Supporting information

A proof-of-concept electroreduction-free anodic stripping voltammetry analysis of Ag(I) based on S,N-Ti₃C₂T_x MXene nanoribbons

Yifan Zhou,^{a,e} Yinhui Yi,^{a,b,c} Yong He^c and Gangbing Zhu^{*a,d}

^a School of Emergency Management, School of the Environment and Safety Engineering,

Jiangsu University, Zhenjiang, 212013, P. R. China. E-mail: zhgb1030@ujs.edu.cn

^b The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan

University, P. R. China

° Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Zhejiang

University, Hangzhou 310058, P.R. China

^d Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE,

P.R. China

^e School of Water, Energy and Environment, Cranfield University, Cranfield, Beds, MK430AL,

UK

^{*}Corresponding author. E-mail address: zhgb1030@ujs.edu.cn.

Experimental

Materials and chemicals

KOH, LiF, HCl, Ti₃AlC₂ and AgNO₃ were purchased from Sinopharm Chemical Reagent Co., Ltd., whereas L-cysteine (L-cys) was obtained from Shanghai Aladdin Biochemical Technology Co., Ltd. Interfering ion solutions containing metal ions such as Ni²⁺, Pb²⁺, Co²⁺, Mn²⁺, Zn²⁺ and Cu²⁺ were prepared using the related metal salts as the raw materials. All electrochemical tests were conducted using a CHI 660E electrochemical workstation in a PBS buffer solution (0.1 M, pH 5.0), unless otherwise specified.

Synthesis of S,N-Ti₃C₂T_xR

To begin with, $Ti_3C_2T_xS$ was produced through a top-down etching approach to remove the Al layer of Ti_3AlC_2 ⁻¹. Subsequently, $Ti_3C_2T_xR$ was prepared using the following procedure: 250.0 mg of $Ti_3C_2T_xS$ was added into a 30.0 mL solution of 6.0 M KOH, subjected to ultrasonic oscillation for 15 minutes to achieve uniform dispersion, and then stirred continuously for approximately 4 days. After the completion of the reaction, the formed materials were neutralized through washing, subsequently dried at 60°C to obtain black $Ti_3C_2T_xR$ powder.

The final product S,N-Ti₃C₂T_xR was obtained through a straightforward hydrothermal method involving the dissolution of 20.0 mg L-cys in 30.0 mL Ti₃C₂T_xR solution (1.0 mg mL⁻¹). This mixture was then transferred to a Teflon-lined stainless-steel autoclave for the hydrothermal treatment of 12 hours. Afterward, the resulting nanomaterial was subjected to centrifuging, filtering, washing, and drying at 60 °C to acquire the desired S,N-Ti₃C₂T_xR product.

EfASV detection of Ag⁺ based on S,N-Ti₃C₂T_xR modified electrode

To prepare the S,N-Ti₃C₂T_xR modified glassy carbon electrode (S,N-Ti₃C₂T_xR/GCE), the first step involved carefully polishing the GCE with alumina powder and rinsing it with ultrapure water. Then,

9.0 μ L S,N-Ti₃C₂T_xR suspension was added dropwise onto the GCE surface. Then, the modified electrode was subsequently dried using an infrared lamp, resulting in the formation of the desired S,N-Ti₃C₂T_xR/GCE. Finally, the EfASV measurement of Ag⁺ was conducted in 2-consecutive processes:

(1) Immersing the as-prepared S,N-Ti₃C₂T_xR/GCE in a phosphate-buffered saline (PBS) solution containing Ag^+ for a specific duration;

(2) Electrochemical measurements conducted using DPV in a blank 0.1 M PBS solution.

For comparison, $Ti_3C_2T_xS/GCE$ and $Ti_3C_2T_xR/GCE$ were prepared using identical procedures with above.

Figure S1. TEM images of $Ti_3C_2T_xS$ (A), $Ti_3C_2T_xR$ (B) and S,N- $Ti_3C_2T_xR$ (C).

Figure S2. EDS analysis of S, N-Ti₃C₂T_xR.

Figure S3. (A) XPS spectra of S,N-Ti₃C₂T_xR; high-resolution XPS spectra of (B) Ti 2p spectra, (C) C 1s spectra, (D) O 1s spectra, (E) N 1s spectra, and (F) S 2p spectra of S,N-Ti₃C₂T_xR.

It can be found from Figure S3A that the as-prepared S,N- $Ti_3C_2T_xR$ consists of Ti, O, C, N, and S. Figure S3B confirms the presence of a distinct Ti 2p response which can be further resolved into two binding energies, Ti $2p_{1/2}$ and Ti $2p_{3/2}$. The distinct peaks at 288.6 eV, 531.1 eV, and 531.8 eV (Figures S3C and S3D) were attributed to the HO-C=O bond, Ti-OH bond, and CO bond, respectively. The characteristic peaks of N 1s (Figure S3E) and S 2p (Figure S3F) indicate the successful inclusion of N and S heteroatoms, and the spectrogram reveals that the N 1s core energy degree is divided into 3 peaks: the peaks at 401.6 eV, 399.5 eV and 397.3 eV which represent graphite N, pyrolysis N and pyridinic N respectively. In particular, the presence of pyridinic N at 397.2 eV is a crucial factor in improving the electrochemical activity and conductivity ^{2, 3}. Additionally, the presence of C-SO_x-C (167.6 eV), C-S-C (163.6 eV), and S-Ti (162.0 eV) bonds in Figure 3F verified the effective introduction of sulfur via the existence of S-C bonds.^{4, 5}

Figure S4. (A) XRD patterns and (B) Raman spectra of (a) $Ti_3C_2T_xS$, (b) $Ti_3C_2T_xR$ and (c) S,N- $Ti_3C_2T_xR$.

The X-ray diffraction (XRD) patterns depicted in Figure S4A provide insights into the structural evolution of the $Ti_3C_2T_xS$, $Ti_3C_2T_xR$, and S,N- $Ti_3C_2T_xR$ powders. The peaks observed at 2 θ values of 28.5° and 44.2° correspond respectively to the (008) and (106) planes. After etching, the interlayer spacing of Ti₃C₂T_xR expanded, as evidenced through the shift in the (002) diffraction peak from $2\theta = 9.7^{\circ}$ to $2\theta = 7.9^{\circ}$, when compared to Ti₃C₂T_xS. Additionally, the doping of S and N resulted in a slight shift of the (002) peak to 7.3° in the synthesized S,N-Ti₃C₂T_xR, due to the incorporation of heteroelements. This further expanded the interlayer spacing, possibly attributed to the introduction of S, which generated S-O_x at the edges of $Ti_3C_2T_xR$, thereby creating additional accessible active sites and widening the interlayer spacing. The Raman spectrum was employed to evaluate the structure, molecular interactions and defect level in the synthesized Ti₃C₂T_xS, Ti₃C₂T_xR, and S,N- $Ti_3C_2T_xR$, the results are shown in the Figure S4B. All three spectra exhibit four distinct peaks: the typical peaks at $\omega 1$ (~150 cm⁻¹) and $\omega 3$ (~508 cm⁻¹) arise from the vibration of TiO₂ anatase phase and Ti atom, while the peaks at $\omega 2 (\sim 385 \text{ cm}^{-1})$ and $\omega 4 (\sim 632 \text{ cm}^{-1})$ represent non-stoichiometric TiC vibrations. Simultaneously, the Raman spectrum also demonstrates the existence of two prominent peaks at ~1345 cm⁻¹ and ~1563 cm⁻¹, corresponding to the D band and G band of graphitic C. In general, the D band indicates imperfections in the carbon atom lattice, whereas the G band represents

the sp² hybridization of C atom with in-plane stretching vibration. The level of defect structural is commonly quantified by utilizing the intensity ratio of the D and G band (I_D/I_G), and a larger I_D/I_G ratio usually signifies a greater extent of defects. From the figure, the computational findings demonstrate a progressive increase in I_D/I_G values for $Ti_3C_2T_xS$, $Ti_3C_2T_xR$, and $S,N-Ti_3C_2T_xR$, with values of 0.891, 0.970, and 0.985 respectively. This indicates a decline in the graphitization level of the material and an enhancement in defect density, confirming the successful synthesis of S,N- $Ti_3C_2T_xR$ with increased vacancies, defects, and more active sites.

Figure S5. (A) XPS spectra of $Ag^{0/S}$, N-Ti₃C₂T_xR and (B) high-resolution XPS spectra of Ag 3d spectra.

Figure S6. The effect of the pH value of PBS (A), the amount of S,N-Ti₃C₂T_xR/GCE (B) and the

accumulation time (C) on the DPV peak currents of <u>Ag⁺ (2.0 μ M)</u>.

Figure S7. (A) The peak current values of 8 independently fabricated S,N-Ti₃C₂T_xR/GCE towards $\underline{Ag^+(2.0 \ \mu M)}$, (B) the stability test of S,N-Ti₃C₂T_xR/GCE/GCE for $\underline{Ag^+(2.0 \ \mu M)}$ and (C) the peak current values of S,N-Ti₃C₂T_xR/GCE/GCE towards $\underline{Ag^+(0.2 \ \mu M)}$ containing various ions (2.0 μM).

Initially, a total of eight separate S,N-Ti₃C₂T_xR/GCEs was prepared by using similar method, and the DPV signal of Ag⁺ was subsequently measured simultaneously in 0.1 M PBS. The findings in Figure S7A demonstrated a relative standard deviation (RSD) of 3.72% for the DPV current, indicating the favorable reproducibility of the S,N-Ti₃C₂T_xR/GCE. Subsequently, we assessed the sensor stability by storing S,N-Ti₃C₂T_xR/GCE at 4 °C for two weeks (Figure S7B). The findings confirmed that the peak current response for Ag⁺ remained at 91.1% of its initial value, indicating the outstanding stability of the sensor. Moreover, the selectivity of S,N-Ti₃C₂T_xR/GCE was examined by introducing various interfering substances in the test samples. The result display that the presence of ions including Pb²⁺, Mn²⁺, Ni²⁺, Co²⁺, Cu²⁺, Zn²⁺, Na⁺, Ca²⁺, and Cd²⁺ (2.0 μ M) did not affect the results when using S,N-Ti₃C₂T_xR/GCE to detect Ag⁺ (0.2 μ M), indicating its strong capability to resist interference, as displayed in Figure S7C.

Sensors	Electrodeposition	Linear range / µM	$\underline{LOD / nM}$	Ref
Au@4-ATP/Au	-0.54V, 350s	0.005-3.0	13	6
PANI/SSA/GCE	-0.45V, 100s	0.01-100	3.4	7
Cr/CPE	-1.3V, 100s	0.028-0.093	9.3	8
GaN micropillar electrode	-0.1V, 180s	0.093-9.3	30	9
LB/PAn-PTSA/GCE	-0.56V, 200s	0.006-1.0	0.4	10
MWCNTs/CPE	-0.7V, 20s	0.0046-2.2	0.74	11
Schiff/CPE	-0.7V, 20s	0.0046-1.8	0.85	12
4-tert-butyl-1thiacalix [4] arene	-0.6V, 30s	0.05-30.0	10	13
mag-IIP-NPs/CPE	-0.8V, 40s	0.0046-1.4	1.4	14
CNTs/GCE	0.3V, 240s	0.1-2.5	30	15
BiEF/GCE	-0,8V, 60s	0.093-0.83	19	16
ABP/GA/4-NBD/GCE	-0.6V, 180s	0.05-1.0	25	17
BHAB-MCPE/CPE	-0.9V, 300s	0.01-2.0	6.7	18
N-CNT/GO _x		0.02-0.2	1.8	19
p-isopropylcalix[6]arene/CPE	-0.25V, 180s	0.05-2.0	48	20
S,N-Ti ₃ C ₂ T _x R/GCE	Free	0.002-4.0	0.667	This work

Table S1. Comparisons between the present EfASV sensor and previously reported ASV sensors for Ag^+ detection.

Sample	Spiked / μM	Found / μM	Recovery / %	RSD / %
Lake water	0.02	0.021	105.0	3.23
	0.2	0.218	109.0	3.42
	2.0	1.980	99.0	5.14
Tap water	0.02	0.019	95.0	4.57
	0.2	0.197	98.5	4.11
	2.0	2.13	106.5	4.05

Table S2. The determination of Ag^+ in real samples.

References

- 1 J. Liu, X. Jiang, R. Zhang, Y. Zhang, L. Wu, W. Lu, J. Li, Y. Li and H. Zhang, *Advanced Functional Materials*, 2019, **29**, 1807326.
- 2 Q. Guan, J. Ma, W. Yang, R. Zhang, X. Zhang, X. Dong, Y. Fan, L. Cai, Y. Cao and Y. Zhang, *Nanoscale*, 2019, **11**, 14123-14133.
- 3 C. Lu, L. Yang, B. Yan, L. Sun, P. Zhang, W. Zhang and Z. Sun, *Advanced Functional Materials*, 2020, **30**, 2000852.
- 4 W. Zhu, J. Gao, H. Song, X. Lin and S. Zhang, ACS applied materials interfaces, 2019, 11, 44545-44555.
- 5 Z. Guo, P. Ren, J. Wang, X. Hou, J. Tang, Z. Liu, Z. Chen, Y. Jin and F. Ren, *Chemical Engineering Journal*, 2023, **451**, 138667.
- 6 Z. Xiao, H. Meng, X. Qin, X. Sang, Y. Zhang and Y. Yuan, Analyst, 2021, 146, 597-604.
- 7 F. Hashemi and A. R. Zanganeh, Journal of Electroanalytical Chemistry, 2016, 767, 24-33.
- 8 Z. Koudelkova, T. Syrovy, P. Ambrozova, Z. Moravec, L. Kubac, D. Hynek, L. Richtera and V. Adam, *Sensors*, 2017, 17, 1832.
- 9 Q. Liu, J. Li, W. Yang, X. Zhang, C. Zhang, C. Labbé, X. Portier, F. Liu, J. Yao and B. Liu, Analytica chimica acta, 2020, **1100**, 22-30.
- 10 Q. Liu, F. Wang, Y. Qiao, S. Zhang and B. Ye, *Electrochimica acta*, 2010, 55, 1795-1800.
- S. Jahandari, M. A. Taher, H. Fazelirad and I. Sheikhshoai, *Microchimica Acta*, 2013, 180, 347-354.
- 12 H. H. Nadiki, M. A. Taher, H. Ashkenani and I. Sheikhshoai, Analyst, 2012, 137, 2431-2436.
- 13 F. Wang, C. Xin, Y. Wu, Y. Gao and B. Ye, Journal of Analytical Chemistry, 2011, 66, 60-65.
- 14 M. Ghanei-Motlagh and M. A. Taher, Microchimica Acta, 2017, 184, 1691-1699.

- 15 X. Liu, W. Li, Q. Shen, Z. Nie, M. Guo, Y. Han, W. Liu and S. Yao, *Talanta*, 2011, 85, 1603-1608.
- 16 T. Romih, S. B. Hočevar, A. Jemec and D. Drobne, *Electrochimica Acta*, 2016, 188, 393-397.
- 17 M.-C. Radulescu, A. Chira, M. Radulescu, B. Bucur, M. P. Bucur and G. L. Radu, *Sensors*, 2010, 10, 11340-11351.
- 18 M. Gholivand and M. Parvin, Electroanalysis, 2010, 22, 2291-2296.
- 19 I. M. Rust, J. M. Goran and K. J. Stevenson, Analytical chemistry, 2015, 87, 7250-7257.
- 20 J. B. Raoof, R. Ojani, A. Alinezhad and S. Z. Rezaie, *Monatshefte für Chemie-Chemical Monthly*, 2010, **141**, 279-284.