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Materials. All organic substrates were purchased either from Aldrich, Aladdin or TCI Chemicals and were purified 

before use according to the literature.[1] All solvents, such as acetone, acetonitrile, dichloromethane and n-hexane, 

were in HPLC grade and further purified by following literature methods before use.[1] HmCPBA (m-

chloroperbenzoic acid) was purified before use according to the literature.[1] D2O (Aldrich, 99 atom % D), H2
18O 

(Aldrich, 97 atom % 18O) and (NH4)2Ce(NO3)6 (Aldrich, Ce(IV)) were used as received. Deuterated substrates, such 

as xanthene-d2 and 9,10-dihydroanthracene-d4 (DHA-d4) were synthesized according to the the literature.[2] 

[RuIII(bdpm)(pic)2]+ (RuIII, H2bdpm = [2,2'-bipyridine]-6,6'-diylbis(diphenylmethanol); pic = 4-picoline) was 

prepared according to reported procedures.[3] Other chemicals were used as purchased.  

 

Instrumentation. 1H NMR spectra were obtained from a Bruker JNM-ECZ600R/S1 Superconducting Fourier 

Nuclear Magnetic Resonance Spectrometer. The chemical shifts (δ, ppm) were reported with reference to 

tetramethylsilane (TMS). Electrospray ionization mass spectrometry (ESI/MS) was carried out on a SCIEX TRIPLE 

QUAD 3500 mass spectrometer. The analyte solution was continuously infused with a syringe pump at a constant 

flow rate of 10 µLmin−1 into the pneumatically assisted electrospray probe with nitrogen as the nebulizing gas. 

Kinetics experiments were carried out by using an Agilent 8453 diode-array spectrophotometer. The temperature of 

the solutions was maintained with an IKEA HRC 2 temperature controller connected to a circulating bath. Gas 

chromatographic (GC) analyses were performed on a Shimadzu GC2010 Pro FID gas chromatograph equipped with 

a HP-5 (30 m × 0.25 mm i.d.) capillary column. GC/MS measurements were carried out on a Thermo Scientific 

Trace 1300 GC interfaced to a ISQ 7000 MS equipped with a TG-5SILMS (30 m × 0.25 mm i.d.). IR spectra were 

recorded as KBr pellets on a PerkinElmer Spectrum100 FT-IR spectrophotometer at 4 cm–1 resolution. Cyclic 

voltammetry was performed on a CH Instruments Electrochemical Workstation CHI660E. A glassy carbon working 

electrode, an Ag/AgCl reference electrode, and a Pt wire counter electrode were used. MBRAUN UNILab Pro 

glovebox was used in the synthesis of unstable compounds.  

 

Kinetics. All reactions were run in 1.0 cm UV cuvette at 0 oC to 15 oC under argon and followed by monitoring UV-

Vis spectral changes of the reaction solutions under pseudo-first-order conditions. Pseudo-first-order rate constants, 

kobs, were obtained by nonlinear least-square fits of At vs t according to the equation At = A∞ + (A0 – A∞) exp(−kobst), 

where A0 and A∞ are the initial and final absorbance at 472 nm, respectively. Reactions were run at least in triplicate, 
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and the data reported are the average of the reactions. [RuIV(bdpm)(pic)2(mCPBA)]+ (RuIV-mCPBA) was generated 

in situ by adding 1.5 equiv. of HmCPBA to RuⅢ (3 mM) in acetone. Then substrates were added when the UV 

absorbance at 472 nm reached a minimum value. 

 

Oxidation of Substrates. Typically, HmCPBA (1 mM) was added to a solution of RuⅢ (1 mM) in acetone at 20 °C 

under argon. After one minute the substrate is added to the above reaction. After stirring for 2 h, bromobenzene (5 

mM) was then added as an internal standard, and the mixture was analyzed by GC and GC/MS. Products were 

identified by comparing with authentic samples. Product yields were determined by comparing peak areas of the 

reaction solutions with that of bromobenzene as an internal standard. Reactions were run at least in triplicate, and 

the data reported are the average of the reactions. Yields were calculated based concentration of ruthenium. The 

ruthenium products formed in the reaction of RuIV-mCPBA with substrates were analyzed by ESI/MS. In those the 

reactions, RuIII species were produced as a major product.  

 

18O labelling experiment. For oxidation by RuIV-mCPBA, 40 μL of H2
18O was added to an acetone solution of 

RuIV-mCPBA (1 mM), which was prepared by directly dissolving isolated RuIV-mCPBA solid in 0.5 mL acetone. 

Substrates were added after 30 s. The sample was diluted before MS analysis. For oxidation by (NH4)2[Ce(NO3)6] 

[Ce(IV)], 40 μL of H2
18O was added to a solution (acetone/H2O, v:v 10:1, 0.5 mL) of RuIII (1.5 mM)/Ce(IV) (2 

equiv.). Substrates were added after 30 s. 

 

X-ray Structure Determination. Crystals of RuIV-mCPBA[PF6] (CCDC No.: 2291470) were obtained by standing 

a mixture of n-hexane and acetone solution of RuIII/HmCPBA(3 equiv.) at −30 °C for 1 day. Crystal data and 

experimental details are listed in Table S1. Selected bond angles and bond lengths are given in Table S2. Crystals of 

suitable size coated with paratone-N and mounted on a nylon cryoloop were used for X-ray diffraction analysis. X-

ray diffraction data were collected using -scan mode at 105 K on a Rigaku Oxford Diffraction XtaLAB PRO 007HF 

(Cu) diffractometer equipped with Dectris PILATUS 200K detector and Oxford Cryostream 800 cooling system 

using Cu-Kα radiation ( = 1.54178 Å). A data collection strategy to ensure maximum completeness and redundancy 

was determined using CrysAlisPro.[4] Data processing was done using CrysAlisPro and a multi-scan absorption 

correction applied using the SCALE3 ABSPACK scaling algorithm.[5] The structure was solved via intrinsic phasing 
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methods using SHELXT[6] and refined using SHELXL[7] in the Olex2[8] graphical user interface. The final structural 

refinement included anisotropic temperature factors on all non-hydrogen atoms. All hydrogen atoms were attached 

via the riding model at calculated positions and these are participated in the calculation of final R-indices. The 

automatic “solvent masking procedure” present in OLEX2 was used to mask the solvent molecules present in these 

structures.[8-10] A solvent mask was applied in Olex2 to two regions of highly disordered residual electron density 

presumed to be 1 and 0.75 interstitial acetone molecules. 

 

Synthesis. 

[RuIV(bdpm)(pic)2(mCPBA)](PF6) (RuIV-mCPBA[PF6]): In a glovebox, 3 equiv. of HmCPBA (1.9 mg, 0.011 mmol) 

was dissolved into 0.5 mL acetone then added to a solution of [RuIII(bdpm)(pic)2](PF6) (3.5 mg, 0.0037 mmol) in 1 

mL acetone at −30 °C. The color of the solution changed from brown to red after shaking for 30 s. The resulting 

solution was mixed with 10 mL cold n-hexane to form a cloudy mixture and allowed to stand at −30 °C for 1 day to 

afford red brown crystals which were suitable for X-ray diffraction analysis. Yield: 2.7 mg (66%).1H NMR (600 

MHz, Acetone-D6) δ 9.15 (d, J = 7.8 Hz, 2H), 8.55 (t, J = 7.8 Hz, 2H), 8.00 (d, J = 6.1 Hz, 1H), 7.88 (d, J = 5.8 Hz, 

4H), 7.81 (d, J = 5.8 Hz, 1H), 7.70 (d, J = 8.0 Hz, 1H), 7.58 (t, J = 8.2 Hz, 1H), 7.33 (d, J = 7.7 Hz, 2H), 7.17 (t, J 

= 7.3 Hz, 4H), 7.05 (t, J = 7.6 Hz, 8H), 6.86 (d, J = 7.7 Hz, 8H), 6.72 (d, J = 5.7 Hz, 4H), 2.30 (s, 6H). ESI/MS in 

acetone: m/z = 977 (M+) (please refer to Figure S2). 

 

[RuIV(bdpm)(pic)2(mCPBA)](ClO4) (RuIV-mCPBA[ClO4]): The method is similar to that of RuIV-mCPBA[PF6] but 

using [RuIII(bdpm)(pic)2](ClO4) as starting material. [RuIII(bdpm)(pic)2](ClO4) was prepared by adding a saturated 

solution of NaClO4 to a MeCN solution of [RuIII(bdpm)(pic)2](PF6) (20 mg, 5 mL). The product was collected as 

precipitation and dried under vacuum. 



 

S4 

Table S1. Crystal data and structure refinement details for RuIV-mCPBA[PF6]∙0.5C3H6O (CCDC No.: 2291470).  

 

Empirical formula  C56.5H47ClF6N4O5.5PRu  

Formula weight  1151.47  

Crystal system  triclinic 

Space group  P -1  

a/Å  13.75640(1)  

b/Å  17.46850(1)  

c/Å  25.0576(2) 

α/deg  86.190(1)  

β/deg  81.914(1)  

γ/deg  67.772(1)  

Volume/Å3  5517.96(8)  

Z  4  

Dcalc /gcm−3  1.386  

μ(Mo-Kα)/mm−1  3.630  

F(000)  2352.0  

Temperature/K  105(8)  

/Å  1.54184  

  min, max/deg 3.748 / 79.497 

Total, unique data  23561, 21874 

R1(obsd/all) [a]  0.0670 / 0.0699  

wR2(obsd/all) [b]  0.1888 / 0.1859  

Goodness-of-fit on F2  1.026  

[a] R = ∑||𝐹O| − |𝐹C ||/ ∑|𝐹O|. [b] Rw = [∑ 𝜔(|𝐹O| − |𝐹C |) 2 / ∑ 𝜔𝐹O ]1⁄2 . 
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Table S2  Selected bond lengths (Å) and angles (°) for RuIV-mCPBA[PF6]∙0.5C3H6O.  

 

Ru1–O1  2.004(3)  O1–Ru1–N3  84.6(1) 

Ru1–O2  2.034(3) O1–Ru1–N4  92.9(1) 

Ru1–O3  2.072(2) O2–Ru1–O3  68.5(1) 

Ru1–N1  2.104(3) O2–Ru1–N1  137.3(1) 

Ru1–N2  2.098(3)  O2–Ru1–N2  71.1(1) 

Ru1–N3  2.143(3)  O2–Ru1–N3  104.5(1) 

Ru1–N4  2.090(3) O2–Ru1–N4  77.1(1) 

O1–C24 1.408(5) O3–Ru1–N1  151.8(1) 

O2–C11 1.413(4) O3–Ru1–N2  135.0(1) 

O3–O4 1.437(4) O1–Ru1–N3  88.4(1) 

O4–C49 1.346(5) O3–Ru1–N4  90.2(1) 

O5–O49 1.203(6) N1–Ru1–N2  73.0(1) 

  N1–Ru1–N3  93.4(1) 

O1–Ru1–O2  145.3(1) N1–Ru1–N4  86.7(1) 

O1–Ru1–O3  78.6(1) N2–Ru1–N3  83.2(1) 

O1–Ru1–N1  73.6(1) N2–Ru1–N4  99.4(1) 

O1–Ru1–N2  143.6(1) N3–Ru1–N4  177.3(1) 
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Table S3  Yields of products in the oxidation of various substrates by RuIII and HmCPBA.a 

 

Entry  Substrate  Products (yield)  

1  xanthene (20 mM)  xanthone (16%) 

2 DHA (20 mM)  anthracene (15%) 

anthraquinone (7%) 

anthrone (13%) 

3 fluorene (50 mM) 9-fluorenone (13%) 

4  cumene (200 mM) 2-Phenyl-2-propanol (6%) 

acetophenone (9%) 

5  ethylbenzene (200 mM) 1-phenylethanol (2%) 

acetophenone (3%) 

6  toluene (500 mM)  benzaldehyde (2%) 

benzyl alcohol (1%) 

7  cyclooctane (500 mM)  cyclooctanol (3%) 

cyclooctanone (1%) 

8  cyclohexane (500 mM)  cyclohexanol (2%) 

cyclohexanone (1%) 

9  thioanisole (20 mM)  methyl phenyl sulfoxide (33%) 

methyl phenyl sulfone (1%) 

10 cyclohexene (50mM) 2-cyclohexen-1-ol (40%) 

cyclohexene oxide (1%) 

11 styrene (50mM) benzaldehyde (9%) 

styrene oxide (1%) 

12 cis-1,2-dimethylcyclohexane 

(500 mM) 

cis-1,2-dimethylcyclohexanol (3%) 

trans-1,2-dimethylcyclohexanol (1%) 

13 xanthene (20 mM) 

(with 10 equiv. of Na2SO3) 

xanthone (15%) 

14 xanthene (20 mM) 

(with 10 equiv. of PPh3) 

xanthone (17%) 

15 fluorene (50 mM) 

(with 10 equiv. of Na2SO3) 

9-fluorenone (19%) 

16 ethylbenzene (200 mM) 

(with 10 equiv. of Na2SO3) 

1-phenylethanol (2%) 

acetophenone (4%) 

17 cyclohexane (500 mM) 

(with 10 equiv. of Na2SO3) 

cyclohexanol (2%) 

cyclohexanone (3%) 

a
 RuⅢ (1 mM) + HmCPBA (1 mM) in acetone under argon at 20 °C; yield was calculated based on RuⅢ. 

  



 

S7 

Table S4 Rate constants for the reaction between RuIV-mCPBA and hydrocarbons in acetone at 10 °C under Ar. 

 

Hydrocarbons  C–H BDEs / kcal mol−1 a  k2 / M−1 s−1  k2
’ / M−1 s−1 b  

Xanthene 75.2 (8.87 ± 0.45) × 10−2 

(2.27 ± 0.17) × 10−2 c 

(4.44 ± 0.23) × 10−2 

 

DHA 78.0 (8.44 ± 0.12) × 10−2 

(2.18 ± 0.048) × 10−2 d 

(2.11 ± 0.030) × 10−2 

 

Fluorene 82.2 (1.17 ± 0.18) × 10−2 (5.85 ± 0.90) × 10−3 

Cumene 84.5 (2.59 ± 0.15) × 10−3 (2.59 ± 0.15) × 10−3 

Ethylbenzene 

Toluene 

85.4 

89.7 

(1.40 ± 0.14) × 10−3 

(5.70 ± 0.57) × 10−4 

(7.00 ± 0.70) × 10−4 

(1.90 ± 0.19) × 10−4 

Cyclooctane 95.7 (1.56 ± 0.085) × 10−3 (9.75 ± 0.053) × 10−5 

Cyclohexane 99.5 (3.99 ± 0.22) × 10−4 (3.33 ± 0.18) × 10−5 

a Data are from ref. 1. b k2
’ = second-order rate constant per active hydrogen. cXanthene-d2 was used. d DHA-d4 were 

used. 

[1] (a) Parker, V. D. J. Am. Chem. Soc. 1992, 114, 7458-7462. (b) Bordwell, F. G.; Cheng, J. P.; Ji, G. Z.; Satish, A. V.; Zhang, X. J. J. Am. 

Chem. Soc. 1991, 113, 9790-9795. (c) CRC Handbook of Chemistry and Physics, 82nd ed.; Lide, D. R. Ed.; CRC Press: Boca Raton, 2001. (d) 

Luo, Y. R. Handbook of Bond Dissociation Energies in Organic Compounds, CRC Press: Boca Raton, 2003.  

 

Table S5 Yields of by-products in the oxidation of various substrates. 

Entry  Substrate  
Products (yield %) 

chlorobenzene m-chlorobenzoic acid 

1a xanthene 4 91 

2b xanthene 3 85 

3a DHA 7 80 

4b DHA 2 89 

a RuⅢ (1 mM) + HmCPBA (1 mM) in acetone under argon at 20.0 °C; yield was calculated based on RuⅢ. 

b HmCPBA (1 mM) in acetone under argon at 20.0 °C; yield was calculated based on HmCPBA. 
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Figure S1 UV-Vis spectral titrations which was carried out using various amount of HmCPBA and RuIII (3.00 × 

10−4 M) in acetone at 0 °C under Ar. Spectra are picked where the absorbance at 472 nm reaches the 

minimum. 
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Figure S2 a) ESI/MS of the in situ generated RuIV-mCPBA (1 mM) in acetone; b) expanded (black line) and 

calculated (red bar) isotopic patterns of RuIV-mCPBA. 
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Figure S3 1H NMR of isolated RuIV-mCPBA in acetone-d6 at −20 ℃. 
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Figure S4 IR spectra of RuIII and the isolated solid RuIV-mCPBA. a) samples prepared using PF6
− salt; b) samples 

prepared using ClO4
− salt. The O−O bond stretching usually occurs in the range of 780-880 cm−1. No 

obvious peaks belong to O−O bond stretching can be observed in this region. 
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 Figure S5 ESI/MS of the isolated solid state RuIV-mCPBA at 20 ℃ after 30 min. The sample was prepared by 

dissolving solid sample in acetone. 
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Figure S6 a) ESI/MS of RuIV-mCPBA (1 mM, in acetone) in the presence of H2
18O (40 μL); b) and c) are expanded 

(black line) and calculated (red bar) isotopic patterns of Ru species. No 18O-labelled peaks were found. 
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Figure S7 ESI/MS of the reaction of in situ generated RuIV-mCPBA (1 mM) and DHA (20 mM) in acetone after 

2h. 

 

Figure S8 Eyring plot for the reaction of the in situ generated RuIV-mCPBA and DHA in acetone. Slope = 

−(7370.8 ± 739.1), y-intersept = (17.8 ± 2.6), △H‡ = 14.7 ± 1.4 kcal mol−1
 and △S‡ = −11.9 ± 5.1 cal 

mol−1
 K–1. 
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Figure S9 Plot of kobs against [substrates] at 10 ℃. a) xanthene: slope = (8.87 ± 0.45) × 10−2, y-intercept = (2.36 ± 

0.085) × 10−3, r2 = 0.992; b) DHA: slope = (8.44 ± 0.12) × 10−2, y-intercept = (1.45 ± 0.030) × 10−3, r2 

= 0.999; c) fluorene: slope = (1.17 ± 0.18) × 10−2, y-intercept = (9.58 ± 0.34) × 10−4, r2 = 0.931; d) 

cumene: slope = (2.59 ± 0.15) × 10−3, y-intercept = (6.70 ± 0.21) × 10−4, r2 = 0.990; e) ethylbenzene: 

slope = (1.40 ± 0.14) × 10−3, y-intercept = (1.16 ± 0.060) × 10−3, r2 = 0.969; f) toluene: slope = (5.70 ± 

0.57) × 10−4, y-intercept = (8.59 ± 0.33) × 10−4, r2 = 0.970; g) cyclooctane: slope = (1.56 ± 0.085) × 10−3, 

y-intercept = (1.03 ± 0.12) × 10−3, r2 = 0.991; h) cyclohexane: slope = (3.89 ± 0.15) × 10−4, y-intercept 

= (8.05 ± 0.086) × 10−4, r2 = 0.992. 
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Figure S10 Plot of kobs against xanthene at 10 ℃: slope = (0.089 ± 0.005), r2 = 0.992; xanthene-d2: slope = (0.023 

± 0.002), r2 = 0.984; KIE = (3.9 ± 0.6). 
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Figure S11 a) UV-Vis spectral changes of reaction between the in situ generated RuIV-mCPBA (3.00 × 10−4 M) and 

PPh3 (0.05 M) in acetone at –10 °C under Ar. Inset shows the corresponding absorbance-time trace at 

472 nm. b) Plot of kobs against the concentrations of PPh3. [slope = (2.39 ± 0.24) × 10−2, y-intercept = 

(6.05 ± 0.16) × 10−3, r2 = 0.970.] 
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Figure S12 a) UV-Vis spectral changes of reaction between the in situ generated RuIV-mCPBA (3.00 × 10−4 M) and 

thioanisole (0.02 M) in acetone at 0 °C under Ar. Inset shows the corresponding absorbance-time trace 

at 472 nm. b) Plot of kobs against the concentrations of thioanisole. [slope = (2.57 ± 0.38) × 10−3, y-

intercept = (8.33 ± 0.51) × 10−4, r2 = 0.940.] 
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Figure S13 Hammett plot for the reaction of the in situ generated RuIV-mCPBA (3.00 × 10−4 M) and different para-

substituted thioanisoles in acetone at 0 ℃ under Ar. [slope = – (2.56 ± 0.47), y-intercept = – (2.87 ± 

0.084), r2=0.876.] 
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Figure S14 ESI/MS of reaction solution of RuIV-mCPBA (1 mM) and PPh3 (50 mM) in the presence of H2
18O (40 

μL) in acetone. Red bar is calculated isotopic pattern. 

  

Figure S15 ESI/MS of reaction solution of RuIV-mCPBA (1 mM) and thioanisole (20 mM) in the presence of H2
18O 

(40 μL) in acetone. Red bar is calculated isotopic pattern. 
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Figure S16 a) UV-Vis spectral changes of reaction between the in situ generated RuIV-mCPBA (3.00 × 10−4 M) and 

cyclohexene (0.2 M) in acetone at 0 °C under Ar. Inset shows the corresponding absorbance-time trace 

at 472 nm. b) Plot of kobs against the concentrations of cyclohexene. [slope = (1.94 ± 0.06) × 10−3, y-

intercept = (9.32 ± 0.65) × 10−4, r2 = 0.998] 
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Figure S17 a) UV-Vis spectral changes of reaction between the in situ generated RuIV-mCPBA (1.00 × 10−3 M) and 

styrene (0.1 M) in acetone at 10 °C under Ar. Inset shows the corresponding absorbance-time trace at 

472 nm. b) Plot of kobs against the concentrations of styrene. [slope = (2.56 ± 0.24) × 10−2, y-intercept = 

(1.02 ± 0.22) × 10−3, r2 = 0.975.] 
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Figure S18 ESI/MS of the in situ generated RuIV-mCPBA (1 mM) and cyclohexene (20 mM) in acetone after 2h. 

 

Figure S19 ESI/MS of the isolated RuIV-mCPBA in MeCN. 
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Figure S20 ESI/MS of reaction solution of RuⅢ (1.5 mM) + Ce(IV) (3.0 mM) in the presence of H2
18O (40 μL) in 

acetone/H2O (v:v 10:1). Calculated isotopic pattern (red bar) indicates that the species at m/z = 822 is 

45% 18O-enriched.  
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Figure S21 ESI/MS of reaction solution of RuⅢ (1.5 mM) + Ce(IV) (3.0 mM) + PPh3 (50 mM) in the presence of 

H2
18O (40 μL) in acetone. Calculated isotopic pattern (red bar) indicates PPh3O is 35% 18O-enriched. 

 

Figure S22 ESI/MS of reaction solution of RuⅢ (1.5 mM) + Ce(IV) (3.0 mM) + thioanisloe (50 mM) in the presence 

of H2
18O (40 μL) in acetone. Calculated isotopic pattern (red bar) indicates methyl phenyl sulfoxide is 

46% 18O-enriched. 
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Figure S23 ESI/MS of reaction solution of RuIII (1.5 mM) + Ce(IV) (3 mM) + xanthene (20 mM) in the presence 

of H2
18O (40 μL) in MeCN. Calculated isotopic pattern (red bar) indicates xanthene is 65% 18O-enriched. 

 

Figure S24 ESI/MS of reaction solution of RuIV-mCPBA (1 mM) and xanthene (20 mM) in the presence of H2
18O 

(40 μL) in acetone. Red bar is calculated isotopic pattern. 
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Figure S25 ESI/MS of the isolated solid RuIV-mCPBA in acetone.  

 

Figure S26 ESI/MS of the isolated solid RuIV-mCPBA (ClO4) in acetone. 
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Figure S27 The corresponding absorbance-time trace of RuIV-mCPBA (3.00 × 10−4 M) in acetone and D-acetone 

at 472 nm at 0 °C under Ar. 

 

Figure S28 CVs of in situ generated RuIV-mCPBA and RuIII (1 mM) in acetone (0.1 M nBu4NPF6) at 0 °C under 

argon. Scan rate = 100 mV s−1.  
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