Electronic Supporting Information

Rh(III)-catalyzed oxidative [4+2] annulation of 2-arylquinoxalines and

2-aryl-2*H*-indazoles with allyl alcohols

Dhananjay S. Nipate,^a Neha Meena,^a Prakash N. Swami,^a Krishnan Rangan^b and Anil Kumar^{a,*}

^aDepartment of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India

^bDepartment of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Telangana, 500078, India

E-mail: anilkumar@pilani.bits-pilani.ac.in

Contents

1	General information	S 2
2	Optimization of reaction conditions	S2
3	General procedure for the synthesis of 3	S3
4	General procedure for the synthesis of 5	S3
5	Gram scale synthesis of 3aa .	S 3
6	Gram scale synthesis of 5aa .	S4
7	Deuterium exchange studies	S4-S6
	7.1 Deuterium exchange of 1b	
	7.2 Deuterium exchange of 4a	
	7.3 Deuterium exchange of 1b in the presence of 2a	
	7.4 Deuterium exchange of 4a in the presence of 2a	
8	Intermediate isolation	S6
	8.1 Experimental procedure for isolation of 6ab	
	8.2 Experimental procedure for isolation of 7ac	
9	Competition experiment	S7-S8
	9.1 Experimental procedure for competition between 1b and 1f	
	9.2 Experimental procedure for competition between 4c and 4f	
10	HRMS analysis of rhodacycle intermediate C and intermediate E	S8
11	Optimization of reaction condition for 5aa	S9
12	Physical and spectral data of 3aa-5hb , 6ab , 7ac , 8 , 9 , 10 , 11 and 12	S9-S19
13	Copies of ¹ H NMR, ¹³ C{ ¹ H} NMR of 3aa-5hb , 6ab , 7ac , 8 , 9 , 10 , 11 and	S20-S68
	12	
14	Single crystal X-ray diffraction data of 5aa	S69-S70
15	References	S70

1. General information:

All chemicals and solvents purchased from commercial suppliers and used without purification unless otherwise noted. 2-Arylquinoxalines and 2-aryl-2*H*-indazoles were synthesized by following the reported procedure.^{1, 2} All reactions were monitored by thin layer chromatography (TLC) on pre-coated silica gel 60 F254 aluminium foils and visualized under a UV lamp (366 or 254 nm). Desired products were purified by column chromatography (silica gel 100-200 mesh size) using a gradient of ethyl acetate and hexanes as mobile phase. The ¹H NMR (400 MHz) and ¹³C{¹H} NMR (100 MHz) spectra were recorded on a Bruker Avance III spectrometer. Chemical shifts (δ) are reported in parts per million (ppm), and coupling constants (*J*) are reported in hertz (Hz). High-resolution mass spectra (HRMS) were recorded on a Q-TOF mass spectrometer. X-ray analysis was performed on a Rigaku Oxford XtaLAB AFC12 (RINC): Kappa dual home/near diffractometer.

2. Optimization of reaction conditions

Table S1. Selected experiments for optimization of reaction conditions for 3aa.^a

Entry	Catalyst	Oxidant	Solvent	Additive	% Yield ^b
1	[RhCp*Cl ₂] ₂	Cu(OAc)2 [·] H ₂ O	DCE	-	41
2	[Ru(<i>p</i> -cymene)Cl ₂] ₂	Cu(OAc)2 [·] H ₂ O	DCE	-	NR
3	$Pd(OAc)_2$	Cu(OAc)2 [·] H ₂ O	DCE	-	NR
4	[CoCp*(CO)I ₂]	Cu(OAc) ₂ ·H ₂ O	DCE	-	18
5	[RhCp*Cl ₂] ₂	Cu(OAc) ₂	DCE	-	54
6	[RhCp*Cl ₂] ₂	Cu(OTf) ₂	DCE	-	44
7	[RhCp*Cl ₂] ₂	CuSO ₄ ·5H ₂ O	DCE	-	37
8	[RhCp*Cl ₂] ₂	Ag_2CO_3	DCE	-	39
9	[RhCp*Cl ₂] ₂	Cu(OAc)2 [·] H ₂ O	MeOH	-	NR
10	[RhCp*Cl ₂] ₂	Cu(OAc)2 [·] H ₂ O	DMA	-	63
11	[RhCp*Cl ₂] ₂	Cu(OAc) ₂ ·H ₂ O	DMF	-	57
12	[RhCp*Cl ₂] ₂	Cu(OAc) ₂ ·H ₂ O	DMSO	-	54
13	[RhCp*Cl ₂] ₂	Cu(OAc) ₂ ·H ₂ O	HFIP	-	69
14 ^{c,d,e}	[RhCp*Cl ₂] ₂	Cu(OAc)2 [·] H ₂ O	HFIP	ADA	81
15	[RhCp*Cl ₂] ₂	Cu(OAc) ₂ ·H ₂ O	HFIP	PiOH	78
16	[RhCp*Cl ₂] ₂	Cu(OAc)2 [·] H ₂ O	HFIP	AcOH	74
17	[RhCp*Cl ₂] ₂	Cu(OAc)2 [·] H ₂ O	HFIP	NaOAc	67
18	[RhCp*Cl ₂] ₂	Cu(OAc)2 [·] H ₂ O	HFIP	KOAc	65
19	-	Cu(OAc)2 [·] H ₂ O	HFIP	ADA	NR
20	[RhCp*Cl ₂] ₂	-	HFIP	ADA	32

^aReaction conditions: **1a** (0.24 mmol), **2a** (0.97 mmol, 4 equiv.), catalyst (5 mol %), oxidant (2 equiv), additive (1 equiv), solvent (2 mL) in a sealed tube at 100 °C for 24 h. ^bIsolated yield. ^cUsing **2a** (3 equiv.), **3aa** obtained in 66% yield. ^dUsing **2a** (1 equiv.), **3aa** obtained in 28% yield. ^eUnder N₂, **3aa** obtained in 53% yield.

3. General procedure for the synthesis of 3.

A 10 mL oven-dried sealed tube was charged with compounds **1** (0.24 mmol) and **2** (0.97 mmol), Cu(OAc)₂·H₂O (0.48 mmol), Ad-COOH (0.24 mmol), [RhCp*Cl₂]₂ (0.012 mmol, 5 mol %) and HFIP (2 mL) at room temperature. The reaction tube was capped tightly, and the reaction mixture was stirred at 100 °C in an oil bath for 24 h. The reaction mixture was cooled, diluted with water (5 mL), and then extracted with ethyl acetate (3×5 mL). The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The resulting crude mixture was purified by column chromatography (silica gel 100–200 mesh) using EtOAc-hexanes as an eluent to afford the desired product.

4. General procedure for the synthesis of 5.

A 10 mL oven-dried sealed tube was charged with compounds **4** (0.25 mmol) and **2** (0.77 mmol), Cu(OAc)₂·H₂O (0.51 mmol), Ad-COOH (0.25 mmol), [RhCp*Cl₂]₂ (0.012 mmol, 5 mol %) and DCE (2 mL) at room temperature. The reaction tube was capped tightly, and the reaction mixture was stirred at 80 °C in an oil bath for 16 h. The reaction mixture was cooled, diluted with water (5 mL), and then extracted with ethyl acetate (3×5 mL). The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The resulting crude mixture was purified by column chromatography (silica gel 100–200 mesh) using EtOAc-hexanes as an eluent to afford the desired product.

5. Gram scale synthesis of 3aa.

An oven-dried sealed tube was charged with compound **1a** (1 g, 4.85 mmol) and **2a** (1.12 g, 19.41 mmol), Cu(OAc)₂·H₂O (1.931 g, 9.70 mmol), Ad-COOH (881 mg, 4.85 mmol), followed by [RhCp*Cl₂]₂ (150 mg, 0.24 mmol, 5 mol %) in HFIP (8 mL) at room temperature, and the reaction mixture was stirred at 100 °C in an oil bath for 24 h. After completion of the reaction (monitored by TLC), the reaction mixture was allowed to attain room temperature. The reaction mixture was poured into water (50 mL) and extracted with ethyl acetate (3×30 mL). The combined organic layer was dried over anhydrous Na₂SO₄ and evaporated under a vacuum. The resulting crude was purified by column chromatography (silica gel 100-200 mesh) using EtOAc-hexanes as an eluent to afford **3aa**.

6. Gram scale synthesis of 5aa.

An oven-dried sealed tube was charged with compound 4a (1 g, 5.15 mmol) and 2a (897 mg, 15.46 mmol), Cu(OAc)₂:H₂O (2.05 g, 10.30 mmol), Ad-COOH (938 mg, 5.15 mmol),

followed by [RhCp*Cl₂]₂ (159 mg, 0.25 mmol, 5 mol %) in DCE (8 mL) at room temperature, and the reaction mixture was stirred at 80 °C in an oil bath for 24 h. After completion of the reaction (monitored by TLC), the reaction mixture was allowed to attain room temperature. The reaction mixture was poured into water (50 mL) and extracted with ethyl acetate (3×30 mL). The combined organic layer was dried over anhydrous Na₂SO₄ and evaporated under a vacuum. The resulting crude was purified by column chromatography (silica gel 100-200 mesh) using EtOAc-hexanes as an eluent to afford **5aa**.

7. Deuterium Exchange Studies

7.1. Deuterium exchange of 1b: An oven-dried 10 mL pressure tube charged with **1b** (50 mg, 0.22 mmol), Cu(OAc)₂·H₂O (90 mg, 0.45 mmol), Ad-COOH (41 mg, 0.22 mmol), [RhCp*Cl₂]₂ (7 mg, 0.011 mmol, 5 mol %) followed by D₂O (92 μ L, 5.68 mmol, 25 equiv.) in HFIP (2 mL) at room temperature. The reaction mixture was stirred at 100 °C in an oil bath for 24 h. After completion of the reaction, it was cooled to ambient temperature and extracted in ethyl acetate (3 × 5 mL). The combined organic layer was dried over Na₂SO₄ and evaporated under reduced pressure. The resulting residue was purified by column chromatography on (100-200 mm) size silica gel using hexanes-EtOAc as eleuent. From, ¹H NMR data of the product, 100% of deuterium incorporation was observed at both ortho C–H bonds of the 2-phenyl ring and 50% of deuterium incorporation was observed at the C3-position.

7.2 Deuterium exchange of 4a: An oven-dried 10 mL pressure tube charged with **4a** (50 mg, 0.25 mmol), $Cu(OAc)_2 \cdot H_2O$ (102 mg, 0.51 mmol), Ad-COOH (47 mg, 0.25 mmol), [RhCp*Cl₂]₂ (7 mg, 0.012 mmol, 5 mol %) followed by D₂O (116 µL, 6.44 mmol, 25 equiv.) in DCE (2 mL) at room temperature. The reaction mixture was stirred at 80 °C in an oil bath

for 16 h. After completion of the reaction, it was cooled to ambient temperature, and extracted in ethyl acetate (3×5 mL). The combined organic layer was dried over Na₂SO₄ and evaporated under reduced pressure. The resulting residue was purified by column chromatography (100-200 mm) size silica gel using EtOAc-hexanes as eluent. ¹H NMR analysis of isolated product indicated 85% of deuterium incorporation at both ortho C–H bonds of the 2-phenyl ring, and 35% of deuterium incorporation at the C3-position.

7.3. Deuterium exchange of 1b in the presence of 2a.

Procedure was similar as mentioned in section 7.1 except **2a** (58 mg, 0.90 mmol) also taken in the reaction mixture

7.4. Deuterium exchange of 4a in the presence of 2a.

Procedure was similar as mentioned in section 7.2 except **2a** (58 mg, 0.90 mmol) also taken in the reaction mixture

8. Intermediate isolation.

8.1 Experimental procedure for of 6ab: An oven-dried 10 mL pressure tube was charged with **1a** (50 mg, 0.24 mmol), **2b** (70 mg, 0.97 mmol), $Cu(OAc)_2$ ·H₂O (96 mg, 0.48 mmol), Ad-COOH (44 mg, 0.24 mmol), [RhCp*Cl₂]₂ (7 mg, 0.012 mmol, 5 mol %) in HFIP (2 mL) at room temperature. The reaction mixture was stirred at 60 °C in an oil bath for 4 h. After that the reaction mixture was cooled to ambient temperature, quenched with water, and extracted in ethyl acetate (3 × 5 mL). The combined organic layer was dried over Na₂SO₄ and evaporated under reduced pressure. The resulting residue was purified by column chromatography using hexanes/EtOAc as eluent on (100-200 mm) size silica gel to afford the product **6ab** with 68% yield.

8.2 Experimental procedure for isolation of 7ac: An oven-dried 10 mL pressure tube charged with **4a** (50 mg, 0.25 mmol), **2c** (66 mg, 0.77 mmol) $Cu(OAc)_2$ ·H₂O (102 mg, 0.51 mmol), Ad-COOH (47 mg, 0.25 mmol), [RhCp*Cl₂]₂ (8 mg, 0.012 mmol, 5 mol %) in DCE (2 mL) at room temperature. The reaction mixture was stirred at 60 °C in an oil bath for 4 h. After that the reaction mixture was cooled to ambient temperature, quenched with water, and extracted in ethyl acetate (3 × 5 mL). The combined organic layer was dried over Na₂SO₄ and evaporated under reduced pressure. The resulting residue was purified by column chromatography using hexanes/EtOAc as eluent on (100-200 mm) size silica gel to afford the product **7ac** with 71% yield.

9. Competition experiment.

9.1 Experimental procedure for competition between 1b and 1f: A 10 mL oven-dried sealed tube was charged with **1b** (30 mg, 0.13 mmol), **1f** (30 mg, 0.13 mmol), **2a** (31 mg, 0.54 mmol), Cu(OAc)₂·H₂O (54 mg, 0.27 mmol), Ad-COOH (25 mg, 0.13 mmol), [RhCp*Cl₂]₂ (4 mg, 0.006 mmol, 5 mol %) in HFIP (2 mL) at room temperature. The reaction tube was caped tightly and stirred at 100 °C in an oil bath for 24 h. After completion of the reaction, it was cooled to ambient temperature, quenched with water, and extracted in ethyl acetate (5 mL × 3). The combined organic layer was dried over Na₂SO₄ and evaporated under reduced pressure. The resulting residue was purified through a filter column chromatography on silica gel (100-200) to afford the mixture of products **3ba** and **3fa**, which on ¹H NMR analysis indicated formation of **3ba** and **3fa** in 3: 1 ratio.

9.2 Experimental procedure for competition between 4c and 4f: A 10 mL oven-dried sealed tube was charged with compounds **4c** (30 mg, 0.13 mmol), **4f** (30 mg, 0.13 mmol), allyl alcohol **2a** (23 mg, 0.40 mmol), Cu(OAc)₂·H₂O (53 mg, 0.26 mmol), Ad-COOH (24 mg, 0.13 mmol), [RhCp*Cl₂]₂ (4 mg, 0.006 mmol, 5 mol %) in DCE (2 mL) at room temperature, The reaction tube was caped tightly and stirred at 80 °C in an oil bath for 16 h. After completion of the reaction, it was cooled to ambient temperature, quenched with water, and extracted in ethyl acetate (5 mL × 3). The combined organic layer was dried over Na₂SO₄ and evaporated under reduced pressure. The resulting residue was purified by through filter column chromatography using hexanes/EtOAc as eluent on silica gel (100-200 mesh size) to afford the mixture of products **5ca** and **5fa** in 3: 1 as predicted by ¹H NMR of the mixture.

10.310

- 4.01

10. HRMS of rhodacycle intermediate C and intermediate E.

MS Zoomed Spectrum

MS Zoomed Spectrum

11. Optimization of reaction conditions for 5aa.

Table S2: Selected experiments for optimization of reaction conditions for 5aa.^a

	OH [RhCp*Cl ₂] ₂ (5 mol %) N + 4a 2a (RhCp*Cl ₂] ₂ (5 mol %) (2 equiv.) (2 equiv.) (3 equiv.) (4 equi	DHC N Saa
Entry	Variation from standard conditions	% Yield 5aa ^b
1	none	38
2	80 °C and 24 h	49
3	80 °C and 16 h	58
4	60 °C and 16 h	46
5	toluene as solvent	63
6	DCE as solvent	72
7	2 equivalent of 2a	57
8	3 equivalent of 2a	71
9	[Ru(<i>p</i> -cymene)Cl ₂] ₂ as a catalyst	Trace
10	Pd(OAc) ₂ as a catalyst	NR
11	[CoCp*(CO)I ₂]	21

^aReaction conditions: **1a** (0.25 mmol), **2a** (0.77 mmol), catalyst (5 mol %), oxidant (2 equiv), additive (1 equiv), solvent (2 mL) in a sealed tube at 80 °C for 16 h, ^bIsolated yield.

12. Physical and spectral data of 3aa-5hb, 6ab, 7ac, 8, 9, 10, 11 and 12

Benzo[*a*]**phenazine-6-carboxylic acid (3aa):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 4, v/v) as an eluent; yellow solid (54 mg, 81%); mp = 272-274 °C (Lit. mp 274-276 °C)³; ¹H NMR (400 MHz, CDCl₃) δ 15.88 (s, 1H), 9.42 (d, *J* = 8.0 Hz, 1H), 9.25 (s, 1H), 8.45 (dd, *J* = 6.4, 3.6 Hz, 1H), 8.33 – 8.30 (m, 1H), 8.14 (d, *J* = 7.6 Hz, 1H), 8.04 – 7.97 (m, 3H), 7.94 – 7.91 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.4, 142.8, 142.2, 141.8, 140.3, 138.4, 132.4, 132.1, 131.3, 131.2, 131.1, 130.9, 130.8, 129.1, 127.6, 125.5, 121.9; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₇H₁₁N₂O₂⁺ 275.0810; Found 275.0812.

3-Methylbenzo[*a*]**phenazine-6-carboxylic acid (3ba):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 4, *v/v*) as an eluent; yellow solid (56 mg, 86%); mp = 276-278 °C; ¹H NMR (400 MHz, CDCl₃) δ 15.94 (s, 1H), 9.28 (d, J = 8.2 Hz, 1H), 9.19 (s, 1H), 8.45 – 8.42 (m, 1H), 8.31 – 8.29 (m, 1H), 8.02 – 7.99 (m, 2H), 7.90 (s, 1H), 7.81 (d, J = 8.4 Hz, 1H), 2.69 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.5, 142.9, 142.2, 141.8, 141.6, 140.2, 138.2, 132.7, 131.8, 131.5, 131.1, 130.6, 130.1, 129.9, 127.6, 125.5, 121.8, 21.8; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₈H₁₃N₂O₂⁺ 289.0972; Found 289.0981.

3-Methoxybenzo[*a*]**phenazine-6-carboxylic acid (3ca):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 3, v/v) as an eluent; yellow solid (43 mg, 67%); mp = 268-270 °C; ¹H NMR (400 MHz, CDCl₃) δ 15.98 (s, 1H), 9.31 (d, J = 8.8 Hz, 1H), 9.18 (s, 1H), 8.42 – 8.40 (m, 1H), 8.29 – 8.27 (m, 1H), 8.01 – 7.96 (m, 2H), 7.56 (dd, J = 8.8, 2.4 Hz, 1H), 7.48 (d, J = 2.0 Hz, 1H), 4.06 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.5, 161.7, 142.8, 142.4, 141.5, 139.7, 137.9, 133.1, 131.5, 131.2, 129.8, 127.6, 127.4, 126.2, 122.4, 120.6, 111.6, 55.8; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₃N₂O₃⁺ 305.0921; Found 305.0924.

3-Chlorobenzo[*a*]**phenazine-6-carboxylic acid (3da):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 4, *v/v*) as an eluent; yellow solid (40 mg, 62%); mp = 282-284 °C; ¹H NMR (400 MHz, CDCl₃) δ 15.81 (s, 1H), 9.39 (d, *J* = 8.8 Hz, 1H), 9.18 (s, 1H), 8.47 (dd, *J* = 6.6, 3.4 Hz, 1H), 8.34 (dd, *J* = 6.6, 3.4 Hz, 1H), 8.12 (d, *J* = 2.0 Hz, 1H), 8.06 (dd, *J* = 6.6, 3.4 Hz, 1H), 7.95 – 7.93 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.9, 142.4, 142.3, 140.3, 140.0, 138.6, 137.2, 132.4, 131.6, 131.4, 130.7, 130.0, 129.7, 127.7, 127.2, 123.3; HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₇H₁₀ClN₂O₂⁺ 309.0425; Found 309.0421.

3-Bromobenzo[*a*]**phenazine-6-carboxylic acid (3ea):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 4, *v/v*) as an eluent; yellow solid (42 mg, 68%); mp = 272-274 °C; ¹H NMR (400 MHz, CDCl₃) δ 15.80 (s, 1H), 9.31 (d, J = 8.6 Hz, 1H), 9.18 (s, 1H), 8.48 – 8.46 (m, 1H), 8.35 – 8.33 (m, 1H), 8.29 (d, J = 3.6 Hz, 1H), 8.10 – 8.04 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.8, 140.2, 140.0, 138.6, 134.1, 132.8, 132.6, 132.4, 131.6, 131.2, 131.0, 130.9, 130.8, 130.0, 127.7, 127.2, 125.6; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₇H₁₀N₂BrN₂O₂⁺ 352.9920; Found 352.9923.

3-(Trifluoromethyl)benzo[*a*]**phenazine-6-carboxylic acid (3fa):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 3, *v/v*) as an eluent; Yellow solid (47 mg, 76%); mp = 244-246 °C; ¹H NMR (400 MHz, CDCl₃) δ 15.71 (s, 1H), 9.56 (d, *J* = 8.4 Hz, 1H), 9.29 (s, 1H), 8.52 – 8.49 (m, 1H), 8.41 (s, 1H), 8.38 – 8.34 (m, 1H), 8.19 (d, *J* = 8.4 Hz, 1H), 8.13 – 8.04 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.6, 142.5, 141.8, 140.6, 140.4, 138.9, 134.6, 133.0, 132.7 (q, ²*J*_{C-F}= 31.6 Hz), 131.8, 131.0, 130.1, 127.7, 127.6 (q, ⁴*J*_{C-F}= 4.5 Hz), 126.9 (q, ⁴*J*_{C-F}= 3.5 Hz), 126.5, 123.5, 123.7 (q, ¹*J*_{C-F}= 279.3 Hz); HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₈H₁₀F₃N₂O₂⁺ 343.0689; Found 343.0693.

1-Methylbenzo[*a*]**phenazine-6-carboxylic acid (3ga):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 4, v/v) as an eluent; yellow solid (45 mg, 69%); mp = 254-258 °C; ¹H NMR (400 MHz, CDCl₃) δ 16.07 (s, 1H), 9.15 (s, 1H), 8.41 – 8.38 (m, 1H), 8.26 – 8.23 (m, 1H), 8.01 – 7.95 (m, 3H), 7.78 – 7.73 (m, 2H), 3.38 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.3, 145.2, 143.0, 141.1, 140.7, 140.6, 136.4,

135.4, 132.5, 131.9, 130.7, 130.0, 129.95, 129.94, 129.92, 127.2, 121.4, 26.6; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₃N₂O₂⁺ 289.0972; Found 289.0983.

1-Methoxybenzo[*a*]**phenazine-6-carboxylic acid (3ha):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 3 ν/ν) as an eluent; yellow solid (50 mg, 78%); mp = 276-278 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.20 (s, 1H), 8.48 (dd, J = 6.6, 3.2 Hz, 1H), 8.28 (dd, J = 6.5, 3.3 Hz, 1H), 8.02 – 7.98 (m, 2H), 7.87 (t, J = 7.9 Hz, 1H), 7.77 (d, J = 7.4 Hz, 1H), 7.54 (d, J = 8.0 Hz, 1H), 4.29 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.3, 160.0, 144.0, 142.5, 141.8, 140.2, 136.4, 133.6, 132.0, 131.4, 130.8, 130.3, 127.1, 124.1, 122.2, 120.7, 114.6, 56.8; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₈H₁₃N₂O₃⁺ 305.0921; Found 305.0918.

2-(Trifluoromethyl)benzo[*a*]**phenazine-6-carboxylic acid (3ia):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 3 ν/ν) as an eluent; yellow solid (42 mg, 67%); mp = 264-266 °C;¹H NMR (400 MHz, CDCl₃) δ 15.80 (s, 1H), 9.72 (s, 1H), 9.29 (s, 1H), 8.53 (dd, *J* = 6.6, 3.4 Hz, 1H), 8.37 (dd, *J* = 6.4, 3.6 Hz, 1H), 8.29 (d, *J* = 8.4 Hz, 1H), 8.14 – 8.07 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃: DMSO) δ 166.3, 142.4, 142.0, 140.2, 139.9, 138.9, 133.1, 132.9, 132.6, 132.3, 131.9, 131.4, 129.9, 127.6, 126.8 (q, ⁴*J*_{C-F} = 3.0 Hz), 123.8 (q, ¹*J*_{C-F} = 271.2 Hz), 123.7, 122.7 (q, ⁴*J*_{C-F} = 4.1 Hz); HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₁₈H₁₀F₃N₂O₂⁺ 343.0689; Found 343.0687.

10-Chlorobenzo[*a*]**phenazine-6-carboxylic acid (3ja):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 4, *v/v*) as an eluent; yellow solid (50 mg, 78%); mp = 276-278 °C; ¹H NMR (400 MHz, CDCl₃) δ 15.50 (s, 1H), 9.37 (d, *J* = 7.6 Hz, 1H), 9.25 (s, 1H), 8.44 (d, *J* = 2.0 Hz, 1H), 8.26 (d, *J* = 8.8 Hz, 1H), 8.14 (d, *J* = 8.0 Hz, 1H), 8.02 – 7.98 (m, 1H), 7.96 – 7.92 (m, 2H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 166.1, 143.4, 142.3, 142.2, 140.3, 137.4, 136.9, 133.3, 132.1, 131.5, 131.3, 131.31, 130.9, 128.8, 128.5, 125.7, 121.8; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₇H₁₀ClN₂O₂⁺ 309.0425; Found 309.0431.

10-Bromobenzo[*a*]**phenazine-6-carboxylic acid (3ka):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 4, *v/v*) as an eluent; yellow solid (52 mg, 84%); mp = 262-264 °C; ¹H NMR (400 MHz, CDCl₃) δ 15.50 (s, 1H), 9.36 (d, *J* = 8.0 Hz, 1H), 9.26 (s, 1H), 8.63 (d, *J* = 2.0 Hz, 1H), 8.16 (dd, *J* = 17.0, 8.6 Hz, 2H), 8.07 (dd, *J* = 9.2, 2.0 Hz, 1H), 8.02 – 7.98 (m, 1H), 7.96 – 7.92 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃ + MeOH) δ 166.3, 143.3, 142.4, 142.3, 140.3, 137.1, 135.7, 132.1, 131.9, 131.5, 131.3, 130.9, 128.7, 125.69, 125.67, 121.6; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₇H₁₀N₂BrN₂O₂⁺ 352.9920; Found 352.9904.

10-Fluorobenzo[*a*]**phenazine-6-carboxylic acid (3la):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 2.3, v/v) as an eluent; yellow solid (48 mg, 74%); mp = 288-290 °C; ¹H NMR (400 MHz, CDCl₃) δ 15.53 (s, 1H), 9.40 (d,

J = 7.6 Hz, 1H), 9.24 (s, 1H), 8.34 (dd, J = 9.0, 5.4 Hz, 1H), 8.14 (d, J = 7.2 Hz, 1H), 8.06 (dd, J = 8.8, 2.4 Hz, 1H), 8.01 (t, J = 7.2 Hz, 1H), 7.95 (t, J = 7.0 Hz, 1H), 7.85 – 7.80 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃ + MeOH) δ 166.48, 163.45 (d, ¹ $J_{C-F} = 255.2$ Hz), 143.27, 142.84 (d, ³ $J_{C-F} = 13.6$ Hz), 141.84 (d, ⁴ $J_{C-F} = 1.4$ Hz), 139.70 (d, ⁴ $J_{C-F} = 3.1$ Hz), 135.74, 131.98, 131.48, 131.30, 131.25, 130.83, 129.82 (d, ³ $J_{C-F} = 10.3$ Hz), 125.66, 123.49 (d, ² $J_{C-F} = 27.3$ Hz), 121.58, 112.74 (d, ² $J_{C-F} = 21.3$ Hz); HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₁₇H₁₀FN₂O₂⁺ 293.0721; Found 293.0727.

9,10-Dimethylbenzo[*a*]**phenazine-6-carboxylic acid (3ma):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 4, ν/ν) as an eluent; yellow solid (53 mg, 82%); mp = 258-260 °C; ¹H NMR (400 MHz, CDCl₃) δ 16.02 (s, 1H), 9.29 (d, *J* = 8.0 Hz, 1H), 9.14 (s, 1H), 8.09 (d, *J* = 8.4 Hz, 2H), 7.94 (t, *J* = 7.0 Hz, 2H), 7.87 (t, *J* = 7.2 Hz, 1H), 2.61 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.7, 143.8, 142.6, 141.8, 141.4, 140.6, 139.3, 137.4, 132.5, 131.1, 130.7, 130.5, 130.4, 128.4, 126.1, 125.2, 121.8, 20.8, 20.7; HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₁₉H₁₅N₂O₂⁺ 303.1128; Found 303.1139.

9,10-Dichlorobenzo[*a*]**phenazine-6-carboxylic acid (3na):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 3, *v/v*) as an eluent; yellow solid (37 mg, 59%); mp = 282-284 °C; ¹H NMR (400 MHz, CDCl₃) δ 15.26 (s, 1H), 9.37 (d, J = 7.2 Hz, 1H), 9.29 (s, 1H), 8.60 (s, 1H), 8.47 (s, 1H), 8.16 (d, J = 8.4 Hz, 1H), 8.03 (t, J = 7.6 Hz, 1H), 7.97 (t, J = 7.0 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.8, 143.5, 143.0, 141.0, 140.6, 137.3, 137.1, 136.4, 132.1, 131.54, 131.50, 131.0, 130.2, 128.0, 125.8, 121.8; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₇H₉Cl₂N₂O₂⁺ 343.0036; Found 343.0027.

Thieno[3,2-*a***]phenazine-5-carboxylic acid (30a):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 4, *v/v*) as an eluent; yellow solid (56 mg, 84%); mp = 248-250 °C; ¹H NMR (400 MHz, CDCl₃) δ 15.77 (s, 1H), 9.30 (s, 1H), 8.49 (d, *J* = 5.2 Hz, 1H), 8.37 – 8.34 (m, 1H), 8.27 – 8.23 (m, 1H), 8.03 – 7.97 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.2, 142.5, 140.2, 140.1, 139.3, 139.1, 138.4, 133.5, 132.7, 132.1, 131.4, 129.8, 127.7, 124.8, 120.1; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₅H₉N₂O₂S⁺ 281.0379; Found 281.0382.

Naphtho[2,3-*a*]**phenazine-6-carboxylic acid (3pa):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 3, v/v) as an eluent; yellow solid (56 mg, 89%); mp = 274-276 °C; ¹H NMR (400 MHz, CDCl₃) δ 15.84 (s, 1H), 9.72 (s, 1H), 9.21 (s, 1H), 8.49 (s, 1H), 8.43 – 8.41 (m, 1H), 8.25 – 8.20 (m, 2H), 8.11 (d, *J* = 7.7 Hz, 1H), 8.03 – 7.95 (m, 2H), 7.78 – 7.69 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.5, 144.0, 143.3, 141.7, 141.4, 137.9, 133.8, 133.7, 131.6, 131.4, 131.1, 129.7, 129.3, 128.8, 128.6, 128.5, 128.4, 128.1, 127.5, 126.0, 121.6; HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₂₁H₁₃N₂O₂⁺ 325.0972; Found 325.0969.

1-(Benzo[*a*]**phenazin-6-yl)ethan-1-one (3ab):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 19, *v/v*) as an eluent; yellow solid (53 mg, 80%); mp = 188-190 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.36 (d, *J* = 7.6 Hz, 1H), 8.37 (s, 1H), 8.34 – 8.32 (m, 1H), 8.28 – 8.25 (m, 1H), 8.33, 7.98 (d, *J* = 7.2 Hz, 1H), 7.90 – 7.77 (m, 4H), 3.10 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 201.8, 142.0, 141.9, 141.5, 141.2, 137.0, 134.5, 132.4, 131.7, 130.4, 130.2, 130.1, 129.8, 129.6, 129.5, 125.4, 32.8; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₈H₁₃N₂O⁺ 273.1022; Found 273.1020.

1-(Benzo[*a*]**phenazin-6-yl)propan-1-one (3ac):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 19, *v/v*) as an eluent; yellow solid (54 mg, 78%); mp = 184-186 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.42 (d, *J* = 8.0 Hz, 1H), 8.39 – 8.36 (m, 1H), 8.32 (s, 1H), 8.31 – 8.28 (m, 1H), 8.02 (dd, *J* = 7.6, 0.8 Hz, 1H), 7.94 – 7.81 (m, 4H), 3.53 (q, *J* = 7.4 Hz, 2H), 1.37 (t, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 205.7, 142.1, 142.0, 141.6, 141.3, 137.6, 133.9, 132.2, 131.9, 130.4, 130.3, 130.2, 129.7, 129.64, 129.62, 129.4, 125.5, 38.1, 8.7; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₉H₁₅N₂O⁺ 287.1179; Found 287.1184.

1-(3-Methylbenzo[*a*]**phenazin-6-yl**)**ethan-1-one (3bb):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 19, ν/ν) as an eluent; yellow solid (55 mg, 84%); mp = 184-186 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.23 (d, *J* = 8.4 Hz, 1H), 8.33 – 8.31 (m, 2H), 8.27 – 8.25 (m, 1H), 7.91 – 7.84 (m, 2H), 7.75 (s, 1H), 7.67 (d, *J* = 8.4 Hz, 1H), 3.10 (s, 3H), 2.62 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 201.9, 142.2, 141.7, 141.1, 140.6, 137.0, 134.6, 131.8, 131.2, 130.3, 130.1, 130.0, 129.7, 129.6, 129.5, 125.4, 32.8, 21.7; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₉H₁₅N₂O⁺ 287.1179; Found 287.1186.

1-(3-Methoxybenzo[*a*]**phenazin-6-yl**)**ethan-1-one (3cb):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 19, *v/v*) as an eluent; yellow solid (48 mg, 75%); ¹H NMR (400 MHz, CDCl₃) δ 9.29 (d, *J* = 8.8 Hz, 1H), 8.33 – 8.30 (m, 2H), 8.26 (d, *J* = 8.0 Hz, 1H), 7.90 – 7.83 (m, 2H), 7.44 (d, *J* = 8.9 Hz, 1H), 7.37 (s, 1H), 4.01 (s, 3H), 3.09 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 202.0, 161.2, 142.2, 141.7, 141.5, 140.6, 137.6, 134.2, 133.3, 130.4, 129.7, 129.6, 129.3, 127.3, 126.2, 119.0, 110.9, 55.7, 32.8; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₉H₁₅N₂O₂⁺ 303.1128; Found 303.1136.

1-(3-Chlorobenzo[*a*]**phenazin-6-yl**)**ethan-1-one (3db):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 19, *v/v*) as an eluent; yellow solid (43 mg, 67%); mp = 242-244 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.36 (d, *J* = 8.4 Hz, 1H), 8.37 (d, *J* = 7.6 Hz, 1H), 8.32 – 8.28 (m, 2H), 8.00 (s, 1H), 7.95 – 7.91 (m, 2H), 7.83 (d, *J* = 8.8 Hz, 1H), 3.10 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 201.7, 142.1, 141.7, 141.6, 140.9, 138.5, 136.4, 132.9, 132.8, 130.8, 130.7, 130.6, 129.9, 129.7, 129.6, 128.8, 127.1, 32.8; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₈H₁₂ClN₂O⁺ 307.0633; Found 307.0641.

1-(3-Bromobenzo[*a*]**phenazin-6-yl**)**ethan-1-one (3eb):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 19, *v/v*) as an eluent; yellow solid (43 mg, 69%); mp = 234-236 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.29 (d, *J* = 8.4 Hz, 1H), 8.39 – 8.37 (m, 1H), 8.33 – 8.31 (m, 1H), 8.28 (s, 1H), 8.17 (d, *J* = 1.2 Hz, 1H), 7.99 – 7.92 (m, 3H), 3.10 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 201.6, 142.2, 141.75, 141.72, 140.9, 138.5, 133.1, 132.8, 132.6, 132.0, 131.0, 130.9, 130.6, 129.7, 129.6, 127.2, 124.7, 32.7; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₁H₁₂BrN₂O⁺ 351.0128; Found 351.0121.

1-(3-(Trifluoromethyl)benzo[*a*]**phenazin-6-yl)ethan-1-one (3fb):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1:19, *v/v*) as an eluent; Yellow solid (47 mg, 75%); mp = 190-192 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.49 (d, J = 8.5 Hz, 1H), 8.38 – 8.36 (m, 2H), 8.33 – 8.28 (m, 1H), 8.27 (s, 1H), 8.05 (d, J = 8.3 Hz, 1H), 7.98 – 7.93 (m, 2H), 3.10 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 201.3, 142.4, 141.7, 141.3, 141.1, 138.6, 134.5, 133.2, 131.8 (q, ²*J*_{C-F} = 35.8 Hz), 131.4, 131.1, 131.0, 129.73, 129.68, 126.8 (q, ⁴*J*_{C-F} = 4.0 Hz), 126.4, 125.3 (q, ⁴*J*_{C-F} = 3.0 Hz), 122.6 (q, ¹*J*_{C-F} = 273.3 Hz), 32.7; HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₁₉H₁₂F₃N₂O⁺ 341.0896; Found 341.0889.

1-(3-Fluorobenzo[*a*]**phenazin-6-yl**)**ethan-1-one (3qb):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 19, *v/v*) as an eluent; yellow solid (47 mg, 72%); mp = 196-198 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.41 (dd, *J* = 9.0, 5.8 Hz, 1H), 8.35 (dd, *J* = 7.2, 2.4 Hz, 1H), 8.31 – 7.28 (m, 2H), 7.95 – 7.89 (m, 2H), 7.65 (dd, *J* = 8.8, 2.4 Hz, 1H), 7.61 – 7.56 (m, 1H), 3.10 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 201.7, 163.6 (d, ¹*J*_{C-F} = 250.0 Hz), 141.9, 141.7, 140.7, 138.5, 133.4, 133.4, 133.1 (d, ⁴*J*_{C-F} = 3.4 Hz), 130.7, 130.3, 129.7, 129.5, 128.8 (d, ⁴*J*_{C-F} = 2.2 Hz), 128.2, 128.1, 118.0 (d, ²*J*_{C-F} = 23.0 Hz), 114.5 (d, ²*J*_{C-F} = 21.5 Hz), 32.7; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₈H₁₂FN₂O⁺ 291.0928; Found 291.0934.

Indazolo[2,3-*a*]**quinoline-6-carbaldehyde** (5aa): The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 9, *ν/ν*) as an eluent; yellow solid (46 mg, 72%); mp = 148-150 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.32 (s, 1H), 9.00 (t, J = 7.6 Hz, 2H), 8.18 (s, 1H), 8.05 (d, J = 7.6 Hz, 1H), 8.00 – 7.93 (m, 2H), 7.69 (t, J = 7.6 Hz, 1H), 7.62 (t, J = 7.6 Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 189.8, 149.8, 135.8, 134.3, 132.9, 129.9, 128.6, 128.5, 128.4, 126.8, 124.3, 123.1, 121.8, 117.9, 117.2, 116.6; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₆H₁₁N₂O⁺ 247.0866; Found 247.0877.

3-Methylindazolo[2,3-*a*]**quinoline-6-carbaldehyde (5ba):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 9, ν/ν) as an eluent; yellow solid (49 mg, 78%); mp = 158-160 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.32 (s, 1H), 9.02 – 8.99 (m, 1H), 8.87 (d, *J* = 8.4 Hz, 1H), 8.12 (s, 1H), 7.99 (d, *J* = 8.7 Hz, 1H), 7.81 (s, 1H),

7.77 (dd, J = 8.4, 2.0 Hz, 1H), 7.63 – 7.59 (m, 1H), 7.37 – 7.32 (m, 1H), 2.61 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 189.9, 149.7, 136.9, 134.6, 134.3, 134.0, 129.2, 128.5, 128.4, 128.2, 124.2, 123.2, 121.6, 117.6, 117.2, 116.5, 21.3; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₇H₁₃N₂O⁺ 261.1022; Found 261.1025.

3-Methoxyindazolo[2,3-*a*]**quinoline-6-carbaldehyde** (5ca): The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 4, *v/v*) as an eluent; yellow solid (46 mg, 75%); mp = 186-188 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.25 (s, 1H), 8.95 (d, *J* = 8.4 Hz, 1H), 8.85 (d, *J* = 9.2 Hz, 1H), 8.01 (s, 1H), 7.96 (d, *J* = 8.4 Hz, 1H), 7.60 (t, *J* = 7.6 Hz, 1H), 7.51 (dd, *J* = 9.2, 2.8 Hz, 1H), 7.35 – 7.29 (m, 2H), 3.98 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 189.8, 158.1, 149.5, 133.5, 130.6, 128.6, 128.2, 127.6, 124.2, 124.1, 122.9, 121.5, 119.3, 117.1, 116.3, 109.5, 55.8; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₇H₁₃N₂O₂⁺ 277.0972; Found 277.0979.

3-Chloroindazolo[2,3-*a*]**quinoline-6-carbaldehyde** (5da): The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 9, ν/ν) as an eluent; yellow solid (43 mg, 70%); mp = 192-194 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.24 (s, 1H), 8.91 (d, J = 8.6 Hz, 1H), 8.85 (d, J = 9.0 Hz, 1H), 7.96 – 7.92 (m, 3H), 7.83 (dd, J = 9.2, 2.4 Hz, 1H), 7.61 (t, J = 7.6 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 189.4, 149.8, 134.0, 132.9, 132.6, 132.4, 129.2, 128.8, 128.5, 128.2, 124.1, 123.9, 122.2, 119.4, 117.2, 116.6; HRMS (ESI) m/z: [M + H]⁺Calcd for C₁₆H₁₀ClN₂O⁺281.0476, Found 281.0485

3-Bromoindazolo[2,3-*a*]**quinoline-6-carbaldehyde** (5ea): The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 9, *v/v*) as an eluent; yellow solid (44 mg, 74%); mp = 208-210 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.30 (s, 1H), 8.96 (d, J = 8.8 Hz, 2H), 8.85 (d, J = 9.2 Hz, 1H), 8.18 (d, J = 2.0 Hz, 2H), 8.05 (s, 1H), 8.01 (dd, J = 9.2, 2.0 Hz, 1H), 7.97 (d, J = 8.8 Hz, 1H), 7.64 – 7.60 (m, 1H), 7.38 – 7.34 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 189.4, 149.9, 135.6, 134.4, 132.4, 131.7, 129.3, 128.8, 128.3, 124.4, 124.1, 122.2, 120.3, 119.6, 117.2, 116.6; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₆H₁₀BrN₂O⁺ 324.9971; Found 324.9977.

3-Fluoroindazolo[2,3-*a*]**quinoline-6-carbaldehyde** (5fa): The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 9, ν/ν) as an eluent; yellow solid (43 mg, 69%); mp = 178-180 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.32 (s, 1H), 9.01 – 8.94 (m, 2H), 8.08 (s, 1H), 7.97 (d, *J* = 8.8 Hz, 1H), 7.69 (d, *J* = 8.0 Hz, 2H), 7.65 – 7.60 (m, 1H), 7.38 – 7.34 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 189.5, 160.6 (d, ¹*J*_{C-F} = 247.2 Hz), 149.7, 132.7 (d, ⁴*J*_{C-F} = 3.6 Hz), 132.4, 129.4, 128.6, 128.0, 124.2, 124.2, 124.1, 122.0, 121.3 (d, ²*J*_{C-F} = 24.6 Hz), 120.2 (d, ³*J*_{C-F} = 8.6 Hz), 117.2, 116.6, 114.0 (d, ²*J*_{C-F} = 22.6 Hz); HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₁₆H₁₀FN₂O⁺ 265.0772; Found 265.0771.

2-Methylindazolo[2,3-*a*]**quinoline-6-carbaldehyde** (5ga): The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 9, *v*/*v*) as an eluent; yellow

solid (51 mg, 81%); mp = 154-156 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.24 (s, 1H), 9.00 (d, J = 8.4 Hz, 1H), 8.76 (s, 1H), 8.09 (s, 1H), 7.97 (d, J = 8.4 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.60 (t, J = 7.6 Hz, 1H), 7.46 (d, J = 7.6 Hz, 1H), 7.33 (t, J = 7.6 Hz, 1H), 2.69 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 189.6, 149.8, 144.6, 135.7, 134.5, 129.6, 128.6, 128.52, 128.48, 127.6, 124.4, 121.5, 120.9, 117.5, 117.1, 116.4, 22.4; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₇H₁₃N₂O⁺ 261.1022; Found 261.1014.

8-Chloroindazolo[2,3-*a*]**quinoline-6-carbaldehyde** (**5ha**): The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 9, v/v) as an eluent; yellow solid (45 mg, 73%); mp = 196-198 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.27 (s, 1H), 9.07 (d, J = 1.6 Hz, 1H), 8.98 (d, J = 8.8 Hz, 1H), 8.22 (s, 1H), 8.08 (d, J = 8.0 Hz, 1H), 8.01 – 7.96 (m, 1H), 7.91 (d, J = 8.8 Hz, 1H), 7.75 – 7.70 (m, 1H), 7.53 (dd, J = 9.2, 2.0 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 189.7, 148.1, 135.8, 135.2, 133.2, 129.9, 129.8, 128.4, 127.9, 127.2, 127.1, 123.25, 123.22, 118.0, 117.9, 117.6; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₀ClN₂O⁺ 281.0476; Found 281.0482.

8-Fluoroindazolo[2,3-*a*]**quinoline-6-carbaldehyde (5ia):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 9, v/v) as an eluent; yellow solid (47 mg, 75%); mp = 188-190 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.21 (s, 1H), 8.93 (d, J = 8.4 Hz, 1H), 8.67 (dd, J = 10.4, 2.0 Hz, 1H), 8.12 (s, 1H), 8.04 (d, J = 7.6 Hz, 1H), 7.97 – 7.91 (m, 2H), 7.71 – 7.67 (m, 1H), 7.42 – 7.37 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 189.8, 157.9 (d, ¹ $J_{C-F} = 247.2$ Hz), 147.41, 135.8, 134.7, 132.9, 129.8, 128.5, 128.46, 128.41, 127.0, 123.1, 119.7 (d, ² $J_{C-F} = 28.8$ Hz), 118.3 (d, ³ $J_{C-F} = 9.5$ Hz), 117.7, 116.7 (d, ³ $J_{C-F} = 12.6$ Hz), 107.6 (d, ² $J_{C-F} = 26.8$ Hz); HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₀FN₂O⁺ 265.0772; Found 265.0777.

1-(Indazolo[2,3-*a***]quinolin-6-yl)ethan-1-one (5ab):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 4, v/v) as an eluent; yellow solid (46 mg, 68%); mp = 166-168 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.95 (d, J = 8.4 Hz, 1H), 8.62 (d, J = 8.8 Hz, 1H), 8.09 (s, 1H), 7.96 (t, J = 9.0 Hz, 2H), 7.90 – 7.86 (m, 1H), 7.65 – 7.56 (m, 2H), 7.31 – 7.27 (m, 1H), 2.87 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 197.3, 149.9, 135.2, 131.9, 129.7, 129.4, 128.9, 128.3, 127.1, 126.6, 124.2, 123.1, 121.5, 117.7, 116.6, 116.5, 28.3; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₃N₂O⁺ 261.1022; Found 261.1014.

1-(Indazolo[2,3-*a***]quinolin-6-yl)propan-1-one (5ac):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 9, v/v) as an eluent; yellow solid (46 mg, 65%); mp = 172-174 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.00 (d, J = 8.4 Hz, 1H), 8.53 (d, J = 8.8 Hz, 1H), 8.10 (s, 1H), 7.99 (d, J = 8.4 Hz, 2H), 7.92 – 7.88 (m, 1H), 7.68 – 7.64 (m, 1H), 7.61 – 7.57 (m, 1H), 7.31 (d, J = 7.6 Hz, 1H), 3.26 (q, J = 7.2 Hz, 2H), 1.42 (t, J = 7.2 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 200.7, 149.9, 135.2, 131.6, 129.9,

129.3, 129.0, 128.2, 126.6, 125.6, 123.8, 123.3, 121.5, 117.7, 116.7, 116.6, 33.8, 8.5; HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₁₈H₁₅N₂O⁺ 275.1179; Found 275.1187.

1-(3-Methylindazolo[2,3-*a***]quinolin-6-yl)ethan-1-one (5bb):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 9, v/v) as an eluent; yellow solid (47 mg, 71%); mp = 176-178 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.86 (d, J = 8.8 Hz, 1H), 8.64 (d, J = 8.8 Hz, 1H), 8.07 (s, 1H), 7.97 (d, J = 8.8 Hz, 1H), 7.75 (s, 1H), 7.72 (d, J = 8.8 Hz, 1H), 7.60 – 7.56 (m, 1H), 7.31 – 7.29 (m, 1H), 2.88 (s, 3H), 2.60 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 197.4, 149.8, 136.7, 133.6, 129.7, 128.8, 128.7, 128.1, 127.0, 124.1, 123.2, 121.3, 117.5, 116.8, 116.5, 28.4, 21.3; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₅N₂O⁺ 275.1179; Found 275.1185.

1-(3-Methoxyindazolo[2,3-*a*]quinolin-6-yl)ethan-1-one (5cb): The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 4, ν/ν) as an eluent; yellow solid (45 mg, 69%); mp = 168-170 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.90 (d, *J* = 9.2 Hz, 1H), 8.62 (d, *J* = 8.4 Hz, 1H), 8.06 (s, 1H), 7.96 (d, *J* = 8.8 Hz, 1H), 7.58 (t, *J* = 7.6 Hz, 1H), 7.51 (dd, *J* = 9.2, 2.4 Hz, 1H), 7.32 – 7.29 (m, 2H), 4.00 (s, 3H), 2.88 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 197.4, 158.1, 149.7, 130.2, 128.3, 127.9, 126.5, 124.3, 123.9, 121.9, 121.2, 119.2, 116.8, 116.3, 109.3, 55.8, 28.4; HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₁₈H₁₅N₂O₂⁺ 291.1128; Found 291.1137.

1-(3-Chloroindazolo[**2**,**3**-*a*]**quinolin-6-yl**)**ethan-1-one (5db):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 9, *v/v*) as an eluent; yellow solid (43 mg, 67%); mp = 194-196 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.86 (d, *J* = 9.2 Hz, 1H), 8.55 (d, *J* = 8.8 Hz, 1H), 7.94 – 7.89 (m, 3H), 7.79 (dd, *J* = 9.0, 1.8 Hz, 1H), 7.58 (t, *J* = 7.6 Hz, 1H), 7.31 – 7.28 (m, 1H), 2.85 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 197.0, 149.9, 133.5, 132.3, 132.0, 130.7, 128.7, 128.5, 128.2, 125.3, 124.02, 124.00, 121.8, 119.2, 116.8, 116.6, 28.4; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₇H₁₂ClN₂O⁺ 295.0633; Found 295.0630.

1-(3-Bromoindazolo[2,3-*a***]quinolin-6-yl)ethan-1-one (5eb):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 9, ν/ν) as an eluent; yellow solid (40 mg, 64%); mp = 160-162 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.86 (d, *J* = 9.2 Hz, 1H), 8.58 (d, *J* = 8.4 Hz, 1H), 8.14 (s, 1H), 8.00 – 7.95 (m, 3H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.33 – 7.29 (m, 1H), 2.88 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 197.1, 150.0, 134.7, 134.0, 131.4, 130.8, 128.8, 128.5, 125.2, 124.5, 124.0, 121.9, 120.1, 119.5, 116.9, 116.6, 28.4; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₇H₁₂BrN₂O⁺ 339.0128; Found 339.0136.

1-(3-Fluoroindazolo[2,3-*a***]quinolin-6-yl)ethan-1-one (5fb):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 9, v/v) as an eluent; yellow solid (42 mg, 65%); mp = 174-176 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.98 (dd, J = 10.0, 4.8 Hz, 1H), 8.57 (d, J = 8.8 Hz, 1H), 8.01 (s, 1H), 7.96 (d, J = 8.8 Hz, 1H), 7.63 – 7.57

(m, 3H), 7.33 – 7.29 (m, 1H), 2.88 (s, 3H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 197.2, 160.6 (d, ${}^{1}J_{C-F} = 246.4$ Hz), 149.8, 131.9, 130.9, 128.5, 128.3, 125.5 (d, ${}^{4}J_{C-F} = 3.6$ Hz), 124.3 (d, ${}^{3}J_{C-F} = 9.1$ Hz), 123.9, 121.7, 120.3 (d, ${}^{2}J_{C-F} = 24.7$ Hz), 120.0 (d, ${}^{3}J_{C-F} = 8.5$ Hz), 116.9, 116.6, 113.6 (d, ${}^{2}J_{C-F} = 22.7$ Hz), 28.5; HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₁₇H₁₂FN₂O⁺ 279.0928; Found 279.0934.

1-(2-Methylindazolo[2,3-*a*]**quinolin-6-yl**)**ethan-1-one** (5gb): The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 9, v/v) as an eluent; yellow solid (46 mg, 70%); mp = 162-164 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.77 (s, 1H), 8.67 (d, J = 8.4 Hz, 1H), 8.09 (s, 1H), 7.97 (d, J = 8.4 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.58 (t, J = 7.6 Hz, 1H), 7.45 (d, J = 8.0 Hz, 1H), 7.30 – 7.27 (m, 1H), 2.86 (s, 3H), 2.68 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 197.2, 149.9, 143.4, 135.2, 129.24, 129.18, 128.8, 128.4, 128.3, 127.4, 124.3, 121.3, 120.9, 117.4, 116.8, 116.4, 28.3, 22.3; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₈H₁₅N₂O⁺ 275.1179; Found 275.1185.

1-(8-Chloroindazolo[2,3-*a*]**quinolin-6-yl**)**ethan-1-one** (5hb): The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1:9, *v/v*) as an eluent; yellow solid (41 mg, 64%); mp = 172-174 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.95 (d, *J* = 8.4 Hz, 1H), 8.70 (d, *J* = 1.6 Hz, 1H), 8.18 (s, 1H), 8.00 (d, *J* = 7.6 Hz, 1H), 7.94 – 7.87 (m, 2H), 7.69 (t, *J* = 7.4 Hz, 1H), 7.50 (dd, *J* = 9.0, 2.2 Hz, 1H), 2.89 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 197.0, 148.2, 135.3, 132.2, 129.55, 129.47, 129. 4, 128.6, 127.9, 127.0, 126.8, 123.3, 123.2, 117.9, 117.7, 117.3, 28.2; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₇H₁₂ClN₂O⁺ 295.0633; Found 295.0628.

4-(2-(Quinoxalin-2-yl)phenyl)butan-2-one (6ab): The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 4, v/v) as an eluent; yellow oily liquid (46 mg, 68%); ¹H NMR (400 MHz, CDCl₃) δ 9.04 (s, 1H), 8.19 – 8.17 (m, 1H), 8.12 – 8.10 (m, 1H), 7.85 – 7.80 (m, 2H), 7.56 – 7.53 (m, 1H), 7.48 – 7.39 (m, 3H), 3.07 (t, *J* = 8.0 Hz, 2H), 2.86 (t, *J* = 7.2 Hz, 2H), 2.10 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 207.8, 154.7, 145.8, 141.7, 141.1, 140.3, 136.9, 130.5, 130.4, 130.3, 129.9, 129.7, 129.5, 129.3, 126.7, 45.7, 29.9, 27.5; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₈H₁₇N₂O⁺ 277.1335; Found 277.1344.

1-(2-(2*H***-Indazol-2-yl)phenyl)pentan-3-one (7ac):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 4, v/v) as an eluent; yellow oily liquid (51 mg, 71%); ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 0.8 Hz, 1H), 7.80 – 7.75 (m, 2H), 7.47 – 7.35 (m, 5H), 7.19 – 7.15 (m, 1H), 2.84 (t, J = 7.6 Hz, 2H), 2.62 (t, J = 7.6 Hz, 2H), 2.30 (q, J = 7.4 Hz, 2H), 0.97 (t, J = 7.4 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 210.4, 149.3, 140.1, 137.5, 130.5, 129.5, 127.05, 127.00, 126.5, 124.6, 122.3, 122.0, 120.4, 117.9, 43.0, 35.9, 25.7, 7.7; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₉N₂O⁺ 279.1492; Found 279.1484.

Methyl benzo[*a*]**phenazine-6-carboxylate (8):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 4, *v/v*) as an eluent; off white solid (24 mg, 76%); mp = 122-124 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.46 (d, *J* = 8.0 Hz, 1H), 8.51 (s, 1H), 8.40 – 8.37 (m, 2H), 8.02 (d, *J* = 7.6 Hz, 1H), 7.94 – 7.89 (m, 3H), 7.87 – 7.83 (m, 1H), 4.16 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.2, 142.6, 141.9, 141.7, 140.9, 135.6, 132.4, 131.4, 130.6, 130.2, 130.12, 130.10, 129.7, 129.5, 129.4, 129.2, 125.6, 52.7; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₈H₁₃N₂O₂⁺ 289.0972; Found 289.0978.

Benzo[*a*]**phenazine** (9): The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 19, v/v) as an eluent; yellow solid (30 mg, 72%); mp = 232-234 °C (Lit. mp 236-237 °C)⁴; ¹H NMR (400 MHz, CDCl₃) 9.47 – 9.44 (m, 1H), 8.41 – 8.39 (m, 1H), 8.33 – 8.30 (m, 1H), 8.06 – 7.99 (m, 2H), 7.96 – 7.94 (m, 1H), 7.91 – 7.89 (m, 2H), 7.86 – 7.79 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 143.6, 142.7, 142.0, 133.4, 133.3, 131.2, 130.1, 129.90, 129.86, 129.7, 129.2, 128.3, 128.0, 127.2, 125.4; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₆H₁₁N₂⁺ 231.0917; Found 231.0917.

N, *N*-Dimethylbenzo[*a*]phenazine-6-carboxamide (10): The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 3, *v/v*) as an eluent; off white solid (21 mg, 64%); mp = 118-120 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.45 (dd, *J* = 7.8, 1.4 Hz, 1H), 8.41 – 8.38 (m, 1H), 8.34 – 8.31 (m, 1H), 8.06 (s, 1H), 7.97 – 7.81 (m, 5H), 3.38 (s, 3H), 2.92 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.4, 142.7, 142.0, 141.9, 140.8, 135.0, 132.3, 131.3, 131.0, 130.4, 130.1, 129.9, 129.6, 128.7, 128.6, 125.4, 38.8, 35.1; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₉H₁₆N₃O⁺ 302.1288; Found 302.1292.

1-(3-Methylbenzo[*a*]**phenazin-6-yl**)**ethan-1-ol (11):** The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1:4, *v/v*) as an eluent; off white solid (28 mg, 90%); mp = 184-186 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.22 (d, *J* = 8.0 Hz, 1H), 8.36 – 8.34 (m, 1H), 8.25 – 8.23 (m, 1H), 7.91 – 7.83 (m, 3H), 7.67 (s, 1H), 7.60 (d, *J* = 8.4 Hz, 1H), 5.63 (q, *J* = 6.8 Hz, 1H), 5.37 (s, 1H), 2.62 (s, 3H), 1.86 (d, *J* = 6.8 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 143.2, 142.5, 141.6, 140.7, 140.4, 139.0, 132.9, 130.0, 129.9, 129.5, 129.4, 129.08, 129.07, 128.4, 128.2, 125.2, 69.0, 22.9, 21.8; HRMS (ESI) *m/z:* [M + H]⁺ Calcd for C₁₉H₁₇N₂O⁺ 289.1335; Found 289.1341.

1-(3-Oxopropyl)indazolo[2,3-*a*]**quinoline-6-carbaldehyde** (12): The title compound was purified by column chromatography on silica gel using EtOAc/hexanes (1: 4, *v/v*) as an eluent; yellow oily liquid (17 mg, 22%); ¹H NMR (400 MHz, CDCl₃) δ 10.36 (s, 1H), 10.02 (s, 1H), 9.02 (d, *J* = 8.4 Hz, 1H), 8.20 (s, 1H), 7.98 (d, *J* = 7.2 Hz, 1H), 7.92 (d, *J* = 8.8 Hz, 1H), 7.81 (d, *J* = 6.8 Hz, 1H), 7.62 – 7.58 (m, 2H), 7.37 (t, *J* = 6.6 Hz, 2H), 4.15 (t, *J* = 7.2 Hz, 2H), 3.12 (t, *J* = 6.4 Hz, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 202.2, 189.6, 149.3, 136.7, 135.2, 133.0, 129.7, 129.3, 128.2, 128.1, 127.3, 126.4, 125.1, 123.9, 122.0, 116.8, 115.9, 46.1, 29.8; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₉H₁₅N₂O₂⁺ 303.1128; Found 303.1132.

13 Copies of ¹H NMR, ¹³{¹H} NMR of 3aa-5hb, 6ab, 7ac, 8, 9, 10, 11 and 12

S21

S22

Sfa, ¹H NMR 400 MHz, CDCI₃

9,15

- 16.07

9:20 8:849 8:849 8:849 8:823 8:833</t

-- 4.29

 $\begin{smallmatrix} 9.72 \\ 9.72$

CI 3ja, ¹H NMR 400 MHz, CDCI₃

400 MHz, CDCl₃

F 3la, ¹H NMR 400 MHz, CDCl₃

- 15.53

S31

Soa, ¹H NMR 400 MHz, CDCI₃

9.72 9.72 9.72 9.49 8.49 8.44 8.44 8.44 8.44 8.43 8.41 8.82 8.822 8.822 1.739

— 15.84

9.43 9.41 9.42 9.43 9.44 9.45 <li

- 3.09

- 3.10

- 3.10

400 MHz, CDCI₃

f1 (ppm)

онс OMe ≍_N 5ca, ¹H NMR 400 MHz, CDCI₃ 1.00¹ 1.03 1.01 3.00-8 10.5 10.0 9.5 4.0 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 f1 (ppm) 4.5 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 133.5 130.6 128.6 128.6 128.2 128.2 127.6 124.1 124.1 124.2 124.1 124.2 122.9 119.3 1119.3 1116.3 1116.3 - 158.1 - 55.8 OHC OMe 5ca, ¹³C{¹H} NMR 100 MHz, CDCI₃ 100 f1 (ppm) 190 0 180 170 160 150 140 130 120 110 90 80 70 60 50 40 30 20 10

-- 3.98

101 3.06 1.03 1.07 1.07 1.00 5.5 f1 (ppm) 1.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 134.0 132.6 132.6 132.6 132.4 128.8 128.8 128.8 128.8 128.1 128.1 128.1 128.1 112.3 112.3 112.6 117.2 117.2 116.6 — 189.4 - 149.8 OHC CI 5da, ¹³C{¹H} NMR 100 MHz, CDCI₃ 100 90 f1 (ppm) 0 190 180 170 160 150 140 130 120 110 80 70 60 50 40 30 20 10

- 10.30

10.32 10.32

100 90 f1 (ppm)

9.01 8.54 8.55 8.55 8.55 8.55 8.56 8.56 8.57 8.56 8.56 8.57 8.57 8.56 8.57 <li

110 100 f1 (ppm)

f1 (ppm)

S60

-- 2.89

9.04 8.13 8.13 8.13 8.13 8.13 8.14 8.15 8.15 8.16 8.17 8.18 8.18 8.18 8.18 8.18 8.18 8.11 </tr

400 MHz, CDCl₃

150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

9,446 9,446 9,446 9,446 9,446 8,41 8,41 8,41 8,41 8,41 8,41 8,41 8,41 8,41 8,41 8,41 8,41 8,41 8,41 8,41 8,33 8,33 8,33 8,33 9,41 10,1 11,1 11,1 12,1 13,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1

— 2.62

 $\stackrel{\textbf{1.87}}{<\textbf{1.86}}$

S67

3.13

3.12

3.12

3.10

14. Single crystal X-ray diffraction data of 5aa

Single crystals of $[C_{16}H_{10}N_2O]$ **5aa** were grown from slow evaporation of chloroform: hexane solution. A suitable crystal was selected and mounted on a XtaLAB AFC12 (RINC): Kappa dual home/near diffractometer. The crystal was kept at 123(2) K during data collection. Using $Olex2^5$, the structure was solved with the SHELXT⁶ structure solution program using Intrinsic Phasing and refined with the SHELXL⁷ refinement package using Least Squares minimisation.

Tuble be erystal auta and bu detaie i	Tuble be erystar data and bractare remember for baa				
Empirical formula	$C_{16}H_{10}N_2O$				
Formula weight	246.26				
Temperature/K	123(2)				
Crystal system	triclinic				
Space group	P-1				
a/Å	8.0807(2)				
b/Å	11.4488(3)				
c/Å	13.0502(4)				
α /°	75.453(2)				
β/°	79.894(2)				
$\gamma/^{\circ}$	79.458(2)				
Volume/Å ³	1138.21(6)				
Z	4				
$\rho_{calc}g/cm^3$	1.437				
μ/mm^{-1}	0.736				
F(000)	512.0				
Crystal size/mm ³	$0.19 \times 0.05 \times 0.04$				
Radiation	Cu Ka ($\lambda = 1.54184$)				
2Θ range for data collection/°	8.064 to 159.736				
Index ranges	$-9 \le h \le 6, -14 \le k \le 14, -16 \le l \le 15$				
Reflections collected	12496				
Independent reflections	4788 [$R_{int} = 0.0315$, $R_{sigma} = 0.0394$]				
Data/restraints/parameters	4788/0/343				
Goodness-of-fit on F ²	1.066				
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0395, wR_2 = 0.1073$				
Final R indexes [all data]	$R_1 = 0.0440, wR_2 = 0.1105$				
Largest diff. peak/hole / e Å ⁻³	0.21/-0.30				

Table S3 Crystal data and structure refinement for 5aa

Figure S1. The ORTEP diagram of 5aa [CCDC No 2294834].

15. References

- 1. K. Kumar, S. R. Mudshinge, S. Goyal, M. Gangar and V. A. Nair, *Tetrahedron Lett.* 2015, **56**, 1266-1271.
- 2. A. N Prasad and B. M Reddy, *Curr. Catal.* 2013, **2**, 159-172.
- 3. Y. Yuan, S.-Y. Zhang, W.-H. Dong, F. Wu, X.-M. Xie and Z.-G. Zhang, *Adv. Synth. Catal.* 2021, **363**, 4216-4221.
- 4. S. Wang, R. Li, S. Jiang, H. Huang, W. Shao and G. J. Deng, *Adv. Synth. Catal.* 2022, **364**, 1481-1487.
- 5. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. Howard and H. Puschmann, *J. Appl. Crystallogr.* 2009, **42**, 339-341.
- 6. G. M. Sheldrick, Acta Crystallogr. Sect. A: Found. Adv. 2015, 71, 3-8.
- 7. G. M. Sheldrick, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2015, 71, 3-8.