Supporting Information

Carbonyl Group Directed Synthesis of 3-Boryl-3-Substituted Alkenyl Oxindoles and Tetrasubstituted β-Borylenones

Debraj Ghorai, Kanak Kanti Das, Dr. Santanu Panda

Indian Institute of Technology, Kharagpur, 721302, India

<u>spanda@chem.iitkgp.ac.in</u>

Table of contents:

1. General information	S2
2. Experimental procedures and spectral data of all compounds	S2-S7
2a.General procedure for the Boron-Wittig reaction with N-alkyl-	S3-S10
oxindole and corresponding spectra value	
2b. General procedure for the Boron-Wittig reaction with α-keto-	S <mark>11</mark> -S17
ester/amide and corresponding spectra value	
2c. General procedure for the Zweifel Olefination Reaction and	S17-S19
corresponding spectra value	
2d. General procedure for the Suzuki-Miyaura Cross-Coupling	<mark>S20-</mark> S22
Reaction and corresponding spectra value	
2e. General procedure for the synthesis of 1,3 di-carbonyl compound	S22-S25
and corresponding spectra value	
2f. Large scale synthesis of AMPK activator and corresponding	S25-S27
spectra value	
3. ¹¹ B-NMR study of crude reaction with α -keto-amide:	S27-S29
4. Crystallographic Data and Structure Refinements	S30-S34
5. NMR spectra of compounds	834- <mark>895</mark>

6. References	8 <mark>96</mark>
7. checkCIF/PLATON reports	

1. General information

General Methods: All the solvents were distilled prior to use. Dry solvents were prepared according to the standard procedures. All other reagents were used as received from either Aldrich or Lancaster chemical companies. Reactions requiring an inert atmosphere were carried out under an argon atmosphere. Infrared (IR) spectra were recorded on a JASCO 4100 FT-IR spectrometer. 1H NMR spectra were measured on Bruker AVANCE 400 MHz and 500 MHz spectrometers. Chemical shifts were reported in ppm relative to solvent signals. 13C NMR spectra were recorded on Bruker 100 MHz and 125 MHz spectrometers with complete proton decoupling. Chemical shifts were reported in ppm from the residual solvent as an internal standard. The high-resolution mass spectra (HRMS) were performed on Micromass QTOF micro mass spectrometer equipped with a Harvard apparatus syringe pump. X-ray crystallographic data were recorded using Bruker-AXS Kappa CCD-Diffractometer with graphite monochromator MoK α radiation (λ =0.7107 A). The structures were solved by direct methods (SHELXS-97) and refined by full-matrix least squares techniques against F2 (SHELXL-97). Hydrogen atoms were inserted from geometry consideration using the HFIX option of the program. For thin layer chromatography (TLC) analysis throughout this work, E-merck precoated TLC plates (silica gel 60 F254 grade, 0.25 mm) were used. Acme (India) silica gel (100-200 mesh) was used for column chromatography. Here all the geminal bis-pinacol-boronate esters have been synthesized by following ref¹ and all the keto-ester, keto-amide², and *N*-alkyl isatin were synthesized using literature reports.³

2. Experimental procedures:

2a. General procedure for the Boron-Wittig reaction with N-alkyloxindole:

$$R \xrightarrow{B(pin)}_{B(pin)} + \bigvee_{R^{1}} O \xrightarrow{HTMP/^{n}BuLi}_{R^{1}} O \xrightarrow{R^{n}}_{R^{1}} O \xrightarrow{R^{n$$

To a flame-dried reaction tube, 2,2,6,6-Tetramethylpiperidine (HTMP) (0.24 mmol, 1.2 equiv) in dry THF (1 mL) at -78 °C was added n-BuLi (l.2 equiv) drop-wise for 5 min under argon atmosphere. The reaction mixture was stirred for 30 min at the same temperature. The reaction was then cooled to 0 °C and stirred for another 30 min. Geminal-bis boronates (0.24 mmol, 1.2 equiv) dissolved in dry THF (1 ml) were added to the reaction mixture and stirred for 5 min. Then the reaction mixture was transferred to a solution of N-alkyl-oxindole (0.20 mmol) in THF at 0 °C and further stirred for 1h (for aromatic Geminal-bis boronates the reaction was stirred for 10 min). After completion of the reaction 2ml water was added and the product was extracted with EtOAc (3×5 mL). The organic layer was dried over Na₂SO₄ and concentrated in a vacuum to afford the crude product. This crude material was further purified by flash column chromatography using silica gel.

(*E*)-1-methyl-3-(2-methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)propylidene)indolin-2-one (2a):

Synthesized using general procedure **2a**, purified by silica gel flash column chromatography (25% EtOAc/hexane), yellow solid compound, yield (44 mg) 67%. ¹H NMR (500 MHz, CDCl₃) δ 7.58 (d, *J* = 7.7 Hz, 1H), 7.23 (t, *J* = 7.7 Hz, 1H), 7.00 (t, *J* = 7.6 Hz, 1H), 6.78 (d, *J* = 8.2 Hz, 1H), 3.51 (hept, *J* = 6.8 Hz, 1H), 1.44 (s, 12H), 1.27 (d, *J* = 6.9 Hz, 1H),

6H).; ¹³C NMR (126 MHz, CDCl₃) δ 169.07, 144.62, 130.72, 128.63, 124.12, 122.29, 122.09, 108.11, 84.25, 31.05, 26.16, 25.62, 21.52. HRMS (ESI): m/z calculated for [C₁₉H₂₆BNO₃+ H]⁺ 328.2079, found: 328.2089. ¹¹B NMR (160 MHz, CDCl₃) δ 31.84.

(*E*)-1-benzyl-3-(2-methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)propylidene)indolin-2-one (2b):

Synthesized using general procedure **2a**, purified by silica gel flash column chromatography (15% EtOAc/hexane), yellow gummy compound, yield (41 mg) 52%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.58 (d, *J* = 7.08 Hz, 1H), 7.31-7.21 (m, 5H), 7.11-7.07 (m, 1H), 6.99-6.94 (m, 1H), 6.63-6.61 (m, 1H), 4.91(s, 2H), 3.54 (h, *J* = 6.9, 5.8 Hz, 1H),

1.45 (s, 12H), 1.30-1.28 (m, 6H), ¹³C NMR (101 MHz, CDCl₃) δ 169.02, 143.71, 136.16, 130.64, 128.74, 128.58, 127.46, 127.32, 124.17, 122.36, 122.14, 109.33, 84.35, 43.73, 31.11, 25.62, 21.55. HRMS (ESI): m/z calculated for [C₂₅H₃₀BNO₃+ H]⁺ 404.2392, found 404.2395.

(*E*)-1-(methoxymethyl)-3-(2-methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)propylidene)indolin-2-one (2c):

Synthesized using general procedure **2a**, purified by silica gel column chromatography (20% EtOAc/hexane), yellow gummy compound, yield (48 mg) 67%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.62-7.59 (m, 1H), 7.27-7.22 (m, 1H), 7.07-7.01 (m, 2H), 5.13 (s, 2H), 3.57-3.48 (m, 1H), 3.31 (s, 3H), 1.44 (s, 12H), 1.29-1.27 (m, 6H), ¹³C NMR (101 MHz,

CDCl₃) δ 169.19, 142.83, 130.40, 128.75, 124.15, 122.60, 122.03, 109.60, 84.25, 71.34, 56.16, 31.00, 25.48, 21.37. HRMS (ESI): m/z calculated for [C₂₀H₂₈BNO₄+ H]⁺ 358.2184, found 358.2163.

(*E*)-1-methyl-3-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butylidene)indolin-2-one (2d):

Synthesized using general procedure **2a**, purified by silica gel flash column chromatography (25% EtOAc/hexane), yellow gummy compound, yield (46 mg) 70%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.54 (d, *J* = 7.48 Hz, 1H), 7.26-7.22 (m, 1H), 7.01 (t, *J* = 7.44 Hz, 1H), 6.79 (d, *J* = 7.48 Hz, 1H), 3.19 (s, 3H), 2.73-2.68 (m, 2H), 1.75-1.65 (m, 2H)

1.41 (s, 12H), 1.06 (t, J = 6.4 Hz, 3H), ¹³C NMR (101 MHz, CDCl₃) δ 168.91, 144.59, 132.08, 128.71, 123.84, 122.52, 122.16, 108.18, 84.17, 34.33, 26.20, 25.14, 21.48, 14.77. HRMS (ESI): m/z calculated for [C₁₉H₂₆BNO₃+ H]⁺ 328.2079, found: 328.2085.

(*E*)-1-methyl-3-(4-methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)pentylidene)indolin-2-one (2e):

Synthesized using general procedure **2a**, purified by silica gel column chromatography (25% EtOAc/hexane), yellow gummy compound, yield (50 mg) 70%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.54 (d, *J* = 7.6 Hz, 1H), 7.23 (d, *J* = 7.64, 1H), 7.02 (t, *J* = 7.6 Hz, 1H), 6.79 (d, *J* = 7.8 Hz, 1 H), 3.20 (s, 3H), 2.74-2.70 (m, 2H), 1.77-1.67 (m, 1H), 1.57-1.49 (m, 1H), 1.42(s, 12H), 0.97 (d, *J* = 6.6 Hz, 6H); ¹³C NMR (101 MHz,

CDCl₃) δ 168.88, 144.52, 131.68, 128.64, 123.65, 122.43, 122.15, 108.16, 84.14, 36.54, 30.07, 28.59, 26.17, 25.08, 22.51. HRMS (ESI): m/z calculated for [C₂₁H₃₀BNO₃+ H]⁺ 356.2392, found: 356.2390.

(*E*)-1-methyl-3-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexylidene)indolin-2-one (2f):

Synthesized using general procedure **2a**, purified by silica gel flash column chromatography (25% EtOAc/hexane), yellow gummy compound, yield (49 mg) 69%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.54 (d, *J* = 7.56 Hz, 1H), 7.23 (d, *J* = 7.8 Hz, 1H), 7.01(t, *J* = 7.52 Hz, 1H), 6.79 (d, *J* = 7.84 Hz, 1H), 3.20 (s, 3H), 2.72 (t, *J* = 8.08

Hz, 1H), 1.69-1.64 (m, 2H), 1.47-1.45 (m, 1H), 1.42 (s, 12H), 1.40-1.32 (m, 3H), 0.91 (t, J = 7.24 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.94, 144.65, 131.93, 128.68, 123.81, 122.61, 122.16, 108.16, 84.17, 32.37, 32.30, 27.68, 26.18, 25.16, 22.63, 14.08. HRMS (ESI): m/z calculated for [C₂₁H₃₀BNO₃+ H]⁺ 356.2392, found: 356.2393.

(*E*)-1-methyl-3-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)nonylidene)indolin-2-one (2g):

Synthesized using general procedure **2a**, purified by silica gel column chromatography (25% EtOAc/hexane), yellow gummy compound, yield (56 mg) 70%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.54 (d, *J* = 7.56 Hz, 1H), 7.26-7.22 (m, 1H), 7.01 (t, *J* = 7.56 Hz, 1H), 6.79 (d, *J* = 7.76 Hz, 1H), 3.20 (s, 3H), 2.72 (t, *J* = 7.72 Hz, 2H), 1.69-1.63 (m, 2H), 1.42 (s,

12H), 1.34-1.22(m, 12H), 0.89-0.86 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.90, 144.54, 131.87, 128.66, 123.78, 122.50, 122.15, 108.16, 84.15, 32.31, 31.98, 30.19, 29.51, 29.30, 27.95, 26.18, 25.13, 22.80, 14.24. HRMS (ESI): m/z calculated for [C₂₄H₃₆BNO₃+ H]⁺ 398.2861, found: 398.2877. ¹¹B NMR (160 MHz, CDCl₃) δ 30.99.

(*E*)-1-methyl-3-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethylidene)indolin-2-one (2h):

Synthesized using general procedure **2a**, purified by silica gel flash column chromatography (25% EtOAc/hexane), yellow gummy compound, yield (38 mg) 63%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.57 (d, *J* = 7.56 Hz, 1H), 7.27-7.26 (m, 1H), 7.03 (t, *J* = 7.56 Hz, 1H), 6.80 (d, *J* = 7.84, 1H), 3.21 (s, 3H), 2.32 (s, 3H), 1.42 (m, 12H). ¹³C NMR

(126 MHz, CDCl₃) δ 168.74, 144.63, 132.61, 128.76, 123.97, 122.95, 122.18, 108.15, 84.22, 26.18, 24.99, 17.85. HRMS (ESI): m/z calculated for [C₁₇H₂₂BNO₃+ H]⁺ 300.1766, found: 300.1768.

(*E*)-3-(cyclopropyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methylene)-1methylindolin-2-one (2i):

Synthesized using general procedure **2a**, purified by silica gel flash column chromatography (25% EtOAc/hexane), yellow gummy compound, yield (48 mg) 74%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.72 (d, *J* = 7.0 Hz, 1H), 7.27-7.22 (m, 1H), 7.01 (t, *J* = 7.4 Hz, 1H), 6.80 (d, *J* = 7.72 Hz, 1H), 3.21 (s, 1H), 2.42-2.39 (m, 1H), 1.41 (s, 12H), 1.12-

1.04 (m, 4H), 13 C NMR (101 MHz, CDCl₃) δ 168.76, 144.17, 131.76, 128.30, 123.38, 122.96, 121.98, 108.07, 84.40, 26.18, 25.49, 15.45, 8.91. HRMS (ESI): m/z calculated for [C₁₉H₂₄BNO₃+ H]⁺ 326.1922, found: 326.1922. 11 B NMR (160 MHz, CDCl₃) δ 30.84.

(*E*)-3-(cyclopentyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methylene)-1methylindolin-2-one (2j):

Synthesized using general procedure **2a**, purified by silica gel flash column chromatography (25% EtOAc/hexane), yellow gummy compound, yield (46 mg) 65%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.58 (d, *J* = 7.48 Hz, 1H), 7.24-7.20 (m, 1H), 6.99 (t, *J* = 7.6 Hz, 1H), 6.78 (d, *J* = 7.76 Hz, 1H), 3.59-3.51 (m, 1H), 3.19 (s, 3H), 2.06-1.98 (m, 2H),

1.74-1.64 (m, 6H) 1.43 (s, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 168.90, 144.46, 131.50, 128.51, 123.86, 122.58, 122.04, 108.07, 84.21, 42.89, 31.84, 26.13, 25.81, 25.61. HRMS (ESI): m/z calculated for [C₂₁H₂₈BNO₃+ H]⁺ 354.2235, found: 354.2235. ¹¹B NMR (160 MHz, CDCl₃) δ 30.80.

(E)-3-(cyclohexyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methylene)-1methylindolin-2-one (2k):

Synthesized using general procedure 2a, purified by silica gel flash column chromatography (25% EtOAc/hexane), yellow gummy compound, yield (45 mg) 62%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.52 (d, *J* = 7.64 Hz, 1H), 7.20 (d, *J* = 7.96 Hz, 1H), 7.01 (t, *J* = 7.6 Hz, 1H), 6.78 (d, J = 7.84 Hz, 1H), 3.19 (s, 3H), 3.12-3.08 (m, 1H), 1.91-1.84 (m, 4H), 1.77 (d, J = 12.8Hz, 1H), 1.44 (s, 12H), 1.29-1.24 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 169.08, 144.57, 130.95, 128.60, 123.97, 122.33, 122.12, 108.12, 84.23, 41.73, 31.49, 26.52, 26.16, 26.13, 25.63. HRMS (ESI): m/z calculated for $[C_{22}H_{30}BNO_3 + H]^+$ 368.2392, found:

(E)-1-methyl-3-(2-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)ethylidene)indolin-2-one (2l):

368.2390.

Synthesized using general procedure 2a, purified by silica gel flash column chromatography (25% EtOAc/hexane), yellow gummy compound, yield (52 mg) 70%. ¹H NMR (500 MHz, CDCl₃) δ ppm 7.58 (d, J = 7.55 Hz, 1H), 7.32-7.27 (m, 4H), 7.24-7.19 (m, 2H), 6.98 (td, J = 7.65 Hz, J = 1.05 Hz, 1H), 6.81 (d, J = 7.85 Hz, 1H), 4.13 (s, 2H) 3.22

(s, 3H), 1.18 (s, 12H); ¹³C NMR (126 MHz, CDCl₃) δ 168.72, 144.86, 137.66, 132.97, 129.70, 129.17, 128.59, 126.80, 124.02, 122.54, 122.26, 108.24, 84.14, 38.32, 26.22, 25.03. HRMS (ESI): m/z calculated for [C₂₃H₂₆BNO₃+ H]⁺ 376.2079, found: 376.2077.

(E)-1-methyl-3-(3-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2 yl)propylidene)indolin-2-one (2m):

Synthesized using general procedure 2a, purified by silica gel flash column chromatography (25% EtOAc/hexane), yellow gummy compound, yield (57 mg) 73%. ¹H NMR (500 MHz, CDCl₃) δ ppm 7.51(d, J = 7.35 Hz, 1H), 7.33-7.26 (m, 4H), 7.23-7.18 (m, 2H), 6.98(td, J = 7.65 Hz, J = 1.05 Hz, 1H), 6.78 (d, J = 7.8 Hz, 1H), 3.19 (s,

3H), 3.04-3.00 (m, 2H), 2.97-2.93 (m, 2H), 1.44 (s, 12H); ¹³C NMR (126 MHz, CDCl₃) δ 168.81, 144.62, 141.49, 132.33, 128.88, 128.67, 128.45, 128.33, 126.30, 123.67, 122.20, 108.19, 84.24, 34.29, 33.93, 26.14, 25.12. HRMS (ESI): m/z calculated for [C₂₄H₂₈BNO₃+ H]⁺ 390.2235, found: 390.2245. ¹¹B NMR (160 MHz, CDCl₃) δ 30.53.

(*E*)-4-chloro-1-methyl-3-(2-methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propylidene)indolin-2-one (2n):

Synthesized using general procedure **2a**, purified by silica gel flash column chromatography (25% EtOAc/hexane), yellow solid compound, yield (42 mg) 58%. ¹H NMR (400 MHz, CDCl₃) δ 7.15 (t, J = 8.0 Hz, 1H), 7.01 (d, J = 8.2 Hz, 1H), 6.68 (d, J = 7.8 Hz, 1H), 4.15 – 4.07 (m, 1H), 3.19 (s, 1H), 1.43 (s, 7H), 1.24 (d, J = 6.8 Hz,

6H). ¹³C NMR (101 MHz, CDCl₃) δ 169.86, 146.82, 129.63, 128.93, 128.84, 124.94, 121.02, 106.69, 83.93, 33.16, 26.65, 25.84, 22.22. HRMS (ESI): m/z calculated for [C₁₉H₂₅BClNO₃+ H]⁺ 362.1689, found: 362.1694.

(*E*)-5-fluoro-1-methyl-3-(2-methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propylidene)indolin-2-one (20):

Synthesized using general procedure **2a**, purified by silica gel flash column chromatography (25% EtOAc/hexane), yellow solid compound, yield (49 mg) 71%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.33-7.29 (m, 1H), 6.98-6.92 (m, 1H), 6.71-6.67 (m, 1H) 3.46-3.38 (m, 1H), 3.19-3.17 (m, 3H), 1.45-1.44 (m, 12H), 1.29-1.26 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 168.90, 160.12, 157.76, 140.62, 130.34, 123.05 (d, J = 34.48 Hz), 114.65 (d, J = 94.8Hz), 111.95 (d, J = 102.96), 108.33 (d, J = 33.38 Hz) 84.42, 31.13, 26.29, 25.60, 21.46. HRMS (ESI): m/z calculated for [C₁₉H₂₅BFNO₃+ H]⁺ 346.1984, found: 346.1990.

(*E*)-1,5-dimethyl-3-(2-methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propylidene)indolin-2-one (2p):

Synthesized using general procedure **2a**, purified by silica gel flash column chromatography (25% EtOAc/hexane), yellow solid compound, yield (42 mg) 62%. ¹H NMR (400 MHz, CDCl₃) δ 7.38 (s, 1H), 7.03 (d, *J* = 7.9 Hz, 1H), 6.66 (d, *J* = 7.8 Hz, 1H), 3.51 (hept, *J* = 7.0 Hz, 1H), 3.16 (s, 3H), 2.34 (s, 3H), 1.44 (s,

12H), 1.27 (d, J = 7.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 169.10, 142.39, 131.30, 130.86, 128.92, 124.94, 122.29, 107.79, 84.18, 30.97, 26.17, 25.60, 21.53, 21.44. HRMS (ESI): m/z calculated for [C₂₀H₂₈BNO₃+ H]⁺ 342.2235, found: 342.2239. ¹¹B NMR (160 MHz, CDCl₃) δ 30.69.

(*E*)-5-methoxy-1-methyl-3-(2-methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)propylidene)indolin-2-one (2q):

Synthesized using general procedure **2a**, purified by silica gel flash column chromatography (25% EtOAc/hexane), yellow solid, yield (48 mg) 67%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.19 (s, 1H), 6.78-6.76 (m, 1H), 6.67 (d, *J* = 8.08 Hz, 1H), 3.79 (s, 3H), 3.45 ((h, *J* = 6.9 Hz, 1H), 3.16 (s, 3H), 1.4 (s, 12H) 1.26

(d, J = 6.88 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ ppm 168.94, 155.47, 138.59, 130.94, 123.19, 112.35, 112.21, 108.00, 84.25, 56.02, 31.00, 26.23, 25.61, 21.49. HRMS (ESI): m/z calculated for [C₂₀H₂₈BNO₄+ H]⁺ 358.2184, found: 358.2194.

(*E*)-6-chloro-1-methyl-3-(2-methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propylidene)indolin-2-one (2r):

Synthesized using general procedure **2a**, purified by silica gel flash column chromatography (25% EtOAc/hexane), yellow solid, yield (47 mg) 65%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.47 (d, *J* = 8.12 Hz, 1H) 6.97 (d, *J* = 6.7 Hz, 1H), 6.77 (s, 1H) 3.43 (p, *J* = 7.0 Hz, 1H), 3.17 (s, 3H), 1.43 (s, 12H), 1.25 (d, *J* = 8 Hz, 6H). ¹³C NMR

(101 MHz, CDCl₃) δ 169.03, 145.65, 134.42, 129.75, 124.85, 121.94, 120.67, 108.85, 84.40, 31.20, 26.27, 25.59, 21.45. HRMS (ESI): m/z calculated for [C₁₉H₂₅BClNO₃+ H]⁺ 362.1689, found: 362.1694. ¹¹B NMR (160 MHz, CDCl₃) δ 30.64.

(*E*)-1,7-dimethyl-3-(2-methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propylidene)indolin-2-one (2s):

Synthesized using general procedure **2a**, purified by silica gel flash column chromatography (25% EtOAc/hexane), yellow solid, yield (46 mg) 67%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.44 (d, *J* = 7.52 Hz, 1H) 6.96 (d, *J* = 7.72 Hz, 1H), 6.90-6.86 (m, 1H) 3.52-3.45 (m, 4H), 2.54 (s, 3H), 1.43 (s, 12H), 1.26-1.24 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ

169.95, 142.49, 132.49, 130.44, 122.89, 122.22, 121.98, 119.71, 84.14, 30.78, 29.81, 25.62, 21.47, 19.41. HRMS (ESI): m/z calculated for [C₂₀H₂₈BNO₃+ H]⁺ 342.2235, found: 342.2243.

(*E*)-1-methyl-3-(phenyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methylene)indolin-2-one (2t):

Synthesized using general procedure **2a**, purified by silica gel flash column chromatography (25% EtOAc/hexane), yellow gummy compound, yield (42 mg) 58%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.49-7.36 (m, 5H), 7.18 (t, *J* = 7.72 Hz, 1H) 6.98 (d, *J* = 7.76 Hz, 1H), 6.78-6.72 (m, 2H), 3.24 (s, 3H), 1.37 (s, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 169.24, 145.02, 138.12, 132.42, 129.58, 128.86, 128.40,

127.59, 123.32, 121.95, 121.55, 108.23, 84.42, 26.31, 24.94. HRMS (ESI): m/z calculated for $[C_{22}H_{24}BNO_3 + H]^+$ 362.1922, found: 362.1924. ¹¹B NMR (160 MHz, CDCl₃) δ 30.74.

(*E*)-1-methyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)(p-tolyl)methylene)indolin-2-one (2u):

Synthesized using general procedure **2a**, purified by silica gel flash column chromatography (25% EtOAc/hexane), yellow gummy compound, yield (44 mg) 59%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.39-7.36 (m, 2H), 7.24-7.16 (m, 3H) 7.12-7.08 (m, 1H), 6.77-6.73 (m, 2H), 3.24 (s, 3H), 2.41 (s, 3H), 1.37 (s, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 169.34, 144.94, 138.43, 135.00, 131.97, 129.53, 129.41,

127.69, 123.24, 121.87, 121.67, 108.18, 84.34, 26.29, 24.97, 21.55. HRMS (ESI): m/z calculated for $[C_{23}H_{26}BNO_3 + H]^+$ 376.2079, found: 376.2081. ¹¹B NMR (160 MHz, CDCl₃) δ 30.91.

2b. Optimization of Boron-Wittig reaction between α-boryl cabanion and 1,2-diketones and α-keto-ester/amide:

Table 1. Optimization of Reaction Condition^a

Entry	R	R'	Reaction condition	Yield(%) ^b
1	Ph	Ph	А	nd ^d
2	Ph	Ph	С	nd ^d
3 ^c	Ph	Ph	С	nd ^d
4	Ph	Ph	В	nd ^d
5	4-OMeC ₆ H ₄	OEt	А	60
6	4-OMeC ₆ H ₄	OEt	В	72
7 ^c	4-OMeC ₆ H ₄	OEt	В	55
8	4-OMeC ₆ H ₄	OEt	С	45
9	Ph	NR_2	А	65
10	Ph	NR_2	В	69
11	Ph	NR_2	С	50

^aCondition: The LTMP solution of geminal bis boronate was generated in situ using HTMP/ⁿBuLi at 0 °C, which was slowly added to the THF solution of 1,2-diketo compounds at -78 °C, HTMP (1.2 equiv.), ⁿBuLi (1.2 equiv.); geminal-B(pin) (1.2 equiv.) at 0 °C then added Di-keto (1 equiv.) and stirred at below condition; ^b Isolated yield; ^c Di-keto (1 equiv.), HTMP (2 equiv.); ⁿBuLi (2 equiv.); geminal-B(pin) (2 equiv.); **Condition A** : the lithiated geminal B(pin) was added to the keto at -78 °C then stirred at RT for 1 h; **Condition B**: the lithiated geminal B(pin) was added to the keto at -78 °C then stirred at 0 °C for 1h; C: added at -78 °C and stirred for 1h at -78 °C; ^dmultiple inseparable spots.

2b.1. General procedure for the Boron-Wittig reaction with α-ketoester/amide:

To a flame-dried reaction tube, 2,2,6,6-Tetramethylpiperidine (HTMP) (0.24 mmol, 1.2 equiv) in dry THF (1 mL) at -78 °C was added n-BuLi (1.2 equiv) drop-wise for 5 min under argon

atmosphere. The reaction mixture was stirred for 30 min at the same temperature. The reaction was then cooled to 0 °C and stirred for another 30 min. Geminal-bis boronates (0.24 mmol, 1.2 equiv) were dissolved in dry THF (1 ml) added to the reaction mixture and stirred for 5 min. Then the reaction mixture was transferred to a solution of α -keto ester (0.2 mmol) in THF at - 78 °C and further stirred for 1h at 0 °C. In the case of keto-amide, the reaction is stirred for 2h at 0 °C. After completion of the reaction 1ml water was added and the product was extracted with EtOAc (3 × 5 mL). The organic layer was dried over Na₂SO₄ and concentrated in a vacuum to afford the crude product. This crude material was further purified by flash column chromatography. We are unable to detect the minor diastereoisomer from the crude reaction mixture.

Ethyl (*E*)-2-(4-methoxyphenyl)-5-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-2-enoate (3a):

Synthesized using general procedure **2b.1**, purified by silica gel flash column chromatography (5% EtOAc/hexane), colorless oil, yield (63 mg) 72%. ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.20 (m, 2H), 7.14 (td, *J* = 5.3, 4.9, 2.5 Hz, 1H), 7.06 – 7.04 (m, 2H), 6.91-6.81 (m, 4H), 4.23 (q, *J* = 7.1 Hz, 2H), 3.81 (s, 3H), 2.78 – 2.73

(m, 2H), 2.45 - 2.41 (m, 2H), 1.44 (s, 12H), 1.19 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 171.00, 158.90, 141.90, 137.99, 130.71, 128.51, 128.45, 127.49, 125.99, 113.52, 83.57, 62.28, 55.31, 34.65, 30.73, 25.27, 14.27. HRMS (ESI): m/z calculated for [C₂₆H₃₃BO₅₊ H]⁺ 437.2494 found: 437.2497. ¹¹B NMR (160 MHz, CDCl₃) δ 28.33.

Ethyl (E)-4-methyl-2-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-2enoate (3b):

Synthesized using general procedure **2b.1**, purified by silica gel flash column chromatography (5% EtOAc/hexane), colorless oil, yield (47 mg) 69%. ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.29(m, 3H), 7.13-7.09 (m, 2H), 2.56-2.49 (m 1H), 1.41 (s, 12H), 1.16-1.12(m,3H), 1.05-1.03(m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 169.96, 136.61, 136.29, 129.53,

127.97, 127.15, 83.72, 77.48, 76.85, 61.77, 31.82, 25.54, 21.71, 14.23. HRMS (ESI): m/z calculated for $[C_{20}H_{29}BO_{4}+H]^{+}$ 345.2232 found: 345.2249.

Ethyl (*E*)-2-(4-methoxyphenyl)-4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-2-enoate (3c):

Synthesized using general procedure **2b.1**, purified by silica gel flash column chromatography (5% EtOAc/hexane), colorless oil, yield (55 mg) 74%. ¹H NMR (400 MHz, CDCl₃) δ 7.03 (d, *J* = 8.5 Hz, 2H), 6.87 (d, *J* = 8.5 Hz, 2H), 4.19 – 4.12 (m, 2H), 3.81 (s, 3H), 2.57 (p, *J* = 7.0 Hz, 1H), 1.40 (s, 12H), 1.15 (t, *J* = 7.1 Hz,

3H), 1.03 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 170.31, 158.76, 136.27, 130.70, 128.54, 113.47, 83.66, 61.75, 55.26, 31.81, 25.57, 21.73, 14.27. HRMS (ESI): m/z calculated for [C₂₁H₂₃₁BO₅+ H]⁺ 375.2337 found: 375.2367.

Ethyl (*E*)-3-cyclohexyl-2-(4-methoxyphenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)acrylate (3d):

Synthesized using general procedure **2b.1**, purified by silica gel flash column chromatography (5% EtOAc/hexane), colorless oil, yield (65 mg) 78%. ¹H NMR (400 MHz, CDCl₃) δ 7.02 (d, *J* = 7.5 Hz, 2H), 6.86 (d, *J* = 8.0 Hz, 2H), 4.16 (q, *J* = 7.3 Hz, 2H), 3.82 (s, 3H), 2.23 (tt, *J* = 12.1, 3.5 Hz, 1H), 1.67-1.64 (m, 2H), 1.57-

1.54 (m, 3H), 1.41 (s, 12H), 1.27-1.21(m, 2H), 1.15 (t, J = 7.1 Hz, 3H), 1.06 – 1.01 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.50, 158.66, 136.50, 130.70, 128.49, 113.41, 83.61, 61.82, 55.27, 42.47, 31.51, 26.18, 26.09, 25.60, 14.30. HRMS (ESI): m/z calculated for [C₂₄H₃₅BO₅₊ H]⁺ 415.2650 found: 415.2676.

Ethyl (*E*)-3-cyclopropyl-2-(4-methoxyphenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)acrylate (3e):

Synthesized using general procedure **2b.1**, purified by silica gel flash column chromatography (5% EtOAc/hexane), colorless oilly compound, yield (53 mg) 71%. ¹H NMR (400 MHz, CDCl₃) δ 7.18 (d, *J* = 8.64 Hz, 2H), 6.89 (d, *J* = 8.64 Hz, 2H), 4.22 (q, *J* = 7.1 Hz, 2H), 3.81 (s, 1H), 1.66 – 1.59 (m, 1H), 1.36 (s, 12H), 1.19 (t,

J = 7.08 Hz, 3H), 1.07 – 1.03 (m, 2H), 0.79 – 0.74 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 171.30, 158.79, 135.57, 131.47, 127.97, 113.50, 83.48, 62.22, 55.30, 25.70, 16.15, 14.31, 8.55. HRMS (ESI): m/z calculated for [C₂₁H₂₉BO₅+ H]⁺ 373.2181. found: 373.2185.

Ethyl-(*E*)-2-(4-chlorophenyl)-3-cyclopropyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)acrylate (3f):

Synthesized using general procedure **2b.1**, purified by silica gel flash column chromatography (5% EtOAc/hexane), white solid, yield (56 mg) 75%. ¹H NMR (500 MHz, CDCl₃) δ ppm 7.31 (d, *J* = 8.25 Hz, 2H), 7.17 (d, *J* = 8.15 Hz, 2H), 4.20 (q, *J* = 7.1 Hz, 2H) 1.53 (tt, *J* = 8.5Hz, 4.8 Hz, 1H), 1.36 (s, 12H), 1.18 (t, *J* = 7.1 Hz, 3H), 1.04 (dt,

J = 6.7Hz, 3.4 Hz, 2H) 0.79-0.75 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 170.23, 134.96, 134.35, 133.17, 131.69, 128.30, 83.74, 62.17, 25.64, 16.15, 14.25, 8.68. HRMS (ESI): m/z calculated for [C₂₀H₂₆BClO₄+ H]⁺ 377.1685 found: 377.1689. ¹¹B NMR (160 MHz, CDCl₃) δ 28.42.

Ethyl (*E*)-2-(4-chlorophenyl)-3-cyclohexyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)acrylate (3g):

Synthesized using general procedure **2b.1**, purified by silica gel flash column chromatography (5% EtOAc/hexane), white solid, yield (60 mg) 72%. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (dt, *J* = 6.6, 2.3 Hz, 2H), 7.04 (d, *J* = 8.5 Hz, 2H), 4.15 (q, *J* = 6.9 Hz, 1H), 2.19-2.11(m, 1H), 1.68-1.53(m, 7H), 1.42(s, 12H),1.14 (t, *J* = 7.1 Hz, 3H), 1.07-0.97 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.57, 135.79, 134.80,

133.10, 130.92, 128.28, 83.81, 61.85, 42.60, 31.44, 30.68, 25.98, 25.56, 14.23. HRMS (ESI): m/z calculated for $[C_{23}H_{32}BCIO_{4} + H]^{+}$ 419.2155 found: 419.2160. ¹¹B NMR (160 MHz, CDCl₃) δ 12.04.

(*E*)-2,5-diphenyl-1-(pyrrolidin-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-2-en-1-one (3h):

Synthesized using general procedure **2b.1**, purified by silica gel flash column chromatography (35% EtOAc/hexane), white solid compound, yield (58 mg) 69%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.28-7.23 (m, 3H), 7.19-7.09 (m, 3H), 7.05-6.99 (m, 2H), 6.87-6.82 (m, 2H), 3.75-3.71 (m, 2H), 2.84-2.74 (m, 4H) 2.43-2.38 (m, 2H), 1.75-1.63 (m, 4H),

1.33 (s, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 170.77, 142.69, 135.45, 133.88, 129.75, 128.64,

128.57, 128.26, 127.72, 125.60, 80.24, 49.59, 48.86, 34.40, 32.59, 26.37, 25.75, 23.42. HRMS (ESI): m/z calculated for $[C_{27}H_{34}BNO_{3}+H]^{+}432.2705$, found: 432.2711. ¹¹B NMR (160 MHz, CDCl₃) δ 11.99.

(*E*)-2-phenyl-1-(pyrrolidin-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-2en-1-one (3i):

Synthesized using general procedure **2b.1**, purified by silica gel column chromatography (35% EtOAc/hexane), colorless liquid compound, yield (46 mg) 67%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.35-7.29 (m, 3H), 7.08-7.06 (m, 2H), 3.75 (t, *J* = 6.76Hz, 2H), 2.84 (t, *J* = 6.76Hz, 2H), 1.78 (s, 3H), 1.76-1.67 (m, 4H), 1.26 (s, 12H); ¹³C NMR (101

MHz, CDCl₃) δ 170.97, 135.81, 133.13, 129.84, 128.69, 127.71, 80.07, 49.51, 49.06, 26.40, 25.56, 23.46, 15.91. HRMS (ESI): m/z calculated for [C₂₀H₂₈BNO₃+ H]⁺ 342.2235, found: 342.2245. . ¹¹B NMR (160 MHz, CDCl₃) δ 12.45.

(*E*)-4-methyl-2-phenyl-1-(pyrrolidin-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-2-en-1-one (3j):

Synthesized using general procedure **2b.1**, purified by silica gel column chromatography (35% EtOAc/hexane), white solid compound, yield (51 mg) 69%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.35-7.32 (m, 3H), 7.12-7.08 (m, 2H), 3.72-3.68 (m, 2H), 2.78-2.74 (m, 2H), 2.55-2.49 (m, 1H), 1.74-1.67 (m, 4H), 1.31(s, 12H), 1.11-1.08 (m, 6H); ¹³C NMR (101 MHz,

CDCl₃) δ 170.53, 136.52, 132.20, 130.04, 128.62, 127.73, 80.27, 49.54, 48.57, 31.28, 26.50, 26.35, 24.97, 23.38, 21.25. HRMS (ESI): m/z calculated for [C₂₂H₃₂BNO₃+ H]⁺ 370.2548, found: 370.2533.

(*E*)-6-methyl-2-phenyl-1-(pyrrolidin-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hept-2-en-1-one (3k):

Synthesized using general procedure **2b.1**, purified by silica gel flash column chromatography (35% EtOAc/hexane), white solid compound, yield (62 mg) 78%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.35-7.29 (m, 3H), 7.09-7.07 (m, 2H), 3.73 (t, *J* = 7.16Hz, 2H), 2.81 (t, *J* = 6.8Hz, 2H), 2.11 (t, *J* = 8.52 Hz, 2H), 1.79-1.71(m, 4H), 1.43-1.34 (m, 3H),

1.27 (s, 12H), 0.73 (d, J = 6.2 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 171.01, 135.88, 132.99, 129.92, 128.60, 127.71, 80.08, 49.54, 48.91, 37.36, 28.74, 28.37, 26.45, 25.70, 23.46, 22.48. HRMS (ESI): m/z calculated for [C₂₄H₃₆BNO₃+ H]⁺ 398.2861, found: 398.2870. ¹¹B NMR (160 MHz, CDCl₃) δ 12.16.

(*E*)-3-cyclopentyl-2-phenyl-1-(pyrrolidin-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)prop-2-en-1-one (3l):

Synthesized using general procedure **2b.1**, purified by silica gel column chromatography (35% EtOAc/hexane), white solid compound, yield (56 mg) 71%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.34-7.29 (m, 3H), 7.10-7.08 (m, 2H), 3.68 (t, *J* =6.84 Hz, 2H), 2.75 (t, *J* = 6.88Hz, 2H), 2.49-2.43 (m, 1H), 2.09-2.04 (m, 2H), 1.76-1.66 (m, 6H), 1.55-1.38 (m,

4H), 1.27 (s, 12H); ¹³C NMR (126 MHz, CDCl₃) δ 170.37, 136.63, 133.35, 130.17, 128.62, 127.69, 80.30, 49.46, 48.60, 43.61, 31.46, 26.53, 26.48, 26.18, 23.42. HRMS (ESI): m/z calculated for [C₂₄H₃₄BNO₃+ H]⁺ 396.2705, found: 396.2713.

(*E*)-3-cyclohexyl-2-phenyl-1-(pyrrolidin-1-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-2-en-1-one (3m):

Synthesized using general procedure **2b.1**, purified by silica gel column chromatography (35% EtOAc/hexane), white solid compound, yield (57 mg) 70%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.33-7.30 (m, 3H), 7.09-7.08 (m, 2H), 3.69 (t, *J* =6.95 Hz, 2H), 2.73 (t, *J* = 6.9Hz, 2H), 2.23-2.16 (m, 1H), 1.75-1.61(m, 10H), 1.56-1.49 (m, 4H), 1.31 (s,

12H); ¹³C NMR (126 MHz, CDCl₃) δ 170.81, 136.73, 132.40, 130.17, 128.61, 127.73, 80.29, 49.58, 48.56, 42.30, 30.52, 29.85, 26.48, 26.43, 26.23, 23.41. HRMS (ESI): m/z calculated for [C₂₅H₃₆BNO₃+ H]⁺ 410.2861, found: 410.2871.

2b.2. Synthesis of tri-substituted MIDA-based organoboronates

To a flame-dried reaction tube, 2,2,6,6-Tetramethylpiperidine (HTMP) (0.24 mmol, 1.2 equiv) in dry THF (1 mL) at -78 °C was added n-BuLi (1.2 equiv) drop-wise for 5 min under argon atmosphere. The reaction mixture was stirred for 30 min at the same temperature. The reaction was then cooled to 0 °C and stirred for another 30 min. Geminal-bis boronates (0.24 mmol, 1.2 equiv) were dissolved in dry THF (1 ml) added to the reaction mixture and stirred for 5 min. After that, a THF solution of keto-amide (0.2mmol) was added and stirred for 2h. Next, the reaction was worked up with EtOAc, and the crude was further dissolved in dry DMSO, MIDA(0.4 mmol, 2 equiv.) was added and degassed. HC(OMe)₃ (0.6 mmol, 3 equiv.) was added and stirred for 12 h at 100 °C.

(Z)-4-methyl-8-(3-oxo-2-phenyl-3-(pyrrolidin-1-yl)prop-1-en-1-yl)dihydro-4l4,8l4-[1,3,2]oxazaborolo[2,3-b][1,3,2]oxazaborole-2,6(3H,5H)-dione (3n):

Synthesized using general procedure **2b.2**, purified by silica gel column chromatography (25% EtOAc/hexane), yellow oil, yield (44 mg) 62%. ¹H NMR (500 MHz, CDCl₃) δ 7.43 (d, *J* = 7.9 Hz, 2H), 7.37 – 7.29 (m, 3H), 6.01 (s, 1H), 4.15 – 4.07 (m, 1H), 3.81 (d, *J* = 16.5 Hz, 2H), 3.50 (t, *J* = 6.9 Hz, 2H), 3.15 (s, 2H), 3.03 (s, 1H), 1.90-1.78 (m,

4H). ¹³C NMR (101 MHz, CDCl₃) δ 170.25, 168.00, 152.90, 136.62, 128.98, 128.90, 125.90, 63.18, 48.10, 47.54, 45.49, 25.79, 24.49. HRMS (ESI): m/z calculated for [C₁₈H₂₁BN₂O₅+ H]⁺ 357.1616, found: 357.1626.

(Z)-*N*,*N*-diethyl-3-(4-methyl-2,6-dioxotetrahydro-2H-4l4,8l4-[1,3,2]oxazaborolo[2,3-b][1,3,2]oxazaborol-8-yl)-2-phenylacrylamide (30):

Synthesized using general procedure **2b.2**, purified by silica gel column chromatography (25% EtOAc/hexane), white solid, yield (47mg) 66%. ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.26 (m, 6H), 5.98 (s, 1H), 3.92-3.65 (m, 4H), 3.22-3.09 (m, 4H), 3.01 (s, 3H), 1.19 (t, J = 7.2 Hz, 3H), 0.91 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz,

CDCl₃) δ 171.01, 152.48, 137.60, 128.99, 128.87, 125.74, 63.10, 47.96, 43.20, 39.07, 13.07, 12.71. HRMS (ESI): m/z calculated for [C₁₈H₂₃BN₂O₅+ H]⁺ 359.1773, found: 359.1792. ¹¹B NMR (160 MHz, CDCl₃) δ 10.90.

2c. General procedure for the Zweifel Olefination Reaction

In a flame-dried reaction tube 4a (0.11mmol, 1 equiv.) was taken in dry THF (1ml) and cooled to -78 °C, Ar-Li (1.2 equiv.) was added dropwise and stirred for 30 mins. Then stirred for another 30 mins at rt and cooled to 0 °C. NaOMe (0.1ml) and I₂ (0.14 mmol, 1.3 equiv) in MeOH:THF (1:3) were added successively and stirred for 45 mins. After completion of the reaction sodium thiosulphate solution was added, and MeOH was evaporated in the rota and work-up with EtOAc. The organic layer was dried over Na₂SO₄ and concentrated in a vacuum. The crude product was purified by flash column chromatography.

(*E*)-1-methyl-3-(2-methyl-1-phenylpropylidene)indolin-2-one (4a):⁴

Synthesized using general procedure **2c**, purified by silica gel flash column chromatography (10% EtOAc/hexane), yellowish solid compound, yield (19 mg) 62%. ¹H NMR (500 MHz, CDCl₃) δ 7.49 – 7.45 (m, 3H), 7.14 – 7.08 (m, 3H), 6.72 (d, *J* = 7.7 Hz, 1H), 6.57 (td, *J* = 7.8 Hz, 1.2 Hz, 1H), 5.59 (d, *J* = 7.7 Hz, 1H), 5.01 (hept, *J* = 6.9 Hz, 1H),

3.26 (s, 3H), 1.07 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 167.89, 164.48, 142.52, 138.29, 128.92, 128.11, 127.93, 127.49, 123.39, 123.23, 122.97, 121.57, 107.41, 28.62, 25.82, 20.89. HRMS (ESI): m/z calculated for [C₁₉H₁₉NO+ H]⁺ 278.1539, found: 278.1534.

(*E*)-3-(1-(furan-2-yl)-2-methylpropylidene)-1-methylindolin-2-one (4b):

Synthesized using general procedure **2c**, purified by silica gel flash column chromatography (10% EtOAc/hexane), yellowish solid compound, yield (18 mg) 60%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.59-7.58 (m, 1H), 7.19-7.15(m, 1H), 6.79-6.73 (m, 2H), 6.57-6.55 (m, 1H), 6.42-6.40 (m, 1H), 5.96-5.93 (m, 1H), 4.95-4.90 (m, 1H), 3.24 (3H, s), 1.11-1.08 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 167.53, 151.39,

149.84, 142.75, 142.62, 128.85, 126.62, 123.13, 122.62, 121.97, 111.23, 110.06, 107.64, 28.30, 25.90, 20.66. HRMS (ESI): m/z calculated for [C₁₇H₁₇NO₂+ H]⁺ 268.1332, found: 268.1332.

(*E*)-1-methyl-3-(2-methyl-1-(thiophen-2-yl)propylidene)indolin-2-one (4c):

Synthesized using general procedure **2c**, purified by silica gel flash column chromatography (10% EtOAc/hexane), yellowish gummy compound, yield (18 mg) 59%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.48 (d, *J* = 5 Hz, 1H), 7.18-7.13 (m, 2H), 6.85-6.84 (m, 1H), 6.73 (d, *J* = 7.76 Hz, 1H), 6.68 (t, *J* = 7.64Hz, 1H), 5.84 (d, *J* = 7.76 Hz, 1H), 4.97 (h, *J* = 6.7Hz. 1H), 3.24 (3H, s), 1.10 (d, *J* = 6.92, Hz, 6H). ¹³C NMR

 $(101 \text{ MHz}, \text{CDCl}_3) \delta 167.26, 157.26, 142.62, 137.71, 128.70, 127.58, 126.31, 126.14, 126.02, 123.50, 122.83, 121.85, 107.54, 28.55, 25.87, 20.71.$ HRMS (ESI): m/z calculated for $[C_{17}H_{17}NOS+H]^+$ 284.1104, found: 284.1098.

(*E*)-1-methyl-3-(2-methyl-1-(1-methyl-1H-indol-2-yl)propylidene)indolin-2-one (4d):

Synthesized using general procedure **2c**, purified by silica gel flash column chromatography (10% EtOAc/hexane), yellowish gummy compound, yield (26 mg) 72%. ¹H NMR (400 MHz,) δ 7.71 (d, *J* = 8.2 Hz, 1H), 7.40 (d, *J* = 8.2 Hz, 1H), 7.31 (t, *J* = 7.4 Hz, 1H), 7.22 (t, *J* = 7.3 Hz, 1H), 7.13 (t, *J* = 7.6 Hz, 1H), 6.75 (d, *J* = 7.7 Hz, 1H), 6.58 (t, *J* = 7.4 Hz, 1H), 6.43 (m, 1H), 5.38 (d, *J* = 7.5 Hz, 1H), 5.07-5.00 (m, 1H), 3.49 (s, 1H), 3.29 (s, 1H), 1.32 (d, *J* = 5.8 Hz, 3H), 0.95 (d, *J* = 6.0 Hz,

1H). ¹³C NMR (126 MHz, CDCl₃) δ 167.21, 153.35, 142.71, 137.27, 135.44, 128.97, 128.02, 127.18, 122.67, 122.59, 122.40, 121.94, 121.14, 120.18, 109.96, 107.58, 100.28, 30.27, 29.05, 25.90, 21.14, 19.99. HRMS (ESI): m/z calculated for [C₂₂H₂₂N₂O+ H]⁺ 331.1805, found: 331.1809.

(*E*)-3-(1-(benzo[b]thiophen-2-yl)-2-methylpropylidene)-1-methylindolin-2-one (4e):

Synthesized using general procedure **2c**, purified by silica gel flash column chromatography (10% EtOAc/hexane), yellowish solid compound, yield (21 mg) 58%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.91 (d, *J* = 7.0 Hz, 1H), 7.84 (d, *J* = 8.9 Hz, 1H), 7.45 – 7.38 (m, 2H), 7.14 (t, *J* = 7.7 Hz, 1H), 7.10 (s, 1H), 6.74 (d, *J* = 7.8 Hz, 1H), 6.61 (t, *J* = 7.7 Hz, 1H), 6.12 (d, *J* = 7.8 Hz, 1H), 5.03 (hept, *J* = 6.8 Hz, 1H), 3.26 (s, 3H), 1.15 (d, *J* = 6.3 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 167.28,

156.54, 142.73, 140.40, 139.96, 138.40, 128.94, 125.85, 124.68, 124.10, 123.84, 122.71, 122.60, 122.50, 122.04, 107.64, 28.64, 25.95. HRMS (ESI): m/z calculated for [C₂₁H₁₉NOS+H]⁺ 334.1260, found: 334.1267.

2d. General procedure for the Suzuki-Miyaura Cross-Coupling Reaction

A mixture of 4 (0.083 mmol), aryl iodide (0.099 mmol), NaOH (3M, 0.249 mmol) and [Pd(P-^tBu₃)₂] (5 mol%) in dioxane (2 ml) were degassed and heated at 90 °C for 16 h. After cooling the mixture, was filtered through celite and washed with EtOAc. The organic part was concentrated in vaccuo and further purified using flash column chromatography.

(Z)-1-methyl-3-(2-methyl-1-phenylpropylidene)indolin-2-one (5a):

Synthesized using general procedure **2d**, purified by silica gel flash column chromatography (10% EtOAc/hexane), yellow solid compound, yield (16 mg) 71%. ¹H NMR (500 MHz, CDCl₃) δ ppm 7.72(d, *J* = 7.7 Hz, 1H), 7.43 (t, *J* = 7.15Hz, 2H), 7.39-7.36 (m, 1H), 7.31 (t, *J* = 7.7Hz, 1H), 7.11-7.07 (m, 3H), 6.82 (d, *J* = 7.95Hz, 1H), 3.78 (hept., *J* = 6.85Hz,

1H), 3.11 (s, 3H), 1.14 (d, J = 6.85Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 166.92, 162.59, 143.77, 138.56, 128.70, 128.03, 127.18, 127.15, 124.29, 123.17, 122.41, 121.89, 107.92, 32.08, 25.76, 20.43. HRMS (ESI): m/z calculated for [C₁₉H₁₉NO+ H]⁺ 278.1539, found 278.1553.

(Z)-1-methyl-3-(2-methyl-1-(thiophen-2-yl)propylidene)indolin-2-one (5b):

Synthesized using general procedure **2d**, purified by silica gel flash column chromatography (10% EtOAc/hexane), yellowish gummy compound, yield (15 mg) 64%. ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, J = 7.7 Hz, 1H), 7.42 (d, J = 6.0 Hz, 1H), 7.31 (t, J = 7.7 Hz, 1H), 7.13-7.11 (m, 1H), 7.07 (t, J = 8.15 Hz, 1H), 6.82 – 6.79 (m, 2H), 3.75

(hept, J = 6.9 Hz, 1H), 3.13 (s, 3H), 1.18 (d, J = 6.7 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 166.42, 155.02, 143.89, 137.82, 129.24, 126.95, 126.12, 125.73, 125.63, 124.53, 122.13, 121.98, 108.03, 32.19, 25.86, 20.24. HRMS (ESI): m/z calculated for [C₁₇H₁₇NOS+ H]⁺ 284.1104, found: 284.1105.

(Z)-1-methyl-3-(phenyl(p-tolyl)methylene)indolin-2-one (5c):

Synthesized using general procedure **2d**, purified by silica gel flash column chromatography (10% EtOAc/hexane), yellowish solid compound, yield (18 mg) 67%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.44-7.41 (m, 3H), 7.32-7.30 (m, 2H), 7.25-7.23 (m, 3H), 7.17-7.13 (m, 3H), 6.76 (d, *J* = 7.84, 1H), 6.67 (t, *J* = 7.64 Hz, 1H), 6.39 (d, *J* = 7.76 Hz, 1H), 3.21 (s, 3H), 2.37 (s,

3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.00, 155.05, 143.24, 141.57, 139.54, 137.60, 137.08, 130.38, 129.60, 129.26, 128.98, 128.66, 128.63, 123.91, 123.59, 123.14, 121.42, 107.74, 25.97, 21.64. HRMS (ESI): m/z calculated for [C₂₃H₁₉NO+ H]⁺ 326.1539, found: 326.1541.

(Z)-3-((4-chlorophenyl)(phenyl)methylene)-1-methylindolin-2-one (5d):⁵

Synthesized using general procedure **2d**, purified by silica gel column chromatography (10% EtOAc/hexane), yellowish solid compound, yield (20 mg) 70%. ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.42 (m, 3H), 7.34 – 7.23 (m, 6H), 7.18 (t, *J* = 8.0 Hz, 1H), 6.77 (d, *J* = 8.1 Hz, 1H), 6.69 (t, *J* = 7.9 Hz, 1H), 6.42 (d, *J* = 8.0 Hz, 1H), 3.21 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.85,

153.02, 143.45, 140.97, 138.37, 135.33, 131.66, 129.53, 129.50, 129.16, 129.13, 128.23, 124.71, 123.33, 123.16, 121.63, 107.92, 26.00. HRMS (ESI): m/z calculated for [C₂₂H₁₆ClNO+ H]⁺ 346.0993, found: 346.0998.

(*E*)-1-methyl-3-(phenyl(p-tolyl)methylene)indolin-2-one (5e):

Synthesized using general procedure **2d**, purified by silica gel flash column chromatography (10% EtOAc/hexane), yellowish solid compound, yield (18 mg) 68%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.41-7.35 (m, 5H), 7.28-7.25 (m, 4H), 7.22-7.19 (m, 1H), 6.80 (d, *J* = 7.68 Hz, 1H), 6.75 (t, *J* = 7.44 Hz, 1H), 6.61 (d, *J* = 7.60 Hz, 1H), 3.24 (s, 3H), 2.46 (3H, s). ¹³C NMR (101 MHz, CDCl₃) δ 167.04,

155.07, 143.32, 140.37, 139.54, 138.45, 130.21, 129.67, 129.65, 129.15, 128.69, 127.89, 123.95, 123.53, 123.14, 121.42, 107.76, 25.96, 21.61. HRMS (ESI): m/z calculated for [C₂₃H₁₉NO+ H]⁺ 326.1539, found: 326.1544.

(Z)-3-((3-methoxyphenyl)(p-tolyl)methylene)-1-methylindolin-2-one (5f):

Synthesized using general procedure **2d**, purified by silica gel flash column chromatography (10% EtOAc/hexane), yellowish solid compound, yield (19 mg) 65%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.29-7.13 (m, 6H), 6.93-6.88 (m, 2H), 6.81-6.79 (m, 1H), 6.74 (d, J = 7.72 Hz, 1H), 6.69 (t, J = 7.64 Hz, 1H), 6.55 (d, J = 7.64 Hz, 1H), 3.75 (s, 3H), 3.19 (s, 3H), 2.41 (3H, s). ¹³C NMR (101 MHz,

CDCl₃) δ 166.91, 159.21, 154.68, 143.37, 141.83, 139.51, 138.25, 129.67, 129.51, 128.87, 128.76, 124.13, 123.46, 123.17, 122.60, 121.41, 115.74, 114.37, 107.75, 55.32, 25.98, 21.61. HRMS (ESI): m/z calculated for [C₂₄H₂₁NO₂+ H]⁺ 356.1645, found: 356.1649.

(Z)-3-((E)-1,5-diphenylpent-1-en-3-ylidene)-1-methylindolin-2-one (5g):

Synthesized using general procedure **2d**, purified by silica gel flash column chromatography (10% EtOAc/hexane), yellowish gummy compound, yield (22 mg) 72%. ¹H NMR (400 MHz, CDCl₃) δ ppm 9.35 (d, *J* = 16.44 Hz, 1H), 7.64-7.61 (m, 3H), 7.41-7.36 (m, 6H), 7.32-7.26 (m, 3H), 7.15 (d, *J* = 16.44Hz, 1H), 7.06 (t, *J* = 75.6Hz, 1 H), 6.86

(d, J = 7.68Hz, 1H), 3.32-3.29 (m, 5H), 3.02-2.98 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 168.33, 151.88, 143.06, 141.18, 137.33, 136.67, 129.05, 128.92, 128.46, 128.36, 128.01, 126.80, 126.65, 123.97, 123.23, 122.80, 122.12, 108.02, 34.57, 31.21, 25.89. HRMS (ESI): m/z calculated for [C₂₆H₂₃NO+ H]⁺ 366.1852, found: 366.1856.

2e. General procedure for the synthesis of 1,3 di-carbonyl compound

To a flame-dried reaction tube 2,2,6,6-Tetramethylpiperidine (HTMP) (0.24 mmol, 1.2 equiv) in dry THF (1 mL) at -78 °C was added n-BuLi (1.2 equiv) drop-wise for 5 min under argon atmosphere. The reaction mixture was stirred for 30 min at the same temperature. The reaction was then cooled to 0 °C and stirred for another 30 min. Geminal-bis boronates (0.24 mmol, 1.2 equiv) were dissolved in dry THF (1 ml) added to the reaction mixture and stirred for 5 min. Then the reaction mixture was transferred to a solution of α -keto-amide / N-alkyl-oxindole (0.2 mmol) in THF at 0 °C and further stirred for 2 h. After completion of the reaction 2ml water was added and the product was extracted with EtOAc (3 × 5 mL). The organic layer was dried

over Na₂SO₄ and concentrated in vacuum to afford the crude product. This crude material was further purified by flash column chromatography. Then the product was oxidized using $H_2O_2/NaOH$ (1:1) in THF at 0 °C. After, 15 mins. the reaction was extracted with EtOAc and further purified using column chromatography.

2-phenyl-1-(pyrrolidin-1-yl)butane-1,3-dione (6a):

Synthesized using general procedure **2e**, purified by silica gel column chromatography (20% EtOAc/hexane), colorless oil, yield (30 mg) 65%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.39-7.32 (m, 5H), 4.67 (s, 1H), 3.59-3.54 (m,1H), 3.49-3.42 (m, 2H), 3.15-3.12 (m, 1H), 2.22 (s,

3H), 1.94-1.79 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 203.84, 167.15, 133.66, 129.15, 128.11, 65.75, 46.94, 46.24, 29.03, 26.15, 24.38. HRMS (ESI): m/z calculated for [C₁₄H₁₇NO₂+ H]⁺232.1332, found: 232.1330.

2,5-diphenyl-1-(pyrrolidin-1-yl)pentane-1,3-dione (6b):

Synthesized using general procedure **2e**, purified by silica gel column chromatography (20% EtOAc/hexane), colorless oil, yield (43 mg) 67%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.37-7.30 (m, 3H), 7.28-7.22 (m, 4H), 7.17-7.11 (m, 3H), 4.63(s, 1H), 3.58-3.51 (m, 1H), 3.49-3.42 (m, 1H). 3.37-3.31 (m, 1H), 3.11-3.05 (m, 1H), 3.01-2.92 (m, 1H),

2.89-2.80 (m, 2H), 2.76 -2.69 (m 1H), 1.92-1.75 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 204.77, 167.17, 141.21, 133.33, 129.25, 129.09, 128.54, 128.50, 128.05, 126.09, 65.39, 46.88, 46.22, 43.13, 30.08, 26.11, 24.35. HRMS (ESI): m/z calculated for [C₂₁H₂₃NO₂+ H]⁺ 322.1802, found: 322.1796.

N,*N*-diethyl-3-oxo-2,5-diphenylpentanamide (6c):

Synthesized using general procedure **2e**, purified by silica gel column chromatography (20% EtOAc/hexane), colorless oil, yield (47 mg) 72%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.37-7.30 (m, 3H), 7.26-7.22 (m, 4H), 7.18-7.11 (m, 3H), 4.67 (s, 1H), 3.54-3.45 (m, 1H), 3.31-3.23

(m, 1H). 3.20-3.13 (m, 1H), 3.10-3.01 (m, 1H), 2.99-2.80 (m, 3H), 2.73-2.65 (m, 1H) 1.12 (t, J = 6.8Hz, 3H), 1.00 (t, J = 6.96 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.86, 168.07, 141.27, 133.91, 129.13, 128.99, 128.53, 128.50, 128.05, 126.08, 63.68, 43.24, 42.43, 40.41,

30.25, 14.24, 12.86. HRMS (ESI): m/z calculated for $[C_{21}H_{25}NO_2 + H]^+$ 324.1958, found: 324.1965.

1-morpholino-2,5-diphenylpentane-1,3-dione (6d):

Synthesized using general procedure **2e**, purified by silica gel column chromatography (25% EtOAc/hexane), colorless oil, yield (46 mg) 68%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.38-7.32 (m, 3H), 7.26-7.16 (m, 5H), 7.15-7.11 (m, 2H), 4.68 (s, 1H), 3.76-3.66 (m, 2H), 3.60-3.44 (m, 3H). 3.25-3.11 (m, 3H), 2.97-2.84 (m, 3H), 2.73-2.66 (m, 1H); ¹³C

NMR (101 MHz, CDCl₃) δ 204.52, 167.66, 141.09, 133.33, 129.36, 129.03, 128.56, 128.33, 126.20, 66.78, 66.29, 63.56, 46.52, 43.26, 42.40, 30.18. HRMS (ESI): m/z calculated for [C₂₁H₂₃NO₃+ H]⁺ 338.1751, found: 338.1757.

1-morpholino-2-phenylundecane-1,3-dione (6e):

Synthesized using general procedure **2e**, purified by silica gel column chromatography (25% EtOAc/hexane), colorless oil, yield (46 mg) 66%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.40-7.32 (m, 3H), 7.26-7.23 (m, 2H), 4.76 (s, 1H), 3.80-3.67 (m, 2H), 3.61-3.52 (m, 3H), 3.37-3.31 (m, 1H), 3.25-3.20 (m, 2H), 2.63-2.54 (m, 1H), 2.40-2.31 (m, 1H), 1.55-1.48 (m,

2H), 1.24-1.20 (m, 10H), 0.87-0.82 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 205.47, 167.79, 133.66, 129.30, 129.02, 128.24, 66.80, 66.32, 63.34, 46.58, 42.41, 41.78, 31.93, 29.48, 29.23, 29.15, 23.89, 22.77, 14.23. HRMS (ESI): m/z calculated for [C₂₁H₃₁NO₃+ H]⁺ 346.2377, found: 346.2388.

4-methyl-3-oxo-N,N,2-triphenylpentanamide (6f):

Synthesized using general procedure **2e**, purified by silica gel column chromatography (10% EtOAc/hexane), colorless oil, yield (46 mg) 64%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.41-7.29 (m, 10H), 7.24-7.17(m, 5H), 4.99 (s, 1H), 2.66-2.59 (m, 1H), 0.96 (d, *J* = 6.72 Hz, 3H),

 $(0.80, J = 6.6 \text{ Hz}, 3\text{H}); {}^{13}\text{C} \text{NMR} (101 \text{ MHz}, \text{CDCl}_3) \delta 208.35, 168.55, 142.88, 142.54, 133.62, 130.01, 129.94, 129.35, 129.19, 129.05, 128.70, 128.51, 127.99, 126.51, 62.52, 39.49, 18.75, 18.65. \text{HRMS} (ESI): m/z calculated for [C₂₄H₂₃NO₂+ H]⁺ 358.1802, found: 358.1816.$

N,*N*-diethyl-4-methyl-3-oxo-2-phenylpentanamide (6g):

Synthesized using general procedure **2e**, purified by silica gel column chromatography (20% EtOAc/hexane), colorless oil, yield (34 mg) 65%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.38-7.31 (m, 3H), 7.28-7.26(m, 2H), 4.89(s, 1H), 3.52-3.44 (m, 1H), 3.34-3.22 (m, 2H), 3.17-

3.08 (m, 1H), 2.97-2.85 (m, 1H), 1.14-1.11 (m, 6H), 1.04 (t, J = 7.08 Hz, 3H), 0.98-0.96 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 208.88, 168.09, 133.98, 129.26, 128.94, 127.90, 61.99, 42.43, 40.38, 39.66, 19.15, 19.04, 14.19, 12.82. HRMS (ESI): m/z calculated for [C₁₆H₂₃NO₂₊ H]⁺ 262.1802, found: 262.1812.

1-methyl-3-(3-phenylpropanoyl)indolin-2-one (6h):

Synthesized using general procedure **2e**, purified by silica gel column chromatography (10% EtOAc/hexane), yellowish gummy compound, yield (40 mg) 71%. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.36-7.28 (m, 5H), 7.25-7.19 (m, 2H), 7.09 (t, *J* = 7.6Hz, 1 H), 6.95 (d, *J* = 7.68Hz, 1H), 4.78 (s, 0.5H), 3.55 (s, 3H), 3.12-3.03 (m, 4H); ¹³C NMR (101 MHz,

CDCl₃) δ 175.49, 171.42, 140.53, 139.03, 128.79, 128.43, 126.58, 125.42, 122.32, 121.93, 119.84, 108.58, 101.55, 35.79, 31.96, 25.85. HRMS (ESI): m/z calculated for [C₁₈H₁₇NO₂+ H]⁺ 280.1332, found: 280.1317.

2f. General procedure for Bio-active compounds

Synthesis of AMPK activator

To a flame-dried reaction tube 2,2,6,6-Tetramethylpiperidine (HTMP) (0.24 mmol, 1.2 equiv) in dry THF (1 ml) at -78 °C was added n-BuLi (1.2 equiv) drop-wise for 5 min under argon atmosphere. The reaction mixture was stirred for 30 min at the same temperature. The reaction was then cooled to 0 °C and stirred for another 30 min. Geminal-bis boronates (0.24 mmol, 1.2 equiv) were dissolved in dry THF (1 ml) added to the reaction mixture, and stirred for 3 min. Then the reaction mixture was transferred to a solution of N-alkyl-oxindole (0.20 mmol) in THF at 0 °C and further stirred for 15 mins. After completion of the reaction 1ml water was added and the product was extracted with EtOAc (3×5 mL). The organic layer was dried over

Na₂SO₄ and concentrated in vacuum to afford the crude product. This crude material was further purified by flash column chromatography using silica gel.

Next, the above product, aryl iodide (1.2 equiv.), NaOH (3M) and [Pd(P-^tBu₃)₂] (5 mol%) in dioxane were degassed and heated at 90 °C for 16 h. After cooling the mixture, filtered through celite and washed with EtOAc. The organic part was concentrated in vaccuo and further purified using flash column chromatography.

methyl 3-((3-(diphenylmethylene)-2-oxoindolin-1-yl)methyl)benzoate (5h):

Synthesized using general procedure **2f**, purified by silica gel flash column chromatography (10% EtOAc/hexane), yellowish gummy compound (64 mg), yield 72%. ¹H NMR (400 MHz, CDCl₃) δ 8.02-8.01 (m, 1H), 7.93 (d, *J* = 7.8 Hz, 1H), 7.51 (d, *J* = 8.0 Hz, 1H), 7.46 – 7.42 (m, 3H), 7.40-7.34 (m, 8H), 7.05 (t, *J* = 7.8 Hz, 1H), 6.67 – 6.63 (m, 2H), 6.43 (d, *J* = 7.7 Hz,

1H), 4.97 (s, 2H), 3.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.02, 155.48, 142.27, 141.42, 139.98, 137.01, 132.12, 130.70, 130.33, 129.49, 129.42, 129.10, 129.05, 128.92, 128.86, 128.65, 128.00, 123.97, 123.57, 123.40, 121.74, 108.67, 77.48, 77.20, 77.16, 76.85, 52.32, 43.39. HRMS (ESI): m/z calculated for [C₃₀H₂₃NO₃+ H]⁺ 446.1751, found: 446.1756.

methyl(Z)-3-((3-((4-chlorophenyl)(phenyl)methylene)-2-oxoindolin-1yl)methyl)benzoate (5i):

Synthesized using general procedure **2f**, purified by silica gel flash column chromatography (10% EtOAc/hexane), yellowish gummy compound, yield (72 mg) 75%. ¹H NMR (400 MHz, CDCl₃) δ 8.01 -7.92 (m, 2H), 7.51 (d, *J* = 7.9 Hz, 1H), 7.46 – 7.31 (m, 9H), 7.26 (s,1H), 7.06 (t, *J* = 7.7 Hz, 1H), 6.66 (t, *J* = 7.7 Hz, 2H), 6.42 (d, *J* = 7.7 Hz, 1H), 4.96 (s, 2H),

3.91 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.96, 153.79, 142.33, 141.00, 138.28, 136.89, 135.56, 132.10, 131.84, 130.76, 129.66, 129.54, 129.22, 129.12, 129.09, 128.98, 128.66, 128.30, 124.35, 123.49, 123.37, 121.86, 108.75, 77.42, 76.91, 52.33, 43.44. HRMS (ESI): m/z calculated for [C₃₀H₂₂ClNO₃+ H]⁺ 480.1361, found: 480.1372.

methyl (E)-3-((2-oxo-3-(phenyl(p-tolyl)methylene)indolin-1-yl)methyl)benzoate (5j):

Synthesized using general procedure **2f**, purified by silica gel flash column chromatography (10% EtOAc/hexane), yellowish gummy compound, yield (1.56 gm isolated) 68%. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.93 (d, *J* = 7.6 Hz, 1H), 7.51 (d, *J* = 7.9 Hz, 1H), 7.44-7.28 (m, 6H), 7.24-7.21(m, 4H), 7.10-7.04 (m, 1H), 6.70 – 6.62 (m, 2H), 6.58 (d, *J* = 7.6 Hz, 1H), 4.96 (s, 2H), 3.91 (s, 3H), 2.44 (s, 3H). ¹³C

NMR (101 MHz, CDCl₃) δ 167.12, 167.00, 155.86, 142.16, 140.29, 139.73, 138.47, 137.07, 132.13, 130.67, 130.44, 129.72, 129.37, 129.04, 128.90, 128.69, 128.65, 127.96, 123.75, 123.59, 123.27, 121.66, 108.62, 52.31, 43.36, 21.63. HRMS (ESI): m/z calculated for [C₃₁H₂₅NO₃+ H]⁺ 460.1907, found: 460.1914.

Methyl-(Z)-3-((3-(4-methyl-1-phenylpentylidene)-2-oxoindolin-1-yl)methyl)benzoate (5k):

Synthesized using general procedure **2f**, purified by silica gel flash column chromatography (25% EtOAc/hexane), gummy compound, yield (68 mg) 78%. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.90 (d, *J* = 7.6 Hz, 1H), 7.63 (d, *J* = 7.7 Hz, 1H), 7.46-7.37 (m, 4H), 7.36- 7.29(m, 3H), 7.17 (t, *J* = 7.7 Hz, 1H), 7.05 (t, *J* = 7.6 Hz, 1H), 6.66(d, J = 7.84Hz, 1H), 4.90 (s, 2H), 3.89 (s, 3H), 2.99 – 2.94 (m, 2H), 1.73-1.67 (m,1H), 1.54-1.48

(m, 2H), 0.96 (d, J = 6.6 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 166.99, 166.64, 159.48, 142.39, 141.76, 137.08, 131.95, 130.69, 128.98, 128.83, 128.57, 128.53, 128.26, 128.15, 127.64, 123.65, 123.19, 122.86, 122.16, 108.88, 77.41, 76.91, 52.27, 43.22, 36.54, 35.a3, 28.92, 22.53. HRMS (ESI): m/z calculated for [C₁₉H₂₉NO₃+ H]⁺ 440.2220, found: 440.2227.

3. ¹¹ B-NMR study of reaction with α -keto-amide:

¹¹ B-NMR study with keto-amide

which n-BuLi (1.2 equiv) drop-wise for 5 min under argon atmosphere. The reaction mixture was stirred for 30 min at the same temperature. The reaction was then cooled to 0 °C and stirred for another 30 min. Geminal-bis boronates (0.6 mmol, 1.2 equiv) were dissolved in dry THF (2 ml) added to the reaction mixture, and stirred for 5 min. Then the reaction mixture was transferred to a solution of α -keto amide (0.5 mmol) in THF at -78 °C and further stirred for 30 mins at 0 °C. We have recorded the ¹¹B NMR in THF using CDCl₃ capillary inside the NMR tube for lock purposes. The ¹¹B NMR indicates the formation of the desired product at 12.3 ppm as well as a peak at 4.8 ppm indicating the formation of boronate species. We have also seen a peak ~ 34 ppm arise due to the presence of unreacted geminal bis boronates, which was taken in excess.

 $^{11}\mbox{B-NMR}$ of reaction mixture in THF after 30 mins, \mbox{CDCI}_3 capillary was inserted in the NMR tube for lock purpose

4. Crystallographic Data and Structure Refinements:

All the crystals grew as colorless prisms by slow evaporation from pet ether and ethyl acetate. First, the compound was taken in a small glass vial and dissolved in a minimum amount of ethyl acetate. Then dropwise pet ether was added until the solution became faint opaque. Next, the vial was closed with a plastic cap containing a small hole for slow solvent evaporation. After one week the growing crystal was found to be visible and submitted for further characterization. Good quality single crystals of each compounds were sorted out with the help of a polarizing microscope and immersed in paratone oil, which was then mounted on the tip of glass fiber and cemented using epoxy resin. The single-crystal XRD diffraction data were collected at 298 K on a Bruker AXS (D8 Quest System) X-ray diffractometer, equipped with a PHOTON 100 CMOS detector using graphite-monochromated Mo-Ka radiation (0.71073 Å). The linear absorption coefficients, scattering factors for the atoms, and the anomalous dispersion corrections were taken from International Tables for X-ray Crystallography. Bruker Apex III software was used for data collection, unit cell measurements, absorption corrections, scaling, and integration.5 The data were reduced and an empirical absorption correction was applied with the help of SAINTPLUS software and SADABS programs using XPREP, respectively.6 The structures were solved by the direct method using SHELXL-2014 in the WinGx programs. For all the cases, nonhydrogen atoms were refined anisotropically. All other hydrogen atoms were geometrically fixed using the riding atom model and assigned fixed isotropic displacement parameters. The "ACTA" command was used to generate the Crystallographic Information File (CIF). The structural details of all the compounds are presented in below. CCDC: 2266989, 2266990, 2266922, 2266991contain the crystallographic data of these compounds 3h, 2q, 4a, 5a respectively.

Figure 1. Perspective view of 3h with 50% thermal ellipsoid probability

Figure 2. Perspective view of 2q with 50% thermal ellipsoid probability

Figure 3. Perspective view of 4a with 50% thermal ellipsoid probability

Figure 4. Perspective view of 5a with 50% thermal ellipsoid probability

Entry	3h	2q	4a	5a
Empirical formula	$C_{27} H_{34} B N O_3$	C ₂₀ H ₂₈ B N O ₄	C ₁₉ H ₁₉ N O	C ₁₉ H ₁₉ NO
Formula weight	431.36	357.24	277.35	277.35
Temperature (K)	296(2)	296(2)	296(2)	296(2)
Wave length [Å]	0.71073	0.71073	0.71073	0.71073
Crystal system	Triclinic	Orthorhombic	Monoclinic	Monoclinic
Space group	P -1	Pbca	P 2 ₁ /n	P2 ₁ /n
a [Å]	8.867(3)	8.6631(4)	11.7963(7)	9.004(12)
b [Å]	11.445(4)	13.5282(6)	8.2830(4)	9.504(11)
c [Å]	12.457(4)	35.3230(15)	15.9743(10)	18.11(2)
α [°]	102.292	90	90	90
β [°]	95.249	90	105.775(2)	94.20
γ [°]	98.197(11)°.	90	90	90
Volume [Å ³]	1212.8(6)	4139.7(3)	1502.04(15)	1546(3)
Z	2	8	4	4
Density (calculated)	1.181	1.146	1.226	1.192
Absorption coefficient [mm ⁻¹]	0.075	0.078	0.075	0.073
F (000)	464	1536	592	592
Crystal size [mm ³]	0.200 x 0.180 x 0.150	0.350 x 0.250 x 0.150	0.250 x 0.150 x 0.100	0.12 x 0.090 x 0.080
Theta range for data collection	2.339 to 24.998°.	2.306 to 25.497°.	1.919 to 25.499°.	2.421 to 28.292
Limiting indices	-10<=h<=10, -	-10<=h<=10, - 15<=k<=16, -	-14<=h<=14, -	-11<=h<=12, -
	13<=k<=13, -	42<=1<=42	10<=k<=10, -	12<=k<=12, -
	14<=l<=14		19<=l<=19	24<=l<=24
Reflections collected / unique	17144/4267 [R(int)	72526/ 3861 [R(int)	26754/2795 [R(int)	36315/3822
	= 0.1311]	= 0.0881]	= 0.0806]	[R(int) =
				0.0690]

Table 1: Crystal data and structure refinements for the molecules 2h, 3q, 4a, 5a respectively

Goodness-of-fit on F ²	1.010	1.122	1.042	1.044
Final R indices [I>2sigma(I)]	$R_1 = 0.0633, wR2 = 0.1336$	$R_1 = 0.0677, wR_2 =$	$R_1 = 0.0605, wR_2 = 0.1654$	$R_1 = 0.0555,$ $wR_2 = 0.1360$
		0.1685		
R indices (all data)	$R_1 = 0.1324, wR_2 =$	$R_1 = 0.0885, wR_2 =$	$\begin{array}{c} R_1 = 0.0816, wR_2 = \\ 0.1937 \end{array}$	$R_1 = 0.0990,$ $wR_2 = 0.1587$
	0.1658	0.1817		
CCDC	2266989	2266990	2266922	2266991

5. NMR spectra of compounds

S61

7,7,277 7,7,201 7,7,3615 7,7,3615 7,7,3615 7,7,3615 7,7,3615 7,7,3615 7,7,3615 7,7,1450 7,7,150 7,7,1

Provide an analysis of the second sec

7, 2355 7, 2355 7, 2355 7, 2355 7, 2355 7, 2355 7, 2355 7, 2355 7, 2355 7, 2355 7, 2355 7, 2355 7, 2356 7, 2356 7, 2348 7, 2355 7, 235

7,4418 7,4428 7,4428 7,4124 7,4124 7,1235 7,2315 7,2315 7,2315 7,2315 7,2315 7,2315 7,2315 7,2315 7,2315 7,2215 7,2215 7,2215 7,225

---- 3.2057

7,23864 7,23864 7,23865 7,23865 7,2389 7,2388 7,1982 7,11982 6,69931 6,69931 6,69931 6,69931 6,69931 6,69932 6,59932 6

S84

7,3570 7,2584 7,25845 7,25845 7,1784 7,1713 7,1778

7,24043 7,22549 7,22549 7,22549 2,22009 3,0077 3,0077 3,0079 3,0077 3,0079 3,0079 3,0079 3,0079 3,007100 0,08743 0,08773 0,09774 0,09774 0,09774 0,09775 0,09775 0,09775 0,09775 0,09775 0,09775

S89

7, 2,9480 7, 85238 7, 85238 7, 85238 7, 46184 7, 46184 7, 4494 7, 4494 7, 4494 7, 4494 7, 4494 7, 4494 7, 4494 7, 7492 7, 4494 7, 7495 7, 7395 7, 7

5. References:

- a) H. Li, X. Shangguan, Z. Zhang, S. Huang, Y. Zhang, and J. Wang, Org. Lett. 2014, 16, 448-451. b) K. Hong, X. Liu, and J. P. Morken, J. Am. Chem. Soc. 2014, 136, 10581-10584. c) E. K. Edelstein, A. C. Grote, M. D. Palkowitz, and J. P. Morken, Synlett, 2018, 29, 1749-1752. d) Y. Zhou, T. Xiong, L.-Y Zhou; H.-Y. Li, Y. C. Xiao, and F.-Er. Chen, Org. Lett., 2022, 24, 791-796.
- a) C. Feng, and T.-P. Loh, *Angew. Chem. Int. Ed.* 2013, 52, 12414-12417. b) A. Muthukumar, G. N. Rao, and G. Sekar, *Org. Biomol. Chem.*, 2019, 17, 3921-3933.
- H. Qu, Y. Chen, X. Ceng, P. Tang, H. Wang, F. Chen, *Asian J. Org. Chem.*, 2022, 11, e202200188.
- 4. R. Shintani, T. Yamagami, T. Hayashi, Org. Lett., 2006, 8, 4799-4801.
- 5. S. Park, J. Lee, K. J. Shin, E. Oh, J. H. Seo, *Molecules*, 2017, 22, 503.

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) SP_DG_222

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: SP_DG_222

Bond precision:	C-C = 0.0045 A	Wavelength=0.71073		
Cell:	a=8.6631(4) alpha=90	b=13.5282(6) beta=90	c=35.3230(15) gamma=90	
Temperature:	296 K			
(Calculated	Reported	l	
Volume	4139.7(3)	4139.7(3)	
Space group	Рbса	РЬСа		
Hall group ·	-P 2ac 2ab	-P 2ac 2	ab	
Moiety formula 🤇	C20 H28 B N O4	C20 H28	B N 04	
Sum formula	C20 H28 B N O4	C20 H28	B N 04	
Mr	357.24	357.24		
Dx,g cm-3	1.146	1.146		
Z	8	8		
Mu (mm-1)	0.078	0.078		
F000	1536.0	1536.0		
F000'	1536.71			
h,k,lmax	10,16,42	10,16,42		
Nref	3861	3861		
Tmin,Tmax	0.977,0.988	0.652,0.	745	
Tmin'	0.973			
Correction method AbsCorr = MULTI-S	d= # Reported T Lin SCAN	nits: Tmin=0.652 I	max=0.745	
Data completeness	s= 1.000	Theta(max) = 25.4	97	
R(reflections)= 0	0.0677(2894)		wR2(reflections)=	
S = 1.122	Npar= 24	4	0.101/(3001)	

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level C

PLAT220_ALERT_2_C	NonSolvent Resd 1	C Ueq(max)	/Ueq(min) Range	3.2	Ratio
PLAT242_ALERT_2_C	Low 'MainMol' Ueq	as Compared	to Neighbors of	C12	Check
PLAT242_ALERT_2_C	Low 'MainMol' Ueq	as Compared	to Neighbors of	C15	Check
PLAT242_ALERT_2_C	Low 'MainMol' Ueq	as Compared	to Neighbors of	C18	Check
PLAT340_ALERT_3_C	Low Bond Precision on	n C-C Bonds		0.00453	Ang.
PLAT601_ALERT_2_C	Unit Cell Contains So	lvent Access	sible VOIDS of .	32	Ang**3
PLAT906_ALERT_3_C	Large K Value in the	Analysis of	Variance	10.548	Check
PLAT906_ALERT_3_C	Large K Value in the	Analysis of	Variance	2.479	Check
PLAT934_ALERT_3_C	Number of (Iobs-Icalc	c)/Sigma(W) >	> 10 Outliers	1	Check

Alert level G

PLAT395_ALERT_2_G Deviating X-O-Y Angle From 120 for O3	. 107.6 Degree
PLAT395_ALERT_2_G Deviating X-O-Y Angle From 120 for O4	. 107.4 Degree
PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary	. Please Do !
<pre>PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min)</pre>). 1 Note
PLAT933_ALERT_2_G Number of HKL-OMIT Records in Embedded .res Fil	le 1 Note
PLAT967_ALERT_5_G Note: Two-Theta Cutoff Value in Embedded .res .	51.0 Degree
<code>PLAT978_ALERT_2_G</code> Number C-C Bonds with Positive Residual Density	y. 3 Info

0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 9 ALERT level C = Check. Ensure it is not caused by an omission or oversight 7 ALERT level G = General information/check it is not something unexpected 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 9 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 28/11/2022; check.def file version of 28/11/2022

Datablock SP_DG_222 - ellipsoid plot

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) SP_DG_325

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: SP_DG_325

Bond precision	C-C = 0.0048 A	Wavelength=0.71073	
Cell:	a=8.867(3)	b=11.445(4)	c=12.457(4)
	alpha=102.292(11)	beta=95.249(14)	gamma=98.197(11)
Temperature:	296 К		
	Calculated	Reported	1
Volume	1212.8(7)	1212.8(6	5)
Space group	P -1	P -1	
Hall group	-P 1	-P 1	
Moiety formula	C27 H34 B N O3	?	
Sum formula	C27 H34 B N O3	C27 H34	B N 03
Mr	431.36	431.36	
Dx,g cm-3	1.181	1.181	
Z	2	2	
Mu (mm-1)	0.075	0.075	
F000	464.0	464.0	
F000′	464.19		
h,k,lmax	10,13,14	10,13,14	1
Nref	4271	4267	
Tmin,Tmax	0.985,0.989	0.614,0.	.745
Tmin'	0.985		
Correction met AbsCorr = MULT	hod= # Reported T L. I-SCAN	imits: Tmin=0.614]	[max=0.745
Data completen	ess= 0.999	Theta(max)= 24.9	98
R(reflections)	= 0.0633(2295)		wR2(reflections)= 0.1658(4267)
S = 1.010	Npar= 2	.93	

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level C

RINTAO1_ALERT_3_C The value of Rint is greater than 0.12 Rint given 0.131 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds 0.00485 Ang. PLAT411_ALERT_2_C Short Inter H...H Contact H9B ..H9B . 2.14 Ang. 1-x,1-y,1-z = 2_666 Check PLAT905_ALERT_3_C Negative K value in the Analysis of Variance ... -0.679 Report

Alert level G

PLAT020_ALERT_3_G The Value of Rint is Greater Than 0.12	0.131 Report
PLAT395_ALERT_2_G Deviating X-O-Y Angle From 120 for O1 .	108.5 Degree
PLAT395_ALERT_2_G Deviating X-O-Y Angle From 120 for O2 .	107.4 Degree
PLAT395_ALERT_2_G Deviating X-O-Y Angle From 120 for O3 .	109.1 Degree
PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary .	Please Do !
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min).	3 Note
PLAT941_ALERT_3_G Average HKL Measurement Multiplicity	4.0 Low
PLAT967_ALERT_5_G Note: Two-Theta Cutoff Value in Embedded .res	50.0 Degree
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.	1 Info

0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
4 ALERT level C = Check. Ensure it is not caused by an omission or oversight
9 ALERT level G = General information/check it is not something unexpected
1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
5 ALERT type 2 Indicator that the structure model may be wrong or deficient
6 ALERT type 3 Indicator that the structure quality may be low
0 ALERT type 4 Improvement, methodology, query or suggestion
1 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 28/11/2022; check.def file version of 28/11/2022

Datablock SP_DG_325 - ellipsoid plot

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) SP_DG_108

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: SP_DG_108

Bond precision:	C-C = 0.0034 A	Wavelength=0.71073	
Cell:	a=11.7963(7)	b=8.2830(4)	c=15.9743(10)
	alpha=90	beta=105.775(2)	gamma=90
Temperature:	296 K		
	Calculated	Reported	
Volume	1502.04(15)	1502.04(1	5)
Space group	P 21/n	P 21/n	
Hall group	-P 2yn	-P 2yn	
Moiety formula	C19 H19 N O	C19 H19 N	0
Sum formula	C19 H19 N O	C19 H19 N	0
Mr	277.35	277.35	
Dx,g cm-3	1.227	1.226	
Z	4	4	
Mu (mm-1)	0.075	0.075	
F000	592.0	592.0	
F000′	592.23		
h,k,lmax	14,10,19	14,10,19	
Nref	2796	2795	
Tmin,Tmax	0.987,0.993	0.976,0.9	82
Tmin'	0.981		
Correction meth AbsCorr = MULTI	od= # Reported T -SCAN	Limits: Tmin=0.976 Tm	ax=0.982
Data completene	ss= 1.000	Theta(max) = 25.49	9
R(reflections)=	0.0605(2033)		wR2(reflections)= 0.1937(2795)
S = 1.042	Npar=	194	

The following ALERTS were generated. Each ALERT has the format **test-name_ALERT_alert-type_alert-level**. Click on the hyperlinks for more details of the test.

Alert level C

PLAT905_ALERT_3_C Negative K value in the Analysis of Variance ... -1.088 Report

Alert level G

PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary .	Please Do !
PLAT967_ALERT_5_G Note: Two-Theta Cutoff Value in Embedded .res	51.0 Degree
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.	2 Info

```
0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
1 ALERT level C = Check. Ensure it is not caused by an omission or oversight
3 ALERT level G = General information/check it is not something unexpected
1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
1 ALERT type 2 Indicator that the structure model may be wrong or deficient
1 ALERT type 3 Indicator that the structure quality may be low
0 ALERT type 4 Improvement, methodology, query or suggestion
1 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 12/09/2022; check.def file version of 09/08/2022

Datablock SP_DG_108 - ellipsoid plot

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) shelx

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: shelx

Bond precision:	C-C = 0.0034 A	Wavelength=0.71073		
Cell:	a=9.004(12)	b=9.504(11)	c=18.11(2)	
	alpha=90	beta=94.20(3)	gamma=90	
Temperature:	296 K			
	Calculated	Reported		
Volume	1546(3)	1546(3)		
Space group	P 21/n	P 21/n		
Hall group	-P 2yn	-P 2yn		
Moiety formula	C19 H19 N O	?		
Sum formula	C19 H19 N O	C19 H19 N	0	
Mr	277.35	277.35		
Dx,g cm-3	1.192	1.192		
Z	4	4		
Mu (mm-1)	0.073	0.073		
F000	592.0	592.0		
F000′	592.23			
h,k,lmax	12,12,24	12,12,24		
Nref	3831	3823		
Tmin,Tmax	0.992,0.994	0.991,0.99	93	
Tmin'	0.991			
Correction meth AbsCorr = MULTI	od= # Reported T L -SCAN	imits: Tmin=0.991 Tma	ax=0.993	
Data completene	ss= 0.998	Theta(max) = 28.292		
R(reflections)=	0.0558(2358)		wR2(reflections)= 0.1661(3823)	
S = 1.048	Npar= 1	193		

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

🎈 Alert level B

PLAT410_ALERT_2_B Short Intra HH Contact	HOOA	H00I	•	1.89 Ang.
		x,y,z =		1_555 Check

Alert level C

ABSTY02_ALERT_1_C An _exptl_absorpt_correction_type has been given without a literature citation. This should be contained in the _exptl_absorpt_process_details field. Absorption correction given as multi-scan PLAT148_ALERT_3_C s.u. on the a – Axis is (Too) Large 0.012 Ang. PLAT148_ALERT_3_C s.u. on the b - Axis is (Too) Large 0.0110 Ang. PLAT148_ALERT_3_C s.u. on the c – Axis is (Too) Large 0.020 Ang. PLAT220_ALERT_2_C NonSolvent Resd 1 C Ueq(max)/Ueq(min) Range 3.6 Ratio PLAT230_ALERT_2_C Hirshfeld Test Diff for C00G --C00K 5.5 s.u. . PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of C00G Check PLAT767_ALERT_4_C INS Embedded LIST 6 Instruction Should be LIST 4 Please Check PLAT906_ALERT_3_C Large K Value in the Analysis of Variance 5.078 Check PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.600 3 Report 1 Check PLAT934_ALERT_3_C Number of (Iobs-Icalc)/Sigma(W) > 10 Outliers ..

Alert level G

PLAT066_ALERT_1_G Predicted and Reported Tmin&Tmax Range Identical	? Check
PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels	40 Note
PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary .	Please Do !
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min).	1 Note
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600	6 Note
PLAT913_ALERT_3_G Missing # of Very Strong Reflections in FCF	1 Note
PLAT965_ALERT_2_G The SHELXL WEIGHT Optimisation has not Converged	Please Check
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.	2 Info

```
0 ALERT level A = Most likely a serious problem - resolve or explain
1 ALERT level B = A potentially serious problem, consider carefully
11 ALERT level C = Check. Ensure it is not caused by an omission or oversight
8 ALERT level G = General information/check it is not something unexpected
3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
6 ALERT type 2 Indicator that the structure model may be wrong or deficient
8 ALERT type 3 Indicator that the structure quality may be low
3 ALERT type 4 Improvement, methodology, query or suggestion
0 ALERT type 5 Informative message, check
```

Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
# start Validation Reply Form
_vrf_ABSTY02_shelx
;
PROBLEM: An _exptl_absorpt_correction_type has been given without
RESPONSE: ...
_vrf_PLAT410_shelx
PROBLEM: Short Intra H...H Contact H00A ..H00I . 1.89 Ang.
RESPONSE: ...
;
_vrf_PLAT148_shelx
;
PROBLEM: s.u. on the a - Axis is (Too) Large .... 0.012 Ang.
RESPONSE: ...
;
_vrf_PLAT220_shelx
;
PROBLEM: NonSolvent Resd 1 C Ueq(max)/Ueq(min) Range 3.6 Ratio
RESPONSE: ...
;
_vrf_PLAT230_shelx
;
PROBLEM: Hirshfeld Test Diff for COOG --COOK .
                                                          5.5 s.u.
RESPONSE: ...
_vrf_PLAT242_shelx
PROBLEM: Low 'MainMol' Ueq as Compared to Neighbors of COOG Check
RESPONSE: ...
_vrf_PLAT767_shelx
PROBLEM: INS Embedded LIST 6 Instruction Should be LIST 4 Please Check
RESPONSE: ...
;
_vrf_PLAT906_shelx
PROBLEM: Large K Value in the Analysis of Variance ..... 5.078 Check
RESPONSE: ...
;
_vrf_PLAT911_shelx
PROBLEM: Missing FCF Refl Between Thmin & STh/L= 0.600 3 Report
RESPONSE: ...
;
_vrf_PLAT934_shelx
PROBLEM: Number of (Iobs-Icalc)/Sigma(W) > 10 Outliers .. 1 Check
RESPONSE: ...
# end Validation Reply Form
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 28/11/2022; check.def file version of 28/11/2022

Datablock shelx - ellipsoid plot

