \mathrm{CHCl}_{3}\right)$ for 92% ee $(S) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.48-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.27(\mathrm{~m}, 9 \mathrm{H}), 5.53(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,140.4,135.9,129.9,129.7,128.54,128.49,128.46,127.7,127.6$, 50.1, 17.6; HRMS (DART-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{NO}_{2} 354.1489$; Found 354.1481.

Compound 3ea (CAS: 62993-44-6 for (S)-3ea, Scheme 2: colorless solid, $13.2 \mathrm{mg}, 65 \%$ yield, 90% ee (S)). A solution of $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 100)$ was used as an eluent for preparative TLC. The ee was measured by HPLC (Chiralpak IB, hexane $/ 2$-propanol $=9: 1$, flow $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}_{1}=$ $22.9 \min$ (major), $\mathrm{t}_{2}=27.6 \mathrm{~min}($ minor $)$). $\quad[\alpha]^{25} \mathrm{D}-78\left(c 0.80, \mathrm{CHCl}_{3}\right)$ for 90% ee $(S) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{q}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 4 \mathrm{H}), 1.79(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

Compound 3fa (Scheme 2: colorless solid, $14.6 \mathrm{mg}, 67 \%$ yield, 89% ee (S)). A solution of $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 50)$ was used as an eluent for preparative TLC. The ee was measured by HPLC (Chiralpak ID, hexane/2-propanol $=4: 1$, flow $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}_{1}=17.4 \mathrm{~min}$ (minor), $\mathrm{t}_{2}=18.9$ \min (major)). $[\alpha]^{25}{ }_{\mathrm{D}}-51\left(c 0.64, \mathrm{CHCl}_{3}\right)$ for 89% ee $(S) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.49(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=17.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.76(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz , CDCl_{3}) $\delta 169.5,156.5,140.0,128.4,127.8,127.5,51.3,50.6,29.5,17.0$; HRMS (DART-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2} 219.1128$; Found 219.1122.

3ga
Compound 3ga (Scheme 2: colorless solid, $20.7 \mathrm{mg}, 89 \%$ yield, 93% ee (S)). The ee was measured by HPLC (Chiralpak ID, hexane/2-propanol $=9: 1$, flow $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}_{1}=13.3 \mathrm{~min}$ (minor), $\mathrm{t}_{2}=14.3 \mathrm{~min}$ (major)). $[\alpha]^{25} \mathrm{D}-39\left(c \quad 0.66, \mathrm{CHCl}_{3}\right)$ for 93% ee $(S) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{brs}, 1 \mathrm{H})$,
$5.32(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.0,156.0,140.1,128.5,127.6,127.1,58.0,50.0,25.1,25.0,17.2$; HRMS (DARTTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2} 233.1285$; Found 233.1290.

Compound 3ab (CAS: 36244-75-4 for 3ab, Scheme 3: colorless oil, $24.8 \mathrm{mg}, 93 \%$ yield, $93 \% \mathrm{ee}$). A solution of $\mathrm{EtOAc} /$ hexane ($1: 10$) was used as an eluent for preparative TLC. The ee was measured by HPLC (Chiralpak AD-H, hexane/2-propanol $=30: 1$, flow $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}_{1}$ $=22.5 \mathrm{~min}$ (major), $\mathrm{t}_{2}=25.1 \mathrm{~min}($ minor $)$). $[\alpha]^{25}{ }_{\mathrm{D}}-66\left(c 1.17, \mathrm{CHCl}_{3}\right)$ for 93% ee $(S) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 5.54(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

Compound 3ac (CAS: 2763070-09-1 for 3ac, Scheme 3: colorless oil, $28.1 \mathrm{mg}, 91 \%$ yield, 90% ee (S)). A solution of EtOAc/hexane (1:5) was used as an eluent for preparative TLC. The ee was measured by HPLC (Chiralpak AD-H, hexane $/ 2$-propanol $=100: 1$, flow $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, $\mathrm{t}_{1}=11.5 \mathrm{~min}$ (major), $\mathrm{t}_{2}=12.4 \mathrm{~min}($ minor $)$). $\quad[\alpha]^{25} \mathrm{D}-52\left(c 1.40, \mathrm{CHCl}_{3}\right)$ for 90% ee $(S) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 5.55(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H})$.

Compound 3ad (Scheme 3: colorless solid, $24.3 \mathrm{mg}, 79 \%$ yield, 93% ee (S)). A solution of EtOAc/hexane (1:5) was used as an eluent for preparative TLC. The ee was measured by HPLC (Chiralpak ID, hexane $/ 2$-propanol $=100: 1$, flow $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}_{1}=22.3 \mathrm{~min}$ (major), $\mathrm{t}_{2}=24.7$ $\min ($ minor $)) . \quad[\alpha]^{25} \mathrm{D}-55\left(c 1.14, \mathrm{CHCl}_{3}\right)$ for 93% ee $(S) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83-7.76$ (m, 2H), 7.70-7.65 (m, 2H), $7.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.55(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.43$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.92 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.83 (sept, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 0.88 (d, $J=6.4$ $\mathrm{Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 168.2, 141.1, 137.5, 133.8, 132.0, 129.1, 127.2, 123.1, 49.4, 45.0, 30.1, 22.4, 17.6; HRMS (DART-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{2}$ 308.1645; Found 308.1643.

Compound 3af (Scheme 3: colorless oil, $6.8 \mathrm{mg}, 20 \%$ yield, 90% ee (S)). A solution of EtOAc/hexane (1:10) was used as an eluent for preparative TLC. The ee was measured by HPLC (Chiralpak ID, hexane $/ 2$-propanol $=200: 1$, flow $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}_{1}=23.4 \mathrm{~min}$ (major), $\mathrm{t}_{2}=25.8$ $\min ($ minor $)) . \quad[\alpha]^{25}{ }_{\mathrm{D}}-57\left(c 0.34, \mathrm{CHCl}_{3}\right)$ for 90% ee (S); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85-7.78$ (m, 2H), $7.75-7.67$ (m, 2H), 7.54 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.17$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.56(\mathrm{q}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.92(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.0,148.5,138.9,134.0,131.8$, 129.0, 123.3, 120.9, 120.4 ($\mathrm{q}, \mathrm{J}_{\mathrm{F}-\mathrm{C}}=257 \mathrm{~Hz}$), 48.9, 17.5; HRMS (DART-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}_{3}$ 336.0842; Found 336.0828.

3dg
Compound 3dg (Scheme 3: yellow solid, $32.1 \mathrm{mg}, 86 \%$ yield, 93% ee (S)). A solution of EtOAc/hexane (1:5) was used as an eluent for preparative TLC. The ee was measured by HPLC (Chiralpak AD-H $\times 2$, hexane $/ 2$-propanol $=30: 1$, flow $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}_{1}=31.9 \mathrm{~min}$ (minor), t_{2} $=40.7 \mathrm{~min}($ major $)$). $\quad[\alpha]^{25} \mathrm{D}-46\left(c \quad 1.29, \mathrm{CHCl}_{3}\right)$ for 93% ee $(S) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.56-7.49$ (m, 2H), 7.45 (dd, $J=8.0,1.6 \mathrm{~Hz}, 4 \mathrm{H}$), $7.40-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.03(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.49$ $(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.4,162.2(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{F}}=245 \mathrm{~Hz}\right), 136.2,136.0,129.9,129.8,129.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9 \mathrm{~Hz}\right), 128.5,115.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21 \mathrm{~Hz}\right)$, 49.4, 17.8; HRMS (DART-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{FNO}_{2}$ 372.1394; Found 372.1387.

3dh
Compound 3dh (Scheme 3: yellow solid, $28.8 \mathrm{mg}, 74 \%$ yield, 94% ee (S)). A solution of EtOAc/hexane (1:5) was used as an eluent for preparative TLC. The ee was measured by HPLC (Chiralpak AD-H $\times 2$, hexane $/ 2$-propanol $=30: 1$, flow $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}_{1}=36.4 \mathrm{~min}$ (minor), t_{2} $=43.4 \mathrm{~min}$ (major)). $\quad[\alpha]^{25} \mathrm{D}-44\left(c 1.29, \mathrm{CHCl}_{3}\right)$ for 94% ee $(S) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.51-7.41(\mathrm{~m}, 6 \mathrm{H}), 7.41-7.28(\mathrm{~m}, 8 \mathrm{H}), 5.48(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,138.8,136.0,133.6,129.9,129.8,129.0,128.6,128.5,128.4,49.4$, 17.6; HRMS (DART-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{19}{ }^{35} \mathrm{ClNO}_{2} 388.1099$; Found 388.1091.

Compound 3di (Scheme 3: yellow solid, $10.1 \mathrm{mg}, 24 \%$ yield, 93% ee (S)). A solution of EtOAc/hexane (1:5) was used as an eluent for preparative TLC. The ee was measured by HPLC (Chiralpak AD-H $\times 2$, hexane $/ 2$-propanol $=30: 1$, flow $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}_{1}=27.0 \mathrm{~min}$ (minor), t_{2}
$=30.5 \mathrm{~min}($ major $)$). $[\alpha]^{25} \mathrm{D}-47\left(c \quad 0.37, \mathrm{CHCl}_{3}\right)$ for 93% ee $(S) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.69-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.45(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.42-7.29(\mathrm{~m}, 6 \mathrm{H}), 5.55(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.3,144.2,136.0,130.1,129.9,128.5,128.4$, $127.9,125.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}\right), 124.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=271 \mathrm{~Hz}\right), 49.6,17.5$; HRMS (DART-TOF) m/z: [M + $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{2}$ 422.1366; Found 422.1362.

Compound 3aj (CAS: 875738-08-2 for (R)-3aj, Scheme 3: colorless oil, $21.3 \mathrm{mg}, 80 \%$ yield, 92% ee (S)). A solution of EtOAc/hexane (1:10) was used as an eluent for preparative TLC. The ee was measured by HPLC (Chiralpak IB $\times 2$, hexane $/ 2$-propanol $=100: 1$, flow $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$, $\mathrm{t}_{1}=32.3 \mathrm{~min}$ (minor), $\mathrm{t}_{2}=33.2 \mathrm{~min}$ (major)). $[\alpha]^{25} \mathrm{D}-62\left(c 1.07, \mathrm{CHCl}_{3}\right)$ for 92% ee $(S) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H})$, $7.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

Compound 3ak (CAS: 365515-83-9 for 3ak, Scheme 3: colorless oil, $26.1 \mathrm{mg}, 93 \%$ yield, 89% ee (S)). A solution of EtOAc/hexane (1:5) was used as an eluent for preparative TLC. The ee was measured by HPLC (Chiralpak IB, hexane $/ 2$-propanol $=9: 1$, flow $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}_{1}=$ 12.8 min (minor), $\mathrm{t}_{2}=14.3 \mathrm{~min}$ (major)). $\quad[\alpha]^{25} \mathrm{D}-52\left(c 1.30, \mathrm{CHCl}_{3}\right)$ for 89% ee $(S) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.03(\mathrm{~m}, 2 \mathrm{H})$, $6.80(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.

3dl
Compound 3dl (Scheme 3: yellow solid, $22.3 \mathrm{mg}, 57 \%$ yield, 93% ee (S)). A solution of EtOAc/hexane (1:5) was used as an eluent for preparative TLC. The ee was measured by HPLC (Chiralpak AD-H $\times 2$, hexane $/ 2$-propanol $=30: 1$, flow $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}_{1}=22.7 \mathrm{~min}$ (minor), t_{2} $=29.1 \mathrm{~min}($ major $)$). $[\alpha]^{25} \mathrm{D}-46\left(c \quad 0.90, \mathrm{CHCl}_{3}\right)$ for 93% ee $(S) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.54-7.20(\mathrm{~m}, 14 \mathrm{H}), 5.45(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.3,142.3,136.0,134.4,129.9,129.86,129.80,128.5,128.0,127.9,125.7,49.5,17.5$; HRMS (DART-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{19}{ }^{35} \mathrm{ClNO}_{2}$ 388.1099; Found 388.1103.

3am
Compound 3am (CAS: 2147750-06-7 for 3am, Scheme 3: colorless oil, $12.1 \mathrm{mg}, 46 \%$ yield, 89% ee (S)). A solution of EtOAc/hexane (1:10) was used as an eluent for preparative TLC. The ee was measured by HPLC (Chiralpak IB, hexane/2-propanol $=100: 1$, flow $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}_{1}$ $=16.5 \mathrm{~min}$ (minor), $\mathrm{t}_{2}=18.4 \mathrm{~min}$ (major)). $\quad[\alpha]^{25} \mathrm{D}-92\left(c 0.61, \mathrm{CHCl}_{3}\right)$ for 89% ee $(S) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83-7.76(\mathrm{~m}, 3 \mathrm{H}), 7.72-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{td}$, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 3 \mathrm{H})$.

Compound 3an (Scheme 3: colorless oil, $25.8 \mathrm{mg}, 92 \%$ yield, 89% ee (S)). A solution of EtOAc/hexane (1:5) was used as an eluent for preparative TLC. The ee was measured by HPLC
(Chiralpak IB, hexane $/ 2$-propanol $=100: 1$, flow $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}_{1}=14.8 \mathrm{~min}$ (minor), $\mathrm{t}_{2}=15.8$ \min (major)). $\quad[\alpha]^{25}{ }_{\mathrm{D}}-65\left(c 1.07, \mathrm{CHCl}_{3}\right)$ for 89% ee $(S) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84-7.77$ $(\mathrm{m}, 2 \mathrm{H}), 7.73-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~s}, 2 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 5.50(\mathrm{q}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H}), 1.91(\mathrm{~d}$, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.2,140.2,137.9,133.8,132.0,129.3,125.2$, 123.1, 49.6, 21.3, 17.6; HRMS (DART-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{2} 280.1332$; Found 280.1344 .

Compound 3ao (Scheme 3: colorless oil, 28.5 mg , 92% yield, 74% ee (S)). A solution of EtOAc/hexane (1:5) was used as an eluent for preparative TLC. The ee was measured by HPLC (Chiralpak IB, hexane/2-propanol $=9: 1$, flow $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}_{1}=14.9 \mathrm{~min}$ (minor), $\mathrm{t}_{2}=19.9$ $\min ($ major $)$). $\quad[\alpha]^{25} \mathrm{D}_{\mathrm{D}}-38\left(c 1.43, \mathrm{CHCl}_{3}\right)$ for 74% ee $(S) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87-7.77$ (m, 2H), 7.72-7.66 (m, 2H), $6.66(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.36(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{q}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}), 1.90(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.1,160.7$, 142.7, 133.9, 131.9, 123.2, 105.6, 99.4, 55.3, 49.7, 17,6; HRMS (DART-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{4}$ 312.1230; Found 312.1223.

Compound 3dp (Scheme 3: colorless oil, $24.7 \mathrm{mg}, 62 \%$ yield, 87% ee (S)). A solution of EtOAc/hexane (1:10) was used as an eluent for preparative TLC. The ee was measured by HPLC (Chiralpak IB, hexane $/ 2$-propanol $=100: 1$, flow $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}_{1}=14.8 \mathrm{~min}$ (minor), $\mathrm{t}_{2}=15.8$ \min (major)). $\quad[\alpha]^{25}{ }_{\mathrm{D}}-87\left(c 1.24, \mathrm{CHCl}_{3}\right)$ for 87% ee (S); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.43$ $(\mathrm{m}, 4 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.23(\mathrm{dd}, J=6.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dt}, J=8.4$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.1,155.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=240 \mathrm{~Hz}\right), 155.5,135.9,129.9,129.8,128.6,128.5,127.8(\mathrm{~d}$,
$\left.J_{\mathrm{C}-\mathrm{F}}=15 \mathrm{~Hz}\right), 115.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=24 \mathrm{~Hz}\right), 114.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}\right), 113.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9 \mathrm{~Hz}\right), 55.7,43.4(\mathrm{~d}$, $J_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}$), 17.4; HRMS (DART-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{FNO}_{3} 402.1500$; Found 402.1506 .

3aq
Compound 3aq (Scheme 3: colorless oil, $18.7 \mathrm{mg}, 72 \%$ yield, 80% ee (S)). A solution of $\mathrm{EtOAc} /$ hexane (1:5) was used as an eluent for preparative TLC. The ee was measured by HPLC (Chiralpak AD-H, hexane $/ 2$-propanol $=100: 1$, flow $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}_{1}=12.3 \mathrm{~min}$ (major), $\mathrm{t}_{2}=$ 13.5 min (minor)). $\quad[\alpha]^{25} \mathrm{D}+8\left(c 0.88, \mathrm{CHCl}_{3}\right.$) for 80% ee (S); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84-$ 7.77 (m, 2H), 7.71-7.65 (m, 2H), 4.61-4.48 (m, 1H), 1.49 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.47$ (dd, $J=14.8,9.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.11(\mathrm{dd}, J=14.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}),-0.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.4$, 133.7, 132.1, 123.0, 44.6, 22.9, 22.1, -1.4; HRMS (DART-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{Si} 262.1257$; Found 262.1258.

3ar
Compound 3ar (Scheme 3: colorless oil, $28.2 \mathrm{mg}, 73 \%$ yield, 86% ee (S)). A solution of EtOAc/hexane (1:10) was used as an eluent for preparative TLC. The ee was measured by HPLC (Chiralpak AD-H, hexane $/ 2$-propanol $=$ 19:1, flow $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}_{1}=12.3 \mathrm{~min}$ (major), $\mathrm{t}_{2}=$ $14.0 \mathrm{~min}($ minor $)$). $\quad[\alpha]^{25}{ }_{\mathrm{D}}-19\left(c 1.15, \mathrm{CHCl}_{3}\right)$ for 86% ee $(S) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-$ $7.23(\mathrm{~m}, 3 \mathrm{H}), 7.05-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{tt}, J=7.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.73-4.59(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{dd}, J=14.8$, $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.510(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.505(\mathrm{dd}, J=14.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.63(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.1,136.8,135.3,134.2,133.2,131.8,129.1,128.7,127.8,127.5,122.6,43.9$, 22.7, 20.3, -4.7. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{Si}: \mathrm{C}, 74.77$; H, 6.01; N, 3.63. Found: C, 74.75; H, 6.28; N, 3.66.

3as
Compound 3as (Scheme 3: colorless solid, 10.7 mg obtained after PTLC and GPC, 24\% yield, 85% ee (S)). A solution of EtOAc/hexane (1:5) was used as an eluent for preparative TLC. The ee was measured by HPLC (Chiralpak AD-H, hexane $/ 2$-propanol $=19: 1$, flow $0.5 \mathrm{~mL} / \mathrm{min}, 254$ $\mathrm{nm}, \mathrm{t}_{1}=12.0 \mathrm{~min}$ (major), $\mathrm{t}_{2}=20.3 \mathrm{~min}$ (minor)). $\quad[\alpha]^{25}{ }_{\mathrm{D}}+57\left(c 0.30, \mathrm{CHCl}_{3}\right)$ for 85% ee $(S) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60-7.47(\mathrm{~m}, 10 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 9 \mathrm{H}), 4.91-4.78(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J$ $=15.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{dd}, J=15.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 128.1,135.5,134.1,133.2,131.9,129.2,127.8,122.6,43.8,23.1,19.0$; HRMS (ESITOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{NNaO}_{2} \mathrm{Si} 470.1547$; Found 470.1549.

3at

4

Compound 3at (Scheme 3: colorless oil, $21.4 \mathrm{mg}, 96 \%$ yield, 95% ee $(1 R, 2 R, 4 S)$). A solution of EtOAc/hexane (1:5) was used as an eluent for preparative TLC. A 228 mg of 3at was isolated by column chromatography on silica gel in the 1.0 mmol scale (94% yield, 96% ee $(1 R, 2 R, 4 S)$). The ee was measured by HPLC (Chiralpak AD-H, hexane $/ 2$-propanol $=100: 1$, flow $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}_{1}=20.7 \mathrm{~min}$ (major), $\mathrm{t}_{2}=22.1 \mathrm{~min}($ minor $)$). $[\alpha]^{25} \mathrm{D}-8\left(c 1.03, \mathrm{CHCl}_{3}\right)$ for 95% ee (S); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.64(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{dd}, J=8.0$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.31-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.49(\mathrm{~m}, 2 \mathrm{H})$, $1.40-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.16(\mathrm{~m}, 2 \mathrm{H})$.

Compound 4. ${ }^{11}$ To a solution of 3at ($24.1 \mathrm{mg}, 0.10 \mathrm{mmol}$) in THF (0.4 mL) and ethanol $(0.4 \mathrm{~mL})$ in a Schlenk tube was added hydrazine hydrate ($12.4 \mu \mathrm{~L}, 0.50 \mathrm{mmol}$), and the mixture was heated in an oil bath at $80^{\circ} \mathrm{C}$ for 3 h . After cooling to room temperature, the precipitate was removed by filtration and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was washed with 1 M NaOHaq ., dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated on a rotary evaporator. To the residue in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ were added triethylamine ($42 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) and benzoyl chloride ($23 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$), and the mixture was stirred at room temperature overnight. A small amount of water was added to the
mixture, and the resulting solution was passed through a short column of silica gel eluted with ethyl acetate. The solution was concentrated on a rotary evaporator and the residue was subjected to preparative TLC on silica gel with hexane/ethyl acetate (3:1) to give 4 ($17.6 \mathrm{mg}, 82 \%$ yield) as a colorless solid. The absolute configuration of $\mathbf{4}$ was determined to be $(1 R, 2 R, 4 S)$ by comparison of the specific rotation with the reported value $\left([\alpha]^{23} \mathrm{D}-15.2\left(c 2.0, \mathrm{CHCl}_{3}\right)\right.$ for 91% ee $\left.(1 R, 2 R, 4 S)\right) .{ }^{12}$ $[\alpha]^{25}{ }_{\mathrm{D}}-13\left(c 0.78, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.36(\mathrm{~m}, 3 \mathrm{H})$, 5.97 (br s, 1H), $3.90(\mathrm{td}, J=7.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{ddd}, J=13.2,8.0,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.58-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.10(\mathrm{~m}, 5 \mathrm{H})$.

9. References

1 J. L. Herde, J. C. Lambert and C. V. Senoff, Inorg. Synth., 1974, 15, 18.
2 R, Uson, L. A. Oro and J. A. Cabeza, Inorg. Synth., 1985, 23, 126.
3 M. Brookhart, B. Grant and A. F. Volpe, Jr., Organometallics, 1992, 11, 3920.
4 (a) C. Kitamura, T. Naito, A. Yoneda, T. Kawase and T. Komatsu, Chem. Lett., 2012, 58, 624; (b) L. Liu, H.-Y. Zhang, G. Yin, Y. Zhang, J. Zhao, Chem. Pap., 2020, 74, 1351.

5 L. Zhang, X. Chen, J. Liu, Q. Zhu, Y. Leng, X. Luo, H. Jiang and H. Liua, Eur. J. Med. Chem., 2012, 58, 624.
6 C. Peifer, T. Stoiber, E. Unger, F. Totzke, C. Schächtele, D. Marmé, R. Brenk, G. Klebe, D. Schollmeyer and G. Dannhardt, J. Med. Chem., 2006, 49, 1271.
7 R. Ramesh and D. S. Reddy, Org. Biomol. Chem., 2014, 12, 4093.
8 M. Hatano, T. Nishimura and H. Yorimitsu, Org. Lett., 2016, 18, 3674.
9 A. G. M. Barrett, D. C. Braddock, R. A. James, N. Koike and P. A. Procopiou, J. Org. Chem., 1998, 63, 6273.
10 S. G. Koenig, C. P. Vandenbossche, H. Zhao, P. Mousaw, S. P. Singh and R. P. Bakale, Org. Lett., 2009, 11, 433.
11 (a) S. W. Lardy and V. A. Schmidt, J. Am. Chem. Soc., 2018, 140, 12318; (b) S. W. Lardy and Valerie A. Schmidt D. M. Peacock, C. B. Roos and J. F. Hartwig, ACS Cent. Sci., 2016, 2, 647.
12 C. S. Sevov, J. Zhou and J. F. Hartwig, J. Am. Chem. Soc., 2012, 134, 11960.
10. NMR and HPLC charts

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent
1	14.338	17620	3.643
2	15.093	466048	96.357

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent
1	14.895	409059	49.792
2	15.768	412471	50.208

s7lonm

Pk \#	Retention Time	Area	Area Percent
1	10.865	233028	50.267
2	11.783	230551	49.733

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent
1	13.762	3981674	49.888
2	15.753	3999480	50.112

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent
1	15.347	1587334	49.968
2	22.438	1589387	50.032

3ea

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent
1	22.812	1253831	50.064
2	27.115	1250649	49.936

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent
1	13.325	8901	3.584
2	14.320	239470	96.416

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent
1	13.367	81656	50.167
2	14.432	81113	49.833

引

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent
1	22.467	134909	50.506
2	25.103	132207	49.494

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent
1	11.500	2852384	95.019
2	12.423	149538	4.981

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent
1	11.350	261109	49.761
2	12.297	263616	50.239

Pk \# Retention Time
Area
Area Percent
$1 \quad 22.325$
24.737

4352199
96.366
3.634

Pk \#
Retention Time
Area
Area Percent
1
2
23.028

883939
49.398
50.602

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent
1	23.132	2099939	49.870
2	24.860	2110883	50.130

3dg

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent
1	31.942	38091	3.595
2	40.718	1021509	96.405

Pk \#
Retention Time
Area
Area Percent

1	30.738	Area	Area Percent
2	40.068	1131868	50.397

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent
1	36.548	633092	49.510
2	43.583	645619	50.490

3aj

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent
1	32.327	758331	4.109
2	33.197	17695734	95.891

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent
1	33.163	807516	49.049
2	34.523	838822	50.951

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent
1	12.780	168097	5.691
2	14.295	2785583	94.309

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent
1	12.715	11675874	49.975
2	14.270	11687549	50.025

3dl

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent
1	22.663	103030	3.537
2	29.138	2810302	96.464

2

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent
1	22.673	266343	49.516
2	29.188	271552	50.484

3am

2

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent
1	16.702	1863212	50.541
2	18.820	1823293	49.459

3an

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent
1	14.813	1113706	50.091
2	15.998	1109666	49.909

2

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent
1	14.757	2585538	50.293
2	19.733	2555378	49.707

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent
1	18.875	3474653	50.147
2	23.902	3454237	49.853

$3 a q$

2

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent
1	12.263	156755	90.035
2	13.523	17349	9.965

2

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent
1	12.285	220166	49.618
2	13.558	223556	50.382

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent
1	12.303	1159921	49.550
2	13.988	1180994	50.450

3as

2

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent
1	11.980	890054	92.531
2	20.302	71845	7.469

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent
1	11.938	394973	49.203
2	19.547	407767	50.797

3at

$\mathrm{Pk} \#$	Retention Time	Area	Area Percent
1	20.612	360321	50.296
2	21.838	356075	49.704

