Supporting Information for

Photoinduced Reductive Reformatsky Reaction of α-Haloesters and

Aldehydes or Ketones by Cooperative Dual-Metal Catalysis

Qi-Long Chen,^a Le Mao,^a Yi-Fan Pan,^a Heng Cai,^a Xiao-Ming Zhang,^{a*} Fu-Min Zhang,^a Ai-Jun Ma,^b Jin-Bao Peng,^b and Yong-Qiang Tu^a

^aState Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.

^bSchool of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China.

email: zhangxiaom@lzu.edu.cn

Table of Contents

1. General Information	2
2. Optimization of the Reaction Conditions	3
3. General Procedure for Reductive Reformatsky Reaction	8
4. Mechanistic Studies	25
5. References	29
6. Copies of NMR Spectra of New Compounds	

1. General Information

All moisture or air sensitive reactions were carried out under an argon atmosphere in oven-dried flasks. Except for commercially available ultradry solvents (DMF, DMSO, 1,4-dioxane, ethyl acetate, and CH₃CN), all solvents were purified by standard methods as indicated and were transferred under argon. Toluene and THF were distilled from sodium, while DCM was distilled from CaH₂. All other commercially available reagents were used as received without further purification unless otherwise noted. All reactions were monitored by thin-layer chromatography (TLC) on silica gel F_{254} plates using UV light as visualizing agent (if applicable). The products were purified by flash column chromatography on silica gel (200-300 meshes).

¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ solution on Bruker AVANCE^{III} 400 MHz, Bruker AVANCE^{III} HD 400 MHz or Bruker AVANCE NEO 600 MHz instrument. Chemical shifts were denoted in ppm (δ) and calibrated by using residual undeuterated solvent (CHCl₃ (7.27 ppm), tetramethylsilane (0.00 ppm)) as internal reference for ¹H NMR and the deuterated solvent (CDCl₃ (77.00 ppm) as internal standard for ¹³C NMR. The following abbreviations were used to represent the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, dd = double doublet, dt = double triplet, brs = broad singlet, m = multiplet. High-resolution mass spectral analysis (HRMS) data were measured on a Bruker Apex^{II} mass spectrometer by means of the ESI technique. The FT-IR spectra were recorded on Nicolet Nexus 670 FT-IR spectrometer using neat thin film technique with potassium bromide (KBr) salt plates.

2. Optimization of the Reaction Conditions

Table S1 Screening of iron catalysts^a

entry	iron catalyst	conversion (%)	yield (%) ^b
1	FeBr ₃	46	28
2	Fe(OTf) ₃	60	22
3	Fe(OAc) ₂	80	19
4	FeBr ₂	40	36
5	FeCl ₂	62	18
6	FeCl ₃	65	17

^aUnless otherwise noted: reactions were conducted with **1a** (0.20 mmol), **2a** (0.50 mmol), iron catalyst (10 mol%), HE (1.4 equiv.), and ${}^{1}\text{Pr}_{2}\text{NEt}$ (2.0 equiv.) in ethyl acetate (2.0 ml) at room temperature for 24 h under 40 W 390 nm light irradiation. ^bYield determined by ¹H NMR analysis of the reaction mixture using 1,3,5-trimethoxybenzene as an internal standard.

Table S2 Screening of solvents^a

	H + Br 1a 2a	FeBr ₂ (10 mol%) C HE (1.4 equiv.) i iPr ₂ NEt (2.0 equiv.) 3a solvent, 390 nm, 25-30 °C, 24h	OEt
entry	solvent	conversion (%)	yield (%) ^b
1	THF	36	18
2	DCM	42	7
3	1,4-dioxane	18	9
4	CH ₃ CN	32	19
5	toluene	28	13
6	DMF	37	13
7	DMSO	38	21
8	EA	40	36

^aUnless otherwise noted: reactions were conducted with **1a** (0.2 mmol), **2a** (0.5 mmol), FeBr₂ (10 mol%), HE (1.4 equiv.), and ^{*i*}Pr₂NEt (2.0 equiv.) in solvent (2.0 ml) at room temperature for 24 h under 40 W 390 nm light irradiation. ^bYield determined by ¹H NMR analysis of the reaction mixture using 1,3,5-trimethoxybenzene as an internal standard.

Table S3 Screening of additives^a

entry	additive	conversion (%)	yield (%) ^b
1	ZnBr ₂	58	24
2	ZnCl ₂	46	17
3	LiI	49	38
4	LiBr	67	trace
5	LiCl	63	33
6	MgCl ₂	81	33
7	Co(acac) ₃	98	95 (93)°
8	CoI ₂	42	30
9	CoBr ₂	47	22

^aUnless otherwise noted: reactions were conducted with **1a** (0.2 mmol), **2a** (0.5 mmol), FeBr₂ (10 mol), additive (10 mol%), HE (1.4 equiv.), and ^{*i*}Pr₂NEt (2.0 equiv.) in ethyl acetate (2.0 ml) at room temperature for 24 h under 40 W 390 nm light irradiation. ^bYield determined by ¹H NMR analysis of the reaction mixture using 1,3,5-trimethoxybenzene as an internal standard. ^cIsolated yield.

Table S4 Screening of bases^a

entry	base	conversion (%)	yield (%) ^b
1	Et ₃ N	95	87
2	Et ₂ NH	68	55
3	2,6-lutidine	85	54
4	DBU	55	51
5	NaHCO ₃	59	53
6	K ₂ CO ₃	61	56
7	^{<i>i</i>} Pr ₂ NEt	98	95 (93)°
8	^{<i>i</i>} Pr ₂ NEt, 0.5 eq	67	60
9	i Pr ₂ NEt, 1.0 eq	75	72
10	^{<i>i</i>} Pr ₂ NEt, 1.5 eq	86	82
11	^{<i>i</i>} Pr ₂ NEt, 2.5 eq	96	92

^aUnless otherwise noted: reactions were conducted with **1a** (0.2 mmol), **2a** (0.5 mmol), FeBr₂ (10 mol), Co(acac)₃ (10 mmol%), HE (1.4 equiv.), and base (2.0 equiv.) in ethyl acetate (2.0 ml) at room temperature for 24 h under 40 W 390 nm light irradiation. ^bYield determined by ¹H NMR analysis of the reaction mixture using 1,3,5-trimethoxybenzene as an internal standard. ^cIsolated yield.

Table S5 Control experiments^a

	H + Br OEt	FeBr ₂ (10 mol%), Co(acac) ₃ (10 mol%) HE (1.4 equiv.) ^j Pr ₂ NEt (2.0 equiv.) ethyl acetate, 390 nm, 25-30 °C, 24h	OF O
entry	variation	conversion (%)	yield (%) ^b
1	none	98	95 (93) ^c
2	without FeBr ₂	11	7
3	without Co(acac) ₃	40	36
4	without HE	0	0
5	without ⁱ Pr ₂ NEt	59	42
6	without light	0	0
7	40W 427 nm LED	75	65
8	40W 440 nm LED	55	46
9	40W 450 nm LED	52	45
10	40W white LED	30	22

^aUnless otherwise noted: reactions were conducted with **1a** (0.2 mmol), **2a** (0.5 mmol), FeBr₂ (10 mol), Co(acac)₃ (10 mol%), HE (1.4 equiv.), and ^{*i*}Pr₂NEt (2.0 equiv.) in ethyl acetate (2.0 ml) at room temperature for 24 h under 40 W 390 nm light irradiation. ^bYield determined by ¹H NMR analysis of the reaction mixture using 1,3,5-trimethoxybenzene as an internal standard. ^cIsolated yield.

3. General Procedure for Reductive Reformatsky Reaction

General procedure: Under an argon atmosphere, a 10 mL Schlenk tube was charged with 1 or 4 (0.2 mmol), 2 (0.5 mmol), FeBr₂ (0.02 mmol, 10 mol%), Co(acac)₃ (0.02 mmol, 10 mol%), HE (0.28 mmol, 1.4 equiv.), i Pr₂NEt (0.4 mmol, 2.0 equiv.), and ethyl acetate (2 mL). Then, the reaction mixture was stirred at room temperature for 24 h under irradiation of 40 W 390 nm Kessil. The resulting mixture was concentrated in vacuum, and the residue was purified by flash column chromatography on silica gel to afford the desired product **3**, **5** or **6**.

3a, 49.6 mg, 91% yield, white solid.

M.p. = 66-67 °C

¹**H NMR** (400 MHz, CDCl₃) δ 7.83 – 7.72 (m, 4H), 7.49 – 7.39 (m, 3H), 5.04 (d, *J* = 4.1 Hz, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.43 (d, *J* = 4.2 Hz, 1H), 1.24 (t, *J* = 7.1 Hz, 3H), 1.17 (s, 3H), 1.13 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 177.8, 137.6, 132.9, 132.7, 128.0, 127.5, 127.2, 126.6, 125.9, 125.8, 125.7, 78.7, 60.9, 47.7, 23.1, 19.1, 14.0.

HRMS (ESI) calcd for [M+Na⁺]: C₁₇H₂₀NaO₃, m/z: 295.1305, found: 295.1304, Error: 0.3 ppm. **IR (KBr):** 3491, 2980, 1717, 1365, 1262, 1175, 1054, 480.cm⁻¹

3b, 40.8 mg, 92% yield, colorless oil.

¹**H NMR** (600 MHz, CDCl3) δ 7.34 – 7.25 (m, 5H), 4.89 (d, J = 4.1 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 3.20 (d, J = 4.2 Hz, 1H), 1.26 (t, J = 7.1 Hz, 3H), 1.14 (s, 3H), 1.11 (s, 3H) ppm. ¹³**C NMR** (150 MHz, CDCl₃) δ 177.8, 140.0, 127.7, 127.7, 78.7, 60.9, 47.5, 23.1, 19.0, 14.1. **HRMS (ESI)** calcd for [M+Na⁺]: C₁₃H₁₈NaO₃, m/z: 245.1148, found: 245.1140, Error: 3.2 ppm. **IR (KBr):** 3498, 2981, 1717, 1470, 1387, 1132, 898, 704 cm⁻¹

MeO

3c, 37.0 mg, 82% yield, colorless oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.23 (d, *J* = 8.1 Hz, 2H), 6.85 (d, *J* = 8.1 Hz, 2H), 4.85 (d, *J* = 3.4 Hz, 1H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.80 (s, 3H), 3.12 (d, *J* = 3.8 Hz, 1H), 1.27 (t, *J* = 7.1 Hz, 3H), 1.13 (s, 3H), 1.09 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 177.9, 159.1, 132.1, 128.8, 113.1, 78.3, 60.8, 55.20, 47.6, 23.1, 19.0, 14.1.

HRMS (ESI) calcd for [M+Na⁺]: C₁₄H₂₀NaO₄, m/z: 275.1254, found: 275.1252, Error: 0.6 ppm. **IR (KBr):** 3501, 2980, 2938, 2937, 1718, 1612, 1584, 1513,1249, 1132, 839 cm⁻¹

3d, 48.3 mg, 86% yield, white solid.

M.p. = 62-63 °C

¹**H NMR** (400 MHz, CDCl₃) δ 7.35 – 7.29 (m, 2H), 7.23 (d, *J* = 8.3 Hz, 2H), 4.86 (d, *J* = 4.0 Hz, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.08 (d, *J* = 4.2 Hz, 1H), 1.31 (s, 9H), 1.26 (t, *J* = 7.1 Hz, 3H), 1.14 (s, 3H), 1.10 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 177.8, 150.5, 137.0, 127.3, 124.6, 78.5, 60.8, 47.5, 34.4, 31.3, 23.0, 19.0, 14.1.

HRMS (ESI) calcd for [M+Na⁺]: C₁₇H₂₆NaO₃, m/z: 301.1774, found: 301.1761, Error: 4.5 ppm. **IR (KBr):** 3499, 2965, 1719, 1131, 1109, 708, 576 cm⁻¹

3e, 49.3 mg, 93% yield, colorless oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.09 (d, *J* = 8.7 Hz, 2H), 6.60 (d, *J* = 8.7 Hz, 2H), 4.73 (d, *J* = 2.6 Hz, 1H), 4.10 (q, *J* = 7.1 Hz, 2H), 2.89 (d, *J* = 3.5 Hz, 1H), 2.85 (s, 6H), 1.19 (t, *J* = 7.1 Hz, 3H), 1.06 (s, 3H), 1.00 (s, 3H)

¹³C NMR (150 MHz, CDCl₃) δ 177.9, 150.1, 128.4, 127.9, 111.7, 78.5, 60.7, 47.7, 40.5, 23.1, 18.9, 14.1.

HRMS (ESI) calcd for [M+Na⁺]: C₁₅H₂₃NaO₃, m/z: 228.1570, found: 288.1562, Error: 2.8 ppm. **IR (KBr):** 3506, 2979, 2802, 1720, 1614, 1527, 1470, 1385, 1348, 1253, 544 cm⁻¹

3f, 58.3 mg, 98%, colorless oil.

¹**H** NMR (600 MHz, CDCl₃) δ 7.26 – 7.13 (m, 4H), 4.84 (s, 1H), 4.16 (q, *J* = 7.1 Hz, 2H), 3.27 (d, *J* = 4.1 Hz, 1H), 2.47 (d, *J* = 1.1 Hz, 3H), 1.26 (td, *J* = 7.1, 1.0 Hz, 3H), 1.12 (s, 3H), 1.08 (s, 3H). ¹³**C** NMR (151 MHz, CDCl₃) δ 177.6, 137.6, 136.9, 128.1, 125.7, 78.1, 77.2, 77.0, 76.8, 60.8, 47.5, 22.9, 18.9, 15.7, 14.0.

HRMS (ESI) calcd for [M+Na⁺]: C₁₄H₂₀NaO₃S, m/z: 291.1020, found: 288.291.1025, Error: 1.9 ppm.

IR (KBr): 3485, 2980, 2922, 1716, 1493, 1131 cm⁻¹

3g, 25.1 mg, 53% yield, colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.12 – 7.05 (m, 2H), 6.66 – 6.58 (m, 2H), 4.78 (s, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.68 (d, *J* = 36.3 Hz, 2H), 3.22 – 2.79 (m, 1H), 1.27 (t, *J* = 7.1 Hz, 3H), 1.12 (s, 3H), 1.08 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 178.0, 145.2, 130.1, 128.7, 114.4, 78.5, 77.4, 77.0, 76.7, 60.8, 47.7, 23.1, 19.0, 14.1.

HRMS (ESI) calcd for [M+Na⁺]: C₁₃H₁₉NNaO₃, m/z: 260.1248, found: 260.1257, Error: 3.6 ppm. **IR (KBr):** 3421, 2972, 2922, 1711, 1621, 1048 cm⁻¹

3h, 35.3 mg, 71% yield, colorless oil.

¹**H** NMR (600 MHz, CDCl₃) δ 7.36 (d, J = 8.1 Hz, 2H), 7.27 (d, J = 7.9 Hz, 2H), 6.71 (dd, J = 17.6, 10.9 Hz, 1H), 5.75 (d, J = 17.6 Hz, 1H), 5.24 (d, J = 10.9 Hz, 1H), 4.88 (d, J = 3.4 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 3.19 (d, J = 4.0 Hz, 1H), 1.27 (t, J = 7.1 Hz, 3H), 1.13 (s, 3H), 1.11 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 177.8, 139.6, 137.0, 136.4, 127.9, 125.6, 113.8, 78.4, 60.9, 47.5, 23.1, 19.0, 14.1.

HRMS (ESI) calcd for [M+Na⁺]: C₁₅H₂₀NaO₃, m/z: 271.1305, found: 271.1292, Error: 4.8 ppm. **IR (KBr):** 3479, 2981, 2937, 1715, 1608, 1132, 1053, 904 cm⁻¹

3i, 34.8 mg, 73% yield, colorless oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.30 – 7.25 (m, 2H), 7.00 (t, *J* = 8.7 Hz, 2H), 4.87 (d, *J* = 4.1 Hz, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.32 (d, *J* = 4.2 Hz, 1H), 1.26 (t, *J* = 7.1 Hz, 3H), 1.12 (s, 3H), 1.09 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 177.7, 162.3(d, $J_{C-F} = 244.6 \text{ Hz}$), 135.7 (d, $J_{C-F} = 3.1 \text{ Hz}$), 129.2 (d, $J_{C-F} = 8.5 \text{ Hz}$), 114.5 (d, $J_{C-F} = 21.2 \text{ Hz}$), 77.9, 61.0, 47.5, 22.9, 19.0, 14.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -114.93.

HRMS (ESI) calcd for [M+Na⁺]: C₁₃H₁₇FNaO₃, m/z: 263.1054, found: 263.1045, Error: 3.2 ppm. **IR (KBr):** 3494, 2982, 2908, 1717, 1604, 1471, 812, 780, 578m⁻¹

3j, 49.3 mg, 82% yield, colorless oil.

¹**H** NMR (600 MHz, CDCl₃) δ 7.44 (d, *J* = 8.4 Hz, 2H), 7.18 (d, *J* = 8.3 Hz, 2H), 4.84 (d, *J* = 4.1 Hz, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.33 (d, *J* = 4.2 Hz, 1H), 1.27 (t, *J* = 7.1 Hz, 3H), 1.11 (s, 3H), 1.09 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 177.6, 139.0, 130.8, 129.4, 121.6, 78.0, 61.0, 47.3, 22.9, 19.0, 14.1.

HRMS (ESI) calcd for [M+Na⁺]: C₁₃H₁₇BrNaO₃, m/z: 323.0253, found: 323.0249, Error: 1.4 ppm.

IR (KBr): 3488, 2980, 2938, 1716, 1471, 1366, 867, 835 cm⁻¹

3k, 48.8 mg, 84% yield, white solid.

М.р. : 62-63 °С

¹**H NMR** (400 MHz, CDCl₃) δ 7.57 (d, *J* = 8.2 Hz, 2H), 7.43 (d, *J* = 8.3 Hz, 2H), 4.94 (d, *J* = 3.8 Hz, 1H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.51 (d, *J* = 4.2 Hz, 1H), 1.26 (t, *J* = 7.1 Hz, 3H), 1.12 (d, *J* = 8.0 Hz, 6H).

¹³**C NMR** (100 MHz, CDCl₃) δ 177.5, 144.0, 129.8 (q, $J_{C-F} = 32.2$ Hz), 128.1, 125.6, (q, $J_{C-F} = 3.8$ Hz) 124.1 (q, $J_{C-F} = 270.3$ Hz), 124.6, 124.6, 124.5, 122.8, 120.1, 78.0, 61.1, 47.4, 22.8, 19.0, 14.0.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.54.

HRMS (ESI) calcd for [M+Na⁺]: C₁₄H₁₇F₃NaO₃, m/z: 313.1022, found: 313.1018, Error: 1.3 ppm. **IR (KBr):** 3480, 2983, 2940, 1715, 1327, 1126, 1068, 1017 cm⁻¹

31, 46.7 mg, 83% yield, colorless oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.98 (d, *J* = 8.0 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 4.94 (d, *J* = 4.1 Hz, 1H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.91 (s, 3H), 3.47 (d, *J* = 4.2 Hz, 1H), 1.26 (t, *J* = 7.1 Hz, 3H), 1.12 (s, 3H), 1.10 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 177.5, 166.9, 145.2, 129.4, 128.9, 127.7, 78.2, 61.0, 52.0, 47.4, 22.8, 19.1, 14.0.

HRMS (ESI) calcd for [M+Na⁺]: C₁₅H₂₀NaO₅, m/z: 303.1203, found: 303.1192, Error: 3.5 ppm. **IR (KBr):** 3498, 2982, 1722, 1469, 1282, 1116, 1019 cm⁻¹

3m, 37.4 mg, 76% yield, colorless oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.61 (d, *J* = 7.5 Hz, 2H), 7.44 (d, *J* = 7.7 Hz, 2H), 4.94 (d, *J* = 3.8 Hz, 1H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.56 (d, *J* = 4.0 Hz, 1H), 1.27 (t, *J* = 7.1 Hz, 3H), 1.11 (d, *J* = 10.0 Hz, 6H

¹³**C NMR** (150 MHz, CDCl₃) δ 177.3, 145.4, 131.4, 128.4, 118.7, 111.4, 77.8, 61.1, 47.4, 22.7, 19.1, 14.0.

HRMS (ESI) calcd for [M+Na⁺]: C₁₄H₁₇NNaO₃, m/z: 270.1101, found: 270.1100, Error: 0.2 ppm. **IR (KBr):** 3484, 2982, 2939, 2229, 1717,1470, 1133, 1059, 851 cm⁻¹

3n, 36.7 mg, 73% yield, colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.28 – 7.18 (m, 1H), 6.92 – 6.85 (m, 2H), 6.85 – 6.79 (m, 1H), 4.86 (d, J = 3.7 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 3.79 (s, 3H), 3.23 (d, J = 4.1 Hz, 1H), 1.27 (t, J = 7.1 Hz, 3H), 1.14 (s, 3H), 1.11 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 177.7, 159.1, 141.7, 128.6, 120.1, 113.4, 113.0, 78.5, 60.9, 55.1, 47.5, 23.0, 19.1, 14.1.

HRMS (ESI) calcd for [M+Na⁺]: C₁₄H₂₀NaO₃, m/z: 275.1254, found: 275.1247, Error: 2.6 ppm. **IR (KBr):** 3481, 2981, 2939, 1717, 1603, 1467, 1259, 1132, 1094 cm⁻¹

30, 40.0 mg, 78% yield, colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.31 (s, 1H), 7.28 – 7.21 (m, 2H), 7.20 – 7.14 (m, 1H), 4.84 (d, *J* = 4.3 Hz, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.40 (d, *J* = 4.4 Hz, 1H), 1.27 (t, *J* = 7.1 Hz, 3H), 1.13 (s, 3H), 1.11 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 177.5, 142.1, 133.7, 128.9, 127.8, 127.7, 125.9, 78.0, 61.0, 47.4, 22.8, 19.1, 14.0.

HRMS (ESI) calcd for [M+Na⁺]: C₁₃H₁₇ClNaO₃, m/z: 279.0758, found: 279.0756, Error: 0.8 ppm. **IR (KBr):** 3485, 2981, 2939, 1715, 1471, 1272, 1133, 783 cm⁻¹

3p, 50.0 mg, 83% yield, colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.49 (m, J = 28.1, 15.3, 7.7 Hz, 4H), 4.93 (d, J = 4.3 Hz, 1H), 4.17 (q, J = 7.1 Hz, 2H), 3.50 (d, J = 4.4 Hz, 1H), 1.26 (t, J = 7.1 Hz, 3H), 1.13 (s, 3H), 1.11 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 177.5, 141.1, 131.1, 130.2 (q, $J_{C-F} = 32.3$ Hz), 128.1, 125.0 (q, $J_{C-F} = 541.4$ Hz), 124.5 (q, $J_{C-F} = 3.3$ Hz), 124.4 (q, $J_{C-F} = 3.7$ Hz), 123.2, 121.4, 78.1, 61.1, 47.5, 22.7, 19.2, 14.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.62.

HRMS (ESI) calcd for [M+Na⁺]: C₁₄H₁₇F₃NaO₃, m/z: 313.1022, found: 313.1015, Error: 2.2 ppm. **IR (KBr):** 3487, 2984, 2942, 1716, 1471, 1367, 1164, 1128, 708 cm⁻¹

3q, 41.3 mg, 88% yield, colorless oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.43 (d, *J* = 7.3 Hz, 1H), 7.22 – 7.14 (m, 2H), 7.13 (d, *J* = 7.1 Hz, 1H), 5.24 (d, *J* = 4.4 Hz, 1H), 4.20 (q, *J* = 7.1 Hz, 2H), 3.26 (d, *J* = 4.4 Hz, 1H), 2.37 (s, 3H), 1.28 (t, *J* = 7.1 Hz, 3H), 1.19 (s, 3H), 1.12 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 178.1, 138.5, 135.9, 130.3, 127.6, 127.4, 125.6, 73.5, 60.9, 48.3, 23.2, 20.2, 18.9, 14.0.

HRMS (ESI) calcd for [M+Na⁺]: C₁₄H₂₀NaO₃, m/z: 259.1305, found: 259.1298, Error: 2.5 ppm. **IR (KBr):** 3499, 2981, 1718, 1470, 1252, 1134, 1040, 750 cm⁻¹

3r, 56.2 mg, 97% yield, colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.66 (t, *J* = 9.0 Hz, 2H), 7.54 (t, *J* = 7.6 Hz, 1H), 7.39 (t, *J* = 7.6 Hz, 1H), 5.29 (d, *J* = 5.3 Hz, 1H), 4.23 (q, *J* = 7.1 Hz, 2H), 3.89 (d, *J* = 5.4 Hz, 1H), 1.29 (t, *J* = 7.1 Hz, 3H), 1.17 (d, *J* = 9.5 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 178.2, 139.6, 131.6, 128.4 (d, $J_{C-F} = 113.2 \text{ Hz}$),128.5 (d, $J_{C-F} = 29.4 \text{ Hz}$), 125.9, 125.8 (q, $J_{C-F} = 5.9 \text{ Hz}$), 124.2 (q, $J_{C-F} = 27.5 \text{ Hz}$), 73.2, 61.2, 47.4, 24.1, 19.8, 14.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -55.97.

HRMS (ESI) calcd for [M+Na⁺]: C₁₄H₁₇F₃NaO₃, m/z: 313.1022, found: 313.1016, Error: 2.0 ppm. **IR (KBr):** 3483, 2985, 1716, 1309, 1156, 1123, 1033, 772 cm⁻¹

3s, 40.6 mg, 76% yield, colorless oil.

¹**H NMR** (600 MHz, CDCl₃) δ 6.83 (s, 1H), 6.74 (s, 2H), 5.94 (s, 2H), 4.80 (d, *J* = 3.7 Hz, 1H), 4.17 (d, *J* = 7.1 Hz, 2H), 3.21 (d, *J* = 3.8 Hz, 1H), 1.27 (t, *J* = 7.1 Hz, 3H), 1.13 (s, 3H), 1.09 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 177.7, 147.2, 146.9, 134.0, 121.1, 108.1, 107.4, 100.9, 78.4, 76.8, 60.8, 47.5, 23.0, 19.1, 14.1.

HRMS (ESI) calcd for [M+Na⁺]: C₁₄H₁₈NaO₅, m/z: 289.1046, found: 289.1042, Error: 1.4 ppm. **IR (KBr):** 3488, 2981, 2938, 1716, 1488, 1443, 1248, 1132, 1039 cm⁻¹

3t, 32.1 mg, 72% yield, colorless oil.

¹**H** NMR (600 MHz, CDCl₃) δ 8.51 (d, J = 5.2 Hz, 2H), 7.25 (d, J = 5.4 Hz, 2H), 4.89 (s, 1H), 4.18 (d, J = 7.1 Hz, 2H), 4.07 – 3.91 (m, 1H), 1.27 (t, J = 7.1 Hz, 3H), 1.13 (d, J = 7.1 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 177.3, 149.2, 149.1, 122.8, 76.8, 61.1, 47.3, 22.6, 19.2, 14.1. HRMS (ESI) calcd for [M+Na⁺]: C₁₂H₁₈NNaO₃, m/z: 224.1281, found: 224.1273, Error: 3.6 ppm. IR (KBr): 3421, 2981, 2939, 1723, 1603, 1258, 1131, 1061 cm⁻¹

3u, 31.1 mg, 70% yield, colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 8.45 (dd, *J* = 6.0, 2.6 Hz, 2H), 7.70 (dt, *J* = 7.9, 1.7 Hz, 1H), 7.25 (dd, *J* = 7.9, 4.8 Hz, 1H), 4.94 (s, 1H), 4.36 (s, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 1.26 (t, *J* = 7.1 Hz, 3H), 1.15 (s, 3H), 1.09 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 177.2, 177.2, 148.9, 148.9, 148.7, 148.6, 136.0, 135.4, 122.8, 76.1, 76.1, 61.0, 47.5, 22.4, 22.4, 19.1, 14.0.

HRMS (ESI) calcd for [M+Na⁺]: C₁₂H₁₈NNaO₃, m/z: 224.1281, found: 224.1277, Error: 1.8 ppm. **IR (KBr):** 3418, 2981, 2939, 1723, 1470, 1427, 1261, 1132, 1027 cm⁻¹

3v, 76.9 mg, 98% yield, colorless oil.

¹**H** NMR (600 MHz, CDCl₃) δ 8.13 (d, J = 4.9 Hz, 1H), 7.65 (d, J = 7.9 Hz, 1H), 7.54 (s, 1H), 7.30 (t, J = 7.7 Hz, 1H), 7.22 (t, J = 7.5 Hz, 1H), 5.21 (d, J = 4.5 Hz, 1H), 4.20 (q, J = 7.1 Hz, 2H), 3.22 (d, J = 4.4 Hz, 1H), 1.67 (s, 9H), 1.31 – 1.26 (m, 6H), 1.20 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 177.9, 149.6, 135.1, 129.9, 124.3, 124.0, 122.5, 120.3, 120.3, 115.1, 83.8, 72.6, 61.0, 47.9, 28.2, 23.2, 19.7, 14.1.

HRMS (ESI) calcd for [M+Na⁺]: C₂₀H₂₇NNaO₅, m/z: 384.1781, found: 384.1768, Error: 3.4 ppm. **IR (KBr):** 3502, 2980, 2936, 1734, 1453, 1371, 1257, 1157, 1049 cm⁻¹

3w, 56.0 mg, 90% yield, colorless oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.18 (dd, *J* = 3.3, 1.7 Hz, 1H), 6.23 – 6.17 (m, 1H), 6.09 (t, *J* = 3.4 Hz, 1H), 5.41 (d, *J* = 7.2 Hz, 1H), 4.38 (d, *J* = 7.2 Hz, 1H), 4.14 (q, *J* = 7.1 Hz, 2H), 1.60 (s, 9H), 1.26 (s, 6H), 1.23 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 177.3, 150.2, 134.7, 122.2, 113.2, 110.0, 84.4, 71.6, 60.6, 47.7, 27.9, 22.0, 21.9, 14.0.

HRMS (ESI) calcd for [M+Na⁺]: C₁₆H₂₅NNaO₅, m/z: 334.1625, found: 334.1611, Error: 4.3 ppm. **IR (KBr):** 3483, 2982, 2939, 1717, 1502, 1366, 1132, 1024, 874 cm⁻¹

3x, 39.0 mg, 92% yield, light yellow oil.

¹**H** NMR (600 MHz, CDCl₃) δ 8.66 (s, 1H), 6.73 (dd, J = 3.9, 2.5 Hz, 1H), 6.13 (dd, J = 5.8, 2.8 Hz, 1H), 6.02 (s, 1H), 4.84 (d, J = 5.0 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 3.16 (d, J = 5.1 Hz, 1H), 1.27 (t, J = 7.1 Hz, 3H), 1.23 (s, 3H), 1.12 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 178.2, 130.4, 117.2, 107.9, 107.0, 73.8, 61.0, 47.6, 23.0, 20.4, 14.1.

HRMS (ESI) calcd for [M+Na⁺]: C₁₁H₁₇NNaO₃, m/z: 234.1011, found: 234.1089, Error: 5.2 ppm. **IR (KBr):** 3746, 3421, 2980, 1711, 1265, 1148, 1027, 773 cm⁻¹

3y, 33.8 mg, 80% yield, colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 (dd, *J* = 1.8, 0.8 Hz, 1H), 6.33 (dd, *J* = 3.2, 1.8 Hz, 1H), 6.25 (d, *J* = 3.2 Hz, 1H), 4.77 (d, *J* = 7.0 Hz, 1H), 4.20 (m, 2H), 3.45 (d, *J* = 7.1 Hz, 1H), 1.28 (t, *J* = 7.1 Hz, 3H), 1.22 (s, 3H), 1.19 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 177.3, 154.0, 141.7, 110.1, 107.7, 73.4, 60.9, 46.9, 22.9, 20.2, 14.0.

HRMS (ESI) calcd for [M+Na⁺]: C₁₁H₁₆NaO₄, m/z: 235.0941, found: 235.0937, Error: 1.5 ppm. **IR (KBr):** 3481, 2982, 2939, 1720, 1469, 1265, 1175, 1058, 736 cm⁻¹

3z, 29.0 mg, 70% yield, colorless oil.

¹**H** NMR (600 MHz, CDCl₃) δ 7.36 (d, *J* = 2.0 Hz, 2H), 6.35 (s, 1H), 4.79 (d, *J* = 5.3 Hz, 1H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.20 (d, *J* = 5.3 Hz, 1H), 1.27 (t, *J* = 7.1 Hz, 3H), 1.17 (d, *J* = 6.5 Hz, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 177.7, 142.6, 140.2, 124.9, 109.7, 72.3, 60.9, 47.1, 22.7, 19.8, 14.1.

HRMS (ESI) calcd for [M+Na⁺]: C₁₁H₁₆NaO₄, m/z: 235.0941, found: 235.0935, Error: 2.6 ppm. **IR (KBr):** 3445, 2982, 2938, 1718, 1503, 1266, 1133, 1023 cm⁻¹

3aa, 39.0 mg, 85% yield, colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.24 (dd, *J* = 4.8, 1.4 Hz, 1H), 7.00 – 6.88 (m, 2H), 5.09 (d, *J* = 5.3 Hz, 1H), 4.19 (q, *J* = 7.1 Hz, 2H), 3.47 (d, *J* = 5.3 Hz, 1H), 1.27 (t, *J* = 7.1 Hz, 3H), 1.21 (d, *J* = 7.7 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 177.5, 143.7, 126.2, 125.6, 124.7, 76.7, 75.6, 61.0, 47.5, 22.8, 19.9, 14.0.

HRMS (ESI) calcd for [M+Na⁺]: C₁₁H₁₆SNaO₃, m/z: 251.0712, found: 251.0702, Error: 3.9 ppm. **IR (KBr):** 3482, 2981, 2937, 1716, 1468, 1262, 1133, 1025, 698 cm⁻¹

3ab, 36.6 mg, 81% yield, colorless oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.27 – 7.24 (m, 1H), 7.16 (d, *J* = 2.7 Hz, 1H), 7.03 (d, *J* = 5.0 Hz, 1H), 4.96 (d, *J* = 4.7 Hz, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.26 (d, *J* = 4.8 Hz, 1H), 1.26 (t, *J* = 7.1 Hz, 3H), 1.16 (s, 3H), 1.14 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 177.7, 141.7, 127.0, 124.9, 122.4, 75.4, 60.8, 47.4, 22.8, 19.5, 14.1.

HRMS (ESI) calcd for [M+Na⁺]: C₁₁H₁₆SNaO₃, m/z: 251.0712, found: 251.0710, Error: 0.8 ppm. **IR (KBr):** 3498, 3106, 2981, 1716, 1469, 1261, 1132, 1051, 788 cm⁻¹

3ac, 43.1 mg, 87% yield, colorless oil.

¹**H** NMR (600 MHz, CDCl₃) δ 7.38 (d, J = 7.4 Hz, 2H), 7.32 (t, J = 7.6 Hz, 2H), 7.26 – 7.22 (m, 1H), 6.64 (d, J = 15.9 Hz, 1H), 6.22 (dd, J = 15.9, 7.0 Hz, 1H), 4.34 (t, J = 6.4 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 2.86 (d, J = 5.8 Hz, 1H), 1.27 (t, J = 7.1 Hz, 3H), 1.25 (s, 3H), 1.23 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 177.4, 136.6, 132.8, 128.5, 127.7, 127.5, 126.5, 77.8, 60.8, 47.0, 22.8, 20.1, 14.2.

HRMS (ESI) calcd for [M+Na⁺]: C₁₅H₂₀NaO₃, m/z: 271.1305, found: 271.1296, Error: 3.3 ppm. **IR (KBr):** 3485, 2979, 1718, 1267, 1174, 1071, 1027 cm⁻¹

3ad, 39.8 mg, 76% yield, colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.32 (dd, J = 10.2, 4.6 Hz, 2H), 7.29 – 7.19 (m, 3H), 6.47 (s, 1H), 4.25 (d, J = 5.8 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 3.42 (d, J = 5.9 Hz, 1H), 1.84 (d, J = 1.3 Hz, 3H), 1.29 (dd, J = 8.7, 5.6 Hz, 6H), 1.23 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 177.8, 137.3, 137.1, 129.1, 129.1, 128.0, 126.5, 83.0, 61.0, 46.6, 24.0, 21.1, 14.7, 14.1.

HRMS (ESI) ccalcd for [M+Na⁺]: C₁₆H₂₂NaO₃, m/z: 285.1461, found: 285.1453, Error: 2.9 ppm. **IR (KBr):** 3483, 2980, 1717, 1469, 1253, 1132, 1025, 700 cm⁻¹

3ae, 52.9 mg, 81% yield, colorless oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.57 (d, *J* = 7.6 Hz, 2H), 7.36 (t, *J* = 7.5 Hz, 2H), 7.31 (t, *J* = 7.3 Hz, 1H), 7.01 (s, 1H), 4.35 (d, *J* = 8.2 Hz, 1H), 4.20 (q, *J* = 7.1 Hz, 2H), 4.04 (d, *J* = 8.3 Hz, 1H), 1.39 (s, 3H), 1.30 (t, *J* = 7.1 Hz, 3H), 1.26 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 177.0, 135.0, 131.3, 129.2, 128.2, 128.1, 126.1, 83.1, 61.3, 46.2, 24.7, 21.4, 14.0.

HRMS (ESI) calcd for [M+Na⁺]: C₁₅H₁₉BrNaO₃, m/z:349.0410, found:349.0404, Error: 1.7 ppm. **IR (KBr):** 3471, 2980, 1718, 1469, 1259, 1174, 1025, 695 cm⁻¹

3af, 31.2 mg, 81% yield, colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 – 7.39 (m, 2H), 7.34 – 7.27 (m, 3H), 4.68 (d, *J* = 6.5 Hz, 1H), 4.21 (q, *J* = 7.1 Hz, 2H), 3.13 (d, *J* = 6.4 Hz, 1H), 1.37 (s, 3H), 1.34 (s, 3H), 1.29 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 176.6, 131.7, 128.5, 128.2, 122.4, 87.2, 85.9, 77.3, 68.9, 61.0, 47.7, 22.7, 20.1, 14.1.

HRMS (ESI) calcd for [M+Na⁺]: C₁₃H₁₈NaO₃, m/z: 269.1148, found: 269.1139, Error: 0.3ppm. **IR (KBr):** 3460, 2980, 1719, 1490, 1254, 1134, 1051, 757 cm⁻¹

3ag, 28.6 mg, 76% yield, colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 5.79 – 5.67 (m, 1H), 5.48 (m, 1H), 4.19 – 4.13 (m, 2H), 4.12 – 4.06 (m, 1H), 2.70 (d, *J* = 5.8 Hz, 1H), 1.73 – 1.70 (m, 3H), 1.27 (t, *J* = 7.1 Hz, 3H), 1.16 (d, *J* = 2.4 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 177.5, 129.5, 129.1, 77.9, 60.6, 46.6, 22.6, 19.9, 17.8, 14.1. HRMS (ESI) calcd for [M+Na⁺]: C₁₀H₁₈NaO₃, m/z: 209.1148, found: 209.1144, Error: 1.9ppm. IR (KBr): 3491, 2980, 1720, 1469, 1268, 1139, 1025 cm⁻¹

3ah, 39.8 mg, 88% yield, colorless oil.

¹**H** NMR (600 MHz, CDCl₃) δ 5.69 (dd, J = 14.8, 7.3 Hz, 1H), 5.45 (dd, J = 15.3, 7.5 Hz, 1H), 4.16 (q, J = 7.1 Hz, 2H), 4.11 (d, J = 5.7 Hz, 1H), 2.68 (s, 1H), 2.03 (dt, J = 13.3, 6.7 Hz, 2H), 1.40 (m, 2H), 1.27 (t, J = 7.1 Hz, 3H), 1.17 (t, J = 5.3 Hz, 6H), 0.90 (t, J = 7.4 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 177.5, 134.7, 128.0, 77.9, 60.6, 46.7, 34.4, 22.6, 22.2, 20.0, 14.1, 13.6.

HRMS (ESI) calcd for [M+Na⁺]: C₁₂H₂₂NaO₃, m/z: 237.1461, found: 237.1457, Error: 2.0 ppm. **IR (KBr):** 3498, 2964, 2934, 1730, 1467, 1265, 1142, 1026 cm⁻¹

3ai, 30.3 mg, 78% yield, colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 5.21 – 5.15 (m, 1H), 4.41 (dd, *J* = 9.4, 5.2 Hz, 1H), 4.20 – 4.13 (m, 2H), 2.62 (d, *J* = 5.5 Hz, 1H), 1.75 (d, *J* = 1.0 Hz, 3H), 1.71 (d, *J* = 1.2 Hz, 3H), 1.27 (t, *J* = 7.1 Hz, 3H), 1.16 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 177.7, 137.2, 123.1, 73.2, 60.6, 47.1, 26.0, 22.5, 19.7, 18.5, 14.1. HRMS (ESI) calcd for [M+Na⁺]: C₁₁H₂₀NaO₃, m/z: 223.1305, found: 223.1298, Error: 2.9 ppm. IR (KBr): 3486, 2979, 2934, 1721, 1469, 1260, 1130, 1026 cm⁻¹

3aj, 30.4 mg, 70% yield, colorless oil.

¹**H** NMR (600 MHz, CDCl₃) δ 4.15 (q, J = 7.1 Hz, 2H), 3.60 (dd, J = 8.2, 2.4 Hz, 1H), 2.74 (d, J = 8.3 Hz, 1H), 1.46 – 1.33 (m, 3H), 1.27 (dd, J = 12.6, 5.4 Hz, 7H), 1.19 – 1.13 (m, 4H), 0.89 (dt, J = 10.3, 7.4 Hz, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 178.1, 78.3, 60.7, 46.2, 42.7, 24.2, 23.9, 22.0, 21.9, 20.7, 14.0, 12.0, 11.6.

HRMS (ESI) calcd for [M+Na⁺]: C₁₂H₂₄NaO₃, m/z: 239.1618, found: 239.1606, Error: 4.8 ppm. **IR (KBr):** 3505, 2965, 2936, 1725, 1464, 1262, 1140, 1025 cm⁻¹

3ak, 22.9 mg, 62% yield, colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 4.17 (q, *J* = 7.1 Hz, 2H), 3.75 (dd, *J* = 10.7, 4.5 Hz, 1H), 2.72 (d, *J* = 6.4 Hz, 1H), 2.50 – 2.29 (m, 2H), 1.97 (t, *J* = 2.6 Hz, 1H), 1.75 – 1.65 (m, 1H), 1.57 – 1.47 (m, 1H), 1.28 (t, *J* = 7.1 Hz, 3H), 1.21 (s, 3H), 1.18 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 177.6, 84.2, 77.3, 75.4, 68.6, 60.8, 46.7, 30.6, 22.5, 20.3, 15.7, 14.1.

HRMS (ESI) calcd for [M+Na⁺]: C₁₁H₁₈NaO₃, m/z: 221.1148, found: 221.1150, Error: -1.0 ppm. **IR (KBr):** 3391, 2959, 2922, 1646, 1464, 1260, 1090, 1030 cm⁻¹

3al, 34.6 mg, 73% yield, colorless oil.

¹**H** NMR (600 MHz, CDCl₃) δ 4.16 (q, J = 7.1 Hz, 2H), 3.60 (dd, J = 9.2, 7.0 Hz, 1H), 3.57 – 3.52 (m, 2H), 2.58 (d, J = 6.8 Hz, 1H), 1.87 – 1.72 (m, 3H), 1.55 – 1.43 (m, 2H), 1.37 – 1.30 (m, 1H), 1.27 (t, J = 7.1 Hz, 3H), 1.19 (s, 3H), 1.17 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 177.7, 76.4, 60.7, 46.9, 44.9, 32.5, 30.9, 24.1, 22.3, 20.4, 14.1. HRMS (ESI) calcd for [M+Na⁺]: C₁₁H₂₁ClNaO₃, m/z: 259.1071, found: 259.1070, Error: 0.6 ppm. IR (KBr): 3496, 2980, 2943, 1718, 1467, 1264, 1131, 1080, 1024 cm⁻¹

3am, 12.0 mg, 26 % yield, colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 4.16 (q, *J* = 7.1 Hz, 2H), 3.60 (ddd, *J* = 10.4, 6.9, 1.9 Hz, 1H), 3.49 – 3.36 (m, 2H), 2.55 (d, *J* = 6.8 Hz, 1H), 2.00 – 1.82 (m, 2H), 1.80 – 1.67 (m, 1H), 1.55 – 1.40 (m, 2H), 1.37 – 1.30 (m, 1H), 1.27 (t, *J* = 7.1 Hz, 3H), 1.19 (s, 3H), 1.17 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 77.3 (s), 77.0 (s), 76.7 (s), 76.4 (s), 60.7 (s), 46.9 (s), 33.7 (s), 32.7 (s), 30.8 (s), 25.4 (s), 22.4 (s), 20.4 (s), 14.2 (s).

HRMS (ESI) calcd for [M+Na⁺]: C₁₁H₂₁BrNaO₃, m/z: 303.0562, found: 303.0566, Error: 1.5 ppm.

IR (KBr): 3444, 2979, 2933, 1715, 1266, 1173 cm⁻¹

3an, 35.5 mg, 56% yield, white solid. **M.p.** = 68-71 °C

¹**H NMR** (400 MHz, CDCl₃) δ 7.92 – 7.80 (m, 2H), 7.76 – 7.70 (m, 2H), 4.12 (q, *J* = 7.1 Hz, 2H), 3.97 – 3.82 (m, 2H), 3.69 (dd, *J* = 10.9, 3.7 Hz, 1H), 3.10 (d, *J* = 6.0 Hz, 1H), 1.82 (m, *J* = 15.6, 8.8, 1.9 Hz, 1H), 1.74 – 1.62 (m, 1H), 1.21 (t, *J* = 7.1 Hz, 3H), 1.17 (s, 3H), 1.15 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 177.1, 168.7, 134.0, 132.0, 123.3, 73.6, 60.6, 46.8, 35.4, 30.5, 21.5, 20.7, 14.0.

HRMS (ESI) calcd for [M+Na⁺]: C₁₇H₂₁NNaO₅, m/z: 342.1312, found: 342.1280, Error: 0.9 ppm. **IR (KBr):** 3514, 2980, 1771, 1710, 1396, 1173, 1206, 721 cm⁻¹

3ao, 31.3 mg, 54% yield, colorless oil.

¹**H** NMR (600 MHz, CDCl₃) δ 4.08 (q, J = 7.1 Hz, 2H), 3.70 – 3.66 (m, 1H), 3.62 (dd, J = 10.2, 3.3 Hz, 1H), 3.51 (dd, J = 10.2, 7.2 Hz, 1H), 2.89 (d, J = 4.7 Hz, 1H), 1.19 (t, J = 7.1 Hz, 3H), 1.14 (s, 3H), 1.13 (s, 3H), 0.83 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 176.7, 76.3, 63.8, 60.5, 45.0, 25.8, 21.6, 21.5, 18.3, 14.1.

HRMS (ESI) calcd for [M+Na⁺]: C₁₄H₃₀SiNaO₃, m/z: 313.1806, found: 313.1796, Error: 3.2 ppm. **IR (KBr):** 3468, 2955, 2931, 1729, 1637, 1255, 1112, 837 cm⁻¹

3ap, 21.5 mg, 53% yield, colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 4.71 (t, *J* = 7.7 Hz, 1H), 4.16 (q, *J* = 7.1 Hz, 2H), 2.60 – 2.51 (m, 2H), 2.27 (m, *J* = 13.4, 8.6, 7.5, 6.0 Hz, 1H), 2.09 – 1.93 (m, 1H), 1.29 – 1.24 (m, 6H), 1.20 (d, *J* = 6.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 176.8, 174.8, 83.9, 61.0, 45.7, 28.6, 23.1, 21.3, 19.9, 14.1. HRMS (ESI) calcd for [M+Na⁺]: C₁₀H₁₆NaO₄, m/z: 223.0941, found: 223.0940, Error: -1.6 ppm. IR (KBr): 3446, 2983, 1779, 1727, 1471, 1266, 1148, 1007 cm⁻¹

John OH O OEt

3aq, 40.7 mg, 75% yield, colorless oil.

¹**H** NMR (600 MHz, CDCl₃) δ 5.11 (dt, J = 12.0, 4.1 Hz, 1H), 4.16 (m, 2H), 3.74 – 3.67 (m, 1H), 2.35 (dd, J = 15.0, 7.0 Hz, 1H), 2.08 – 1.87 (m, 2H), 1.76 – 1.66 (m, 4H), 1.60 (d, J = 2.9 Hz, 3H), 1.40 – 1.19 (m, 6H), 1.17 (dd, J = 9.2, 3.0 Hz, 6H), 1.08 (m, J = 18.7, 13.9, 10.3, 3.4 Hz, 1H), 0.95 (d, J = 6.7 Hz, 2H), 0.90 (d, J = 6.6 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 177.8, 131.2, 124.8, 74.4, 60.6, 47.0, 38.8, 35.7, 29.3, 25.4, 22.1, 20.8, 20.5, 18.8, 17.6, 14.2.

HRMS (ESI) calcd for [M+Na⁺]: C₁₆H₃₀NaO₃, m/z: 293.2087, found: 293.2078, Error: 3.0 ppm. **IR (KBr):** 3509, 2967, 2929, 1716, 1466, 1264, 1139, 1026 cm⁻¹

 $\left\langle \begin{array}{c} 0 \\ N-S \\ 0 \end{array} \right\rangle$

3ar, 62.1 mg, 61% yield, white solid.

M.p. = 136-139 °C

¹**H** NMR (600 MHz, CDCl₃) δ 8.31 (d, J = 8.4 Hz, 2H), 7.94 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.5 Hz, 2H), 7.19 (d, J = 8.5 Hz, 2H), 4.94 (d, J = 4.0 Hz, 1H), 4.20 (q, J = 7.1 Hz, 2H), 3.35 – 3.27 (m, 1H), 3.15 – 3.11 (m, 4H), 1.60 – 1.53 (m, 4H), 1.28 (t, J = 7.1 Hz, 3H), 1.17 (s, 3H), 1.14 (s, 3H), 0.89 (t, J = 7.4 Hz, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 177.7, 163.8, 150.0, 144.9, 138.1, 132.77, 130.7, 128.9, 127.1, 120.7, 78.0, 61.0, 49.9, 47.5, 23.0, 21.9, 19.0, 14.1, 11.1.

HRMS (ESI) calcd for [M+Na⁺]: C₂₆H₃₅NSNaO₇, m/z: 528.2026, found: 528.2038, Error: -2.3 ppm.

IR (KBr): 3455, 2972, 1737, 1506, 1398, 1073, 1016, cm⁻¹

3as, 83.0 mg, 86% yield, colorless oil.

¹**H** NMR (600 MHz, CDCl₃) δ 7.64 (d, *J* = 7.8 Hz, 2H), 7.58 (d, *J* = 7.7 Hz, 2H), 7.39 – 7.29 (m, 8H), 7.06 (d, *J* = 8.3 Hz, 2H), 4.89 (s, 1H), 4.16 (q, *J* = 7.1 Hz, 2H), 3.29 (t, *J* = 7.3 Hz, 3H), 3.15 (t, *J* = 7.3 Hz, 2H), 1.25 (t, *J* = 7.1 Hz, 3H), 1.13 (s, 3H), 1.09 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 177.7, 170.5, 161.4, 150.0, 145.5, 137.7, 135.1, 132.3, 128.8, 128.7, 128.6, 128.5, 128.5, 128.1, 127.8, 126.5, 120.7, 78.0, 60.9, 60.4, 47.5, 31.2, 23.4, 22.9, 18.9, 14.1, 14.0.

HRMS (ESI) calcd for [M+Na⁺]: C₃₁H₃₁NNaO₆, m/z: 536.2044, found: 536.2049, Error: -1.0 ppm.

IR (KBr): 3467, 2980, 2936, 1759, 1720, 1201, 1166,1136 cm⁻¹

3at, 99.8 mg, 86% yield, yellow oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.67 (d, J = 8.5 Hz, 2H), 7.47 (d, J = 8.5 Hz, 2H), 7.30 (d, J = 8.6 Hz, 2H), 7.05 (d, J = 2.4 Hz, 1H), 7.02 (d, J = 8.6 Hz, 2H), 6.89 (d, J = 9.0 Hz, 1H), 6.69 (dd, J = 9.0, 2.5 Hz, 1H), 4.88 (s, 1H), 4.17 (q, J = 7.1 Hz, 2H), 3.90 (s, 2H), 3.83 (s, 3H), 3.23 (s, 1H), 2.45 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H), 1.11 (s, 3H), 1.08 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 177.7, 169.2, 168.3, 156.1, 150.1, 139.3, 137.7, 136.2, 133.8, 131.2, 130.8, 130.5, 129.1, 128.7, 120.6, 115.0, 112.0, 111.8, 101.2, 78.0, 61.0, 55.7, 47.5, 30.5, 23.0, 18.9, 14.1, 13.4.

HRMS (ESI) calcd for [M+Na⁺]: C₃₂H₃₂ClNNaO₇, m/z: 600.1760, found: 600.1744, Error: 2.6 ppm.

IR (KBr): 3488, 1754, 1684, 1594, 1321, 1165, 926 cm⁻¹

3au, 99.8 mg, 86% yield, yellow oil.

¹**H** NMR (600 MHz, CDCl₃) δ 7.67 (d, J = 8.5 Hz, 2H), 7.47 (d, J = 8.5 Hz, 2H), 7.30 (d, J = 8.6 Hz, 2H), 7.05 (d, J = 2.4 Hz, 1H), 7.02 (d, J = 8.6 Hz, 2H), 6.89 (d, J = 9.0 Hz, 1H), 6.69 (dd, J = 9.0, 2.5 Hz, 1H), 4.88 (s, 1H), 4.17 (q, J = 7.1 Hz, 2H), 3.90 (s, 2H), 3.83 (s, 3H), 3.23 (s, 1H), 2.45 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H), 1.11 (s, 3H), 1.08 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 177.7, 169.2, 168.3, 156.1, 150.1, 139.3, 137.7, 136.2, 133.8, 131.2, 130.8, 130.5, 129.1, 128.7, 120.6, 115.0, 112.0, 111.8, 101.2, 78.0, 61.0, 55.7, 47.5, 30.5, 23.0, 18.9, 14.1, 13.4.

HRMS (ESI) calcd for [M+Na⁺]: C₃₂H₃₂ClNNaO₇, m/z: 600.1760, found: 600.1744, Error: 2.6 ppm.

IR (KBr): 3488, 1754, 1684, 1594, 1321, 1165, 926 cm⁻¹

5a, 31.4 mg, 67% yield, colorless oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.46 (dd, *J* = 8.3, 0.9 Hz, 2H), 7.31 (dd, *J* = 10.5, 4.8 Hz, 2H), 7.26 – 7.23 (m, 1H), 4.52 (s, 1H), 4.15 (m, 2H), 1.61 (s, 3H), 1.23 (t, *J* = 7.1 Hz, 3H), 1.15 (d, *J* = 4.8 Hz, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 178.6, 143.4, 127.2, 127.2, 126.9, 77.2, 61.1, 50.1, 24.9, 21.8, 21.6, 14.0.

HRMS (ESI) calcd for [M+Na⁺]: C₁₄H₂₀NaO₃, m/z: 259.1305, found: 259.1294, Error: 4.3 ppm. **IR (KBr):** 3453, 2981, 2937, 1691, 1636, 1273, 1146, 1028, 703 cm⁻¹

5b, 27.5 mg, 55% yield, colorless oil.

¹**H** NMR (600 MHz, CDCl₃) δ 7.33 (d, J = 8.3 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 4.47 (s, 1H), 4.18 – 4.11 (m, 2H), 2.33 (s, 3H), 1.59 (s, 3H), 1.24 (t, J = 7.1 Hz, 3H), 1.14 (d, J = 2.1 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 178.6, 140.4, 136.4, 127.9, 127.1, 76.8, 61.1, 50.1, 25.0, 21.8, 21.6, 20.9, 14.0.

HRMS (ESI) calcd for [M+Na⁺]: C₁₅H₂₂NaO₃, m/z: 273.1461, found: 273.1454, Error: 2.5 ppm. **IR (KBr):** 3478, 2981, 2938, 1693, 1468, 1369, 1272, 1146, 1092 cm⁻¹

5c, 20.7 mg, 41% yield, colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.46 – 7.39 (m, 2H), 7.03 – 6.95 (m, 2H), 4.60 (s, 1H), 4.20 – 4.12 (m, 2H), 1.60 (s, 3H), 1.25 (t, *J* = 7.1 Hz, 3H), 1.13 (d, *J* = 2.0 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 178.6, 163.1, 160.6, 139.1 (d, *J*_{C-F} = 3.1 Hz) 129.0 (d, *J*_{C-F} = 7.9 Hz), 114.0, (d, *J*_{C-F} = 21.1 Hz), 76.7, 61.1, 50.0, 25.1, 21.7, 21.6, 14.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -116.50.

HRMS (ESI) calcd for [M+Na⁺]: C₁₄H₁₉FNaO₃, m/z: 277.1210, found: 277.1208, Error: 0.8 ppm. **IR (KBr):** 3465, 2983, 2939, 1692, 1601, 1509, 1146, 1084 cm⁻¹

5d, 32.8 mg, 63% yield, colorless oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.42 – 7.37 (m, 2H), 7.29 (d, *J* = 3.7 Hz, 3H), 4.56 (s, 1H), 4.22 (q, *J* = 7.1 Hz, 2H), 1.54 (s, 3H), 1.42 (s, 3H), 1.34 (s, 3H), 1.29 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 177.8, 131.6, 128.2, 128.2, 122.7, 91.4, 83.6, 72.3, 61.2, 50.3, 24.3, 21.9, 20.5, 14.1.

HRMS (ESI) calcd for [M+Na⁺]: C₁₆H₂₀NaO₃, m/z: 283.1305, found: 283.1296, Error: 3.1 ppm. **IR (KBr):** 3453, 2985, 1637, 1468, 1386, 1126, 756 cm⁻¹

5e, 22.2 mg, 42% yield, colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.30 – 7.25 (m, 2H), 7.23 – 7.14 (m, 3H), 4.22 – 4.12 (m, 2H), 3.89 (s, 1H), 2.87 (m, 1H), 2.67 (m, 1H), 1.82 – 1.65 (m, 2H), 1.27 (dd, *J* = 9.9, 4.3 Hz, 6H), 1.21 (d, *J* = 3.1 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 178.8, 143.0, 128.4, 128.4, 125.7, 75.0, 61.0, 50.2, 39.5, 30.0, 21.4, 21.1, 20.9, 14.1.

HRMS (ESI) calcd for [M+Na⁺]: C₁₆H₂₄NaO₃, m/z: 287.1618, found: 287.1610, Error: 2.6 ppm. **IR (KBr):** 3472, 3025, 2981, 1693, 1601, 1271, 1136, 1094, 1021 cm⁻¹

5f, 21.6 mg, 50% yield, colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 4.16 (q, J = 7.1 Hz, 2H), 3.35 (s, 1H), 1.72 – 1.60 (m, 3H), 1.51 (d, J = 11.4 Hz, 4H), 1.44 – 1.35 (m, 2H), 1.28 (t, J = 7.1 Hz, 3H), 1.23 (s, 1H), 1.21 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 178.6, 74.0, 60.8, 50.0, 31.6, 25.8, 21.6, 20.8, 14.1. HRMS (ESI) calcd for [M+Na⁺]: C₁₂H₂₂NaO₃, m/z: 237.1461, found: 237.1457, Error: -4.2 ppm. IR (KBr): 3484, 2933, 2853, 1720, 1695, 1266, 1173, 1133, 1022 cm⁻¹

6a, 54.1 mg, 90% yield, white solid.

M.p. = 63 - 66 °C.

¹**H NMR** (600 MHz, CDCl₃) δ 7.84 – 7.70 (m, 4H), 7.52 – 7.39 (m, 3H), 4.98 (d, *J* = 4.2 Hz, 1H), 3.63 (t, *J* = 3.9 Hz, 1H), 1.46 (s, 9H), 1.12 (d, *J* = 3.3 Hz, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 177.2, 137.9, 132.9, 132.8, 128.0, 127.5, 127.1, 126.7, 125.9, 125.9, 125.8, 81.1, 78.9, 48.0, 27.9, 23.4, 19.4.

HRMS (ESI) calcd for [M+Na⁺]: C₁₉H₂₄NaO₃, m/z: 323.1618, found: 323.1610, Error: 2.5 ppm. **IR (KBr):** 3467, 3057, 2977, 2933, 1711, 1390, 1254, 1130, 1053 cm⁻¹

6b, 51.2 mg, 77% yield, colorless oil.

¹**H** NMR (600 MHz, CDCl₃) δ 7.83 – 7.76 (m, 2H), 7.76 – 7.69 (m, 2H), 7.51 – 7.44 (m, 2H), 7.39 (dd, J = 8.5, 1.7 Hz, 1H), 7.24 (dd, J = 6.7, 3.9 Hz, 3H), 7.13 (dd, J = 6.5, 2.9 Hz, 2H), 6.24 (s, 1H), 4.83 (s, 1H), 4.64 (s, 1H), 4.42 (m, 2H), 1.30 (s, 3H), 1.13 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 177.6, 138.3, 137.8, 133.0, 132.9, 128.7, 128.1, 127.6, 127.5, 127.5, 127.5, 127.4, 126.6, 126.0, 125.9, 125.6, 80.2, 46.4, 43.5, 24.5, 20.8.

HRMS (ESI) calcd for [M+Na⁺]: C₂₂H₂₃NNaO₂, m/z: 356.1621, found: 356.1624, Error: -0.7 ppm.

IR (KBr): 3347, 3059, 2972, 1638, 1533, 1050, 785 cm⁻¹

6c, 31.7 mg, 53% yield, colorless oil.

¹**H** NMR (600 MHz, CDCl₃) δ 7.94 – 7.74 (m, 3H), 7.71 (s, 1H), 7.45 (dt, *J* = 6.8 Hz, 2H), 7.40 (d, *J* = 8.5 Hz, 1H), 5.03 (d, *J* = 6.0 Hz, 1H), 4.24 – 4.12 (m, 2H), 3.94 (dd, *J* = 5.9, 2.8 Hz, 1H), 1.85 – 1.77 (m, 2H), 1.71 (m, 1H), 1.44 (m, 1H), 1.21 (t, *J* = 7.1 Hz, 3H), 0.95 (q, *J* = 7.8 Hz, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 176.9, 138.2, 132.4, 132.9, 128.0, 127.5, 127.4, 126.3, 126.0, 125.8, 125.2, 76.8, 60.7, 54.8, 25.8, 23.7, 14.1, 9.1, 8.8.

HRMS (ESI) calcd for [M+Na⁺]: C₁₉H₂₄NaO₃, m/z: 323.1618, found: 323.1603, Error: 4.5 ppm. **IR (KBr):** 3493, 3057, 2972, 2881, 1715, 1459, 1227, 1123, 1031 cm⁻¹

6d, 38.6 mg, 65% yield, colorless oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.84 – 7.76 (m, 3H), 7.75 (s, 1H), 7.51 – 7.42 (m, 3H), 5.07 (d, *J* = 6.2 Hz, 1H), 4.18 – 4.06 (m, 2H), 3.42 (d, *J* = 6.7 Hz, 1H), 2.52 – 2.43 (m, 2H), 2.38 – 2.29 (m, 2H), 1.89 (m, 1H), 1.76 – 1.68 (m, 1H), 1.15 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 176.3, 138.3, 133.0, 132.9, 128.0, 127.7, 127.6, 126.0, 125.8, 125.5, 124.7, 77.2, 60.9, 52.6, 28.0, 26.8, 15.7, 14.0.

HRMS (ESI) calcd for [M+Na⁺]: C₁₈H₂₀NaO₃, m/z: 307.1305, found: 307.1299, Error: 2.0 ppm. **IR (KBr):** 3472, 2980, 2948, 1713, 1205, 1155, 1102, 748 cm⁻¹

6e, 38.6 mg, 65% yield, colorless oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.89 (s, 1H), 7.83 (dd, *J* = 11.6, 5.8 Hz, 3H), 7.58 – 7.45 (m, 3H), 5.32 (s, 1H), 4.28 (q, *J* = 7.1 Hz, 2H), 2.94 (d, *J* = 4.5 Hz, 1H), 1.24 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 163.5 (t, J_{C-F} = 31.6 Hz), 133.6, 132.9, 131.8, 128.2, 128.2, 127.7, 127.4, 126.7, 126.4, 124.8, 113.9, (dd, J_{C-F} = 252.7, 252.8 Hz), 73.9, (dd, J_{C-F} = 24.2, 24.6 Hz) 63.2, 13.8.

 ^{19}F NMR (376 MHz, CDCl₃) δ -113.4, -200.0.

HRMS (ESI) calcd for [M+Na⁺]: C₁₅H₁₄F₂NaO₃, m/z: 303.0803, found: 303.0798, Error: 1.7 ppm. **IR (KBr):** 3476, 1757, 1306, 1073, 858, 798, 479 cm⁻¹

6f, 55.8 mg, 90% yield, colorless oil.

Major:

¹**H** NMR (400 MHz, CDCl₃) δ 7.82 (dd, J = 8.8, 6.1 Hz, 4H), 7.51 – 7.40 (m, 3H), 5.27 (d, J = 3.5 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.17 (s, 1H), 2.88 (m, 1H), 1.20 (t, J = 7.1 Hz, 3H), 1.14 (d, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 175.9, 138.8, 133.2, 132.8, 128.0, 127.9, 127.6, 126.1, 125.8, 124.9, 124.0, 73.6, 60.8, 46.2, 14.1, 10.7.

Minor:

¹**H** NMR (400 MHz, CDCl₃) δ 7.84 (dd, J = 8.8, 4.7 Hz, 3H), 7.78 (s, 1H), 7.53 – 7.43 (m, 3H), 4.92 (d, J = 6.7 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 3.18 (d, J = 3.3 Hz, 1H), 2.91 (m, 1H), 1.25 (t, J = 7.1 Hz, 3H), 1.05 (d, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 175.9, 139.0, 133.2, 133.1, 128.4, 128.0, 127.7, 126.2, 126.0, 125.9, 124.2, 76.5, 60.8, 47.0, 14.6, 14.1.

HRMS (ESI) calcd for [M+Na]⁺C₁₆H₁₈NaO₃, m/z:281.1148, found: 281.1145, Error 1.1 ppm. **IR (KBr):** 3467, 2980, 2937, 1715, 1260, 1186, 1030, 818, 478 cm⁻¹

6g, 43.8 mg, 68% yield, colorless oil.

Major: ¹H NMR (400 MHz, CDCl₃) δ 7.80 (m, 4H), 7.46 (m, 3H), 7.40 – 7.28 (m, 5H), 5.46 (d, J = 7.4 Hz, 1H), 4.05 – 3.89 (m, 3H), 2.72 (d, J = 1.5 Hz, 1H), 0.99 (t, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.4, 138.2, 134.7, 133.1, 133.1, 129.2, 128.6, 128.1, 128.0, 127.9, 127.6, 126.0, 126.0, 124.5, 75.2, 61.0, 59.6, 13.8.

Minor: ¹**H NMR** (400 MHz, CDCl₃) δ 7.76 (dd, *J* = 8.2, 4.9 Hz, 1H), 7.72 – 7.65 (m, 2H), 7.57 (s, 1H), 7.45 – 7.36 (m, 2H), 7.24 (dd, *J* = 8.5, 1.7 Hz, 1H), 7.21 – 6.94 (m, 5H), 5.34 (dd, *J* = 9.0, 2.5

Hz, 1H), 4.29 – 4.10 (m, 2H), 3.98 (d, *J* = 9.1 Hz, 1H), 3.32 (d, *J* = 3.5 Hz, 1H), 1.22 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.5, 138.3, 135.3, 133.0, 132.9, 128.5, 128.5, 128.0, 127.8, 127.6, 127.5, 126.0, 125.9, 125.8, 124.4, 61.3, 59.8, 14.0.

HRMS (ESI) calcd for [M+Na⁺]: C₂₁H₂₀NaO₃, m/z: 343.1305, found: 343.1299, Error: 1.7 ppm. **IR (KBr):** 3449, 2926, 1727, 1600, 1152, 1028, 859, 747 cm⁻¹

6h, 34.4 mg, 66% yield, yellow oil.

¹**H** NMR (600 MHz, CDCl₃) δ 7.83 (m, 4.0 Hz, 10H), 7.53 – 7.45 (m, 7H), 5.34 – 5.25 (m, 3H), 5.16 (dd, J = 15.3, 4.3 Hz, 1H), 5.08 (dd, J = 15.0, 4.3 Hz, 1H), 4.25 – 4.11 (m, 6H), 3.09 (s, 1H), 2.94 (d, J = 4.7 Hz, 1H), 1.17 (t, J = 7.2 Hz, 3H), 1.13 (t, J = 7.1 Hz, 4H).

¹³C NMR (150 MHz, CDCl₃) δ 167.9, 167.8 (d, $J_{C-F} = 22.9$ Hz), 135.4 , 135.1 , 133.4 (d, $J_{C-F} = 10.7$ Hz), 133.1 (d, J = 4.5 Hz), 128.5 , 128.3 , 128.1(d, $J_{C-F} = 3.2$ Hz), 127.7 (s), 126.55 – 126.2 (m), 125.8, 124.3, 124.1, 92.2, 91.7, 90.9, 90.4, 74.1, 74.0 (d, $J_{C-F} = 12.6$ Hz), 73.8, 61.9 (d, $J_{C-F} = 18.4$ Hz), 14.0 (d, $J_{C-F} = 1.9$ Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -197.15, -202.72.

HRMS (ESI) calcd for [M+Na⁺]: C₁₅H₁₅FNaO₃, m/z: 285.0897, found: 285.0898, Error: -0.3 ppm. **IR (KBr):** 3448, 2923, 2852, 1742, 1627, 1097, 1062, 749 cm⁻¹

6i, 24.7 mg, 51% yield, colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.88 – 7.76 (m, 4H), 7.48 (dt, *J* = 5.2, 1.8 Hz, 3H), 5.33 – 5.26 (m, 1H), 4.19 (q, *J* = 7.1 Hz, 2H), 3.44 (d, *J* = 2.8 Hz, 1H), 2.88 – 2.75 (m, 2H), 1.26 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 172.4, 139.9, 133.2, 133.0, 128.3, 128.0, 127.7, 126.2, 126.0, 124.4, 123.7, 70.4, 60.9, 43.3, 14.1.

HRMS (ESI) calcd for [M+Na⁺]: C₁₅H₁₆NaO₃, m/z: 267.0992, found: 267.0992, Error: 0.0 ppm. **IR (KBr):** 3446, 2980, 2925, 1724, 1633, 1173, 1036, 747 cm⁻¹

4. Mechanistic Studies

4.1 Radical capture experiment

Under an argon atmosphere, a 10 mL Schlenk tube was charged with **1a** (0.2 mmol), **2a** (0.5 mmol), FeBr₂ (0.02 mmol, 10 mol%), Co(acac)₃ (0.02 mmol, 10 mol%), HE (0.28 mmol, 1.4 equiv.), iPr_2NEt (0.4 mmol, 2.0 equiv.), TEMPO (0.4 mmol, 2.0 equiv.), and ethyl acetate (2 mL).

Then, the reaction mixture was stirred at room temperature for 24 h under irradiation of 40 W 390 nm Kessil. The resulting mixture was concentrated in vacuum, and the residue was purified by flash column chromatography on silica gel to afford the desired product 7.

7, 20.2 mg, 36% yield, colorless oil.

¹**H NMR** (400 MHz, CDCl3) δ 4.17 (q, *J* = 7.1 Hz, 2H), 1.55 – 1.43 (m, 10H), 1.41 (t, *J* = 8.3 Hz, 1H), 1.28 (m, 4H), 1.15 (s, 6H), 1.00 (s, 6H).

¹³C NMR (100 MHz, CDCl3) δ 176.1, 81.0, 77.3, 60.5, 59.5, 40.6, 33.4, 24.4, 20.4, 17.0, 14.1. HRMS (ESI) calcd for [M+H⁺]: C₁₅H₃₀NO₃, m/z: 271.2220, found: 271.2208, Error: 4.4 ppm. IR (KBr): 3444, 2976, 2933, 1733, 1635, 1359, 1160, 1136, 1028 cm⁻¹

4.2 Radical clock experiment

Under an argon atmosphere, a 10 mL Schlenk tube was charged with **1as** (0.2 mmol), **2a** (0.5 mmol), FeBr₂ (0.02 mmol, 10 mol%), Co(acac)₃ (0.02 mmol, 10 mol%), HE (0.28 mmol, 1.4 equiv.), ${}^{4}Pr_{2}NEt$ (0.4 mmol, 2.0 equiv.), and ethyl acetate (2 mL). Then, the reaction mixture was stirred at room temperature for 24 h under irradiation of 40 W 390 nm Kessil. The resulting mixture was concentrated in vacuum, and the residue was purified by flash column chromatography on silica gel to afford the desired product **3as**.

3as, 35.4 mg, 95% yield, colorless oil.

¹**H** NMR (600 MHz, CDCl3) δ 4.19 – 4.13 (m, 2H), 3.00 (dd, J = 8.6, 4.9 Hz, 1H), 2.44 (d, J = 5.2 Hz, 1H), 1.28 (t, J = 3.5 Hz, 6H), 1.26 (s, 3H), 0.93 (m, 1H), 0.57 (m, 1H), 0.50 (m, 1H), 0.36 – 0.29 (m, 2H).

¹³C NMR (150 MHz, CDCl3) δ 177.6, 80.8, 60.6, 47.7, 22.6, 20.6, 14.1, 13.1, 4.4, 1.6. HRMS (ESI) calcd for [M+Na⁺]: C₁₀H₁₈NaO₃, m/z: 209.1148, found: 209.1153, Error -2.3 ppm. IR (KBr): 3374, 1637, 1112, 674 cm⁻¹

4.3 Secondary isotope effect¹

Under an argon atmosphere, a 10 mL Schlenk tube was charged with **1a** (0.1 mmol), **1a-D** (0.1 mmol), **2a** (0.5 mmol), FeBr₂ (0.02 mmol, 10 mol%), Co(acac)₃ (0.02 mmol, 10 mol%), HE (0.28

mmol, 1.4 equiv.), ^{*i*}Pr₂NEt (0.4 mmol, 2.0 equiv.), and ethyl acetate (2 mL). Then, the reaction mixture was stirred at room temperature for 24 h under irradiation of 40 W 390 nm Kessil. The resulting mixture was concentrated in vacuum, and the residue was purified by flash column chromatography on silica gel to afford the desired product **3a** and **3a-D**.

4.4 Switching light experiment

Figure S1 Switching light experiment.

4.5 Stern-Volmer fluorescence quenching experiment²

Figure S2 The excited Hantzsch ester quenched by FeBr₂ in ethyl acetate.

Figure S3 The excited Hantzsch ester quenched by Co(acac)₃ in ethyl acetate.

Figure S4 The excited Hantzsch ester not quenched by *i*-Pr₂NEt in ethyl acetate.

Figure S5 The excited Hantzsch ester quenched by aldehyde 1a in ethyl acetate.

Figure S6 The excited Hantzsch ester quenched by α -bromoester 2a in ethyl acetate.

entry	component	Kq
1	FeBr ₂	0.1480
2	Co(acac) ₃	0.7447
3	1a	0.2460
4	2a	0.0226

Table S6 Quenching of the excited Hansch ester with each component of the reaction

4.6 Cyclic Voltammetry Data

Cyclic voltammetry experiments were performed in anhydrous degassed CH₃CN with analyte (1 mM) and $[(n-Bu)_4N]^+[PF_6]^-$ (100 mM) using a glassy carbon working electrode, platinum wire counter electrode, a saturated calomel electrode as reference electrode with a scan rate of 50 mV/s. Data were analyzed by subtracting the electrolyte solution background current prior to identifying the maximum current (C_p).

Figure S7 Oxidation potential of FeBr2

Figure S8 Reduction potential of α -bromo ethyl isobutyrate 2a

5. References

- 1. X. Jiang, H. Jiang, Q. Yang, Y. Cheng, L.-Q. Lu, J. A. Tunge and W.-J. Xiao, J. Am. Chem. Soc., 2022, 144, 8347-8354.
- 2. K. Cui, Y.-L. Li, G. Li and J.-B. Xia, J. Am. Chem. Soc., 2022, 144, 23001-23009.

6. Copies of NMR Spectra

 $<^{114.93}_{-114.94}$

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 fl (ppm)

-177.69 -156.10 -156.10 -156.10 -150.13 -150.13 -150.13 -150.13 -150.13 -150.13 -150.13 -120.120 -101.20 -102.20.55 -22.95-2

— -197.15 — -202.72

<13.97 <13.96

OH O F OEt

	1									1						
10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-120	-140	-160	-180	-200
	fl (ppm)															

A1177

