Supplementary Information

Peptide coupling using recyclable bicyclic benziodazolone

Daigo Uehara,^a Sota Adachi,^b Akira Tsubouchi,^a Yohei Okada,^b Viktor V. Zhdankin,^c Akira Yoshimura^d and Akio Saito^{*, a}

^a Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan.

^b Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.

^c Department of Chemistry and Biochemistry, University of Minnesota, Duluth, MN, 55812, USA.

^d Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan.

* Correspondence: akio-sai@cc.tuat.ac.jp; Tel.: +81-42-388-7667

Table of contents

- 1. Optimization of Reaction Conditions (Table S1 and S2)......S1
- 2. General Information......S3
- 3. Preparation and Characterization of Bicyclic Benziodazolones 2b-2e.....S3
- 4. Preparation and Characterization of N-Protected Dipeptide Methyl Esters......S4
- 5. Chiral HPLC Analysis of N-Protected Dipeptide Methyl Esters......S9
- 6. Preparation and Characterization of Tag-Protected Amino Acid Esters......S10
- 7. Preparation and Characterization of Tag-Protected Dipeptides......S11
- 8. Preparation and Characterization of L-Valyl-L-Tyrosine......S13
- 9. Preparation and Characterization of Tag-Protected Tripeptides......S13
- 10. Peptide Coupling using in situ Electrochemically Generated Iodine(III) Reagent......S14
- 11. ¹H and ¹³C NMR Spectra of **2b-2e** and Dipeptides......S15

1. Optimization of Reaction Conditions

Table S1. Evaluation of iodine reagents, additives and solvents for the peptide coupling.

Cbz	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$	$\begin{array}{c c} 1 \text{ or } 2 (1.2 \text{ eq.}) \\ R_3 \mathbf{P} (X \text{ eq.}) \\ \hline Et_3 \mathbf{N} (1.0 \text{ eq.}) \\ \hline \text{solvent} \end{array} \xrightarrow{Cbz} \begin{array}{c} N \\ N \\ D \\ O \\ \hline Cbz\text{-Leu-Ala-OMe} \end{array}$			$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			
entry	1 or 2	R ₃ P (eq.)	Solvent	(°C)	(h)	Dipeptide ^a (%)	3 ^a (%)	
1	$2a (X = N^{i}Pr, Y = H)$	Ph ₃ P (1.0)	toluene	rt	24	37	ND	
2	2a	Ph ₃ P (1.0)	DCM	rt	24	64	ND	
3	2a	Ph ₃ P (1.0)	DCE	rt	24	84	ND	
4	2a	Ph ₃ P (1.0)	MeNO ₂	rt	24	78	ND	
5	2a	Ph ₃ P (1.0)	MeCN	rt	24	74	ND	
6	2a	Ph ₃ P (1.0)	THF	rt	24	51	ND	
7	2a	Ph ₃ P (1.0)	DMF	rt	24	15	ND	
8	2a	Ph ₃ P (1.0)	DMSO	rt	24	trace	ND	
9	2a	$(4-MeOC_6H_4)_3P(1.0)$	DCE	rt	24	90	ND	
10	2a	(EtO) ₃ P (1.0)	DCE	rt	24	73	ND	
11	2a	(PhO) ₃ P (1.0)	DCE	rt	24	68	ND	
12	2a	DPPE (1.0)	DCE	rt	24	60	ND	
13	2a	DPPB (1.0)	DCE	rt	24	36	ND	
14	2a	none	DCE	rt	24	0	ND	
15	2a	none	DCE	60	24	0	ND	
16	$\mathbf{2b} (X = N^t Bu, Y = H)$	Ph ₃ P (1.0)	DCE	rt	24	76	ND	
17	2c (X = NCy, Y = H)	Ph ₃ P (1.0)	DCE	rt	24	81	ND	
18	2d (X = NMe, Y = H)	Ph ₃ P (1.0)	DCE	rt	24	74	ND	
19	2d	Ph ₃ P (1.0)	MeCN	rt	24	84	ND	
20	2e (X = NCH ₂ CF ₃ , Y = H)	Ph ₃ P (1.0)	DCE	rt	24	26	ND	
21	2e	Ph ₃ P (1.0)	MeCN	rt	24	90	ND	
22	2e	Ph ₃ P (1.4)	MeCN	25	24	97	83	
23	2a	Ph ₃ P (1.2)	DCE	25	24	74	ND	
24	2a	$Ph_{3}P(1.2)$	MeCN	25	24	93	71	
25	2a	Ph ₃ P (1.2)	MeCN	40	5	quant.	48	
26	1a (X = O, Y = H)	$Ph_{3}P(1.2)$	MeCN	25	24	52	-	
27	1a	Ph ₃ P (1.2)	MeCN	40	5	30	-	
28	1b (X = O, Y = p -BTFP)	Ph ₃ P (1.2)	MeCN	25	24	45	-	
29	PhI(OAc) ₂	Ph ₃ P (1.2)	MeCN	25	24	43	-	
30	IBA-OBz	Ph ₃ P (1.2)	MeCN	25	24	75	-	
31	IBAm(ⁱ Pr)-mCBA	Ph ₃ P (1.2)	MeCN	25	24	62	-	

DCM = dichloromethane, DCE = 1,2-dicloroethane, THF = tetrahydrofuran, DMF = *N*,*N*-dimethylformamide, DMSO = Dimethyl sulfoxide, DPPE = 1,2-Bis(diphenylphosphino)ethane, DPPB = 1,4-Bis(diphenylphosphino)butane, Cy = cyclohexyl. BTFP = $3,5-(CF_3)_2C_6H_3$. IBA-OBz = $3-\infty-1\lambda^3$ -benzo[*d*][1,2]iodaxol-1(3*H*)-yl benzoate. IBAm(^{*i*}Pr)-mCBA = 2-isopropyl- $3-\infty-2,3$ -dihydro- $1H-1\lambda^3$ -benzo[*d*][1,2]iodazol-1-yl 3-chlorobenzoate. ND = Not determined. ^{*a*} Isolated yields.

Table S2. Evaluation of electrolyte, electrodes and others for the electrochemical synthesis of iodine(III) reagents.

		\mathbf{R} $\mathbf{NH} \mathbf{I} \mathbf{H}$ \mathbf{O} $\mathbf{3b} (\mathbf{R} = {^{t}\mathbf{Bu}})$ $\mathbf{3e} (\mathbf{R} = \mathbf{CH}_{2}\mathbf{C})$	CF ₃)	$\begin{array}{c} R \\ N \\ \hline \end{array} \\ \begin{array}{c} P \\ P \\ P \\ \end{array} \\ \end{array} \\ \begin{array}{c} P \\ P \\ P \\ \end{array} \\ \begin{array}{c} P \\ P \\ P \\ \end{array} \\ \begin{array}{c} P \\ P \\ P \\ \end{array} \\ \end{array} \\ \begin{array}{c} P \\ P \\ P \\ \end{array} \\ \end{array} \\ \begin{array}{c} P \\ P \\ P \\ \end{array} \\ \end{array} \\ \begin{array}{c} P \\ P \\ P \\ P \\ \end{array} \\ \end{array} \\ \begin{array}{c} P \\ P \\ P \\ \end{array} \\ \end{array} \\ \begin{array}{c} P \\ P \\ P \\ \end{array} \\ \end{array} \\ \begin{array}{c} P \\ P \\ P \\ \end{array} \\ P \\ P \\ \end{array} \\ \end{array} \\ \begin{array}{c} P \\ P \\ P \\ \end{array} \\ \end{array} \\ P \\ P \\ \end{array} \\ \end{array} \\ \begin{array}{c} P \\ P \\ P \\ \end{array} \\ \end{array} \\ P \\ P \\ \end{array} \\ P \\ \end{array} \\ P \\ P$	R N' O Bu) $H_2CF_3)$		
entry	anode	cathode	electrolyte	charge (F/mol)	MeCN (mL)	2	Yield ^a (%)
1	carbon felt	Pt	LiClO ₄ (0.2 M)	2.2	2.5	2b	18
2	carbon felt	carbon felt	LiClO ₄ (0.2 M)	4.4	2.5	2b	0
3	Pt	Pt	LiClO ₄ (0.2 M)	2.2	2.5	2b	0
4	carbon felt	Pt	TBAPF ₆ (0.2 M)	3.0	2.5	2b	0
5	carbon felt	Pt	LiBr (0.1 M)	2.0	2.5	2b	0
6	graphite	Pt	LiClO ₄ (0.1 M)	2.0	5.0	2b	42
7	graphite	Pt	TBAClO ₄ (0.1 M)	2.0	5.0	2b	72
8	graphite	Pt	TBAClO ₄ (0.1 M)	2.8	5.0	2b	86
9	graphite	Pt	TBAPF ₆ (0.1 M)	2.8	5.0	2b	39
10^{b}	graphite	Pt	TBAClO ₄ (0.1 M)	2.8	5.0	2b	95
11	graphite	Pt	TBAClO ₄ (0.1 M)	2.2	5.0	2e	83

TBA = tetra-*n*-butylammonium. ^{*a*} Determined by ¹H NMR using CH₂Br₂ as an internal standard. ^{*b*} 2.2 V CPE (Constant Potential Electrolysis) instead of 1.0 mA CCE (Constant Current Electrolysis).

2. General Information

All reactions were carried out under an argon atmosphere. According to procedures reported in the literatures, bicyclic benziodoxolone $1a^{1a}$ and benziodazolone $2a^{1b}$ were prepared. *N*- and *C*-Protected amino acids other than those bound with hydrophobic tags and 2-iodoisophthalic acid are commercially available. All solvents were purchased as the "anhydrous" and used without further purification. For the thin-layer chromatography (TLC) analysis, Merck precoated TLC plates (silica gel 60 F₂₅₄) were used. Column chromatography was performed on silica gel 60N (63-200 µm, neutral, Kanto Kagaku Co., Ltd.). Preparative thin layer chromatography (PTLC) was performed on Wakogel[®] B-5F (FUJIFILM Wako Pure Chemical Corp.). Medium pressure liquid chromatography (MPLC) was carried out with YAMAZEN EPCLC-Wprep 2XY.

¹H and ¹³C NMR spectra were measured at 500 (400 or 600) and 125 (100 or 150) MHz in CDCl₃, DMSO- d_6 or D₂O and the chemical shifts are given in ppm using CHCl₃ (7.26 ppm) in CDCl₃, DMSO (2.50 ppm) in DMSO- d_6 or DOH (4.75 ppm) in D₂O for ¹H NMR and CDCl₃ (77.0 ppm), DMSO- d_6 (39.51 ppm) or acetone (Me, 32.97 ppm) for ¹³C NMR as an internal standard, respectively. Splitting patterns of an apparent multiplet associated with an averaged coupling constant were designed as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and br (broadened). Mass spectra and HRMS were recorded on double-focusing magnetic sector by FAB or ESI methods.

3. Preparation and Characterization of Bicyclic Benziodazolones 2b-2e

According to procedures reported in the literatures,^{1b} to a solution of 2-iodoisophthalamide **3b-3e** (1.0-1.5 mmol) in MeCN (10-15 mL) was added *m*-chloroperbenzoic acid (*mCPBA*, 2.4 eq.). After being stirred overnight at room temperature, the reaction was quenched with sat. NaHCO₃ aq. and extracted with AcOEt. The organic layer was dried over MgSO₄ and concentrated in vacuo to dryness. The residue was washed with Et₂O to give benziodazolone **2b-2e**.

2,3-Di*tert*-butyl-2a λ^3 -ioda-2,3-diazacyclopenta[*hi*]indene-1,4(2*H*,3*H*)-dione (2b): 80% (320 mg from 3b 402 mg). Yellow solid. Mp 167-169 °C. IR (KBr) v cm⁻¹: 2963, 1632, 1601, 1346. ¹H-NMR (500 MHz, CDCl₃) δ ppm: 8.26 (d, *J* = 7.5 Hz, 2H), 7.87 (t, *J* = 7.5 Hz, 1H), 1.62 (s, 18H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm: 163.1, 133.1, 132.6, 130.9, 110.7, 57.0, 30.0. HRMS (ESI) m/z calcd. for C₁₆H₂₂IN₂O₂⁺[M + H]⁺ 401.0720, found 401.0724.

2,3-Dicyclohexyl-2a λ^3 **-ioda-2,3-diazacyclopenta**[*hi*]**indene-1,4(2***H***,3***H***)-dione** (2c): 90% (407 mg from 3c 454 mg). White solid. Mp 219 °C (decomp.). IR (KBr) v cm⁻¹; 2929, 2853, 1632, 1590, 1361. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 8.29 (d, *J* = 7.5 Hz, 2H), 7.87 (t, *J* = 7.5 Hz, 1H), 4.01 (tt, *J* = 11.5, 4.0, Hz, 2H), 2.13 (d, *J* = 10.3 Hz, 4H), 1.85 (d, *J* = 13.8 Hz, 4H), 1.73 (d, *J* = 13.2 Hz, 2H), 1.52-1.40 (m, 4H), 1.39-1.30 (m, 4H), 1.27-1.15 (m, 2H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 162.6, 132.6, 132.2, 131.0, 113.4, 53.8, 35.6, 25.7, 25.4. HRMS (ESI): *m/z* calcd. for C₂₀H₂₆IN₂O₂⁺ [M+H]⁺ 453.1033, found 453.1041.

2,3-Dimethyl-2a λ^3 **-ioda-2,3-diazacyclopenta**[*hi*]**indene-1,4(2***H***,3***H***)-dione** (2d): 82% (337 mg from 3d 413 mg). White solid. Mp 224-226 °C. IR (KBr) v cm⁻¹; 2925, 1631, 1595, 1370. ¹H-NMR (500 MHz, DMSO-*d*₆) δ ppm; 8.14 (d, *J* = 6.3 Hz, 2H), 7.91 (t, *J* = 6.3 Hz, 1H), 3.05 (s, 6H). ¹³C-NMR (125 MHz, DMSO-*d*₆) δ ppm; 164.3, 132.2, 131.5, 129.9, 114.5, 29.3. HRMS (ESI): *m/z* calcd. for C₁₀H₁₀IN₂O₂⁺ [M+H]⁺ 316.9781, found 316.9783.

2,3-Bis(2,2,2-trifluoroethyl)-2a λ^3 **-ioda-2,3-diazacyclopenta**[*hi*]**indene-1,4(2***H***,3***H***)-dione** (**2e**): 90% (610 mg from **3e** 681 mg). White solid. Mp 238-240 °C. IR (KBr) v cm⁻¹; 2944, 1630, 1603, 1373, 1160. ¹H-NMR (500 MHz, DMSO-*d*₆) δ ppm; 8.27 (d, *J* = 7.5 Hz, 2H), 7.98 (t, *J* = 7.5 Hz, 1H), 4.40 (q, *J* = 9.9 Hz, 4H). ¹³C-NMR (125 MHz, DMSO-*d*₆) δ ppm; 165.1, 132.6, 131.6, 130.6, 125.1 (q, *J* = 280.3 Hz), 114.8, 42.6 (q, *J* = 32.8 Hz). HRMS (ESI): *m/z* calcd. for C₁₂H₈F₆IN₂O₂⁺ [M+H]⁺ 452.9529, found 452.9536.

¹ (a) J. Tian, W.-C. Gao, D.-M. Zhou and C. Zhang, Org. Lett., 2012, 14, 3020–3023; (b) A. Yoshimura, M. T. Shea, C. L. Makitalo, M. E. Jarvi, G. T. Rohde, A. Saito, M. S. Yusubov, V. V. Zhdankin, Beilstein J. Org. Chem., 2018, 14, 1016–1020.

4. Preparation and Characterization of N-Protected Dipeptide Methyl Esters

The case using hydrochloric acid salts (Method a or b): To a solution of 2a (89.3 mg, 0.24 mmol, Method a) or 2e (108.5 mg, 0.24 mmol, Method b) in MeCN (5.0 mL), Et₃N (27.8 μ L, 0.2 mmol), *N*-protected amino acid (0.2 mmol), amino acid methyl ester hydrochloride (0.2 mmol) and Ph₃P (Method a: 63.0 mg, 0.24 mmol. Method b: 73.4 mg, 0.28 mmol. Entries 15-17 and 19: (4-MeOC₆H₄)₃P, 84.6 mg, 0.24 mmol.) were added successively. After being stirred at 25 °C (40 °C for entry 16) for 24 h, the reaction mixture was quenched with sat. NaHCO₃ aq. and exacted with AcOEt. The organic layer was washed with sat. NH₄Cl aq. and dried over MgSO₄. After concentration of the filtrate in vacuo to dryness, the residue was purified by silica gel chromatography (hexane:AcOEt = 2:1 to 4:3) to afford the desired dipeptide.

The case not using hydrochloric acid salts (Method c, entries 6 and 10): To a solution of 2a (89.3 mg, 0.24 mmol) in MeCN (5.0 mL), *N*-protected amino acid (0.2 mmol), amino acid methyl ester (0.2 mmol) and Ph₃P (63.0 mg, 0.24 mmol) were added successively. After being stirred at 25 °C for 24 h, the reaction mixture was quenched with 1.0 M HCl aq. and exacted with DCM. The organic layer was washed with sat. NH₄Cl aq. and dried over MgSO₄. After concentration of the filtrate in vacuo to dryness, the residue was washed with Et₂O to give 3a. The remaining solution was concentrated in vacuo to dryness and then the residue was purified by silica gel chromatography (hexane:AcOEt = 2:1 to 4:3) to afford the desired dipeptide.

Methyl [(benzyloxy)carbonyl]-*L*-leucyl-*L*-alaninate (Cbz-Leu-Ala-OMe): 93% (Method **a**, 65.2 mg); 97% (Method **b**, 68.0 mg). White solid. ¹H-NMR (400 MHz, CDCl₃) δ ppm: 7.38-7.26 (m, 5H), 7.07 (br.s, 1H), 5.66 (br.s, 1H), 5.09 (d, *J* = 12.1 Hz, 1H), 5.05 (d, *J* = 12.1 Hz, 1H), 4.52 (dq, *J* = 7.3, 7.3 Hz, 1H), 4.37-4.23 (m, 1H), 3.71 (s, 3H), 1.75-1.47 (m, 3H), 1.34 (d, *J* = 7.3 Hz, 3H), 0.91 (d, *J* = 6.4 Hz, 3H), 0.89 (d, *J* = 6.0 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ ppm: 173.0, 172.4, 156.3, 136.1, 128.4, 128.1, 127.7, 66.9, 53.3, 52.3, 48.0, 41.4, 24.5, 22.8, 21.8, 17.8. The ¹H and ¹³C NMR spectra of the product were identical to those reported in the literature.²

Methyl [(benzyloxy)carbonyl]-*L*-leucyl-*L*-phenylalaninate (Cbz-Leu-Phe-OMe): 93% (Method b, 79.7 mg). White solid. ¹H-NMR (500 MHz, CDCl₃) δ ppm: 7.70-7.28 (m, 5H), 7.28-7.19 (m, 3H), 7.08 (d, J = 6.9 Hz, 2H), 6.49 (br.s, 1H), 5.16 (br.d, J = 5.2, 1H), 5.11 (d, J = 12.3 Hz, 1H), 5.08 (d, J = 12.3 Hz, 1H), 4.85 (ddd, J = 7.5, 5.7, 5.7 Hz, 1H), 4.18 (ddd, J = 8.6, 8.6, 4.6 Hz, 1H), 3.71 (s, 3H), 3.14 (dd, J = 13.8, 5.7 Hz, 1H), 3.07 (dd, J = 13.8, 5.7 Hz, 1H), 1.70-1.56 (m, 2H), 1.53-1.40 (m, 1H), 0.90 (d, J = 5.7 Hz, 6H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm: 171.7, 171.6, 156.0, 136.1, 135.6, 129.2, 128.5, 128.2, 128.0, 127.1, 67.0, 53.4, 53.1, 52.3, 41.2, 37.8, 24.6, 22.8, 21.9 (note that two carbon peaks overlap with each other and the two methyl groups of the isobutyl group behave as non-equivalent functional groups). The ¹H and ¹³C NMR spectra of the product were identical to those reported in the literature.³

Methyl (*tert*-butoxycarbonyl)-*L*-leucyl-*L*-alaninate (Boc-Leu-Ala-OMe): 87% (Method **a**, 54.8 mg). White solid. ¹H-NMR (500 MHz, CDCl₃) δ ppm: 6.78 (br.d, *J* = 5.7 Hz, 1H), 5.02 (d, *J* = 7.5 Hz, 1H), 4.56 (dq, *J* = 7.5, 6.8 Hz, 1H), 4.19-3.91 (m, 1H), 3.72 (s, 3H), 1.74-1.58 (m, 2H), 1.52-1.46 (m, 1H), 1.42 (s, 9H), 1.37 (d, *J* = 6.8 Hz, 3H), 0.92 (d, *J* = 5.7 Hz, 3H), 0.91 (d, *J* = 6.3 Hz, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm: 173.1, 172.2, 155.7, 80.0, 52.9, 52.4, 47.9, 41.2, 28.2, 24.6, 22.9, 21.9, 18.1 (note that the two methyl groups of the isobutyl group behave as non-equivalent functional groups). The ¹H and ¹³C NMR spectra of the product were identical to those reported in the literature.⁴

² W.-C. Gao and C. Zhang, *Tetrahedron Lett.*, 2014, **55**, 2687–2690.

³ P. Gibbons, E. Verissimo, V. Barton, G. L. Nixon, R. K. Amewu, J. Chadwick, P. A. Stocks, G. A. Biagini, A. Srivastava, P. J. Rosenthal, J. Gut, R. C. Guedes, R. Moreira, R. Sharma, N. Berry, M. Lurdes, S. Cristiano, A. E. Shone, S. A. Ward and P. M. O'Neill, *J. Med. Chem.*, 2010, **53**, 8202–8206. ⁴ C. Zhang, S. S. Liu, B. Sun and J. Tian, *Org. Lett.*, 2015, **17**, 4106–4109.

Methyl {[(9*H*-fluoren-9-yl)methoxy]carbonyl}-*L*-leucyl-*L*-alaninate (Fmoc-Leu-Ala-OMe): 84% (Method a, 73.9 mg). White solid. ¹H-NMR (600 MHz, CDCl₃) δ ppm: 7.76 (d, *J* = 7.6 Hz, 2H), 7.58 (d, *J* = 6.9 Hz, 2 H), 7.40 (dd, *J* = 7.6, 7.6 Hz, 2H), 7.31 (dd, *J* = 7.6, 6.9 Hz, 2 H), 6.46 (br.d, *J* = 6.2 Hz, 1 H), 5.22 (br.d, *J* = 8.3 Hz, 1H), 4.57 (ddd, *J* = 7.6, 6.9, 6.2 Hz, 1H), 4.47–4.35 (m, 2H), 4.26–4.16 (m, 2H), 3.75 (s, 3H), 1.73–1.63 (m, 2H), 1.60–1.49 (m, 1H), 1.40 (d, *J* = 6.9 Hz, 3H), 1.00–0.91 (m, 6H). ¹³C-NMR (150 MHz, CDCl₃) δ ppm: 173.1, 171.7, 156.2, 143.8, 143.7, 141.3, 127.7, 127.1, 125.0, 119.99, 119.97, 67.0, 53.4, 52.5, 48.1, 47.2, 41.6, 24.6, 22.9, 22.0, 18.3 (note that two carbon peaks overlap with each other, and the two methyl groups of the isobutyl group and four carbons of fluorenyl group behave as non-equivalent functional groups). The ¹H and ¹³C NMR spectra of the product were identical to those reported in the literature.⁵

Methyl {[(9*H*-fluoren-9-yl)methoxy]carbonyl}-*L*-leucyl-*L*-phenylalaninate (Fmoc-Leu-Phe-OMe): 92% (Method a, 94.5 mg). White solid. ¹H-NMR (500 MHz, CDCl₃) δ ppm: 7.77 (d, J = 7.5 Hz, 2H), 7.59 (d, J = 7.5 Hz, 2H), 7.40 (dd, J = 7.5, 7.5 Hz, 2H), 7.31 (dd, J = 7.5, 7.5 Hz, 2H), 7.22 (dd, J = 7.5 Hz, 2H), 7.17 (t, J = 7.5, Hz, 1H), 7.08 (d, J = 7.5 Hz, 2H), 6.54 (br.d, J = 7.5 Hz, 1H), 5.27 (br.d, J = 8.6 Hz, 1H), 4.85 (ddd, J = 7.5, 5.7, 5.7 Hz, 1H), 4.44 (dd, J = 10.3, 7.5 Hz, 1H), 4.35 (dd, J = 10.3, 7.5 Hz, 1H), 4.26-4.14 (m, 2H), 3.71 (s, 3H), 3.15 (dd, J = 13.8, 5.7 Hz, 1H), 3.08 (dd, J = 13.8, 5.7 Hz, 1H), 1.70-1.57 (m, 2H), 1.56-1.44 (m, 1H), 0.93 (d, J = 5.2 Hz, 3H), 0.91 (d, J = 4.6 Hz, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm: 171.8, 171.6, 156.0, 143.74, 143.69, 141.2, 135.5, 129.2, 128.5, 127.7, 127.1, 127.0, 125.1, 125.0, 120.0, 67.0, 53.3, 53.1, 52.3, 47.1, 41.3, 37.8, 24.6, 22.8, 21.9 (note that the two methyl groups of the isobutyl group and four carbons of fluorenyl group behave as non-equivalent functional groups). The ¹H and ¹³C NMR spectra of the product were identical to those reported in the literature.⁶

{[(9H-fluoren-9-yl)methoxy]carbonyl}-L-leucyl-L-tryptophanate Methyl (Fmoc-Leu-Trp-OMe): 75% (Method b, 83 mg). White solid. ¹H-NMR (500 MHz, CDCl₃) δ ppm: 8.17 (br.s, 1H), 7.77 (dd, *J* = 7.5, 2.3 Hz, 2H), 7.56 (d, *J* = 7.5 Hz, 1H), 7.53-7.47 (m, 2H), 7.44-7.36 (m, 2H), 7.30 (dd, J = 7.5, 7.5 Hz, 2H), 7.25 (d, *J* = 6.9 Hz, 1H), 7.12 (dd, *J* = 7.5, 6.9 Hz, 1H), 7.06 (dd, *J* = 7.5, 7.5 Hz, 1H), 6.92 (br.s, 1H), 6.79 (br.d, J = 8.0 Hz, 1H), 5.31 (br.d, J = 8.6 Hz, 1H), 4.92 (ddd, J = 8.0, 5.7, 5.2 Hz, 1H), 4.35-4.29 (m, 2H), 4.16-4.12 (m, 2H), 3.64 (s, 3H), 3.33-3.25 (m, 2H), 1.68-1.55 (m, 2H), 1.52-1.42 (m, 1H), 0.88 (d, J = 5.2 Hz, 3H), 0.86 (d, J = 4.6 Hz, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm: 172.2, 172.0, 156.1, 143.8, 143.6, 141.2, 135.9, 127.7, 127.4, 127.0, 125.1, 125.0, 123.2, 122.1, 119.9, 119.5, 118.3, 111.3, 109.3, 66.9, 53.3, 52.8, 52.3, 47.0, 41.5, 27.5, 24.6, 22.9, 21.8 (note that the two methyl groups of the isobutyl group and four carbons of fluorenyl group behave as non-equivalent functional groups). The ¹H and ¹³C NMR spectra of the product were identical to those reported in the literature.⁷

Methyl {[(9*H*-fluoren-9-yl)methoxy]carbonyl}-*L*-leucyl-*L*-serinate (Fmoc-Leu-Ser-OMe): 72% (Method b, 65.7 mg). White solid. Mp 172-174 °C. IR (KBr) v cm⁻¹: 3443, 3300, 3064, 2953, 1694, 1653, 1536, 1257. ¹H-NMR (500 MHz, CDCl₃) δ ppm: 7.75 (d, *J* = 7.5 Hz, 2H), 7.56 (dd, *J* = 7.5, 4.0 Hz, 2H), 7.38 (dd, *J* = 7.5, 4.0 Hz, 2H), 7.28 (dd, *J* = 7.5, 7.5 Hz, 2H), 7.11 (br.d, *J* = 7.5 Hz, 1H), 5.50 (br.d, *J* = 8.0 Hz, 1H), 4.72-4.58 (m, 1H), 4.40 (dd, *J* = 10.3, 6.9 Hz, 1H), 4.34 (dd, *J* = 10.3, 6.9 Hz, 1H), 4.31-4.23 (m, 1H), 4.18 (dd, *J* = 6.9, 6.9 Hz, 1H), 3.94-3.89 (m, 2H), 3.75 (s, 3H), 2.54 (br s, 1H), 1.75-1.62 (m, 2H), 1.62-1.52 (m, 1H), 0.96 (d, *J* = 6.3 Hz, 3H), 0.94 (d, *J* = 8.0 Hz, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm: 172.6, 170.7, 156.5, 143.7, 143.5, 141.2, 127.7, 127.0, 125.0, 120.0, 67.2, 62.7, 54.7, 53.7, 52.7, 47.0, 41.4, 24.6, 22.9, 22.0

⁵ D. Dev, N. B. Palakurthy, K. Thalluri, J. Chandra and B. Mandal, J. Org. Chem., 2014, **79**, 5420–5431.

⁶ M. L. Di Gioia, A. Leggio, A. Le Pera, A. Liguori, F. Perri and C. Siciliano, Eur. J. Org. Chem., 2004, 4437–4441.

⁷ R. E. Cozett, G. A. Venter, M. R. Gokada and R.. Hunter, Org. Biomol. Chem., 2016, 14, 10914–10925.

(note that the two methyl groups of the isobutyl group and two carbons of fluorenyl group behave as non-equivalent functional groups). HRMS (ESI) m/z calcd. for $C_{25}H_{31}N_2O_6^+[M + H]^+$ 455.2177, found 455.2176.

Methyl {[(9H-fluoren-9-yl)methoxy]carbonyl}-L-leucyl-L-tyrosinate (Fmoc-Leu-Tyr-OMe): 97% (Method b, 103.0 mg); 96% (Method c, 102.4 mg). White solid. Mp 118-120 °C. IR (KBr) v cm⁻¹: 3306, 3066, 2955, 2870, 1667, 1516, 1249. ¹H-NMR (500 MHz, CDCl₃) δ ppm: 7.75 (d, *J* = 7.5 Hz, 2H), 7.57 (d, *J* = 7.5 Hz, 2H), 7.38 (ddd, J = 7.5, 7.5, 2.3 Hz, 2H), 7.27 (dd, J = 7.5, 7.5 Hz, 2H), 6.89 (d, J = 8.3 Hz, 2H), 6.77 (br.d, J = 8.0 Hz, 1H), 6.63 (d, J = 8.3 Hz, 2H), 5.43 (br.d, J = 9.2 Hz, 1H), 4.84 (ddd, J = 7.5, 5.7, 5.7 Hz, 1H), 4.41 (dd, J = 10.3, 7.5 Hz, 1H), 4.30 (dd, J = 10.3, 6.9 Hz, 1H), 4.27-4.20 (m, 1H), 4.18 (dd, J = 7.5, 6.9 Hz, 1H), 3.69 (s, 3H), 3.04 (dd, J = 14.0, 5.7 Hz, 1H), 2.97 (dd, J = 14.0, 5.7 Hz, 1H), 1.70-1.35 (m, 3H), 0.89 (d, J = 6.3 Hz, 3H), 0.87 (d, J = 8.0Hz, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm: 172.1, 171.8, 156.3, 155.3, 143.7, 143.6, 141.24, 141.20, 130.3, 127.7, 127.0, 126.8, 125.1, 125.0, 120.0, 115.5, 67.2, 53.33, 53.29, 52.4, 47.0, 41.2, 37.0, 24.6, 22.8, 21.9 (note that the two methyl groups of the isobutyl group and six carbons of fluorenyl group behave as non-equivalent functional groups). HRMS (ESI) m/z calcd. for $C_{31}H_{35}N_2O_6^+[M + H]^+$ 531.2490, found 531.2495.

{[(9H-fluoren-9-yl)methoxy]carbonyl}-L-leucyl-L-methioninate Methyl (Fmoc-Leu-Met-OMe): 82% (Method b, 81.8 mg). White solid. Mp 139 °C. IR (KBr) v cm⁻¹: 3293, 3064, 2954, 1746, 1659, 1538, 1285. ¹H-NMR (500 MHz, CDCl₃) δ ppm: 7.76 (d, J = 7.5 Hz, 2H), 7.58 (dd, J = 7.5, 2.3 Hz, 2H), 7.40 (dd, J = 7.5, 7.5 Hz, 2H), 7.31 (dd, J = 7.5, 7.5 Hz, 2H), 6.71 (br.d, J = 7.5 Hz, 1H), 5.27 (br.d, J = 8.0 Hz, 1H), 4.70 (ddd, J = 7.5, 7.5, 5.2 Hz, 1H), 4.43 (dd, J = 10.3, 6.9 Hz, 1H), 4.37 (dd, J = 10.3, 6.9 Hz, 1H), 4.26-4.17 (m, 2H), 3.75 (s, 3H), 2.49 (dd, J = 7.5, 7.5 Hz, 2H), 2.22-2.12 (m, 1H), 2.05 (s, 3H), 2.03-1.93 (m, 1H), 1.73-1.62 (m, 2H), 1.61-1.50 (m, 1H), 0.96 (d, J = 5.7 Hz, 3H), 0.94(d, J = 5.2 Hz, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm: 172.1, 172.0, 156.1, 143.8, 143.6, 141.3, 127.7, 127.0, 125.0, 119.97, 119.95, 67.0, 53.4, 52.5, 51.5, 47.1, 41.4, 31.4, 29.8, 24.6, 22.9, 22.0, 15.4 (note that the two methyl groups of the isobutyl group and four carbons of fluorenyl group behave as nonequivalent functional groups). HRMS (ESI) m/z calcd. for C₂₇H₃₄N₂NaO₅S⁺[M + Na]⁺ 521.2081, found 521.2080.

Dimethyl {[(*9H*-fluoren-9-yl)methoxy]carbonyl}-*L*-leucyl-*L*-glutamate (Fmoc-Leu-Glu(OMe)-OMe): 70% (Method b, 71.8 mg). White solid. Mp 115-116 °C. IR (KBr) v cm⁻¹: 3308, 3065, 2954, 1740, 1691, 1657, 1537, 1266. ¹H-NMR (500 MHz, CDCl₃) δ ppm: 7.76 (d, *J* = 7.5 Hz, 2H), 7.59 (dd, *J* = 7.5, 2.3 Hz, 2H), 7.39 (dd, *J* = 7.5, 7.5 Hz, 2H), 7.31 (dd, *J* = 7.5, 7.5 Hz, 2H), 6.75 (br.d, *J* = 7.5 Hz, 1H), 5.29 (br.d *J* = 8.0 Hz, 1H), 4.60 (ddd, *J* = 7.5, 7.5, 5.2 Hz, 1H), 4.49-4.34 (m, 2H), 4.30-4.17 (m, 2H), 3.74 (s, 3H), 3.60 (s, 3H), 2.47-2.30 (m, 2H), 2.27-2.14 (m, 1H), 2.06-1.93 (m, 1H), 1.74-1.60 (m, 2H), 1.59-1.48 (m, 1H), 0.95 (s, 6H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm: 173.2, 172.2, 171.9, 156.1, 143.9, 143.7, 141.27, 141.25, 127.7, 127.0, 125.0, 120.0, 67.1, 53.4, 52.5, 51.8, 51.6, 47.1, 41.5, 29.9, 27.0, 24.6, 22.9, 22.0 (note that the two methyl groups of the isobutyl group and four carbons of fluorenyl group behave as non-equivalent functional groups). HRMS (ESI) m/z calcd. for C₂₈H₃₅N₂O₇⁺ [M + H]⁺ 511.2439, found 511.2455.

Methyl N^2 -({[(9H-fluoren-9-yl)methoxy]carbonyl}-L-leucyl)- N^6 -[(benzyloxy)carbonyl]-L-lysinate (Fmoc-Leu-Lys(Cbz)-OMe): 70% (Methodb, 88.5 mg). White solid. Mp 108-109 °C. IR (KBr) v cm⁻¹: 3303, 3065, 2953,2868, 1695, 1537, 1261. ¹H-NMR (500 MHz, CDCl₃) δ ppm: 7.75 (d, J = 7.5Hz, 2H), 7.62-7.51 (m, 2H), 7.39 (dd, J = 7.5, 7.5 Hz, 2H), 7.35-7.21 (m, 7H),6.88 (br.d, J = 7.5 Hz, 1H), 5.49 (br.d, J = 8.6 Hz, 1H), 5.33 (br s, 1H), 5.03 (d,J = 12.0 Hz, 1H), 4.99 (d, J = 12.0 Hz, 1H), 4.54 (ddd, J = 8.0, 7.5, 4.0 Hz, 1H),4.45 (dd, J = 10.3, 7.5 Hz, 1H), 4.33-4.26 (m, 2H), 4.18 (dd, J = 6.5, 6.5 Hz,1H), 3.71 (s, 3H), 3.26-3.14 (m, 1H), 3.12-3.00 (m, 1H), 1.88-1.74 (m, 1H),

1.72-1.56 (m, 3H), 1.55-1.38 (m, 3H), 1.37-1.18 (m, 2H), 0.91 (s, 6H). 13 C-NMR (125 MHz, CDCl₃) δ ppm: 172.5, 172.4, 156.5, 156.3, 143.8, 143.6, 141.23, 141.20, 136.5, 128.4, 128.1, 128.0, 127.7, 127.05, 127.03, 125.03, 124.96, 120.0, 119.9, 66.9, 66.6, 53.3, 52.3, 52.0, 47.1, 41.4, 40.2, 31.5, 29.1, 24.5, 22.9, 22.2, 21.8 (note that the two methyl groups of the isobutyl group and ten carbons of fluorenyl group behave as non-equivalent functional groups). HRMS (ESI) m/z calcd. for C₃₆H₄₃N₃NaO₇⁺ [M + Na]⁺ 652.2993, found 652.2994.

Methyl N^2 -{[(9*H*-fluoren-9-yl)methoxy]carbonyl}- N^4 -trityl-*L*-asparaginyl-*L*-alaninate (Fmoc-Asn(NHTr)-Ala-OMe): 88% (Method b, 120.0 mg). White solid. ¹H-NMR (500 MHz, CDCl₃) δ ppm: 7.77 (d, *J* = 7.5 Hz, 2H), 7.59 (d, *J* = 6.9 Hz, 2H), 7.41 (dd, *J* = 7.5, 6.9 Hz, 2H), 7.35-7.24 (m, 12H), 7.24-7.15 (m, 6H), 7.04 (br.s, 1H), 6.52 (br.d, *J* = 6.9 Hz, 1H), 4.61 (br.s, 1H), 4.52-4.43 (m, 1H), 4.41-4.35 (m, 2H), 4.20 (dd, *J* = 6.9, 6.9 Hz, 1H), 3.72 (s, 3H), 3.13 (d, *J* = 15.2 Hz, 1H), 2.69 (dd, *J* = 15.2, 5.2 Hz, 1H), 1.32 (d, *J* = 6.9 Hz, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm: 172.8, 170.6, 170.5, 156.1, 144.1, 143.7, 143.6, 141.18, 141.16, 128.6, 127.9, 127.6, 127.05, 127.01, 125.1, 119.9, 70.8, 67.2, 52.3, 51.1, 48.3, 47.0, 38.3, 17.6 (note that four carbons of fluorenyl group behave as non-equivalent functional groups). HRMS (ESI) m/z calcd. for C₄₂H₃₉N₃NaO₆⁺ [M + Na]⁺ 704.2731, found 704.2730. The ¹H and ¹³C NMR spectra of the product were identical to those reported in the literature.⁸

Methyl {[(9H-fluoren-9-yl)methoxy]carbonyl}-L-tyrosyl-L-prolinate (Fmoc-**Tyr-Pro-OMe)**: 80% (Method **b**, 81.9 mg). White solid. Mp 148 °C. IR (KBr) v cm⁻¹: 3251, 3067, 2953, 1746, 1702, 1636, 1515, 1267. ¹H-NMR (500 MHz, CDCl₃, 3:1 mixture of rotamers) δ ppm: 7.80-7.70 (m, 2H), 7.60 (d, J = 7.5 Hz, 0.5H), 7.56 (dd, J = 7.5, 1.2 Hz, 1.5H), 7.43-7.35 (m, 2H), 7.34-7.27 (m, 2H), 7.11 (d, J = 8.0 Hz, 1.5H), 7.06-7.01 (m, 0.5H), 6.74-6.67 (m, 2H), 5.77-5.71 (m, 0.25H), 5.67 (br.d, J = 9.2 Hz, 0.75H), 4.78-4.56 (m, 1H), 4.52 (dd, J = 8.0, 4.0 Hz, 0.75H) 4.49-4.40 (m, 0.25H), 4.38-4.25 (m, 2H), 4.24-4.13 (m, 1H), 3.74 (s, 2.25H), 3.72-3.58 (m, 1H), 3.65 (s, 0.75H), 3.41-3.29 (m, 1H), 3.06 (dd, J = 14.3, 6.3 Hz, 0.75H), 2.98 (dd, J = 13.2, 5.2 Hz, 0.25H), 2.92 (dd, J = 14.3, 5.25.7 Hz, 0.75H), 2.87 (dd, J = 13.2, 9.7 Hz, 0.25H), 2.26-2.07 (m, 1H), 2.07-1.83 (m, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm: 172.3, 170.6, 155.8, 155.2, 143.8, 143.7, 141.2, 130.9, 130.5, 127.7, 127.1, 125.23, 125.18, 119.9, 115.4, 67.2, 59.0, 53.7, 52.3, 47.1, 47.0, 37.8, 29.0, 24.9 (note that four carbons of fluorenyl group behave as non-equivalent functional groups). HRMS (ESI) m/z calcd. for $C_{30}H_{30}N_2NaO_6^+[M + H]^+$ 537.1996, found 537.2001.

Methyl {[(9H-fluoren-9-yl)methoxy]carbonyl}-L-prolyl-L-phenylalaninate (Fmoc-Pro-Phe-OMe): 88% (Method b, 87.8 mg). White solid. ¹H-NMR (500 MHz, CDCl₃, 3:2 mixture of rotamers) δ ppm: 7.88-7.71 (m, 2H), 7.67-7.57 (m, 1.2H), 7.57-7.47 (m, 0.8H), 7.47-7.37 (m, 2H), 7.37-7.27 (m, 2H), 7.26-6.88 (m, 5.6H), 6.34 (br.s, 0.4H), 5.01-4.77 (m, 1H), 4.58-4.09 (m, 4H), 3.72 (s, 1.8H), 3.54 (s, 1.2H), 3.52-3.32 (m, 2H), 3.19 (dd, J = 13.7, 5.2 Hz, 1H), 3.01 (dd, J = 13.7, 6.9 Hz, 1H), 2.47-2.24 (m, 0.6H), 2.23-1.99 (m, 0.8H), 1.97-1.77 (m, 2.2H), 1.72-1.55 (m, 0.4H). ¹³C-NMR (125 MHz, CDCl₃, 3:2 mixture of rotamers) δ ppm: 171.7 (major), 171.5 (minor), 171.4 (minor), 171.0 (major), 156.0 (major), 155.0 (minor), 144.0 (minor), 143.8 (major), 141.2, 135.9 (major), 135.7 (minor), 129.2, 128.5 (minor), 128.3 (major), 127.7, 127.0, 126.8, 125.1 (major), 125.0 (minor), 120.0, 68.0 (minor), 67.7 (major), 60.8 (minor), 60.1 (major), 53.1 (major), 52.6 (minor), 52.3, 47.4 (minor), 47.1, 46.8 (major), 37.8, 30.9 (minor), 27.8 (major), 24.5 (major), 23.3 (minor). HRMS (ESI) m/z calcd. for $C_{30}H_{31}N_2O_5^+$ [M + H]⁺ 499.2227, found 499.2235. The ¹H and ¹³C NMR spectra of the product were identical to those reported in the literature.8

⁸ J. K. Zbigniew, K. Beata, K. Justyna, S. Giuseppina, C. Mario, R. Paolo, B. Michal, L. G. Marek, and M. P. Anna, J. Am. Chem. Soc., 2005, 127, 16912–16920.

{[(9H-fluoren-9-yl)methoxy]carbonyl}-L-valyl-L-phenylalaninate Methyl (Fmoc-Val-Phe-OMe): 80% (Method b, 80.3 mg). White solid. ¹H-NMR (500 MHz, CDCl₃) δ ppm: 7.77 (d, J = 7.5 Hz, 2H), 7.60 (d, J = 7.5 Hz, 2H), 7.40 (dd, J = 7.5, 7.5, Hz, 2H), 7.32 (dd, J = 7.5, 7.5 Hz, 2H), 7.24 (dd, J = 7.5, 7.5 Hz, 2H), 7.19 (t, J = 7.5 Hz, 1H), 7.08 (d, J = 7.5 Hz, 2H), 6.27 (br.d, J = 8.0 Hz, 1H), 5.36 (br.d, J = 8.6 Hz, 1H), 4.89 (ddd, J = 8.0, 5.7, 5.7 Hz, 1H), 4.44 (dd, J = 10.9, 6.9 Hz, 1H), 4.33 (dd, J = 10.9, 6.9 Hz, 1H), 4.22 (dd, J = 6.9, 6.9 Hz, 1H), 4.00 (dd, J = 8.6, 6.3 Hz, 1H), 3.71 (s, 3H), 3.14 (dd, J = 13.8, 5.7 Hz, 1H), 3.08 (dd, J = 13.8, 5.7 Hz, 1H), 2.16-1.95 (m, 1H), 0.94 (d, J = 6.9 Hz, 3H), 0.90 (d, J = 6.9 Hz, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm: 171.6, 170.8, 156.2, 143.83, 143.79, 141.3, 135.5, 129.2, 128.6, 127.7, 127.2, 127.1, 125.12, 125.05, 120.0, 67.1, 60.2, 53.1, 52.3, 47.1, 37.9, 31.2, 19.0, 17.7 (note that the two methyl groups of the isopropyl group and four carbons of fluorenyl group behave as non-equivalent functional groups). The ¹H and ¹³C NMR spectra of the product were identical to those reported in the literature.9

 N^{α} -{[(9H-fluoren-9-yl)methoxy]carbonyl}- N^{τ} -trityl-L-histidyl-L-Methyl phenylalaninate (Fmoc-Phg-Ala-OMe): 84% (Method b, 131.9 mg). Colorless amorphous. IR (KBr) v cm⁻¹: 3296, 3061, 2950, 1724, 1670, 1531, 1216. ¹H-NMR (500 MHz, CDCl₃, 85:15 mixture of rotamers) δ ppm: 8.20 (br.s, 1H), 7.75 (m, 2H), 7.65 (br.s, 1H), 7.58 (m, 2H), 7.43-7.35 (m, 2H), 7.35-7.27 (m, 10H), 7.25-7.01 (m, 12H), 6.70 (br.s, 1H), 6.59 (br.d, J = 6.30 Hz, 0.85H), 6.45 (br.d, J = 7.5 Hz, 0.15H), 4.77 (ddd, J = 6.9, 6.9, 6.9 Hz, 1H), 4.67 (br.s, 1H), 4.37-4.27 (m, 1H), 4.27-4.08 (m, 2H), 3.63 (s, 2.55H), 3.59 (s, 0.45H), 3.35-2.86 (m, 4H). ¹³C-NMR (125 MHz, CDCl₃, major rotamer) δ ppm: 171.6, 170.6, 156.1, 143.9, 143.7, 141.2, 141.0, 136.5, 136.2, 134.8, 129.6, 129.3, 128.5, 128.4, 128.3, 127.9, 127.64, 127.62, 127.1, 127.0, 126.9, 125.3, 125.1, 119.9, 67.2, 54.5, 54.1, 52.1, 46.9, 37.6, 30.6 (note that two carbon peaks overlap with each other and four carbons of fluorenyl group behave as non-equivalent functional groups). HRMS (ESI) m/z calcd. for $C_{50}H_{45}N_4O_5^+$ [M + H]⁺ 781.3384, found 781.3383.

Methyl {[(9*H*-fluoren-9-yl)methoxy]carbonyl}-*L*-phenylglycyl-*L*-alaninate (Fmoc-Phg-Ala-OMe): 72% (Method b, 66.4 mg). White solid. Mp 188-190 °C. IR (KBr) v cm⁻¹: 3313, 3064, 2953, 1738, 1688, 1650, 1536, 1254. ¹H-NMR (500 MHz, CDCl₃) δ ppm: 7.75 (d, *J* = 7.5 Hz, 2H), 7.67-7.24 (m, 11H), 6.31 (d, *J* = 6.3 Hz, 1H), 6.17 (d, *J* = 5.7 Hz, 1H), 5.27 (d, *J* = 6.3 Hz, 1H), 4.62-4.47 (m, 1H), 4.36 (d, *J* = 6.9 Hz, 2H), 4.20 (t, *J* = 6.9 Hz, 1H), 3.67 (s, 3H), 1.41 (d, *J* = 6.9 Hz, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm: 172.7, 169.3, 155.6, 143.8, 143.7, 141.2, 137.5, 129.1, 128.6, 127.7, 127.3, 127.0, 125.1, 119.9, 67.1, 58.7, 52.5, 48.4, 47.0, 18.2 (note that two carbons of fluorenyl group behave as non-equivalent functional groups). HRMS (ESI) m/z calcd. for C₂₇H₂₇N₂O₅⁺ [M + H]⁺ 459.1914, found 459.1919.

Methyl (S)-2-[2-({[(9H-fluoren-9-vl)methoxy]carbonvl}amino)-4methylpentanamido]-2-methylpropanoate (Fmoc-Leu-Aib-OMe): 92% (Method b, 83.2 mg). White solid. Mp 95-96 °C. IR (KBr) v cm⁻¹: 3306, 3065, 2954, 2871, 1743, 1692, 1660, 1540, 1280. ¹H-NMR (500 MHz, CDCl₃) δ ppm: 7.76 (d, *J* = 7.5 Hz, 2H), 7.58 (d, *J* = 7.5 Hz, 2H), 7.39 (dd, *J* = 7.5, 7.5 Hz, 2H), 7.30 (dd, J = 7.5, 7.5 Hz, 2H), 6.68 (br.s, 1H), 5.33 (br.d, J = 8.5 Hz, 1H), 4.48-4.34 (m, 2H), 4.21 (dd, J = 6.9, 6.9 Hz, 1H), 4.19-4.12 (m, 1H), 3.70 (s, 3H), 1.72-1.59 (m, 2H), 1.57-1.41 (m, 1H), 1.53 (s, 6H), 0.95 (d, J = 5.2 Hz, 3H), 0.93 (d, J = 4.0 Hz, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm: 174.7, 171.4, 156.2, 143.73, 143.65, 141.3, 127.7, 127.0, 125.0, 120.0, 119.9, 67.0, 56.5, 53.3, 52.6, 47.1, 41.3, 24.7, 24.60, 24.57, 22.9, 22.0 (note that the four methyl groups and four carbons of fluorenyl group behave as non-equivalent functional groups). HRMS (ESI) m/z calcd. for $C_{26}H_{32}N_2NaO_6^+$ [M + Na]⁺ 475.2203, found 475.2214.

⁹ V. Erapalapati, U. A. Hale and N. Madhavan, *Tetrahedron Lett.*, 2019, 60, 151311.

5. Chiral HPLC Analysis of N-Protected Dipeptide Methyl Esters

Figure S1. Chiral HPLC analysis of Fmoc-Leu-Trp-OMe (entry 7). CHIRALPAK IA (4.6 mmφ × 250 mmL), *n*-Hexane/2-propanol = 5/1, flow rate 1.0 mL/min, detection at 254 nm.

Figure S2. Chiral HPLC analysis of Fmoc-Leu-Tyr-OMe (entry 9). CHIRALPAK IA (4.6 mm $\phi \times 250$ mmL), *n*-Hexane/2-propanol = 5/1, flow rate 1.0 mL/min, detection at 254 nm.

Figure S3. Chiral HPLC analysis of Fmoc-Leu-Tyr-OMe (entry 11). CHIRALPAK IC (4.6 mmφ × 250 mmL), *n*-Hexane/2-propanol = 5/1, flow rate 1.0 mL/min, detection at 254 nm

Figure S4. Chiral HPLC analysis of Fmoc-Pro-Phe-OMe (entry 16). CHIRALPAK IB (4.6 mmφ × 250 mmL), n-Hexane/2-propanol = 5/1, flow rate 1.0 mL/min, detection at 254 nm

Figure S5. Chiral HPLC analysis of Fmoc-Phg-Ala-OMe (entry 19). CHIRALPAK IB (4.6 mmφ × 250 mmL), *n*-Hexane/2-propanol = 5/1, flow rate 1.0 mL/min, detection at 254 nm

6. Preparation and Characterization of Tag-Protected Amino Acid Esters

- 1) To a solution of H-OTAG_X (X = A or B, 379 mg, 0.50 mmol; X = C, 457 mg, 0.50 mmol) in DCM (10 mL), H-Tyr(O'Bu)-OH (345 mg, 0.75 mmol), DMAP (12.2mg, 0.10 mmol) and DIPCI (94.7 mg, 0.75 mmol) were added. After being stirred at room temperature for 15 min, the reaction mixture was concentrated in vacuo to dryness. The residue was washed with MeCN to give Fmoc-Tyr(O'Bu)-OTAG_X as white solid quantitatively.
- 2) To a solution of Fmoc-Tyr(O'Bu)-OTAG_X (0.50 mmol) in THF (10 mL), piperidine (74.2 μL, 0.75 mmol) and DBU (100 μL, 0.67 mmol) were added. After being stirred at room temperature for 10 min, the reaction mixture was neutralized with 6 M HCl aq., and then concentrated in vacuo to dryness. The residue was washed with MeCN to give H-Tyr(OtBu)-OTAG_X as white solid quantitatively.

OC22H45

OC22H45

2,4-Bis(docosyloxy)benzyl (S)-2-amino-3-(4-(*tert***-butoxy)phenyl)propanoate (H-Tyr(O'Bu)-OTAG**_A): Mp 44-45 °C. IR (KBr) v cm⁻¹: 2917, 2849, 1735, 1615, 1588, 1506, 1468, 1176, 1162. ¹H-NMR (600 MHz, CDCl₃) δ ppm: 7.17 (d, J = 8.3 Hz, 1H), 7.04 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 8.6 Hz, 2H), 6.45 (d, J = 2.1 Hz, 1H), 6.42 (dd, J = 8.3, 2.1 Hz, 1H), 5.14 (s, 2H), 3.98-3.91 (m, 4H), 3.72 (dd, J = 7.6, 5.5 Hz, 1H), 3.05 (dd, J = 13.8, 5.5 Hz, 1H), 2.85 (dd, J = 13.8, 7.6 Hz, 1H), 1.81-1.74 (m, 4H), 1.49-1.41 (m, 4H), 1.38-1.21 (m, 72H), 1.32 (s, 9H), 0.88 (t, J = 7.2 Hz, 6H). ¹³C-NMR (150 MHz, CDCl₃) δ ppm: 174.8, 160.9, 158.5, 154.1, 131.7, 131.4, 129.8, 124.1, 116.2, 104.5, 99.6, 78.2, 68.09, 68.06, 62.4, 55.6, 39.9, 31.9, 29.7, 29.59, 29.56, 29.4, 29.3, 29.24, 29.17, 28.8, 26.0, 22.7, 14.1 (note that 32 peaks of the docosyl groups overlap with other carbons). HRMS (ESI) m/z calcd. for C_{64H113}NNaO₅⁺[M + Na]⁺ 998.8511, found 998.8509. . IR (KBr) v cm⁻¹: 3306, 3066, 2955, 2870, 1667, 1516, 1249.

3,5-Bis(docosyloxy)benzyl (S)-2-amino-3-(4-(*tert***-butoxy)phenyl)propanoate (H-Tyr(O'Bu)-OTAGB)**: Mp 47-48 °C. IR (KBr) v cm⁻¹: 2915, 2848, 1738, 1599, 1507, 1466, 1237, 1162. ¹H-NMR (600 MHz, CDCl₃) δ ppm: 7.04 (d, *J* = 7.6 Hz, 2H), 6.88 (d, *J* = 7.6 Hz, 2H), 6.44 (s, 2H), 6.40 (s, 1H), 5.04 (d, *J* = 12.4 Hz, 1H), 5.01 (d, *J* = 12.4 Hz, 1H), 3.91 (t, *J* = 5.5 Hz, 4H), 3.80-3.71 (m, 1H), 3.17-3.10 (m 2H), 3.05 (dd, *J* = 13.8, 6.2 Hz, 1H), 2.87 (dd, *J* = 13.8, 7.6 Hz, 1H), 2.01-1.96 (m, 2H), 1.93-1.84 (m, 2H), 1.79-1.70 (m, 4H), 1.46-1.38 (m, 4H), 1.33-1.22 (m, 68H), 1.30 (m, 9H), 0.87 (t, *J* = 6.5 Hz, 6H). ¹³C-NMR (150 MHz, CDCl₃) δ ppm: 174.5, 160.4, 154.3, 137.4, 131.6, 129.7, 124.2, 106.6, 101.1, 78.2, 68.1, 66.8, 55.7, 44.5, 40.1, 31.9, 29.7, 29.59, 29.56, 29.38, 29.33, 29.2, 28.8, 26.0, 22.7, 22.5, 22.4, 14.1 (18 peaks of the docosyl groups overlap with other carbons). HRMS (ESI) m/z calcd. for C_{64H113}NNaO₅⁺ [M + Na]⁺ 998.8511, found 998.8501.

3,4,5-Tris(octadecyloxy)benzyl (S)-2-amino-3-(4-(*tert***-butoxy)phenyl)propanoate (H-Tyr(O'Bu)-OTAG_C): Mp 49-50 °C. IR (KBr) v cm⁻¹: 2915, 2847, 1740, 1599, 1506, 1468, 1235, 1161. ¹H-NMR (600 MHz, CDCl₃) \delta ppm: 7.02 (d, J = 8.9 Hz, 2H), 6.88 (d, J = 8.9 Hz, 2H), 6.51 (s, 2H), 5.03 (d, J = 11.7 Hz, 1H), 4.99 (d, J = 11.7 Hz, 1H), 3.94 (t, J = 6.9 Hz, 4H), 3.93 (t, J = 6.2 Hz, 2H), 3.75 (dd, J = 7.6, 4.8 Hz, 1H), 3.17-3.10 (m, 2H), 3.04 (dd, J = 13.1, 4.8 Hz, 1H), 2.85 (dd, J = 13.1, 7.6 Hz, 1H), 1.94-1.86 (m, 2H), 1.83-1.70 (m, 7H), 1.69-1.63 (m, 1H), 1.50-1.41 (m, 6H), 1.36-1.23 (m, 80H), 1.31 (s, 9H), 0.87 (t, J = 6.9 Hz, 9H). ¹³C-NMR (150 MHz, CDCl₃) \delta ppm: 174.8, 154.3, 153.2, 138.3, 131.6, 130.4, 129.7, 124.2, 107.2, 78.3, 73.4, 69.1, 67.1, 55.8, 44.5, 40.2, 31.9, 30.3, 29.7, 29.63, 29.59, 29.42, 29.39, 29.34, 28.8, 26.1, 22.7, 22.5, 22.4, 14.1 (note that 32 peaks of the octadecyl groups overlap with other carbons). HRMS (ESI) m/z calcd. for C₇₄H₁₃₃NNaO₆⁺ [M + Na]⁺ 1155.0025, found 1155.0044.**

7. Preparation and Characterization of Tag-Protected Dipeptides

To a solution of 2e (108.5 mg, 0.24 mmol) in CH₂Cl₂ (5.0 mL), Fmoc-Leu-OH (70.7 mg, 0.2 mmol), H-Tyr(OtBu)-OTAG_X (0.2 mmol) and Ph₃P (73.4 mg, 0.28 mmol) were added successively. After being stirred at 35 °C for 24 h, the white precipitate was filtered out and washed with DCM to give 3e (93.7-103.5 mg, 86-95%). The filtrate was concentrated to dryness in vacuo and the resulting residue was washed with MeCN to give Fmoc-Leu-Tyr(OtBu)-OTAG_X.

2,4-Bis(docosan-1-yloxy)benzyl (S)-2-[(S)-2-({[(9H-fluoren-9yl)methoxy|carbonyl}amino)-4-methylpentanamido]-3-[4-(tert-

butoxy)phenyl]propanoate (Fmoc-Leu-Tyr(O'Bu)-OTAG_A): 92% (241.4 mg). White solid. Mp 79-80 °C. IR (KBr) v cm⁻¹: 2917, 2849, 1740, 1651, 1590, 1507, 1468, 1234, 1163. ¹H-NMR (500 MHz, CDCl₃) δ ppm: 7.77 (d, J = 6.9 Hz, 2H), 7.60 (d, J = 6.9 Hz, 2H), 7.40 (dd, J = 6.9, 6.9 Hz, 2H), 7.32 (dd, J = 6.9, 6.9 Hz, 2H), 7.15 (d, J = 8.0 Hz, 1H), 6.90 (d, J = 8.0 Hz, 2H), 6.79 (d, J = 8.0 Hz, 2H), 6.45 (s, 1H), 6.42 (d, J = 8.0 Hz, 1H), 6.33 (d, J = 8.0 Hz, 1H), 5.31-5.00 (m, 3H), 4.92-4.76 (m, 1H), 4.42 (dd, J = 9.7, 7.5 Hz, 1H), 4.37 (dd, J = 9.7, 6.9 Hz, 1H), 4.29-4.11 (m, 2H), 4.01-3.90 (m, 4H), 3.18-2.90 (m, 2H), 1.87-1.40 (m, 12H), 1.39-1.19 (m, 80H), 0.95-0.85 (m, 12H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm: 171.5, 171.1, 161.0, 158.5, 156.0, 154.3, 143.8, 143.7, 141.3, 131.7, 130.3, 129.8, 127.7, 127.0, 125.1, 124.0, 119.9, 115.6, 104.4, 99.6, 78.2, 68.13, 68.07, 67.0, 63.0, 53.4, 53.1, 47.1, 41.6, 36.9, 31.9, 29.7, 29.6, 29.40, 29.35, 29.3, 29.2, 28.8, 26.0, 24.6, 22.9, 22.7, 21.9, 14.1 (note that the two methyl groups of the isobutyl group and two carbons of fluorenyl group behave as non-equivalent functional groups and 31 peaks of the docosyl groups overlap with other carbons). HRMS (ESI) m/z calcd. for $C_{85}H_{134}N_2NaO_8^+$ [M + Na]⁺ 1334.0032, found 1334.0058.

3,5-Bis(docosan-1-vloxy)benzyl

(S)-2-[(S)-2-({[(9H-fluoren-9yl)methoxy]carbonyl}amino)-4-methylpentanamido]-3-[4-(tert-

butoxy)phenyl|propanoate (Fmoc-Leu-Tyr(O'Bu)-OTAG_B): 94% (246.7 mg). White solid. Mp 65-66 °C. IR (KBr) v cm⁻¹: 2918, 2846, 1694, 1656, 1600, 1509, 1468, 1241, 1172. ¹H-NMR (600 MHz, CDCl₃) δ ppm: 7.76 (d, J = 6.9 Hz, 2H), 7.60 (d, J = 6.9 Hz, 2H), 7.40 (dd, J = 6.9, 6.9 Hz, 2H), 7.31 (dd, J = 6.9, 6.9 Hz, 2H), 6.92 (d, J = 8.3 Hz, 2H), 6.82 (d, J = 8.3 Hz, 2H), 6.44 (s, 2H), 6.42 (s, 1H), 6.42-6.33 (m, 1H), 5.22-5.09 (m, 1H), 5.05 (d, J = 12.4 Hz, 1H), 5.02 (d, J = 12.4Hz, 1H), 4.91-4.79 (m, 1H), 4.43 (dd, J = 10.3, 7.6 Hz, 1H), 4.37 (dd, J = 10.3, 6.9 Hz, 1H), 4.22 (dd, J = 6.9, 6.2 Hz, 1H), 4.19-4.11 (m, 1H), 3.91 (t, J = 6.2 Hz, 4H), 3.11 (dd, J = 13.8, 5.5 Hz, 1H), 3.06 (dd, J = 13.8, 4.8 Hz, 1H), 1.80-1.73 (m, 4H),1.66-1.58 (m, 2H), 1.50-1.41 (m, 5H), 1.39-1.22 (m, 79H), 0.92-0.68 (m, 12H). ¹³C-NMR (150 MHz, CDCl₃) δ ppm: 171.7, 171.0, 160.5, 156.0, 154.5, 143.9, 143.7, 141.3, 136.9, 130.2, 129.8, 127.7, 127.1, 125.1, 124.1, 119.9, 106.8, 101.3, 78.3, 68.1, 67.3, 67.0, 53.4, 53.2, 47.2, 41.5, 37.1, 31.9, 29.7, 29.64, 29.62, 29.59, 29.42, 29.35, 29.3, 28.8, 26.1, 24.6, 22.8, 22.7, 22.0, 14.1 (note that the two methyl groups of the isobutyl group and two carbons of fluorenyl group behave as non-equivalent functional groups and 22 peaks of the docosyl groups overlap with other carbons). HRMS (ESI) m/z calcd. for $C_{85}H_{134}N_2NaO_8^+$ [M + Na]⁺ 1334.0032, found 1334.0059.

3,4,5-Tris(octadecyloxy)benzyl

(S)-2-[(S)-2-({[(9H-fluoren-9-

yl)methoxy]carbonyl}amino)-4-methylpentanamido]-3-[4-(tertbutoxy)phenyl|propanoate (Fmoc-Leu-Tyr(O'Bu)-OTAGc): 92% (270.2 mg). White solid. Mp 84-85 °C. IR (KBr) v cm⁻¹: 2918, 2850, 1743, 1642, 1614, 1589, 1509, 1469, 1253, 1177. ¹H-NMR (500 MHz, CDCl₃) δ ppm: 7.76 (d, J = 6.9 Hz, 2H), 7.60 (d, J = 6.9 Hz, 2H), 7.40 (dd, J = 6.9, 6.9 Hz, 2H), 7.31 (dd, J = 6.9, 6.9 Hz, 2H), 6.89 (d, J = 8.0 Hz, 2H), 6.81 (d, J = 8.0 Hz, 2H), 6.51 (s, 2H), 6.41 (br.d, J = 6.9 Hz, 1H), 5.17 (br.d, J = 8.0 Hz, 1H), 5.05 (d, J = 11.7 Hz, 1H), 4.99 (d, J = 11.7 Hz, 1H), 4.90-4.77 (m, 1H), 4.43 (dd, J = 10.3, 6.9 Hz, 1H), 4.37 (dd, *J* = 10.3, 6.9 Hz, 1H), 4.23 (dd, *J* = 6.9, 6.9 Hz, 1H), 4.20-4.13 (m, 1H), 4.04-3.85 (m, 6H), 3.16-3.01 (m, 2H), 1.86-1.41 (m, 18H), 1.33-1.22 (m, 90H), 0.93-0.85 (m, 15H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm: 171.6, 171.1, 156.0, 154.5, 153.2, 143.8, 143.7, 141.3, 138.3, 130.1, 129.84, 129.77, 127.7, 127.0, 125.0, 124.1, 120.0, 119.9, 107.2, 78.3, 73.4, 69.1, 67.7, 67.0, 53.3, 53.1, 47.1, 41.4, 37.1, 31.9, 30.3, 29.7, 29.6, 29.5, 29.4, 29.3, 28.8, 26.1, 24.6, 22.8, 22.7, 21.9, 14.1 (note that the two methyl groups of the isobutyl group and four carbons of fluorenyl group behave as non-equivalent functional groups and 32 peaks of the octadecyl groups overlap with other carbons). HRMS (ESI) m/z calcd. for $C_{95}H_{154}N_2NaO_9^+$ [M + Na]+ 1490.1457, found 1490.1434.

8. Preparation and Characterization of L-ValyI-L-Tyrosine

To a solution of **2e** (108.5 mg, 0.24 mmol) in CH₂Cl₂ (5.0 mL), Boc-Val-OH (65.2 mg, 0.3 mmol), H-Tyr(O'Bu)-OTAG_A (198.0 mg, 0.2 mmol) and Ph₃P (73.4 mg, 0.28 mmol) were added successively. After being stirred at 40 °C for 24 h, the white precipitate was filtered out and washed with DCM to give **3e** (106.0 mg, 97%). And then the filtrate was concentrated to dryness in vacuo. The resulting residue was washed with MeCN and added to the solution of triisopropylsilane (125 μ L, 0.6 mmol) and H₂O (125 μ L) in trifluoroacetic acid (TFA, 4.75 mL). After being stirred at room temperature for 4 h, the reaction solution was concentrated to dryness in vacuo. The hydrochloric acid solution of the resulting residue was filtered and concentrated to dryness in vacuo to give H-Val-Tyr-OH (60.3 mg, 95%) as a whit solid.

(S)-1-{[(S)-1-Carboxy-2-(4-hydroxyphenyl)ethyl]amino}-3-methyl-1-oxobutan-2-aminium chloride (H-Val-Tyr-OH·HCl): ¹H-NMR (600 MHz, D₂O) δ ppm: 7.10 (d, J = 8.9 Hz, 2H), 6.78 (d, J = 8.9 Hz, 2H), 4.58 (dd, J = 8.3, 6.2 Hz, 1H), 3.72 (d, J = 6.9 Hz, 1H), 3.08 (dd, J = 14.4, 6.2 Hz, 1H), 2.95 (dd, J = 14.4, 8.3 Hz, 1H), 2.13 (d septet, J = 6.9, 6.9 Hz, 1H), 0.93 (d, J = 6.9 Hz, 3H), 0.91 (d, J = 6.9 Hz, 3H). ¹³C-NMR (150 MHz, D₂O) δ ppm: 177.4, 172.1, 157.5, 133.5, 131.1, 118.5, 61.2, 57.5, 38.4, 33.2, 20.5, 19.6. The ¹³C NMR spectra of the product were identical to those reported in the literature.¹⁰

9. Preparation and Characterization of Tag-Protected Tripeptides

To a solution of 2e (108.5 mg, 0.24 mmol) in CH₂Cl₂ (5.0 mL), Fmoc-Val-OH (101.8 mg, 0.3 mmol), H-Tyr(O'Bu)-OTAG_A (198.0 mg, 0.2 mmol) and Ph₃P (73.4 mg, 0.28 mmol) were added successively. After being stirred at 40 °C for 24 h, the white precipitate was filtered out and washed with DCM to give 3e (99.2 mg, 91%). And then the filtrate was concentrated to dryness in vacuo. The resulting residue was washed with MeCN and dissolved in THF (28 mL). To the solution, piperidine (278 µL, 2.79 mmol) and DBU (278 µL, 1.85 mmol) were added at room temperature. After being stirred at same temperature for 10 min, the reaction solution was neutralized with 6M HCl to pH 7.0. and then MeCN was added until white solids precipitate. The remaining solids were washed with MeCN and added to a solution of 2e (89.3 mg, 0.24 mmol) and Fmoc-Lue-OH (106.0 mg, 0.3 mmol) in CH₂Cl₂ (5.0 mL). And then, after the addition of Ph₃P (73.4 mg, 0.28 mmol), the reaction mixture was stirred at 40 °C for 24 h. The white precipitate was filtered out and washed with DCM to give 3e (108.0

¹⁰ ¹³C-NMR spectral data for H-Val-Tyr-OH were obtained from the National Institute of Advanced Industrial Science and Technology (Japan).

mg, 99%). The filtrate was concentrated to dryness in vacuo and the resulting residue was washed with MeCN to give Fmoc-Leu-Tyr(OtBu)-OTAG_X (244.2 mg, 87%) as a whit solid.

2,4-Bis(docosan-1-yloxy)benzyl (5*S*,8*S*,11*S*)-11-[4-(*tert*-butoxy)benzyl]-1-(9*H*-fluoren-9-yl)-5-isobutyl-8-isopropyl-3,6,9-trioxo-2-oxa-4,7,10-triazadodecan-12-oate (Fmoc-Leu-Val-Tyr(O'Bu)-OTAG_A): ¹H-NMR (500 MHz, CDCl₃) δ ppm: 7.76 (d, *J* = 6.9 Hz, 2H), 7.58 (d, *J* = 6.4 Hz, 2H), 7.39 (dd, *J* = 6.9, 6.9 Hz, 2H), 7.30 (dd, *J* = 6.9, 6.4 Hz, 2H), 7.14 (d, *J* = 8.2 Hz, 1H), 6.89 (d, *J* = 6.9 Hz, 2H), 6.81 (d, *J* = 6.9 Hz, 2H), 6.54 (br.s, 1H), 6.44 (s, 1H), 6.42 (d, *J* = 6.9 Hz, 1H), 6.20 (br.s, 1H), 5.37-5.20 (m, 1H), 5.17 (d, *J* = 11.4 Hz, 1H), 5.10 (d, *J* = 11.4 Hz, 1H), 4.95-4.76 (m, 1H), 4.52-4.34 (m, 2H), 4.30-4.13 (m, 3H), 4.04-3.83 (m, 4H), 3.16-2.95 (m, 2H), 2.12-1.98 (m, 1H), 1.86-1.72 (m, 4H), 1.70-1.59 (m, 4H), 1.50-1.20 (m, 84H), 1.03-0.78 (m, 18H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm: 72.3, 171.1, 170.4, 160.9, 158.4, 156.2, 154.3, 143.9, 143.7, 141.2, 131.5, 129.7, 129.4, 127.6, 127.0, 125.1, 124.0, 119.9, 115.7, 104.4, 99.7, 99.5, 78.1, 68.1, 68.0, 66.9, 62.8, 61.8, 58.3, 53.6, 53.1, 47.1, 41.4, 37.1, 31.9, 29.7, 29.3, 28.8, 26.0, 24.7, 23.0, 22.6, 22.0, 18.9, 18.1, 14.1 (note that the two methyl groups of the isobutyl group, two methyl groups of the isopropyl group and two carbons of fluorenyl group behave as non-equivalent functional groups and 35 peaks of the docosyl groups overlap with other carbons). HRMS (ESI) m/z calcd. for C₉₀H₁₄₃N₃NaO₉⁺ [M + Na]⁺ 1433.0717, found 1433.0716.

10. Peptide Coupling using in situ Electrochemically Generated Iodine(III) Reagent

To a solvent of **3e** (90.8 mg, 0.2 mmol) in MeCN (5.0 mL), tetrabutylammonium perchlorate (170.9 mg, 0.5 mmol) was added. The solution was electrolyzed at constant current (1.0 mA/cm²) using graphite (anode) and platinum (cathode) electrodes at room temperature. After 2.2 F/mol of electricity based on **3e** was passed, Et₃N (18.1 μ L, 0.13 mmol), Fmoc-Leu-OH (46.0 mg, 0.13 mmol), H-Phe-OMe·HCl (28.0 mg, 0.13 mmol) and Ph₃P (47.7 mg, 0.18 mmol) were added successively. The resulting reaction mixture was stirred at 25 °C for 24 h, quenched with sat. NaHCO₃ aq. and exacted with AcOEt. The organic layer was washed with sat. NH₄Cl aq. and dried over MgSO₄. After concentration of the filtrate in vacuo to dryness, the residue was purified by silica gel chromatography (hexane:AcOEt = 2:1) to afford Fmoc-Leu-Phe-OMe (44.2 mg, 66%).

11. ¹H and ¹³C NMR Spectra of 2b-2e and Dipeptides

¹H NMR (500 MHz, CDCl₃) of **2b**

¹³C NMR (125 MHz, CDCl₃) of **2b**

 ^{13}C NMR (125 MHz, CDCl₃) of 2c

¹H NMR (500 MHz, DMSO-*d*₆) of **2d**

¹³C NMR (125 MHz, DMSO-*d*₆) of **2d**

¹H NMR (500 MHz, DMSO-*d*₆) of **2e**

¹³C NMR (125 MHz, DMSO-*d*₆) of **2e**

¹H NMR (400 MHz, CDCl₃) of Cbz-Leu-Ala-OMe

¹³C NMR (100 MHz, CDCl₃) of Cbz-Leu-Ala-OMe

¹H NMR (500 MHz, CDCl₃) of Cbz-Leu-Phe-OMe

¹³C NMR (125 MHz, CDCl₃) of Cbz-Leu-Phe-OMe

¹H NMR (500 MHz, CDCl₃) of Boc-Leu-Ala-OMe

¹³C NMR (125 MHz, CDCl₃) of Boc-Leu-Ala-OMe

¹H NMR (600 MHz, CDCl₃) of Fmoc-Leu-Ala-OMe

¹³C NMR (150 MHz, CDCl₃) of Fmoc-Leu-Ala-OMe

¹H NMR (500 MHz, CDCl₃) of Fmoc-Leu-Phe-OMe

¹³C NMR (125 MHz, CDCl₃) of Fmoc-Leu-Phe-OMe

¹H NMR (500 MHz, CDCl₃) of Fmoc-Leu-Trp-OMe

¹³C NMR (125 MHz, CDCl₃) of Fmoc-Leu-Trp-OMe

¹H NMR (500 MHz, CDCl₃) of Fmoc-Leu-Ser-OMe

¹³C NMR (125 MHz, CDCl₃) of Fmoc-Leu-Ser-OMe

¹H NMR (500 MHz, CDCl₃) of Fmoc-Leu-Tyr-OMe

¹³C NMR (125 MHz, CDCl₃) of Fmoc-Leu-Tyr-OMe

¹H NMR (500 MHz, CDCl₃) of Fmoc-Leu-Met-OMe

¹³C NMR (125 MHz, CDCl₃) of Fmoc-Leu-Met-OMe

¹H NMR (500 MHz, CDCl₃) of Fmoc-Leu-Glu(OMe)-OMe

¹³C NMR (125 MHz, CDCl₃) of Fmoc-Leu-Glu(OMe)-OMe

¹H NMR (500 MHz, CDCl₃) of Fmoc-Leu-Lys(Cbz)-OMe

¹³C NMR (125 MHz, CDCl₃) of Fmoc-Leu-Lys(Cbz)-OMe

¹H NMR (500 MHz, CDCl₃) of Fmoc-Asn(NHTr)-Ala-OMe

¹³C NMR (125 MHz, CDCl₃) of Fmoc-Asn(NHTr)-Ala-OMe

¹H NMR (500 MHz, CDCl₃) of Fmoc-Tyr-Pro-OMe

 ^{13}C NMR (125 MHz, CDCl_3) of Fmoc-Tyr-Pro-OMe

¹H NMR (500 MHz, CDCl₃) of Fmoc-Pro-Phe-OMe

¹³C NMR (125 MHz, CDCl₃) of Fmoc-Pro-Phe-OMe

¹H NMR (500 MHz, CDCl₃) of Fmoc-Val-Phe-OMe

¹³C NMR (125 MHz, CDCl₃) of Fmoc-Val-Phe-OMe

¹H NMR (500 MHz, CDCl₃) of Fmoc-His(Trt)-Phe-OMe

¹³C NMR (125 MHz, CDCl₃) of Fmoc-His(Trt)-Phe-OMe

¹H NMR (500 MHz, CDCl₃) of Fmoc-Phg-Ala-OMe

¹³C NMR (125 MHz, CDCl₃) of Fmoc-Phg-Ala-OMe

¹H NMR (500 MHz, CDCl₃) of Fmoc-Leu-Aib-OMe

¹³C NMR (125 MHz, CDCl₃) of Fmoc-Leu-Aib-OMe

¹H NMR (600 MHz, CDCl₃) of H-Tyr(O'Bu)-OTAG_A

¹³C NMR (150 MHz, CDCl₃) of H-Tyr(O'Bu)-OTAG_A

¹H NMR (600 MHz, CDCl₃) of H-Tyr(O'Bu)-OTAG_B

¹³C NMR (150 MHz, CDCl₃) of H-Tyr(O'Bu)-OTAG_B

¹H NMR (600 MHz, CDCl₃) of H-Tyr(O'Bu)-OTAG_C

¹³C NMR (150 MHz, CDCl₃) of H-Tyr(O'Bu)-OTAG_C

¹³C NMR (125 MHz, CDCl₃) of Fmoc-Leu-Tyr(O'Bu)-OTAG_A

¹³C NMR (150 MHz, CDCl₃) of Fmoc-Leu-Tyr(O'Bu)-OTAG_B

¹³C NMR (125 MHz, CDCl₃) of Fmoc-Leu-Tyr(O'Bu)-OTAG_C

^1H NMR (600 MHz, D2O) of H-Val-Tyr-OH·HCl

¹³C NMR (150 MHz, D₂O; acetone [Me, 32.97] as an internal standard) of H-Val-Tyr-OH·HCl

¹³C NMR (150 MHz, CDCl₃) of Fmoc-Lue-Val-Tyr(O'Bu)-OTAG_A

S44